Dokument: Cubic spline functions revisited
| Titel: | Cubic spline functions revisited | |||||||
| URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=71905 | |||||||
| URN (NBN): | urn:nbn:de:hbz:061-20260115-122530-2 | |||||||
| Kollektion: | Publikationen | |||||||
| Sprache: | Englisch | |||||||
| Dokumententyp: | Wissenschaftliche Texte » Artikel, Aufsatz | |||||||
| Medientyp: | Text | |||||||
| Autor: | Jarre, Florian [Autor] | |||||||
| Dateien: |
| |||||||
| Stichwörter: | Error estimate , Cubic spline , Natural spline , Condition number | |||||||
| Beschreibung: | In this paper a fourth order asymptotically optimal error bound for a new cubic interpolating spline function, denoted by Q-spline, is derived for the case that only function values at given points are used but not any derivative information. The bound seems to be stronger than earlier error bounds for cubic spline interpolation in such setting such as the not-a-knot spline. A brief analysis of the conditioning of the end conditions of cubic spline interpolation leads to a modification of the not-a-knot spline, and some numerical examples suggest that the interpolation error of this revised not-a-knot spline generally is comparable to the near optimal Q-spline and lower than for the not-a-knot spline when the mesh size is small. | |||||||
| Rechtliche Vermerke: | Originalveröffentlichung:
Jarre, F. (2025). Cubic spline functions revisited. Journal of Computational and Applied Mathematics, 478, Article 117240. https://doi.org/10.1016/j.cam.2025.117240 | |||||||
| Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
| Fachbereich / Einrichtung: | Mathematisch- Naturwissenschaftliche Fakultät | |||||||
| Dokument erstellt am: | 15.01.2026 | |||||||
| Dateien geändert am: | 15.01.2026 |

