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 a b s t r a c t

In this paper a fourth order asymptotically optimal error bound for a new cubic interpolating 
spline function, denoted by Q-spline, is derived for the case that only function values at given 
points are used but not any derivative information. The bound seems to be stronger than earlier 
error bounds for cubic spline interpolation in such setting such as the not-a-knot spline. A brief 
analysis of the conditioning of the end conditions of cubic spline interpolation leads to a modifi-
cation of the not-a-knot spline, and some numerical examples suggest that the interpolation error 
of this revised not-a-knot spline generally is comparable to the near optimal Q-spline and lower 
than for the not-a-knot spline when the mesh size is small.

1.  Introduction

Given knots 𝑥0 < 𝑥1 < … < 𝑥𝑛 and a function 𝑓 ∶ [𝑥0, 𝑥𝑛] → ℝ, an interpolating function 𝑠 is searched for with 𝑠(𝑥𝑖) = 𝑓𝑖 ∶= 𝑓 (𝑥𝑖)
for 0 ≤ 𝑖 ≤ 𝑛. Throughout, it is assumed that 𝑓 is four times continuously differentiable on [𝑥0, 𝑥𝑛] and that 𝑛 ≥ 5.

Possibly the most famous result concerning cubic spline functions is the following Lemma:
Lemma 1. The cubic spline function with either the first derivative or the second derivative specified at both end points is the unique function 
that minimizes the integral of the square of the second derivative among all interpolating 𝐶2-functions with the same end conditions.

When there are no end conditions then the natural spline 𝑠 with 𝑠′′(𝑥0) = 𝑠′′(𝑥𝑛) = 0 minimizes the integral of the square of the 
second derivative among all interpolating 𝐶2-functions, an observation that dates back to [3].

Lemma 1 is also true for the periodic spline when 𝑓 is periodic with period 𝑥𝑛−𝑥0; see, for example, [5], Chapter 2.4. In the 
following only the case is considered where 𝑓 is not necessarily periodic.

• The case 𝑠′′(𝑥𝑖) = 0 for 𝑖 = 0 and 𝑖 = 𝑛 often is denoted by natural spline in the literature and when 𝑠′(𝑥𝑖) = 𝑓 ′(𝑥𝑖) for 𝑖 = 0 and 
𝑖 = 𝑛 are given, this is often denoted by clamped spline. Following this common notation, the cubic spline interpolant with end 
conditions 𝑠′′(𝑥𝑖) = 𝑓 ′′(𝑥𝑖) for 𝑖 = 0 and for 𝑖 = 𝑛  will be denoted by clamped natural spline in the following.

Apart from the smoothness of the cubic spline function established in Lemma 1 also an appealing error estimate is known. Setting 
‖𝑓 (4)

‖∞ ∶= max𝜉∈[𝑥0 ,𝑥𝑛] |𝑓
(4)(𝜉)| the following error estimate is given in [2]:

Lemma 2. For 𝑥 ∈ [𝑥0, 𝑥𝑛] the clamped spline and also the clamped natural spline 𝑠 satisfy
|𝑠(𝑥) − 𝑓 (𝑥)| ≤ 5

384‖𝑓
(4)
‖∞ℎ4

with ℎ ∶= max1≤𝑖≤𝑛(𝑥𝑖 − 𝑥𝑖−1). This result is best possible.
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$f_{(k)}:= f[x_0,\ldots ,x_k]$


$k$


$k\ge 1$


$\rho $


$\rho =f_{(4)}=f^{(4)}(\xi )/24$


$\xi \in (x_0,x_4)$


$f^{(4)}/24$


$(x_0,x_2)$


$f_{(4)}\cdot f_{(5)}>0$


$|f^{(4)}|$


$(x_0,x_4)$


$x_0$


$\rho = f_{(4)}$


$\delta _1$


$\delta _1$


$\max \{1-\frac {5 f_{(5)} (x_4-x_2)}{2f_{(4)}}, \ 0\}\in [0,1)$


$s''(a)=s''(b)=0$


$s_{nat}$


$s_1,s_2$


$s_1''(x_0)=1,\ s_1''(x_n)=0$


$s_2''(x_0)=0,\ s_2''(x_n)=1$


$\alpha ,\beta $


$s_{nat}+\alpha s_1+\beta s_2$


$\|s-f \|_\infty $


$f(x)\equiv \sin (x)$


$[0,\pi ]$


$\|s-f \|_\infty $


$f(x)\equiv \sin (x)$


$[\pi /4,5\pi /4]$


$[a,b]$


$f''(a)=f''(b)=0$


$f''(a)\not =0$


$f''(b)\not =0$


$h$


$f''(a)$


$f''(b)$


$\|s-f \|_\infty $


$f(x)\equiv \sin (x)$


$[\pi /4,5\pi /4]$


$[x_i,x_{i+1}]$


$x_{i+1}-x_i$


$f$


$\|s-f \|_\infty $


$f(x)\equiv 1/(1+x^2)$


$[-1,3]$


$f$


$\pm i$


$n=12$


$f$


$\|s-f \|_\infty $


$f(x)\equiv 1/(1+exp(-x))$


$[-1,4]$


$x\mapsto 1/(1+exp(-x))$


$n=5$


$|s_{NAK}-f|$


$|s_{RNAK}-f|$


$f(x)\equiv 1/(1+exp(-x))$


$[-1,4]$


$48$


$f(x)-s(x)$


$n=48$


$\|s-f\|_\infty $


$f^{(4)}/24$


$[x_0,x_2]$


$[x_{n-2},x_n]$


$[x_0,x_3]$


$[x_{n-3},x_n]$


$n+1\ge 6$


$x_0<\ldots <x_n$


$f_i$


$0\le i\le n$


$f$


$\rho :=f_{(4)}$


$x_0,\ldots ,x_4$


$f_{(5)}$


$x_0,\ldots ,x_5$


$f_{(4)}\cdot f_{(5)}>0$


$f^{(4)}/24$


$\rho :=\rho \cdot \max \{0,1-\frac {5\cdot (x_2-x_1)fl_{(5)}}{2fl_{(4)}}\}$


$\tilde f(x):= f(x)-\rho (x-x_0)^4$


$x_0,\ldots ,x_3$


$x_0$


$x_n$


$f_{(4)}\cdot f_{(5)}<0$


$x_0$


$x_n$


$n+1\ge 6$


$x_0<\ldots <x_n$


$f_i$


$0\le i\le n$


$s_{nat}$


$s_1$


$x_0$


$x_n$


$s_2$


$x_0$


$x_n$


$f$


$\rho :=f_{(4)}$


$x_0,\ldots ,x_4$


$f_{(5)}$


$x_0,\ldots ,x_5$


$f_{(4)}\cdot f_{(5)}>0$


$f^{(4)}/24$


$\rho :=\rho \cdot \max \{0,1-\frac {5\cdot (x_4-x_2)f_{(5)}}{2f_{(4)}}\}$


$\delta _1:=12\rho (x_2-x_0)$


$s'''$


$x_1$


$\delta _2$


$x_{n-1}$


$\rho $


$f_{(4)}\cdot f_{(5)}<0$


$jump1(s) := s'''(x_1+\epsilon )-s'''(x_1-\epsilon )$


$\epsilon >0$


$jump2(s) := s'''(x_{n-1}+\epsilon )-s'''(x_{n-1}-\epsilon )$


$\alpha $


$\beta $


$s=s_{nat}+\alpha s_1 +\beta s_2$
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To put the above lemma into perspective, in Lemma 3 below it is compared to a third order polynomial approximation that uses 
only function values and that also allows for an error estimate in terms of the fourth derivative 𝑓 (4).

Lemma 3. Let 𝑓 be four times continuously differentiable on [𝑥0, 𝑥𝑛]. Based on the data 𝑓 (𝑥𝑖) for 0 ≤ 𝑖 ≤ 𝑛, an approximation of 𝑓 (𝑥) for 
𝑥 ∈ [𝑥1, 𝑥𝑛−1] is possible by an interpolating cubic polynomial 𝑝 such that

|𝑝(𝑥) − 𝑓 (𝑥)| ≤ 3
128‖𝑓

(4)
‖∞ℎ4

with ℎ ∶= max1≤𝑖≤𝑛(𝑥𝑖 − 𝑥𝑖−1).
For 𝑥 ∈ [𝑥0, 𝑥1] or 𝑥 ∈ [𝑥𝑛−1, 𝑥𝑛]

|𝑝(𝑥) − 𝑓 (𝑥)| ≤ 1
24‖𝑓

(4)
‖∞ℎ4

Both estimates are best possible.
Proof.  When 𝑥 coincides with 𝑥𝑖 for some 𝑖 there is nothing to show. Let 𝑥 ∈ (𝑥1, 𝑥𝑛−1). Choose 𝑖 such that 𝑥 ∈ (𝑥𝑖, 𝑥𝑖+1) and let 𝑝 be 
the cubic polynomial interpolating 𝑓 at 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2. The standard error bound for polynomial interpolation states that

𝑓 (𝑥) − 𝑝(𝑥) = 𝑓 (4)(𝜉)
24 𝜔(𝑥) with 𝜔(𝑥) =

𝑖+2
∏

𝑗=𝑖−1
(𝑥 − 𝑥𝑗 ) (1)

and with 𝜉 ∈ (𝑥𝑖−1, 𝑥𝑖+2). Observe that ‖𝜔‖∞ increases when, for example, 𝑥𝑖−1 is reduced while 𝑥𝑖, 𝑥𝑖+1, and 𝑥𝑖+2 remain unchanged. 
Thus, when maximizing ‖𝜔‖∞ one can assume without loss of generality that all mesh points have maximum distance 𝑥𝑘+1 − 𝑥𝑘 = ℎ
for all 𝑘. Straightforward calculations then show that |𝜔(𝑥)| ≤ 9

16ℎ
4 for 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1]. The first statement of the lemma follows when 

inserting this into (1).
Similarly, for 𝑥 ∈ [𝑥0, 𝑥1], the term 𝜔(𝑥) is given by 𝜔(𝑥) = ∏4

𝑗=0(𝑥 − 𝑥𝑗 ) and straightforward calculations show that |𝜔(𝑥)| ≤ ℎ4. 
Likewise also for 𝑥 ∈ [𝑥𝑛−1, 𝑥𝑛].

When interpolating the function 𝑓 with 𝑓 (𝑥) ≡ 𝑥4, the fourth derivative is constant so that (1) implies that the bounds given in 
Lemma 1 are best possible. ∎

For points 𝑥 near the end points it is not surprising that the spline approximation using derivative information at the end points 
has a lower error estimate than cubic interpolation, but also for points near the middle of [𝑥0, 𝑥𝑛] the constant term for the spline 
approximation 5

384 ≈ 0.0130 < 0.0234 ≈ 3
128  is better than for the cubic interpolation. (The constant term at the end points is 1

24 ≈
0.0417.)

Apart from that, in general, the piecewise cubic interpolation referred to in Lemma 3 also is not differentiable at the knots 𝑥𝑖 for 
1 ≤ 𝑖 ≤ 𝑛 − 1.

Both, Lemma 1 and Lemma 2 refer to the case that either 𝑓 ′ or 𝑓 ′′ is known at the end points. When neither the derivative 
information for 𝑓 is available nor 𝑓 is known to be periodic, the spline 𝑠 of choice often is either the not-a-knot spline or the natural 
spline. The natural spline always has second derivative zero at the end points, 𝑠′′(𝑥0) = 𝑠′′(𝑥𝑛) = 0 independent of the second derivative 
of 𝑓 at these points. As detailed in Corollary 1 below, when 𝑓 ′′(𝑥0) or 𝑓 ′′(𝑥𝑛) are nonzero this results in a lower approximation accuracy 
of 𝑓 by 𝑠 near 𝑥0 or near 𝑥𝑛. Also for the not-a-knot spline there seem to be no error estimates comparable to Lemma 2 when an 
irregular mesh is used.

Not-a-knot splines on a regular grid with constant distances 𝑥𝑖 − 𝑥𝑖−1 are considered for example in [6]. By an optimal placement 
of two additional not-a-knot-nodes, an explicit error bound as in Lemma 2 could be derived with constant 10.85∕384 compared to 
5∕384 in Lemma 2. Earlier, in [1] it was shown that cubic spline interpolation with the not-a-knot end condition converges to any 
𝐶2-interpolant on arbitrary irregular meshes when the mesh size goes to zero, but no explicit error rates are given. Here, an attempt 
is made to define an interpolating cubic spline function along with an explicit error estimate without using any additional points or 
any derivative information at the end points.

Before addressing possible replacements of the conditions for the natural spline or the not-a-knot spline, the condition number of 
possible alternative end conditions is addressed next.

2.  Ill-conditioning of end conditions

For illustration in this section 𝑛 = 50 equidistant mesh points with distance 1 are considered first. Since there are two degrees of 
freedom, the various interpolating cubic spline functions always differ by multiples of two splines 𝑠1 and 𝑠2 satisfying 𝑠1(𝑥𝑖) = 𝑠2(𝑥𝑖) = 0
for 0 ≤ 𝑖 ≤ 𝑛 and

𝑠′1(𝑥0) = 1, 𝑠′′1 (𝑥0) = 2
√

3, and 𝑠′2(𝑥0) = 1, 𝑠′′2 (𝑥0) = −2
√

3.

(The initial values ±2
√

3 are chosen at will, what matters is that 𝑠1 and 𝑠2 are linearly independent of each other.)
The existence of such functions 𝑠1 and 𝑠2 implies the following observation concerning possible generalizations of Lemma 2:

Note 1. Without the specification of some form of end condition there does not exist any finite number 𝑇 = 𝑇 (𝑓, ℎ) such that an 
interpolating cubic spline function 𝑠 for some given function 𝑓 and some given mesh size ℎ always satisfies ‖𝑓 − 𝑠‖∞ ≤ 𝑇 .
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Fig. 1. Exact values of ln(|𝑠1|+1) in red and of ln(4 ⋅ 1028|𝑠2|+1) in blue. The logarithmic scale translates the exponential growth/decay of the 
oscillations of |𝑠1| or |𝑠2| to a linear growth/decay rate.

(This is so because arbitrary multiples of 𝑠1 and 𝑠2 can be added to an interpolating cubic spline without changing the interpolation 
property.)

On the interval [𝑥0, 𝑥1] = [0, 1] the function 𝑠1 takes the form

𝑠1(𝑥) = (𝑥 − 𝑥0) +
√

3(𝑥 − 𝑥0)2 − (1 +
√

3)(𝑥 − 𝑥0)3

where the coefficient of (𝑥 − 𝑥0)3 is the negative of the sum of the other two coefficients, so that 𝑠1(𝑥0) = 𝑠1(𝑥1) = 0. From this it 
follows that

𝑠′1(𝑥1) = 1 + 2
√

3 − 3(1 +
√

3) = −(2 +
√

3)

and

𝑠′′1 (𝑥1) = 2
√

3 − 6(1 +
√

3) = −6 − 4
√

3 = −(2 +
√

3) ⋅ 2
√

3.

Thus, the first and second derivative of 𝑠1 at 𝑥1 are −(2 +
√

3) times the values at 𝑥0, and again, the coefficient of (𝑥 − 𝑥1)3 for 𝑠1 on 
the interval [𝑥1, 𝑥2] is the negative of the sum of the coefficients for (𝑥 − 𝑥1) and (𝑥 − 𝑥1)2. Inductively, the values of 𝑠1 multiply by 
−(2 +

√

3) each time the variable 𝑥 passes from [𝑥𝑖−1, 𝑥𝑖] to [𝑥𝑖, 𝑥𝑖+1]. The graph of 𝑠1 oscillates and the absolute values “explode” for 
large values of 𝑥.

Likewise,

𝑠2(𝑥) = (𝑥 − 𝑥0) −
√

3(𝑥 − 𝑥0)2 + (
√

3 − 1)(𝑥 − 𝑥0)3,

with 𝑠′2(𝑥1) =
√

3 − 2 and 𝑠′′2 (𝑥1) = (
√

3 − 2)𝑠′′2 (𝑥0). Both derivatives are multiplied by 
√

3 − 2 ≈ −0.268, and the graph of 𝑠2 rapidly 
converges to zero for large values of 𝑥.

Fig. 1 illustrates the exponential growth of 𝑠1 and the exponential decay of 𝑠2 for large values of 𝑥. The function 𝑠2 is scaled by a 
factor 4 ⋅ 1028 to match the range of 𝑠1, and since 𝑠1(𝑥𝑖) = 𝑠2(𝑥𝑖) = 0, not ln(abs(𝑠1)) but ln(abs(𝑠1)+1) is plotted; likewise for 𝑠2. (At 
the knots 𝑥𝑖 the values ln(abs(𝑠1)+1) go down to zero. In Fig. 1 the mesh points used for the plot are chosen disjoint from the knots 
𝑥𝑖 so that the lines in the figure do not go down to zero at all 𝑥𝑖.)

The numerical computation of the coefficients of 𝑠2 starting from [𝑥0, 𝑥1] and extending to [𝑥𝑖, 𝑥𝑖+1] for 𝑖 = 1, 2,… , 50 is highly 
unstable. The exact values (derived above) coincide with the data shown in Fig. 1. The numerical values for 𝑠2 computed by the 
above procedure are depicted in Fig. 2, and first behave as predicted but rounding errors accumulate and the numerical values for 
|𝑠2| grow exponentially for 𝑖 ≥ 17. (The errors also grow exponentially for 𝑖 ≤ 17 but are still too small to be seen in Figure 2.) Here, 
the values of ln(abs(𝑠2)+eps) are plotted where eps is the machine precision so that small values of 𝑠2 can be identified on the plot.

To explain this behavior let the representation of 𝑠2 on the interval [𝑥𝑖, 𝑥𝑖+1] be denoted by

𝑠2(𝑥) = 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑥 − 𝑥𝑖)2 + 𝑑𝑖(𝑥 − 𝑥𝑖)3 for 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1].
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Fig. 2. Computed values of ln(|𝑠2|+eps) starting computations from the left; near 𝑥 = 15 the exponential accumulation of the rounding errors 
becomes visible.

Then 𝑑𝑖 = −(𝑎𝑖 + 𝑏𝑖) can be treated as an auxiliary variable, while 𝑏𝑖, 𝑐𝑖 satisfy the discrete linear dynamical system
[

𝑏𝑖+1
𝑐𝑖+1

]

=
[

−2 −1
−3 −2

][

𝑏𝑖
𝑐𝑖

]

=∶ 𝐴
[

𝑏𝑖
𝑐𝑖

]

.

The eigenvalues of 𝐴 are just the two numbers −(2 +
√

3) and 
√

3 − 2, and the coefficients of 𝑠1 and of 𝑠2 yield the associated 
eigenvectors. Due to rounding errors, the numerical coefficients converge to multiples of the eigenvector for the eigenvalue with the 
larger absolute value; this is what can be seen in Fig. 2. (The graph of 𝑠2 in Fig. 1 was computed starting at the right end point, and the 
numerical values roughly correspond to the exact values known from the analysis of the dynamical system.) We note that replacing 
𝑠(𝑥) by 𝑠̆(𝑥) ∶= 𝑠(ℎ−1𝑥) for some mesh size ℎ > 0, then the 𝑘-th derivative of 𝑠̆ is 𝑠̆(𝑘)(𝑥) = ℎ−𝑘𝑠(𝑘)(𝑥). The growth factor −(2 +

√

3) when 
moving from [𝑥𝑖, 𝑥𝑖+1] to [𝑥𝑖+1, 𝑥𝑖+2] remains the same.

The situation is quite similar when the mesh is not uniform. In Fig. 3, the same number of mesh points was chosen from a uniform 
distribution on the same interval. Again, two spline functions 𝑠1 and 𝑠2 are defined with end values 1 and 2

√

3 for the first and second 
derivative either on left (𝑠1) or on the right (𝑠2). Again there is some form of exponential growth either when 𝑥 increases, or when 𝑥
decreases.

Using slightly different definitions of 𝑠1 and 𝑠2, it was observed in [2] that linear combinations of 𝑠1 and 𝑠2 generally have large 
oscillating function values near 𝑥0 and near 𝑥𝑛, and comparatively very small absolute function values in the middle. Summarizing 
we obtain the following observations:
Note 2. Finding a spline function 𝑠 where the values of 𝑠′ and 𝑠′′ are given, either both at 𝑥0 or both at 𝑥𝑛, is an extremely ill-
conditioned problem.

Such “asymmetric” end conditions as in Note 2 will not be used in the sequel; instead “symmetric” end conditions will be considered 
that treat both ends of the interval [𝑥0, 𝑥𝑛] the same way.

A second observation can also be made:
Note 3. If two interpolating spline functions 𝑠̂ and 𝑠̄ for a function 𝑓 on the points 𝑥0 < … < 𝑥𝑛 are given with moderate values 
‖𝑠̂ − 𝑓‖∞ and ‖𝑠̄ − 𝑓‖∞ then for 𝑥 ∈ [𝑥0, 𝑥𝑛] sufficiently far from both end points the difference |𝑠̂(𝑥) − 𝑠̄(𝑥)| is tiny.

Indeed, 𝑠̂ and 𝑠̄ differ by a linear combination of 𝑠1 and 𝑠2, and by assumption, the difference has moderate function values near 
the end points since else at least one of the values ‖𝑠 − 𝑓‖∞ would be large. As observed above, this linear combination of 𝑠1 and 𝑠2
has tiny function values for points 𝑥 ∈ [𝑥0, 𝑥𝑛] sufficiently far from both end points. Thus, for such 𝑥 both spline functions ̂𝑠 and ̄𝑠 have 
similarly strong approximation properties as stated in Lemma 2 for the clamped natural spline – not only for the function values, but 
as detailed in [2] also for the first two derivatives. Without quantifying1 this observation exactly, it will be referred to as consistent 
spline property in the motivation of the revised not-a-knot spline in Section 4.

1 An exact quantification can be derived for regular meshes based on the eigenfunctions 𝑠1, 𝑠2 examined in this section.
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Fig. 3. Graph of ln(|𝑠1|+1) in red (starting left) and of ln(|𝑠2|+1) in blue (starting right) on an irregular mesh.

3.  Approximating the clamped natural spline

Lemma 2 provides an excellent approximation guarantee for the clamped natural spline when the exact values of 𝑓 ′′(𝑥0) and 
𝑓 ′′(𝑥𝑛) are known. This leads to the question, in how far approximate values 𝜅0 and 𝜅𝑛 used in place of 𝑓 ′′(𝑥0) and 𝑓 ′′(𝑥𝑛) lead to 
splines with tight approximation guarantees as well. This question is considered next.
Definition 1. Let 𝑥0 < 𝑥1 < … < 𝑥𝑛 and 𝑓 ∈ 𝐶4([𝑥0, 𝑥𝑛]) be given, and set ℎ ∶= max1≤𝑖≤𝑛(𝑥𝑖 − 𝑥𝑖−1). Further let 𝜅0, 𝜅𝑛 be given such 
that |𝜅0 − 𝑓 ′′(𝑥0)| ≤ 𝑅‖𝑓 (4)

‖∞ℎ2 and |𝜅𝑛 − 𝑓 ′′(𝑥𝑛)| ≤ 𝑅‖𝑓 (4)
‖∞ℎ2 for some fixed constant 𝑅. Then the cubic spline 𝑠 for 𝑓 on 𝑥0,… , 𝑥𝑛

with 𝑠′′(𝑥0) = 𝜅0 and 𝑠′′(𝑥𝑛) = 𝜅𝑛 is called an 𝐑-approximate clamped natural spline.
Theorem 1. For 𝑥 ∈ [𝑥0, 𝑥𝑛] any 𝑅-approximate clamped natural spline 𝑠 satisfies

|𝑠(𝑥) − 𝑓 (𝑥)| ≤
(

5
384 + 𝑅

8

)

‖𝑓 (4)
‖∞ℎ4.

Proof.  Let 𝑠𝑐𝑛 be the clamped natural spline and let 𝑠 be the 𝑅-approximate clamped natural spline. Setting 𝑠Δ ∶= 𝑠𝑐𝑛 − 𝑠 it follows 
from Lemma 1 for 𝑥 ∈ [𝑥0, 𝑥𝑛] that

|𝑓 (𝑥) − 𝑠(𝑥)| ≤ |𝑓 (𝑥) − 𝑠𝑐𝑛(𝑥)| + |𝑠Δ(𝑥)| ≤
5
384‖𝑓

(4)
‖∞ℎ4 + |𝑠Δ(𝑥)|

To bound |𝑠Δ(𝑥)| let 𝜇𝑖 ∶= (𝑥𝑖 − 𝑥𝑖−1)∕(𝑥𝑖+1 − 𝑥𝑖−1) and 𝜆𝑖 ∶= (𝑥𝑖+1 − 𝑥𝑖)∕(𝑥𝑖+1 − 𝑥𝑖−1) for 1 ≤ 𝑖 ≤ 𝑛 − 1 and denote the second derivatives 
of 𝑠Δ at 𝑥𝑖 by 𝑀𝑖 ∶= 𝑠′′Δ(𝑥𝑖) for 0 ≤ 𝑖 ≤ 𝑛. In the literature, the quantities 𝑀𝑖 are called moments. By construction, 𝑠Δ(𝑥𝑖) = 0 for 0 ≤ 𝑖 ≤ 𝑛, 
and by Definition 1, |𝑀0| ≤ 𝑅‖𝑓 (4)

‖∞ℎ2, same as for |𝑀𝑛|. Adapting standard arguments as in Theorem I.3.5 in [7], the (rectangular) 
linear system for the moments 𝑀𝑖 for 𝑠Δ can be stated as

⎛

⎜

⎜

⎜

⎜

⎝

𝜇1 2 𝜆1
𝜇2 2 𝜆2

⋱ ⋱ ⋱
𝜇𝑛−1 2 𝜆𝑛−1

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝑀0
⋮
⋮
𝑀𝑛

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

0
⋮
⋮
0

⎞

⎟

⎟

⎟

⎟

⎠

where the right hand side follows from 𝑠Δ(𝑥𝑖) = 0 for all 𝑖. Since 𝑀0 and 𝑀𝑛 are fixed, this is equivalent to
⎛

⎜

⎜

⎜

⎜

⎜

⎝

2 𝜆1
𝜇2 2 𝜆2

⋱ ⋱ ⋱
𝜇𝑛−2 2 𝜆𝑛−2

𝜇𝑛−1 2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑀1
⋮
⋮
⋮

𝑀𝑛−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝜇1𝑀0
0
⋮
0

−𝜆𝑛−1𝑀𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Let the (square) matrix on the left be denoted by 𝐴. Then, since 𝜇𝑖, 𝜆𝑖 > 0, 𝜇𝑖 + 𝜆𝑖 = 1, the matrix 𝐴 is strictly diagonally dominant 
and ‖𝐴𝑧‖∞ ≥ ‖𝑧‖∞ for all 𝑧 ∈ ℝ𝑛. Hence, it follows that |𝑀𝑖| ≤ 𝑅‖𝑓 (4)

‖∞ℎ2 for all 𝑖.
Since 𝑠Δ has zeros at 𝑥𝑖 and at 𝑥𝑖+1 and since its second derivative is bounded by 𝑅‖𝑓 (4)

‖∞ℎ2, its absolute value on any interval 
[𝑥𝑖, 𝑥𝑖+1] for 0 ≤ 𝑖 ≤ 𝑛 − 1 cannot exceed 18 (𝑥𝑖+1 − 𝑥𝑖)2 𝑅‖𝑓 (4)

‖∞ℎ2 ≤ 𝑅
8 ‖𝑓

(4)
‖∞ℎ4.

 ∎
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3.1.  Estimating 𝑓 ′′(𝑥0) and 𝑓 ′′(𝑥𝑛)

We begin with a simple estimate of 𝑓 ′′(𝑥0) assuming only the continuity of 𝑓 (4) but not the existence of higher derivatives: To this 
end the second derivative at 𝑥0 of the cubic interpolant through 𝑥0, 𝑥1, 𝑥2, 𝑥4 is computed. (Of course, an analogous estimate applies 
to 𝑓 ′′(𝑥𝑛) as well.)
Lemma 4. Let 𝑝 be the polynomial of degree at most 3 that interpolates 𝑓 at 𝑥0 < 𝑥1 < 𝑥2 < 𝑥3. If 𝑓 is four times continuously differentiable 
on [𝑥0, 𝑥3] and ℎ ∶= max0≤𝑖≤2(𝑥𝑖+1 − 𝑥𝑖), then

|𝑝′′(𝑥0) − 𝑓 ′′(𝑥0)| =
|

|

|

|

|

𝑓 (4)(𝜉)
24

𝜔′′(𝑥)|
|𝑥=𝑥0

|

|

|

|

|

≤
|

|

|

|

11
12

𝑓 (4)(𝜉)ℎ2
|

|

|

|

where 𝜉 ∈ (𝑥0, 𝑥3) and 𝜔(𝑥) ∶=
∏3

𝑗=0(𝑥 − 𝑥𝑗 ).

Proof.  For completeness a short proof using standard arguments is given:
Straightforward calculations lead to 0 < |𝜔′′(𝑥0)| ≤ 22ℎ2. Let 𝐾 ∶= 𝑓 ′′(𝑥0)−𝑝′′(𝑥0)

𝜔′′(𝑥0)
 and consider the function

𝑓 (𝑥) ∶= 𝑓 (𝑥) − 𝑝(𝑥) −𝐾𝜔(𝑥).

By construction, 𝑓 has the four zeros 𝑥0, 𝑥1, 𝑥2, 𝑥3. By Rolle’s theorem, 𝑓 ′ has three zeros in (𝑥0, 𝑥3), and 𝑓 ′′ has two zeros in (𝑥0, 𝑥3). 
By definition of 𝐾, also 𝑓 ′′(𝑥0) = 0. Hence 𝑓 ′′′ also has two zeros in (𝑥0, 𝑥3) and 𝑓 (4) also has (at least) one zero 𝜉 in (𝑥0, 𝑥3). Since 
𝜔(4)(𝑥) ≡ 24 it follows that

0 = 𝑓 (4)(𝜉) = 𝑓 (4)(𝜉) − 0 − 24𝐾,

i.e., 𝐾 = 𝑓 (4)(𝜉)∕24 or, by definition of 𝐾,

𝑓 ′′(𝑥0) − 𝑝′′(𝑥0) =
𝑓 (4)(𝜉)
24

𝜔′′(𝑥0)

from which the claim follows by the bound on |𝜔′′(𝑥0)|. ∎
Using the estimates of the above lemma yields an 𝑅-approximate clamped natural spline with 𝑅 = 22

24 = 11
12 .

3.2.  Improving the estimate of 𝑓 ′′(𝑥0) and 𝑓 ′′(𝑥𝑛)

In view of the proof of Theorem 1, a sharper approximation of 𝑓 ′′(𝑥0) and 𝑓 ′′(𝑥𝑛) would immediately result in a sharper error 
estimate for ‖𝑠 − 𝑓‖∞.

To start with, only the available interpolation data and the unknown bound of ‖𝑓 (4)
‖∞ is used without assuming the existence of 

‖𝑓 (5)
‖∞.
For determining the cubic polynomial of Lemma 4 one can compute the Newton interpolation table of divided differences for 

𝑓 with support points 𝑥0,… , 𝑥3. Then, a fifth point 𝑥4 is added. The fourth divided difference 𝑓 [𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4] =∶ 𝜌 is the exact 
value 𝑓 (4)(𝜉)

24  for some point 𝜉 ∈ (𝑥0, 𝑥4). When forming 𝑓 with 𝑓 (𝑥) ≡ 𝑓 (𝑥) − 𝜌(𝑥 − 𝑥0)4 it follows that 𝑓 (𝜉)(4) = 0 and that the first three 
derivatives of 𝑓 and of 𝑓 at 𝑥 = 𝑥0 coincide.

By construction there is a worst case bound, ‖𝑓 (4)
‖∞ ≤ 2‖𝑓 (4)

‖∞, and since 𝑓 (𝜉)(4) = 0 we may hope that on the interval [𝑥0, 𝑥3]
we have in fact ‖𝑓 (4)

‖∞ < ‖𝑓 (4)
‖∞, possibly much smaller.

We can then form the cubic interpolation 𝑐 of 𝑓 on [𝑥0, 𝑥1, 𝑥2, 𝑥3] and use 𝑐′′(𝑥0) as estimate for 𝑓 ′′(𝑥0). Likewise for the estimate 
of 𝑓 ′′(𝑥𝑛). The approximate clamped natural spline using these estimates for 𝑓 ′′(𝑥0) and 𝑓 ′′(𝑥𝑛) is called Q-spline in the sequel – 
being based on a quartic correction term −𝜌(𝑥 − 𝑥0)4. It will at most double the approximation error 𝑅 compared to the spline based 
on Lemma 4, but will hopefully reduce it instead.

To quantify this hope one can revisit the divided differences observing that the first divided difference also satisfies the relation

𝑓 [𝑥0, 𝑥1] ∶=
𝑓 [𝑥1]−𝑓 [𝑥0]

𝑥1−𝑥0
= ∫

1

0
𝑓 ′(𝑥0 + 𝑡(𝑥1 − 𝑥0))𝑑𝑡.

It coincides with the value 𝑓 ′(𝜉(1)) for some 𝜉(1) ∈ [𝑥0, 𝑥1] but it can also be seen as the average value of 𝑓 ′ on [𝑥0, 𝑥1]. Likewise 
the 𝑘-th divided differences form certain average values of the 𝑘-th derivatives of 𝑓 divided by “𝑘!”. Estimating the changes of such 
average value of 𝑓 (4) can be done "in principle” without using the fifth derivative, but this seems to be very tedious. Since in practical 
applications the situation is rare that the fourth derivative exists but the fifth does not, the following simpler analysis assuming the 
existence of the fifth derivative is detailed:

Define ‖𝑓 (5)
‖∞ ∶= ∞ if the fifth derivative of 𝑓 is not continuous and else set ‖𝑓 (5)

‖∞ as maximum absolute value of 𝑓 (5) on 
[𝑥0, 𝑥4]. Observe that the cubic interpolation 𝑐 coincides with the degree-at-most-4-polynomial 𝑝̃ that interpolates 𝑓 at 𝑥0,… , 𝑥4. (The 
divided differences for a function 𝑓 linearly depend on 𝑓 so that the fourth divided difference for 𝑓 is zero.) When ‖𝑓 (5)

‖∞ is finite, 
a proof analogous to the one of Lemma 4 yields that

|𝑝̃′′(𝑥0) − 𝑓 ′′(𝑥0)| ≤ 𝑅||
|

𝑓 (5)(𝜉)ℎ2||
|

where 𝜉 ∈ (𝑥0, 𝑥4) and 𝑅 = 𝑅(ℎ) = 5ℎ
12 . (The bound on |𝜔′′(𝑥0)| is given by 50ℎ5 which is divided by factorial of 5 leading to 5ℎ12 ℎ4.)

Summarizing, we obtain the following theorem:
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Theorem 2. Let 𝑥0 < 𝑥1 < … < 𝑥𝑛 with 𝑛 ≥ 4 be given and a four times continuously differentiable function 𝑓 ∶ [𝑥0, 𝑥𝑛] → ℝ. Define

‖𝑓 (5)
‖∞ ∶=

{

∞ if the fifth derivative of 𝑓 is not continuous
max𝑥∈[𝑥0 ,𝑥4]∪[𝑥𝑛−4 ,𝑥𝑛] |𝑓

(5)(𝑥)| else 

(If 𝑓 (5) does not exist it is interpreted as not continuous.) Approximate 𝑓 ′′(𝑥0) by 𝑝′′(𝑥0) where 𝑝 is the fourth order polynomial interpolating 
𝑓 on 𝑥0,… , 𝑥4. Likewise for 𝑓 ′′(𝑥𝑛). Let 𝑠 be the Q-spline using these approximate values in place of 𝑓 ′′(𝑥0) and 𝑓 ′′(𝑥𝑛). For 𝑥 ∈ [𝑥0, 𝑥𝑛] the 
spline 𝑠 then satisfies

|𝑠(𝑥) − 𝑓 (𝑥)| ≤
(

5
384 + 𝑅

8

)

‖𝑓 (4)
‖∞ℎ4.

where 𝑅 = min{ 11
6 ,

5ℎ‖𝑓 (5)
‖∞

12‖𝑓 (4)
‖∞

}.

(In the trivial case that ‖𝑓 (4)
‖∞ = 0 it follows that also ‖𝑓 (5)

‖∞ = 0 and the ratio 5ℎ‖𝑓 (5)
‖∞

12‖𝑓 (4)
‖∞

 in Theorem 2 can be replaced with 0.)
The bound in Theorem 2 is not best possible but it is always a fourth order approximation, and when 𝑓 (5) exists and is continuous 

at both end points, then for ℎ → 0 it is arbitrarily close to the best possible bound derived in [2] – but (!) without using any derivative 
information. To our knowledge this is the only explicit fourth order bound on the error of a cubic spline approximation on an arbitrary 
set of knots in the absence of any derivative information.

The natural spline in turn only is a second order approximation as noted in the next corollary.
Corollary 1. Under the assumptions of Theorem 2, the error of the natural spline 𝑠 (with 𝑠′′(𝑥0) = 𝑠′′(𝑥𝑛) = 0) is of the exact order ℎ2 when 
|𝑓 ′′(𝑥0)| + |𝑓 ′′(𝑥𝑛)| > 0.

Proof.  Assume without loss of generality that 𝑓 ′′(𝑥0) = 𝛿 > 0. The 𝑂(ℎ2) upper bound for the error can be established as in the proof of 
Theorem 2 using that |𝑠′′(𝑥0) − 𝑓 ′′(𝑥0)| = |𝑓 ′′(𝑥0)| = 𝑂(1) rather than 𝑂(ℎ2). For the lower bound observe that for small ℎ the inequality 
0.8𝛿 ≤ 𝑓 ′′(𝑥) ≤ 1.2𝛿 for 𝑥 ∈ [𝑥0, 𝑥1] is true. Since 𝑠′′ is linear on [𝑥0, 𝑥1] with 𝑠′′(𝑥0) = 0, either 𝑠′′(𝑥) − 𝑓 ′′(𝑥) < −0.2𝛿 for 𝑥 ∈ [𝑥0, 𝑥0 +

ℎ
4 ]

or 𝑠′′(𝑥) − 𝑓 ′′(𝑥) > 0.2𝛿 for 𝑥 ∈ [𝑥1 −
ℎ
4 , 𝑥1]. Both lead to an order ℎ2 maximum value of |𝑠′′(𝑥) − 𝑓 ′′(𝑥)| for 𝑥 ∈ [𝑥0, 𝑥1]. ∎

3.2.1.  A heuristic error bound
When 𝑛 ≥ 5, lower bounds for ‖𝑓 (4)

‖∞∕24 and for ‖𝑓 (5)
‖∞∕120 can be computed by the fourth and fifth divided differences for 𝑓

near 𝑥0. Using these values as estimates for the true values leads to an error bound where the term 𝑅 in Theorem 2 can be estimated 
as 𝑅 ⪅ min

{

11
6 ,

25ℎ|𝑓 [𝑥0 ,𝑥1 ,𝑥2 ,𝑥3 ,𝑥4 ,𝑥5]|
12|𝑓 [𝑥0 ,𝑥1 ,𝑥2 ,𝑥3 ,𝑥4]|

}

 with ℎ ∶= max0≤𝑖≤4(𝑥𝑖+1 − 𝑥𝑖). (Likewise for the other end point 𝑥𝑛.)

4.  A revised not-a-knot spline

By Theorem 2, for small ℎ, the Q-spline is optimal or near optimal. To be of practical relevance however, a spline must be found that 
improves over the not-a-knot spline (NAK-spline) in more general situations, also for large ℎ and irregular data points. We observe at 
first that it is impossible to improve over the NAK-spline in all situations, because 𝑓 might just happen to be equal to the NAK-spline 
or might be a very close 𝐶4-approximation to the NAK-spline. The numerical results in the next section show an approximation 
quality of the NAK-spline that is comparable to the (nearly optimal) Q-spline. A possible explanation for this observation might 
be the consistent spline property that was observed in Section 2  In the interval [𝑥0, 𝑥2] the NAK-spline is a cubic interpolating 
function with somewhat good approximation properties to the first two derivatives of 𝑓 at 𝑥2 due to the consistent spline property. 
To further improve this approximation, the observation can be used that the fourth divided difference 𝑓 [𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4] =∶ 𝜌 of 𝑓
generates some average value of 𝑓 (4)∕24 on (𝑥0, 𝑥4). If 𝑓 (4) was constant on (𝑥0, 𝑥4), the best piecewise constant approximation 𝑠′′′ of 
𝑓 ′′′ would not require 𝑠′′′ to be continuous at 𝑥1 (as in the case of the NAK-spline) but that the jump of 𝑠′′′ at 𝑥1 is roughly given 
by 𝛿1 ∶= 12𝜌(𝑥2 − 𝑥0) =

1
2𝑓

(4) ⋅ (𝑥2 − 𝑥0). (This is the best staircase approximation of a linear function with slope 𝑓 (4) for any choice 
of 𝑥1 ∈ (𝑥0, 𝑥2).) The revised not-a-knot-spline (RNAK-spline) therefore requires a jump 𝛿1 of 𝑠′′′ at 𝑥1. And again, similarly for the 
jump 𝛿2 of 𝑠′′′ at 𝑥𝑛−1.

4.1.  A practical safeguard

For the RNAK-spline, the jumps 𝛿1 and 𝛿2 of 𝑠′′′ at the points 𝑥1 and 𝑥𝑛−1 are based on a finite difference estimate of 𝑓 (4).
When the mesh sizes 𝑥𝑖+1 − 𝑥𝑖 near the end points are sufficiently small, this indeed seems to be an improvement over the NAK-

spline, as illustrated in Section 5  But when the changes in the fourth derivative 𝑓 (4) of 𝑓 on the interval (𝑥0, 𝑥4) or on (𝑥𝑛−4, 𝑥𝑛) are 
large, it may happen that the finite difference estimate of 𝑓 (4) is poor and that the NAK-spline leads to a better approximation than the 
RNAK-spline. In order to reduce the chances that this happens, a finite difference estimate of the fifth derivative can be used to damp 
the jump of 𝑠′′′ at the point 𝑥1 or 𝑥𝑛−1 when the estimate of |𝑓 (5)

| is large. The following heuristic safety-criterion is independent of 
scalings 𝑓 (.) ↦ 𝜆𝑓 (.) or 𝑓 (.) ↦ 𝑓 (𝜆 .). As in Section 3.2.1 it is based on the quotient of 𝑓(5) and 𝑓(4) where 𝑓(𝑘) ∶= 𝑓 [𝑥0,… , 𝑥𝑘] is the 
𝑘-th divided difference for 𝑘 ≥ 1.

The value of 𝜌 in the definition of the RNAK-spline is 𝜌 = 𝑓(4) = 𝑓 (4)(𝜉)∕24 for some point 𝜉 ∈ (𝑥0, 𝑥4). This is used as an approx-
imation of the average value of 𝑓 (4)∕24 on the interval (𝑥0, 𝑥2). If 𝑓(4) ⋅ 𝑓(5) > 0 indicating a growth of |𝑓 (4)

| on (𝑥0, 𝑥4) with smaller 
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Table 1 
Errors ‖𝑠 − 𝑓‖∞ for 𝑓 (𝑥) ≡ sin(𝑥) on [0, 𝜋], equidistant knots.
 # knots  6  12  24  48  96
 NAT-spline  4.5e-4  1.8e-5  9.1e-7  5.2e-8  3.1e-09
 NAK-spline  2.7e-3  5.5e-5  1.4e-6  5.2e-8  3.1e-09
 Q-spline  2.2e-3  4.0e-5  9.6e-7  5.2e-8  3.1e-09
 RNAK-spline  1.6e-3  1.8e-5  9.1e-7  5.2e-8  3.1e-09

Table 2 
Errors ‖𝑠 − 𝑓‖∞ for 𝑓 (𝑥) ≡ sin(𝑥) on [𝜋∕4, 5𝜋∕4], equidistant 
knots.

 # knots  6  12  24  48  96
 NAT-spline  1.4e-2  2.9e-3  6.5e-4  1.6e-4  3.8e-5
 NAK-spline  4.3e-3  1.7e-4  7.9e-6  4.3e-7  2.5e-8
 Q-spline  1.6e-3  5.5e-5  2.2e-6  1.1e-7  6.0e-9
 RNAK-spline  6.6e-4  4.6e-5  9.1e-7  5.2e-8  3.1e-9

Table 3 
Errors ‖𝑠 − 𝑓‖∞ for 𝑓 (𝑥) ≡ sin(𝑥) on [𝜋∕4, 5𝜋∕4], irregular 
meshes.

 # knots  6  12  24  48  96
 NAT-spline  4.2e-2  1.2e-3  5.2e-4  1.7e-4  3.4e-4
 NAK-spline  4.7e-2  1.2e-3  5.2e-4  1.4e-5  8.5e-7
 Q-spline  4.6e-2  1.2e-3  5.2e-4  1.4e-5  8.5e-7
 RNAK-spline  4.7e-2  1.2e-3  5.2e-4  1.4e-5  8.5e-7

Table 4 
Errors ‖𝑠 − 𝑓‖∞ for 𝑓 (𝑥) ≡ 1∕(1 + 𝑥2) on [−1, 3], irregular 
meshes.

 # knots  6  12  24  48  96
 NAT-spline  1.1e-1  1.5e-2  1.7e-3  1.8e-4  5.7e-5
 NAK-spline  1.4e-1  6.2e-3  1.3e-3  1.8e-4  3.6e-5
 Q-spline  2.7e-1  3.0e-2  1.3e-3  1.8e-4  3.6e-5
 RNAK-spline  2.5e-1  2.1e-2  1.3e-3  1.8e-4  3.6e-5

values near 𝑥0, the absolute value of 𝜌 = 𝑓(4) in the definition of 𝛿1 is reduced and 𝛿1 is multiplied with max{1 − 5𝑓(5)(𝑥4−𝑥2)
2𝑓(4)

, 0} ∈ [0, 1)

moving the RNAK-spline closer to the NAK-spline.
Again, likewise for the right end point.

5.  Numerical examples

In selected numerical examples the not-a-knot spline (NAK-spline) is compared with the natural spline (NAT-spline, 𝑠′′(𝑎) = 𝑠′′(𝑏) =
0), the Q-spline of Theorem 2, and the RNAK-spline (revised NAK-spline). The various splines were evaluated by computing (in 
parallel) the natural spline 𝑠𝑛𝑎𝑡 and two zero-interpolating splines 𝑠1, 𝑠2 with end conditions 𝑠′′1 (𝑥0) = 1, 𝑠′′1 (𝑥𝑛) = 0, and 𝑠′′2 (𝑥0) =
0, 𝑠′′2 (𝑥𝑛) = 1, and then determining 𝛼, 𝛽 to form the final spline 𝑠𝑛𝑎𝑡 + 𝛼𝑠1 + 𝛽𝑠2.

Tables 1 and 2 illustrate the result that the NAT-spline on an interval [𝑎, 𝑏] has an excellent approximation guarantee when 𝑓 ′′(𝑎) =
𝑓 ′′(𝑏) = 0 but only a second order approximation guarantee when 𝑓 ′′(𝑎) ≠ 0 or 𝑓 ′′(𝑏) ≠ 0 (as stated in Corollary 1). In comparison, 
for small ℎ, the NAK-spline and the Q-spline display a low error independent of 𝑓 ′′(𝑎) or 𝑓 ′′(𝑏). To eliminate effects resulting from 
irregularities of the mesh, an equidistant mesh with 6,12,24,48, and 96 knots is considered first.

(In the last column of Table 1 the errors of all four splines coincided up to 15 digits; the maximum error was in the middle, where 
all splines coincide up to machine precision. Near the end points NAT was best followed by RNAK, Q, and NAK)

In Table 3 irregular meshes are considered with a random uniform distribution scaled such that the endpoints coincide with the 
end points of the given interval. For such irregular meshes, the observation that the natural spline results in a larger approximation 
error compared to the other three splines can be observed in Table 3 as well.

Table 3 illustrates the observation from several plots (not listed here) that the maximum error may occur in some sub-interval 
[𝑥𝑖, 𝑥𝑖+1] in the middle where 𝑥𝑖+1 − 𝑥𝑖 is large and where several or all of the spline functions almost coincide.

The function 𝑓 considered in Table 4 is due to Runge [4] who chose it as an example that polynomial interpolation may result in 
high error terms when 𝑓 has poles in the complex plane (here at ±𝑖) near the domain of interpolation. For 𝑛 = 12 the best approximation 
on the irregular mesh happened to be given by the NAK-spline illustrating the difficulty in identifying the cases where the NAK-spline 
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Table 5 
Errors ‖𝑠 − 𝑓‖∞ for 𝑓 (𝑥) ≡ 1∕(1 + 𝑒𝑥𝑝(−𝑥)) on [−1, 4], regular 
meshes.

 # knots  6  12  24  48  96
 NAT-spline  5.5e-3  9.6e-4  2.1e-4  5.1e-5  1.2e-5
 NAK-spline  5.8e-4  1.3e-4  8.0e-6  4.6e-7  2.7e-8
 Q-spline  2.3e-3  1.1e-4  8.2e-7  1.0e-7  6.6e-9
 RNAK-spline  2.1e-3  1.0e-4  1.0e-6  4.4e-8  2.7e-9

Fig. 4. Graph of |𝑠𝑁𝐴𝐾 − 𝑓 | (blue solid line) and of |𝑠𝑅𝑁𝐴𝐾 − 𝑓 | (red dashed line) – for 𝑓 (𝑥) ≡ 1∕(1 + 𝑒𝑥𝑝(−𝑥)) on [−1, 4] and a regular mesh with 48
knots.

is best and adapting the RNAK-spline accordingly (without using further knowledge about 𝑓 ). The results of Table 4 also repeat the 
observation of Table 3 that irregular meshes may produce the maximum error terms somewhere in the middle where all splines 
coincide even though the splines do differ substantially near the end points. In this respect, random knots (of course, all four splines 
were always tested with the same random knots) are not a good choice for comparing different spline functions, and in a final table 
considering the logistic function, a regular mesh is used again.

Table 5 with the logistic function 𝑥 ↦ 1∕(1 + 𝑒𝑥𝑝(−𝑥)) also is an example where the large mesh size in the case 𝑛 = 5 (i.e. 6 knots) 
can lead to a lower approximation error of the not-a-knot-spline. Identifying such cases where the not-a-knot-spline is best remains 
an open question.

For illustration, Fig. 4 displays the difference 𝑓 (𝑥) − 𝑠(𝑥) of the logistic function and the NAK-spline (blue solid line) and the 
RNAK-spline (red dashed line) for the case 𝑛 = 48.

Summarizing, the observation in the examples that were tested is that the NAK-spline and the Q-spline yield similar errors ‖𝑠 − 𝑓‖∞
while the results of the NAT-spline may be much worse. The NAT-spline is somewhat better than the other splines if the second 
derivative at the end points happens to be zero or of small magnitude. In all examples, the approximation quality by the RNAK-spline 
is never much worse than by the NAK-spline and for smaller mesh sizes it is generally a bit better.

6.  Conclusion

This work arose from an undergraduate class. It provides a convergence analysis for cubic spline interpolation at given data points 
without the use of derivative information. A near optimal result could be established when the mesh size is small and the underlying 
function is five times continuously differentiable. Selected numerical examples illustrate the theoretical results and suggest that the 
commonly used not-a-knot spline can be improved for small mesh sizes.
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Appendix. pseudo-codes

For the Q-spline a similar safeguard can be used as for the RNAK-spline to reduce the fourth order correction term for the 
computation of the cubic interpolant when the fifth finite difference is large and its sign indicates that the fourth order finite difference 
is an overestimate of 𝑓 (4)∕24. This is implemented in Step 3. below. (The damping is slightly different from the damping in the RNAK-
spline since the RNAK-spline uses a correction term for the intervals [𝑥0, 𝑥2] and [𝑥𝑛−2, 𝑥𝑛] while the Q-spline uses a correction on the 
intervals [𝑥0, 𝑥3] and [𝑥𝑛−3, 𝑥𝑛].)

Q-spline:

1. Input: 𝑛 + 1 ≥ 6 points 𝑥0 < … < 𝑥𝑛 with associated function values 𝑓𝑖 for 0 ≤ 𝑖 ≤ 𝑛.
2. Compute the fourth and fifth order finite differences of 𝑓 near the left end point, 

𝜌 ∶= 𝑓(4) (based on the points 𝑥0,… , 𝑥4) and 𝑓(5) (based on the points 𝑥0,… , 𝑥5).
3. If 𝑓(4) ⋅ 𝑓(5) > 0  % the estimate of 𝑓 (4)∕24 may be too large

𝜌 ∶= 𝜌 ⋅max{0, 1 − 5⋅(𝑥2−𝑥1)𝑓𝑙(5)
2𝑓𝑙(4)

}  % damping based on fifth derivative
4. Compute the cubic interpolant to 𝑓 (𝑥) ∶= 𝑓 (𝑥) − 𝜌(𝑥 − 𝑥0)4 at the points 𝑥0,… , 𝑥3.
5. Evaluate the second derivative of the cubic interpolant at 𝑥0.
6. Likewise near the right end point 𝑥𝑛, damping the fourth order correction term when 𝑓(4) ⋅ 𝑓(5) < 0.
7. Compute the clamped natural spline based on the second derivatives of the cubic interpolants at 𝑥0 and at 𝑥𝑛.

RNAK-spline:

1. Input: 𝑛 + 1 ≥ 6 points 𝑥0 < … < 𝑥𝑛 with associated function values 𝑓𝑖 for 0 ≤ 𝑖 ≤ 𝑛.
2. Compute the natural interpolating spline 𝑠𝑛𝑎𝑡.
3. Compute the spline 𝑠1 interpolating the zero function with moments 1 and 0 at 𝑥0 and 𝑥𝑛, and the spline 𝑠2 interpolating the zero 
function with moments 0 and 1 at 𝑥0 and 𝑥𝑛.

4. Compute the fourth and fifth order finite differences of 𝑓 near the left end point, 
𝜌 ∶= 𝑓(4) (based on the points 𝑥0,… , 𝑥4) and 𝑓(5) (based on the points 𝑥0,… , 𝑥5).

5. If 𝑓(4) ⋅ 𝑓(5) > 0  % the estimate of 𝑓 (4)∕24 may be too large
𝜌 ∶= 𝜌 ⋅max{0, 1 − 5⋅(𝑥4−𝑥2)𝑓(5)

2𝑓(4)
}  % damping based on fifth derivative

6. Set 𝛿1 ∶= 12𝜌(𝑥2 − 𝑥0) the jump of 𝑠′′′ at 𝑥1.
7. Likewise define the jump 𝛿2 at the right end point 𝑥𝑛−1, damping 𝜌 when 𝑓(4) ⋅ 𝑓(5) < 0.
8. Let 𝑗𝑢𝑚𝑝1(𝑠) ∶= 𝑠′′′(𝑥1 + 𝜖) − 𝑠′′′(𝑥1 − 𝜖) for small 𝜖 > 0
and 𝑗𝑢𝑚𝑝2(𝑠) ∶= 𝑠′′′(𝑥𝑛−1 + 𝜖) − 𝑠′′′(𝑥𝑛−1 − 𝜖). 
Solve

𝑗𝑢𝑚𝑝1(𝑠𝑛𝑎𝑡) + 𝛼 𝑗𝑢𝑚𝑝1(𝑠1) + 𝛽 𝑗𝑢𝑚𝑝1(𝑠2) = 𝛿1
𝑗𝑢𝑚𝑝2(𝑠𝑛𝑎𝑡) + 𝛼 𝑗𝑢𝑚𝑝1(𝑠2) + 𝛽 𝑗𝑢𝑚𝑝2(𝑠2) = 𝛿2

for 𝛼 and 𝛽 and set 𝑠 = 𝑠𝑛𝑎𝑡 + 𝛼𝑠1 + 𝛽𝑠2.

Matlab codes for testing the above splines can be found at 
https://github.com/florianjarre/Revised-not-a-knot-spline/tree/main
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