Dokument: A cellular Milnor-Witt (co)homology computation for the moduli space of stable, genus 0 curves with marked points
| Titel: | A cellular Milnor-Witt (co)homology computation for the moduli space of stable, genus 0 curves with marked points | |||||||
| URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=71660 | |||||||
| URN (NBN): | urn:nbn:de:hbz:061-20251218-105917-2 | |||||||
| Kollektion: | Dissertationen | |||||||
| Sprache: | Englisch | |||||||
| Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
| Medientyp: | Text | |||||||
| Autor: | Hennig, Jan [Autor] | |||||||
| Dateien: |
| |||||||
| Beitragende: | Juniorprof. Dr. Zibrowius, Marcus [Gutachter] [im Online-Personal- und -Vorlesungsverzeichnis LSF anzeigen] Prof. Dr. Di Lorenzo, Andrea [Gutachter] | |||||||
| Dewey Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik » 510 Mathematik | |||||||
| Beschreibung: | We introduce a version of cellular homology for non-strictly cellular schemes that builds on ideas of Morel-Sawant. By allowing cohomologically trivial cells, instead of affine spaces, we ca fit \barM_{0,n}, the moduli space of stable, genus 0 curves with n marked points,in this framework. The major benefit of our approach is the computability of this cellular complex. Additionally, we show that the (co)homology of this complex computes the (co)homology for strictly A1-invariant sheaves. Most computations are carried out for the Milnor-Witt K-theory sheaf. Classical invariants that can be deduced from our computations are Chow groups, singular cohomology of the complex points, and singular cohomology of the real points (with twisted coefficients). Additionally, we study the range in which the real cycle class map is an isomorphism for linear schemes. This extends the previous known results about strictly-cellular schemes of Hornbostel-Wendt-Xie-Zibrowius. | |||||||
| Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
| Fachbereich / Einrichtung: | Mathematisch- Naturwissenschaftliche Fakultät » WE Mathematik » Algebraische Geometrie | |||||||
| Dokument erstellt am: | 18.12.2025 | |||||||
| Dateien geändert am: | 18.12.2025 | |||||||
| Promotionsantrag am: | 09.04.2025 | |||||||
| Datum der Promotion: | 07.07.2025 |

