Dokument: Machine‐learning‐based prediction of respiratory flow and lung volume from real‐time cardiac MRI using MR‐compatible spirometry

Titel:Machine‐learning‐based prediction of respiratory flow and lung volume from real‐time cardiac MRI using MR‐compatible spirometry
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=70741
URN (NBN):urn:nbn:de:hbz:061-20250912-120436-0
Kollektion:Publikationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Texte » Artikel, Aufsatz
Medientyp:Text
Autoren: Malik, Halima [Autor]
Uelwer, Tobias [Autor]
Röwer, Lena Maria [Autor]
Hußmann, Janina [Autor]
Verde, Pablo Emilio [Autor]
Harmeling, Stefan [Autor]
Voit, Dirk [Autor]
Frahm, Jens [Autor]
Klee, Dirk [Autor]
Pillekamp, Frank [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]6,31 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 12.09.2025 / geändert 12.09.2025
Stichwörter:machine learning , respiration , real-time MRI , cardiac MRI
Beschreibung:Background: Cardiac real-time MRI (RT-MRI) in combination with MR-
compatible spirometry (MRcS) offers unique opportunities to study heart-lung
interactions. In contrast to other techniques that monitor respiration during MRI,
MRcS provides quantitative respiratory data. Though MRcS is well tolerated,
shortening of the scanning time with MRcS would be desirable, especially in
young and sick patients.
Purpose: The aim of the study was to predict airflow and lung volume based
on RT-MR images after a short learning phase of combined RT-MRI and MRcS
to provide respiratory data for subsequent short axis stack-based volumetries.
Methods: Cardiac RT-MRI (1.5 T; short axis; 30 frames/s) was acquired dur-
ing free breathing in combination with MRcS in adult healthy subjects (n = 10).
MR images with MRcS were recorded during a learning phase to collect train-
ing data. The iterative Lucas-Kanade method was applied to estimate optical
flow from the captured MR images. A ridge regression model was fitted to
predict airflow and thus also the lung volume from the estimated optical flow.
Hyperparameters were estimated using leave-one-out cross validation and the
performance was assessed on a held-out test dataset. Different durations and
compositions of the learning phase were investigated to develop the most effi-
cient measurement protocol. Coefficient of determination (R2 ), relative mean
squared error (rMSE), Bland-Altman analysis on absolute tidal volume differ-
ence (aTVD), and absolute maximal airflow difference (aMFD) were used to
validate the predictions on held-out test data.
Results: MRI combined with MRcS can train a machine learning algorithm
to provide excellent predictive quantitative respiratory volume and flow for the
remaining study. The optimal trade-off between predictive power and time nec-
essary for training was reached with a shortened cardiac volumetry protocol
covering only about two breaths per slice and every second slice (airflow: mean
R2 :0.984,mean rMSE:0.015,Bias aMFD:-0.01 L/s with +0.084/-0.1 95% CI and
volume: mean R2 : 0.990, mean rMSE: 0.003, Bias aTVD: 4.27 mL with +33/-24
95% CI) at a total duration of 100 s. Shorter protocols or application of the algo-
rithm to subsequent studies in the same subject or even in different subjects still
provided useful qualitative data.
Rechtliche Vermerke:Originalveröffentlichung:
Malik, H., Uelwer, T., Röwer, L., Hußmann, J., Verde, P. E., Harmeling, S., Voit, D., Frahm, J., Klee, D., & Pillekamp, F. (2025). Machine‐learning‐based prediction of respiratory flow and lung volume from real‐time cardiac MRI using MR‐compatible spirometry. Medical Physics, 52(8), Article e18019. https://doi.org/10.1002/mp.18019
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:12.09.2025
Dateien geändert am:12.09.2025
english
Benutzer
Status: Gast
Aktionen