
Wissen, wo das Wissen ist.

This version is available at:

Terms of Use: 

Machine learning based prediction of respiratory flow and lung volume from real time
cardiac MRI using MR compatible spirometry

Suggested Citation:
Malik, H., Uelwer, T., Röwer, L., Hußmann, J., Verde, P. E., Harmeling, S., Voit, D., Frahm, J., Klee, D., &
Pillekamp, F. (2025). Machine learning based prediction of respiratory flow and lung volume from real time
cardiac MRI using MR compatible spirometry. Medical Physics, 52(8), Article e18019.
https://doi.org/10.1002/mp.18019

URN: https://nbn-resolving.org/urn:nbn:de:hbz:061-20250912-120436-0

This work is licensed under the Creative Commons Attribution 4.0 International License.

For more information see: https://creativecommons.org/licenses/by/4.0

Halima Malik, Tobias Uelwer, Lena Maria Röwer, Janina Hußmann, Pablo Emilio Verde, Stefan
Harmeling, Dirk Voit, Jens Frahm, Dirk Klee, Frank Pillekamp

Article - Version of Record



Received: 4 November 2024 Revised: 28 May 2025 Accepted: 26 June 2025

DOI: 10.1002/mp.18019

R E S E A R C H A RT I C L E

Machine-learning-based prediction of respiratory flow and
lung volume from real-time cardiac MRI using
MR-compatible spirometry

Halima Malik1 Tobias Uelwer2 Lena Maria Röwer1 Janina Hußmann1

Pablo Emilio Verde3 Stefan Harmeling2 Dirk Voit4 Jens Frahm4

Dirk Klee1 Frank Pillekamp1

1Department of Diagnostic and Interventional
Radiology, Medical Faculty and University
Hospital Düsseldorf, Heinrich Heine
University, Düsseldorf , North
Rhine-Westphalia, Germany

2Department of Computer Science, Technical
University of Dortmund, Dortmund, North
Rhine-Westphalia, Germany

3Coordination Centre for Clinical Trials,
Heinrich Heine University, Düsseldorf , North
Rhine-Westphalia, Germany

4Biomedical NMR, Max Planck Institute for
Multidisciplinary Sciences, Göttingen, Lower
Saxony, Germany

Correspondence
Frank Pillekamp, Department of Diagnostic
and Interventional Radiology, Medical Faculty
and University Hospital, Heinrich Heine
University, Düsseldorf, Germany Moorenstr. 5,
40225 Düsseldorf, Germany.
Email: frank.pillekamp@hhu.de

Funding information
Elterninitiative Krebsklinik e.V.

Abstract
Background: Cardiac real-time MRI (RT-MRI) in combination with MR-
compatible spirometry (MRcS) offers unique opportunities to study heart-lung
interactions. In contrast to other techniques that monitor respiration during MRI,
MRcS provides quantitative respiratory data. Though MRcS is well tolerated,
shortening of the scanning time with MRcS would be desirable, especially in
young and sick patients.
Purpose: The aim of the study was to predict airflow and lung volume based
on RT-MR images after a short learning phase of combined RT-MRI and MRcS
to provide respiratory data for subsequent short axis stack-based volumetries.
Methods: Cardiac RT-MRI (1.5 T; short axis; 30 frames/s) was acquired dur-
ing free breathing in combination with MRcS in adult healthy subjects (n = 10).
MR images with MRcS were recorded during a learning phase to collect train-
ing data. The iterative Lucas-Kanade method was applied to estimate optical
flow from the captured MR images. A ridge regression model was fitted to
predict airflow and thus also the lung volume from the estimated optical flow.
Hyperparameters were estimated using leave-one-out cross validation and the
performance was assessed on a held-out test dataset. Different durations and
compositions of the learning phase were investigated to develop the most effi-
cient measurement protocol. Coefficient of determination (R2), relative mean
squared error (rMSE), Bland-Altman analysis on absolute tidal volume differ-
ence (aTVD), and absolute maximal airflow difference (aMFD) were used to
validate the predictions on held-out test data.
Results: MRI combined with MRcS can train a machine learning algorithm
to provide excellent predictive quantitative respiratory volume and flow for the
remaining study. The optimal trade-off between predictive power and time nec-
essary for training was reached with a shortened cardiac volumetry protocol
covering only about two breaths per slice and every second slice (airflow: mean
R2:0.984,mean rMSE:0.015,Bias aMFD:-0.01 L/s with +0.084/-0.1 95% CI and
volume: mean R2: 0.990, mean rMSE: 0.003, Bias aTVD: 4.27 mL with +33/-24
95% CI) at a total duration of 100 s.Shorter protocols or application of the algo-
rithm to subsequent studies in the same subject or even in different subjects still
provided useful qualitative data.

This is an open access article under the terms of the Creative Commons Attribution License,which permits use,distribution and reproduction in any medium,provided
the original work is properly cited.
© 2025 The Author(s). Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
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Conclusion: Machine-learning-based prediction of respiratory flow and lung
volume from cardiac RT-MR images after a short training phase with MRcS is
feasible and can help to shorten the time with MRcS while providing accurate
respiratory data during RT-MRI.

KEYWORDS
cardiac MRI, machine learning, real-time MRI, respiration

1 BACKGROUND

Real-time MRI (RT-MRI) is a fast-imaging technique
that uses highly undersampled radial data encoding
in combination with nonlinear inverse reconstruction.
Its high frame rate (20–50 frames per second) allows
high-quality imaging during free breathing.1 In sick
patients or small children who are not able to hold their
breath, free breathing is of major importance to avoid
intubation narcosis. However, breathing modifies car-
diac position, function, and dimensions significantly. The
most pronounced respiratory effect on the latter is an
increase in right ventricular end-diastolic volume and
right ventricular stroke volume.2

Accordingly, to conduct quantitative cardiac image
analyses (e.g., volumetry), it is essential to have a res-
piratory signal. For quantitative studies on heart-lung
interactions,even a method to measure lung volume and
airflow quantitatively is mandatory. Navigator echoes
cannot be acquired during RT-MRI for technical reasons,
while the frequently used detection of the respiratory
expansion of thorax or abdomen by a belt, bellows or
cushion is not quantitative.

Spirometry is the gold standard to measure tidal
volumes and airflow and is regularly used in adult
and pediatric pulmonology. It has been shown to be
feasible during MRI.3 Though magnetic resonance-
compatible spirometry (MRcS) is quite well tolerated,4

for longer time periods it remains somewhat uncom-
fortable. Therefore, shortening the scanning time with
MRcS would be desirable, especially for young children
or patients with dyspnea.

For these reasons, the aim of this proof-of -principle
study was to test to which extent the duration of
MRcS could be reduced. We hypothesized that using
machine learning and a short learning phase with com-
bined MRcS and MRI,quantitative respiratory data could
be generated for the remaining study from respiratory
changes detected in MR images and tested whether
such an algorithm could even be useful in successive
studies of the same or another patient.

2 METHOD

Data from 10 adult (six female and four male) volunteers
were acquired. None had prior health restrictions. Each

volunteer was educated towards MRI functionality, filled
out an information sheet and signed a written consent
to the outline of our study. The study was approved by
the ethics committee of the University Hospital Düssel-
dorf, study number 6176R. The study was conducted in
accordance with the Helsinki Declaration as revised in
2013.

2.1 Image and acquisition of
physiological data

MR images were recorded using a 1.5 T scanner
(MAGNETOM Avanto fit, Siemens Healthcare, software
version syngo MR VE11) which included a 32-channel
spine matrix coil and an 18-channel thorax coil. Each
volunteer was placed in a feet-first supine position.

The cardiac imaging protocol was identical to the
protocol used in previously published experiments.4

Standard cardiac localizers and retrospectively gated
two-chamber and four-chamber views were used to
define a standardized short-axis stack for each sub-
ject. In accordance with the MRI protocol parameters
detailed in Table 1, two datasets were obtained per sub-
ject: one comprising a single midventricular slice and
the other a complete short-axis stack for cardiac vol-
umetry. Simultaneously, ECG and respiratory bellows
signals were recorded using the Siemens Physiologging
(VE11C).

2.2 Spirometry

A silicone face mask (COSMED Deutschland GmbH,
Werneck, Germany, size S) was connected to the
non-magnetic light-weight flow sensor.This sensor mea-
sures the airflow based on the differential pressure
on a membrane. The differential pressure information
is transported via a modified 6 m double tube to the
spirometry unit (Geratherm Respiratory GmbH, Bad
Kissingen, Germany) outside the scanner (Figure 1). Its
effective dead space is less than 96 mL,which has been
demonstrated to be tolerable. Furthermore, the tube set
included a pipe for humidity balance (Perma Pure,Lake-
wood,NJ,USA),a hydrophobic mini filter and an adapter
for the connection to the flow sensor. Airflow data
were recorded with a sampling rate of 125 Hz with an
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TABLE 1 MR-Parameters. Sequence parameters for real-time magnetic resonance imaging (MRI) used for method development
(midventricular slice, short axis stack volumetry) and resulting parameters for optimized training.

Sequence parameters Volumetry Midventricular slice Optimized training

Sequence type b-SSFP

TR/TE (ms) 3.7/1.85

Orientation short axis

Flip angle (◦) 60

Bandwidth (Hz/pixel) 760

FOV (mm) 320–400

Image matrix (pixels) 200 × 200

In-plane resolution (mm × mm) 1.6 × 1.6

Slice thickness (mm) 8

Image acquisition time (ms) 33

Number of slices 19 1 10

Interslice gap (mm) 0 0 8

Phases 900 4000 300

Total scan duration (s) 570 133 100

Breathing type free breathing deep & free breathing free breathing

Abbreviations: b-SSFP, balanced steady-state free precession; FOV, field of view; TE, echo time; TR, repetition time.

F IGURE 1 Physiological monitoring. The flow sensor measures
the airflow based on the differential pressure on a membrane.
Differential pressure information is transported by the flow double
tube (blue). A gas sampling tube (white) provides gas for O2/CO2
measurements. Both tubes are connected to the spirometry unit
located in the adjacent control room.

accuracy of ± 3% or ± 50 mL/s and a range from ± 5
L/s for ventilation.

Removing and even repositioning the face mask can
be performed easily inside the MR-Scanner and without
changing the position of the patient table (Video S1).

2.3 Respiratory model

2.3.1 Training and test datasets

The recorded respiratory flow measurements and the
corresponding MR images were split into a training
dataset, which consisted of L samples, and a test

dataset, which consisted of T samples. Overall, at most
one third of the total data acquired was used for model
training (Figure 2c). The remaining test data was used
to evaluate the model (Figure 2d).

2.3.2 Preprocessing

The recorded respiratory flow measurements
f (1),… , f (L) ∈ ℝ were normalized by

f (l)
norm =

f (l) − 𝜇f

𝜎f
for l = 1,… , L,

where 𝜇f and 𝜎f were the mean and the standard
deviation of f (1),… , f (L).

2.3.3 Model architecture

Each MR image consisted of 200 × 200 pixels. A mask
was applied to limit the region of interest to pixel effected
by breathing (Figure 2a). In a second step,each masked
image was downsampled to a resolution of 40 × 40 pix-
els. The downsampled masked MR images were used
to calculate the normalized optical flow, represented
as vectors with two entries, by applying 10 steps of
the iterative Lucas-Kanade method.5,6 The implemen-
tation provided by scikit-image7 was used. The optical
flow represented a sequence of tensors X (1),… , X (L) ∈
ℝ40×40×2, where the flow at each pixel of the subsam-
pled masked MR image was described by two values
(Figure 2b). Normalized airflow measurements were
predicted using a linear model
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4 of 13 MALIK ET AL.

F IGURE 2 Respiratory model. To limit the analysis to breathing-affected pixels a mask was overlayed (a). To estimate optical flow 10 steps
of the iterative Lucas-Kanade method were applied to consecutive subsampled masked images (b). Estimated optical flow and
spirometry-measured airflow were used to fit a linear model using ridge regression (c). Estimated optical flow of unseen images, which were
provided to the fitted model, were used to predict airflow (d).

f̂ (l)
norm =

40∑
m=1

40∑
n=1

2∑
k=1

WmnkX (l)
mnk + b,

where W ∈ ℝ40×40×2 and b ∈ ℝ were learnable model
parameters.

2.3.4 Model fitting

Parameters W and b were estimated using ridge
regression, which solved the regularized least-squares
problem

min
W,b

L∑
l=1

(
f̂ (l)
norm − f (l)

norm

)2
+ 𝜆

40∑
m=1

40∑
n=1

2∑
k=1

W2
mnk,

where 𝜆 > 0 was a hyperparameter that was chosen
using leave-one-out cross-validation, which was applied
to the training set.Scikit-learn8 was used to fit the model
and perform the cross-validation in Python (Figure 2c).

2.3.5 Prediction and postprocessing

MR images from the test dataset were used to estimate
optical flow tensors X (1),… , X (T), which were subse-

quently fed into our fitted model to calculate airflow
predictions f̂ (1)

norm,… , f̂ ( T)
norm (Figure 2d).

Next,the airflow predictions f̂ ( 1)
norm,… , f̂ ( T)

norm were denor-
malized

f̂ ( t)
denorm = 𝜎f f̂ ( t)

norm + 𝜇f for t = 1,… , T.

Additionally, f̂ ( 1)
denorm,… , f̂ ( T)

denorm were smoothed using
the Savitzky-Golay Filter9 implemented by SciPy.10 In
the following the denormalized smoothed airflow predic-
tions are denoted as f̂ (1),… , f̂ (T) and were used as the
predicted airflow estimation in further analysis.

Volume measurements v(1),… , v(T) and volume pre-
dictions v̂(1),… , v̂(T) were calculated using airflow mea-
surements f (1),… , f (T) and denormalized filtered airflow
predictions f̂ (1),… , f̂ (T) as

v(t) = c
t∑

k=1

f (k) for t = 1,⋯, T,

v̂(t) = c
t∑

k=1

f̂ (k) for t = 1,⋯, T,

where c = 10 is a constant used to scale data to the
correct magnitude of volume measurements and pre-
dictions in mL. Subsequently a baseline correction was
performed.
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MALIK ET AL. 5 of 13

F IGURE 3 Method development. To predict respiratory measurements of a standard cardiac short axis stack volumetry with free breathing
(a), a training set was developed regarding (b) breathing pattern and number of breaths and (c) number of slices selected for training.

2.4 Model configuration

2.4.1 Initial model

The initial cardiac volumetry protocol consisted of the
simultaneous acquisition of RT-MRI and respiratory
data during free breathing using MRcS, as shown in
Table 1 and Figure 3a. The model configuration aimed
to minimize the RT imaging duration required for train-
ing with MRcS, while retaining sufficient information to
predict respiratory data for a complete short-axis stack
cardiac volumetry.

2.4.2 Assessment of breathing pattern
and number of breaths for training

To assess the effect of breathing patterns and the
number of breaths used for training, a dataset from a
single midventricular slice was evaluated (Table 1). The
dataset was split into a fixed test set containing 18 nor-
mal breathing cycles (2800 frames, 94 s) and a variable
training set consisting of up to four deep and four normal
breathing cycles (1200 frames, 40 s) (Figure 3b).

Subsequently, the training set was manually short-
ened according to breathing pattern and number of
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6 of 13 MALIK ET AL.

breaths, and predictions on the held-out test data were
compared. Specifically, a training set comprising four
deep breaths (600 frames, 20 s) was compared to one
consisting of four normal breaths (600 frames, 20 s).
The effect of reducing the number of breaths was then
assessed by analyzing training set configurations con-
taining four, three, two,or one normal breath,as well as a
single inspiratory phase (ranging from 600 to 75 frames,
or 20 to 2.5 s) (Figure 3b).

2.4.3 Assessment of the number of slices
used for training

To evaluate the impact of reduced training time on the
prediction of a complete cardiac volumetry, the effect
of varying the number of slices used for training on
model performance was assessed. The initial dataset
consisted of 19 slices (900 frames per slice,570 s total),
which was divided into a fixed test set (600 frames per
slice, 380 s total) and variable training configurations
(300 frames per slice, up to 190 s total).

Four training protocols were compared based on the
number of slices used for training. In accordance with
the technical capabilities of the MR scanner,training was
conducted using every slice (19 slices,190 s total, 0 mm
interslice gap), every second slice (10 slices, 100 s total,
8 mm interslice gap),every third slice (7 slices,70 s total,
16 mm interslice gap), and every sixth slice (4 slices, 40
s total,40 mm interslice gap).For test slices not included
in the training set, adjacent slices were used for training,
as shown in Figure 3c.

2.4.4 Training set reusability on unknown
subject

The reusability of the training set was investigated by
analyzing the extent to which a trained model from
known subjects could predict respiratory measurements
in a test set of one unknown subject. An iterative
approach was used to combine known subjects to find
common denominators. Therefore, one unknown sub-
ject was randomly chosen to provide data for testing,
this subject was excluded from the following training
data mentioned. As for the training data, singular sub-
jects were selected and a cardiac volumetry of 19
slices (300 frames per slice, 190 s total) was used
for training. Regarding the predictive outcome of the
trained model on the test set, the training data and
test data were assessed, and common denominators
such as height, weight, and image orientation were
analyzed.Further,complete volumetries of different sub-
jects for training were combined while regarding said
common denominators. Lastly, all nine training subjects
recorded without regard to common denominators were
combined.

In a second setting for one instance in which image
orientation of training and test subject did not align, the
images of the unknown test set were rotated to fit the
image orientation of the training set. For rotation, imple-
mentations provided by SciPy10 and scikit-image7 in
Python were used and added to the respiratory model
described in 2.3.2.

Alternatively, a method for adaptive denormalization
incorporating the mean and SD of the unknown subject
was tested (for details, see Table S4).

2.4.5 Training set reusability on a second
scan of the same subject

The potential of reusing a training set to predict respi-
ration during a second scan conducted at a different
time for the same subject using an identical MRI proto-
col was examined. Therefore, for one subject a second
test set was recorded, comprising an additional version
of the initial cardiac volumetry with 19 slices (900 frames
per slice, 570 s total). The training set consisted of the
shortened version of the first recorded initial cardiac vol-
umetry as described in Section 2.4.3 with 10 training
slices (300 frames per slice, approximately two normal
breaths, 100 s total, 8 mm interslice gap). Similarly, as
described in 2.4.4 in further analyses images of the sec-
ond scan were rotated to fit image orientation of the first
scan.

2.5 Evaluation metrics

Data analysis was conducted in Python.

2.5.1 Qualitative evaluation

For qualitative validation the predicted airflow and lung
volume graphs were compared with the actual respira-
tory measurement graphs collected by MRcS. Further,
for each subject the regional contribution in form of
weights for each fitted model was analyzed.

2.5.2 Quantitative evaluation

For quantitative evaluation, the relative mean squared
error

rMSEflow =
1

T

∑T
t=1

(
f (t) − f̂ (t)

)2

1

T

∑T
t=1f (t)2

between the flow measurements f (1),… , f (T) and their
predictions f̂ (1),… , f̂ (T) was computed. Analogously, the
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MALIK ET AL. 7 of 13

relative mean squared error

rMSEvolume =
1

T

∑T
t=1

(
v(t) − v̂(t)

)2

1

T

∑T
t=1v(t)2

between the corresponding volume measurements
v(1),… , v(T) and their predictions v̂(1),… , v̂(T) was calcu-
lated.

To further assess the goodness of fit of our model, the
coefficient of determination

R2
flow = 1 −

∑T
t=1

(
f (t) − f̂ (t)

)2

∑T
t=1

(
f (t) − f̄

)2

for the predicted flow was computed, where f̄ =
1

T

∑T
t=1 f (t) denotes the mean of the flow measurements.

Analogously, the coefficient of determination

R2
volume = 1 −

∑T
t=1

(
v(t) − v̂(t)

)2

∑T
t=1

(
v(t) − v̄

)2

for the predicted volume was calculated, where v̄ =
1

T

∑T
t=1 v(t) denotes the mean of the volume measure-

ments.
For clinical applicability differences in tidal volumes

(TV) and maximal airflow (MF) were defined. For every
breath a pair of peaks z(p) = (v(p), v̂(p)) for p = 1,…,P
was chosen and the absolute tidal volume difference

aTVDz(p) = ||TVv(p) − TVv̂(p) || ,

where TVv(p) = |||max v(p) − min v(p)|||
and TVv̂(p) = |||max v̂(p) − min v̂(p)||| ,

between measured volume v(1),… , v(P) and predicted
volume v̂(1),… , v̂(P) was determined.

For every breath a pair of peaks z(p) = (f (p), f̂ (p)) for
p = 1,…,P was selected and the absolute maximal flow
difference

aMFDz(p) = |||max f (p) − max f̂ (p)|||
between measured flow f (1),⋯, f (P) and predicted flow
f̂ (1),⋯, f̂ (P) was evaluated.

For each subject, the mean, the standard deviation
(SD), and the minimum-to-maximum range of rMSE,
R2, aTVD and aMFD across all breaths within the test
dataset were calculated. Additionally, the overall mean,
the SD, and the minimum-to-maximum range of the
subjects’ means of rMSE, R2, aTVD, and aMFD were
evaluated. Prediction variability of R2 between subjects
and between slices was analyzed.

For statistical analysis, agreement between predicted
and measured respiratory data was evaluated using
Bland-Altman plots, comparing absolute tidal volume
and absolute maximal airflow. For each slice of every
subject, one randomly selected pair of predicted and
measured absolute TV and predicted and measured
absolute MF was chosen, cumulatively illustrated, and
evaluated. In each plot the distribution of selected pairs,
the 95% confidence interval and the zero line of no bias
were analyzed.

The criterion for good agreement in respiratory vol-
ume (quality criterion, QCvolume) was defined as a
maximum mean aTVD of less than 20 mL, which is
far below the threshold for clinical applications (100 mL
for tidal volumes < 1 L).11 The quality criterion for air-
flow (QCflow) was defined as a maximum mean aMFD
of ± 50 mL/s to ± 100 mL/s.11 Predictions exceed-
ing these thresholds for mean aTVD or mean aMFD
were considered quantitatively poor. Model configura-
tions were considered unsuitable if quality criteria were
not met by at least nine subjects.

3 RESULTS

The study was conducted on 10 subjects (six female and
four male). The mean age of subjects was 25.4 ± 2.9
years (range: 21 to 30 years), mean body weight
67.6 ± 11.8 kg (range: 54 to 93 kg) and mean height
173.1 ± 8.5 cm (range: 157–185 cm).

To analyze the predictive properties of our model, the
model was trained on one midventricular slice with eight
breaths (four deep and four normal breaths, that is, 40
s per slice) (Figure 3b). The prediction was excellent
(Figure 4a and Table S1). The predefined quality crite-
ria (QCvolume and QCflow) were fulfilled in every subject
(Table S1). However, the duration of this training phase
would be very long (> 760 s). This motivated further
analyses for optimization by assessing different breath-
ing patterns and reducing the number of breaths and
slices used to train the model.

3.1 Optimization of breathing pattern
and number of breaths for training

To optimize the breathing pattern and the number of
breaths used for training, the predictive outcome of
different training sets on one midventricular slice was
analyzed. Training sets with four deep and four normal
breaths as shown in Figure 4a, four normal breaths as
illustrated in Figure 4b and even a single normal breath
as depicted in Figure 4c revealed matches of predicted
and measured data curves without shift and a good
agreement of the curves. In contrast, the reduction of
training to a single inspiration did not reach the peaks
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8 of 13 MALIK ET AL.

F IGURE 4 Shortening training. Comparison of the predicted airflow curves (orange) with the measured airflow (blue) for progressively
shortened training datasets: (a) four deep and four normal breaths, (b) four normal breaths, (c) one normal breath, and (d) on one inspiratory
phase only.

in predicted volume because of the missing negative
values in predicted airflow (Figure 4d).

The quantitative analysis confirmed this observation.
A normal breathing pattern and a reduction to two or
even a single normal breath for the training set still
resulted in accurate mean values (Table S1). Therefore,
to cover scan time of at least one normal breath, a
scan time covering approximately two normal breaths
was necessary to guarantee a sufficient predictive
quantitative outcome. As expected, a further reduction
did not provide useful quantitative information anymore
(Table S1).

3.2 Optimization of the number of
slices used for training

After having reduced the number of required breathing
cycles, an additional reduction of the number of slices
was tested. Reducing the number of slices to every
second slice (i.e., 10 slices) still resulted in an excel-
lent prediction without shift and with good agreement
of the peaks (Figure 5a and b). Moreover, no rele-
vant difference of R2 variability across predicted slices
and subjects was observed (Figure S1 and Figure S2).
Reducing the number of slices to every third slice
(i.e., seven slices) or every sixth slice (i.e., four slices)
resulted in an underestimation of maximal airflow and
lung volume (Figure 5c and d). Now, a difference in R2

variability between predicted slices and subjects was
observed (Figure S1 and Figure S2). Especially, a train-
ing with every sixth slice revealed a strong R2 variability
for adjacent slices (Figure S2d).

Statistical data analysis of cumulative quantitative
results of all subjects for testing on complete cardiac
volumetries with different training sets confirmed these

observations (Table S2 and Figure S3).The combination
of a training set reduced to two normal breaths and train-
ing in every second (i.e., 10 slices) with a total duration
of the scan to 100 s allowed an excellent prediction of
volume with a bias of 4.27 mL and a 95% confidence
interval (limit of agreement) of -24 to 33 mL (Figure S3f)
and flow with a bias of -0.01 L/s with a 95% confidence
interval of -0.1 L/s to 0.084 L/s (Figure S3b).

3.3 Regional contribution to the model

The distribution of the weights of the trained model for
one basal, midventricular, and apical slice of one exam-
ple subject is shown in Figure 6. The highest weights of
the basal slices were localized close to the diaphragm
in the caudal part of the thoracic wall (Figure 6a). In
the apical slices the areas of heavier weights shifted
towards the apical part of thoracic wall (Figure 6c). The
prominent weights in midventricular slices showed a
more homogeneous distribution around the thoracic wall
and diaphragm as illustrated in Figure 6b.

3.4 Training set reusability on
unknown subject

Prediction based on a model that was trained with dif-
ferent subjects yielded good results when the image
orientation was similar and could even be increased by
rotating testing images to align with the image orienta-
tion of the trained subject (Figure S4) or by training on a
higher number of subjects when image orientation was
similar (Figure 7 and Table S3). The influence of height
and weight on the quality of prediction was not important
(data not shown).
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MALIK ET AL. 9 of 13

F IGURE 5 Reducing the number of slices. Comparison of predicted airflow curves (middle row, orange) respectively volume curves (bottom
row, orange) with the corresponding measured airflow curves (middle row, blue) and volume curves (bottom row, blue) for a progressively
reduced number of slices used for training: (a) training (blue dashed line) and testing in the same slice (orange line), (b) training using the two
adjacent slices (blue dashed lines), (c) training using two more distant adjacent slices (blue dashed lines), (d) training using two even more
distant adjacent slices (blue dashed lines).

F IGURE 6 Contributing regions. Weights representing the contribution (0, no contribution, 0.10 high contribution) of the optical airflow of the
trained model for one subject of a basal slice (a), a midventricular slice (b), and an apical slice (c).

3.5 Training set reusability on a
second scan of the same subject

The reuse of the training set of the first scan on a sec-
ond scan of the same subject recorded at a different
time allowed for a differentiation between inspiration and
expiration but suffered to predict peaks of airflow and
lung volume properly (Figure 8).However, the orientation
of the slices was different in the two studies (Figure 8a
and d).

Similarly, the quantitative analysis revealed a reason-
able correlation but a poor prediction regarding quality

criteria (Table S5). Since scaling was the main prob-
lem, the difference between predicted and measured
aTV got poorer with increasing mean of predicted and
measured aTV (Figure S5e). Rotating the second study
according to the image orientation of the first study
(Figure 8g), improved the qualitative and quantitative
prediction (Figure 8, Table S5 and Figure S5).

4 DISCUSSION

Spirometry is the gold standard to assess lung vol-
ume and airflow quantitatively. Both parameters are
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10 of 13 MALIK ET AL.

F IGURE 7 Unknown subject. Measured data (blue lines) and predicted values (orange lines) for airflow (second last row) and volume (last
row). Image orientation by degree of thoracic tilt (angle in orange) is displayed for each recorded subject (a-j). Prediction in the tested subject is
poor with different image orientation (k, pink outline), is excellent if the image orientation was similar to the trained subject (l, green outline), is
similarly excellent by training with multiple subjects with similar image orientation (m, turquoise outline). Increasing the number of subjects used
for training without selecting for image orientation did not improve the prediction in the tested subject (n, gray outline).

F IGURE 8 Test-retest reliability. Comparison of the performance of the algorithm obtained after training with the optimized protocol, two
breaths per slice and every second slice, in a subject that was recorded twice (first study: (a-c), second study (d-f)). A secondary comparison was
performed on the later recording which was rotated to align with the thoracic tilt (angle in orange) of the first study (second study rotated (g-i)).
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required to study heart-lung interactions under normal
physiological conditions as well as in patients.

Our previous studies4,12 already demonstrated the
feasibility of performing spirometry within the active
MR scanner. Not only could we show that the quan-
titative respiratory information provided by spirometry
can be used for respiratory binning and image stabiliza-
tion, but we also found that it enables the assessment
of heart-lung interactions and even the Frank-Starling
mechanism.4

Previous studies suggest that the invasively mea-
sured pleural pressure is probably the best parameter
to quantify the effect of respiration on the cardiovascular
system.13

Esophageal pressure monitoring with a nasogas-
tric tube could provide a surrogate marker for the
intrapleural pressure.14

However, esophageal pressure measurements suffer
from their invasiveness and their significant techni-
cal and procedural challenges.15 Since the intrapleural
pressure is closely related to the lung volume during
spontaneous breathing,16 currently,we consider spirom-
etry to be the best non-invasive parameter to estimate
the impact of breathing on the cardiocirculatory system.

MRcS is relatively easy to perform and generally
well tolerated. However, in our experience, the use of
a tight-fitting mask can become uncomfortable during
prolonged studies.This is particularly true for young chil-
dren, individuals with severe obesity, those with preexist-
ing respiratory conditions such as asthma, and patients
with cardiac conditions like heart failure. Additionally,
people who experience psychological distress—such as
claustrophobia or anxiety disorders—may find wearing
the mask especially challenging.

Allowing the mask to be removed while still extracting
important respiratory information from the MR images
could enhance patient comfort. It can be expected that
removing the mask would improve compliance and per-
haps even enhance the accuracy of the measurements.

In this study, we demonstrated that—after a short
learning phase—these quantitative data can be pro-
vided by the analysis of the MR images, without
continuing spirometry.

For this purpose,a ridge regression model was trained
on the optical flow estimated from MR images.

In this paper we demonstrated that reliable quanti-
tative spirometry data can be provided by a learning
phase as short as two normal breaths per slice and
using a reduced number of ten slices instead of training
all the slices. The procedure resulted in a scan time of
100 s for learning sufficiently to provide highly accurate
quantitative data for subsequent complete volumetries.
Including deep breaths in the learning phase did not
improve but even deteriorated the prediction, probably
because the additional information was not relevant for
the subsequent normal breathing pattern.

A further reduction in the number of slices resulted in
qualitatively good but semiquantitative data,as was also
the case when using a trained model in other studies
of the same or unknown subjects. Improving the repro-
ducibility of the orientation of the short-axis stack is
probably the most critical factor for enhancing accuracy,
and this cannot be substituted merely by increasing the
number of studies included in the model.

We could show that the information was largely pro-
vided by the movement of the thoraxes and diaphragms
and not by the pulmonary signals. Without prior spirom-
etry, similar methodological challenges can be expected
as with other indirect methods for quantifying respiration.

The possible applications are diverse. If qualitative
data is sufficient, the method described is probably an
alternative to existing options to monitor breathing,17 for
example, respiratory bellows, belts, navigator echoes18

or self -gating techniques.19 A pre-trained model could
be used in the same way as previously used methods
and classify the breathing phases completely without
additional equipment and without spirometry to allow
motion control and even an orienting comparison of
respiratory-dependent changes.Since no additional MR
measurements, for example, during navigator echoes,
are required, continuous imaging is still possible.

However, the decisive advantage of the method is not
only the control of movement,but rather the provision of
quantitative data on lung function.

Examples of scientific questions are studies on phys-
iology in which heart-lung interactions are examined,
most of which have been performed using qualitative
techniques.20,21 Clinically relevant are also diseases in
which breathing plays a major role in the pathophysiol-
ogy of the disease (e.g., chronic thromboembolic pul-
monary hypertension,22 right ventricular dysfunction,12

heart failure with preserved ejection fraction (HFpEF)23).
The method should also be particularly helpful in

examinations in which the short-axis stack is car-
ried out several times in the same examination, that
is, stress examinations, for example, ergometry or in
pharmacologically induced stress tests.

The main limitation of the proposed method was that,
despite the possibility of significantly shortening the
time with spirometry and thus improving patient comfort,
a short period of spirometry remained necessary for
quantitative analysis. In addition, while the application
of a trained model to a subsequently acquired test
set, either from the same subject or from an unknown
one, provided qualitative information, it did not yield
quantitatively reliable results. Even if the effort required
for spirometry is not different from spirometry outside of
the MR, it is not as easy to implement in the context of a
radiological examination. In addition, the training and the
application of this method to the rest of the examination
require additional work and calculation steps in post-
processing, so that the result is not available during the
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12 of 13 MALIK ET AL.

examination but only afterwards. Furthermore, it will be
necessary to demonstrate that this technique can also
be used at 3T and with other fast imaging sequences.
It is still unclear whether the performance would be
similar with other protocols, for example, different plane
orientations or in other age groups.

5 CONCLUSION

In conclusion, a shortened period with MRcS can
provide quantitative data for the study of heart-lung
interactions. This will be especially useful in subjects
who have problems with MRcS and when several volu-
metric studies are part of the protocol, such as stress
MRI studies. If semi-quantitative data are sufficient,
for example, to define expiration versus inspiration, for
image stabilization or to characterize the respiratory
phase for binning, this technique can be considered
equivalent to other techniques monitoring respiration
(e.g., navigator echoes, respiratory belts).
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