Dokument: Diagnostischer und prognostischer Nutzen der Handgrip-Echokardiographie bei Patienten mit ischämischer Mitralklappeninsuffizienz
Titel: | Diagnostischer und prognostischer Nutzen der Handgrip-Echokardiographie bei Patienten mit ischämischer Mitralklappeninsuffizienz | |||||||
Weiterer Titel: | Diagnostic and Prognostic Value of Handgrip Echocardiography in Patients with Ischemic Mitral Regurgitation | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=68970 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20250414-111903-2 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Sidabras, Jonas [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Spieker, Maximilian Claus [Gutachter] Prof. Dr. med. Payam Akhyari [Gutachter] | |||||||
Stichwörter: | Ischämische Mitralklappeninsuffizienz, Dynamische Mitralinsuffizienz, Handgrip-Echokardiographie | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Hintergrund: Die Mitralklappeninsuffizienz (MI) stellt in den Industrieländern die zweithäufigste Herzklappenerkrankung bei Patienten über 65 Jahren dar. Die sekundäre ischämische MI kann sich nach einem stattgehabten Myokardinfarkt entwickeln und ist mit einer erhöhten Mortalität assoziiert. Da sich die Insuffizienz abhängig von der hämodynamischen Situation variabel präsentieren kann, kommt der Belastungsuntersuchung eine wichtige Bedeutung zu, um eine Insuffizienz auf ihre hämodynamische Relevanz auch unter Belastung zu überprüfen. Die Handgrip-Belastung bietet neben dem Goldstandard, der fahrradergometrischen Belastung, eine weitere Möglichkeit, die Dynamik der MI unter Belastung zu provozieren.
Hypothese: Die Handgrip-Belastung steigert den diagnostischen und prognostischen Nutzen der echokardiographischen Bewertung einer MI. Methode: In diese klinisch-prospektive Studie wurden insgesamt 205 Patienten mit ischämischer MI, die eine transthorakale Echokardiographie in Ruhe und unter Handgrip-Belastung erhalten haben, eingeschlossen. Die Studie wurde anhand detaillierter und umfassender echokardiographischer Auswertungen durchgeführt, wobei ein hochstandardisiertes Protokoll angewendet wurde. Die Patienten wurden ein Jahr nach Studieneinschluss nachverfolgt und die Ein-Jahres-Mortalität erfasst. Ergebnisse: Die Prävalenz der dynamischen MI (Anstieg der EROA >0,1 cm²) unter isometrischer Handgrip-Belastungsuntersuchung betrug 16 %. Bei 28 % der Patienten konnte ein Anstieg des Schweregrades der MI um eine Stufe beobachtet werden. Prädiktoren für eine dynamische MI waren: der WMSi, der endsystolische sowie enddiastolische Annulusdiameter und die Länge des AML. Zusätzlich zeigte sich bei Patienten mit reduzierter linksventrikulärer systolischer Funktion eine Korrelation zwischen den Veränderungen der EROA, des effektiven LVSVi ‘ und des CI‘. Die Patienten mit dynamischer hochgradiger MI unter Belastung zeigten höhere kombinierte Ereignisraten und wiesen die gleiche Häufigkeit hinsichtlich Mitralklappenoperationen und Interventionen wie die Patienten mit hochgradiger MI in Ruhe auf. Zusammenfassung: Die Handgrip-Belastungsuntersuchung zeigte einen diagnostischen und prognostischen Nutzen bei Bewertung der ischämischen MI. Die Handgrip-Belastungsuntersuchung sollte bei Patienten mit leichtgradiger oder mittelgradiger ischämischer MI durchgeführt werden, um die Dynamik dieser Insuffizienz zu detektieren. Um den weiteren diagnostischen und prognostischen Nutzen der Handgrip-Echokardiographie bei Patienten mit sekundärer ischämischer MI zu beurteilen, müssen noch weitre prospektive multizentrische Studien durchgeführt werden.Background: Mitral regurgitation (MR) is the second most common heart valve disease in industrialized countries among patients over 65 years old. Secondary ischemic MR can develop after a myocardial infarction and is associated with increased mortality. As the insufficiency can present variably depending on the hemodynamic situation, exercise testing plays a crucial role in assessing its hemodynamic relevance under exercise. In addition to the gold standard of bicycle ergometry, handgrip exercise testing provides another means to provoke the dynamics of MR during exercise. Hypothesis: Handgrip exercise testing enhances the diagnostic and prognostic value of echocardiographic evaluation of mitral regurgitation. Method: This clinically prospective study included a total of 205 patients with ischemic MI who underwent transthoracic echocardiography at rest and during handgrip exercise. The study employed detailed and comprehensive echocardiographic evaluations using a highly standardized protocol. Patients were followed up one year after study enrolment, and one-year mortality was recorded. Results: The prevalence of dynamic MR (increase in EROA >0.1 cm²) during isometric handgrip exercise testing was 16%. In 28% of patients, an increase in the severity of MI by one stage was observed. Predictors for dynamic MR included WMSi, end-systolic and end-diastolic annulus diameter, and length of the AML. Additionally, patients with reduced left ventricular systolic function showed a correlation between changes in EROA, effective LVSVi, and CI. Patients with dynamic severe MI under exercise exhibited higher combined event rates and had the same frequency of mitral valve surgeries and interventions as patients with severe MI at rest. Summary: Handgrip exercise testing demonstrated diagnostic and prognostic benefits in assessing ischemic MR. Handgrip exercise testing should be performed in patients with mild or moderate ischemic MR to detect the dynamics of this regurgitation. Prospective multicentre future studies are needed to evaluate the diagnostic and prognostic benefits of handgrip echocardiography in patients with secondary ischemic MR further. | |||||||
Quelle: | 1. Enriquez-Sarano, M., C.W. Akins, and A. Vahanian, Mitral regurgitation. The Lancet, 2009. 373(9672): p. 1382-1394.
2. Iung, B., et al., A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. European Heart Journal, 2003. 24(13): p. 1231-1243. 3. Nkomo, V.T., et al., Burden of valvular heart diseases: a population-based study. The Lancet, 2006. 368(9540): p. 1005-1011. 4. Singh, J.P., et al., Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). The American Journal of Cardiology, 1999. 83(6): p. 897-902. 5. Andell, P., et al., Epidemiology of valvular heart disease in a Swedish nationwide hospital-based register study. Heart, 2017. 103(21): p. 1696-1703. 6. Nickenig, G., et al., Konsensus der Deutschen Gesellschaft für Kardiologie – Herz- und Kreislaufforschung – und der Deutschen Gesellschaft für Thorax-, Herz- und Gefäßchirurgie zur Behandlung der Mitralklappeninsuffizienz. Der Kardiologe, 2013. 7(2): p. 76-90. 7. De Marchena, E., et al., Respective Prevalence of the Different Carpentier Classes of Mitral Regurgitation: A Stepping Stone for Future Therapeutic Research and Development. Journal of Cardiac Surgery, 2011. 26(4): p. 385-392. 8. Rahmouni, K., et al., Ischemic mitral regurgitation: when should one intervene? Curr Opin Cardiol, 2021. 36(6): p. 755-763. 9. Dulgheru, R., et al., Dynamic Ischaemic Mitral Regurgitation and the Role of Stress Echocardiography. J Cardiovasc Echogr, 2013. 23(1): p. 10-17. 10. Oliveira, D., et al., Geometric description for the anatomy of the mitral valve: A review. J Anat, 2020. 237(2): p. 209-224. 11. McCarthy, K.P., L. Ring, and B.S. Rana, Anatomy of the mitral valve: understanding the mitral valve complex in mitral regurgitation. European Journal of Echocardiography, 2010. 11(10): p. i3-i9. 12. Dal-Bianco, J.P. and R.A. Levine, Anatomy of the Mitral Valve Apparatus. Cardiology Clinics, 2013. 31(2): p. 151-164. 13. Lam, J.H., et al., Morphology of the human mitral valve. I. Chordae tendineae: a new classification. Circulation, 1970. 41(3): p. 449-58. 14. Watanabe, N., Acute mitral regurgitation. Heart, 2019. 105(9): p. 671-677. 15. Harb, S.C. and B.P. Griffin, Mitral Valve Disease: a Comprehensive Review. Current Cardiology Reports, 2017. 19(8): p. 73. 16. Zeng, X., et al., Echocardiography of the Mitral Valve. Progress in Cardiovascular Diseases, 2014. 57(1): p. 55-73. 17. El Sabbagh, A., Y.N.V. Reddy, and R.A. Nishimura, Mitral Valve Regurgitation in the Contemporary Era: Insights Into Diagnosis, Management, and Future Directions. JACC Cardiovasc Imaging, 2018. 11(4): p. 628-643. 18. Otto, C.M., et al., 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 2021. 143(5): p. e72-e227. 19. Carpentier, A., Cardiac valve surgery—the “French correction”. The Journal of Thoracic and Cardiovascular Surgery, 1983. 86(3): p. 323-337. 20. Otsuji, Y., et al., Mechanism of ischemic mitral regurgitation with segmental left ventricular dysfunction: three-dimensional echocardiographic studies in models of acute and chronic progressive regurgitation. Journal of the American College of Cardiology, 2001. 37(2): p. 641-648. 21. Kaul, S., et al., Mechanism of ischemic mitral regurgitation. An experimental evaluation. Circulation, 1991. 84(5): p. 2167-80. 22. Otsuji, Y., et al., Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: direct in vivo demonstration of altered leaflet tethering geometry. Circulation, 1997. 96(6): p. 1999-2008. 23. Dal-Bianco, J.P., et al., Basic mechanisms of mitral regurgitation. Can J Cardiol, 2014. 30(9): p. 971-81. 24. Levine, R.A. and E. Schwammenthal, Ischemic mitral regurgitation on the threshold of a solution: from paradoxes to unifying concepts. Circulation, 2005. 112(5): p. 745-58. 25. He, S., et al., Integrated mechanism for functional mitral regurgitation: leaflet restriction versus coapting force: in vitro studies. Circulation, 1997. 96(6): p. 1826-34. 26. Boltwood, C.M., et al., Quantitative echocardiography of the mitral complex in dilated cardiomyopathy: the mechanism of functional mitral regurgitation. Circulation, 1983. 68(3): p. 498-508. 27. Sabbah, H.N., et al., Left ventricular shape: a factor in the etiology of functional mitral regurgitation in heart failure. Am Heart J, 1992. 123(4 Pt 1): p. 961-6. 28. Levine, R.A., et al., Mechanistic insights into functional mitral regurgitation. Current Cardiology Reports, 2002. 4(2): p. 125-129. 29. Bursi, F., et al., Mitral Regurgitation After Myocardial Infarction: A Review. The American Journal of Medicine, 2006. 119(2): p. 103-112. 30. Baldus, S., et al., Interventionelle Therapie von AV-Klappenerkrankungen – Kriterien für die Zertifizierung von Mitralklappenzentren. Der Kardiologe, 2020. 14(5): p. 339-363. 31. Creemers, E.E. and Y.M. Pinto, Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovascular Research, 2011. 89(2): p. 265-272. 32. Enriquez-Sarano, M., et al., Determinants of Pulmonary Hypertension in Left Ventricular Dysfunction. Journal of the American College of Cardiology, 1997. 29(1): p. 153-159. 33. Levine, R.A., Dynamic Mitral Regurgitation — More Than Meets the Eye. New England Journal of Medicine, 2004. 351(16): p. 1681-1684. 34. Bhattacharyya, S., et al., Dynamic Mitral Regurgitation. Cardiology in Review, 2015. 23(3): p. 142-147. 35. Levine, R.A. and J. Hung, Ischemic mitral regurgitation, the dynamic lesion: clues to the cure**Editorials published in the Journal of the American College of Cardiologyreflect the views of the authors and do not necessarily represent the views of JACCor the American College of Ca. Journal of the American College of Cardiology, 2003. 42(11): p. 1929-1932. 36. Schwammenthal, E., et al., Dynamics of mitral regurgitant flow and orifice area. Physiologic application of the proximal flow convergence method: clinical data and experimental testing. Circulation, 1994. 90(1): p. 307-22. 37. Hung, J., et al., Mechanism of dynamic regurgitant orifice area variation in functional mitral regurgitation: physiologic insights from the proximal flow convergence technique. Journal of the American College of Cardiology, 1999. 33(2): p. 538-545. 38. Piérard, L.A. and P. Lancellotti, The Role of Ischemic Mitral Regurgitation in the Pathogenesis of Acute Pulmonary Edema. New England Journal of Medicine, 2004. 351(16): p. 1627-1634. 39. Lancellotti, P., et al., Clinical Significance of Exercise Pulmonary Hypertension in Secondary Mitral Regurgitation. The American Journal of Cardiology, 2015. 115(10): p. 1454-1461. 40. Lancellotti, P., F. Lebrun, and L.A. Pierard, Determinants of exercise-induced changes in mitral regurgitation in patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol, 2003. 42(11): p. 1921-8. 41. Giga, V., et al., Exercise-induced changes in mitral regurgitation in patients with prior myocardial infarction and left ventricular dysfunction: relation to mitral deformation and left ventricular function and shape. Eur Heart J, 2005. 26(18): p. 1860-5. 42. Dagum, P., et al., Coordinate-free analysis of mitral valve dynamics in normal and ischemic hearts. Circulation, 2000. 102(19 Suppl 3): p. III62-9. 43. Sanders, C.A., et al., Etiology and differential diagnosis of acute mitral regurgitation. Progress in Cardiovascular Diseases, 1971. 14(2): p. 129-152. 44. Desjardins, V.A., et al., Intensity of murmurs correlates with severity of valvular regurgitation. Am J Med, 1996. 100(2): p. 149-56. 45. Magne, J., et al., Prognostic importance of brain natriuretic peptide and left ventricular longitudinal function in asymptomatic degenerative mitral regurgitation. Heart, 2012. 98(7): p. 584-91. 46. Dulgheru, R., et al., Exercise Testing in Mitral Regurgitation. Prog Cardiovasc Dis, 2017. 60(3): p. 342-350. 47. Baumgartner, H., et al., 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J, 2017. 38(36): p. 2739-2791. 48. Vahanian, A., et al., 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J, 2022. 43(7): p. 561-632. 49. Pierard, L.A. and P. Lancellotti, Stress testing in valve disease. Heart, 2007. 93(6): p. 766-72. 50. Lancellotti, P. and J. Magne, Stress Echocardiography in Regurgitant Valve Disease. Circulation: Cardiovascular Imaging, 2013. 6(5): p. 840-849. 51. Alachkar, M.N., et al., Dynamic handgrip exercise for the evaluation of mitral valve regurgitation: an echocardiographic study to identify exertion induced severe mitral regurgitation. The International Journal of Cardiovascular Imaging, 2021. 37(3): p. 891-902. 52. Bertrand, P.B., et al., Exercise Dynamics in Secondary Mitral Regurgitation: Pathophysiology and Therapeutic Implications. Circulation, 2017. 135(3): p. 297-314. 53. Manou-Stathopoulou, V., et al., The effects of cold and exercise on the cardiovascular system. Heart, 2015. 101(10): p. 808-20. 54. Lancellotti, P., et al., Stress echocardiography in patients with native valvular heart disease. Heart, 2018. 104(10): p. 807-813. 55. Krzemiński, K., et al., Cardiovascular and hormonal responses to static handgrip in young and older healthy men. European Journal of Applied Physiology, 2012. 112(4): p. 1315-1325. 56. Kundi, H., et al., Frailty and related outcomes in patients undergoing transcatheter valve therapies in a nationwide cohort. Eur Heart J, 2019. 40(27): p. 2231-2239. 57. Gentry Iii, J.L., et al., The Role of Stress Echocardiography in Valvular Heart Disease: A Current Appraisal. Cardiology, 2017. 137(3): p. 137-150. 58. Zoghbi, W.A., et al., Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr, 2017. 30(4): p. 303-371. 59. McDonagh, T.A., et al., 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J, 2021. 42(36): p. 3599-3726. 60. Rogers, J.H. and O. Franzen, Percutaneous edge-to-edge MitraClip therapy in the management of mitral regurgitation. European Heart Journal, 2011. 32(19): p. 2350-2357. 61. Praz, F., et al., Compassionate use of the PASCAL transcatheter mitral valve repair system for patients with severe mitral regurgitation: a multicentre, prospective, observational, first-in-man study. The Lancet, 2017. 390(10096): p. 773-780. 62. Moonen, A., et al., One-Year Outcomes of Early, Compassionate Use of the PASCAL Ace Implant System for Transcatheter Mitral Valve Repair. Structural Heart, 2022. 6(2). 63. De Backer, O., et al., Transcatheter mitral valve repair: an overview of current and future devices. Open Heart, 2021. 8(1). 64. Fernando, R.J., et al., Transcatheter Mitral Valve Repair and Replacement: Analysis of Recent Data and Outcomes. J Cardiothorac Vasc Anesth, 2020. 34(10): p. 2793-2806. 65. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney inter., Suppl 2013;3:1-150.) 66. Lang, R.M., et al., Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr, 2015. 28(1): p. 1-39 e14. 67. Lancellotti, P., et al., Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging, 2013. 14(7): p. 611-44. 68. Buck, T., et al., Manual zur Indikation und Durchführung der Echokardiographie. Clinical Research in Cardiology Supplements, 2009. 4(S1): p. 3-51. 69. Hagendorff, A., et al., Manual zur Indikation und Durchführung der Echokardiographie – Update 2020 der Deutschen Gesellschaft für Kardiologie. Der Kardiologe, 2020. 14(5): p. 396-431. 70. Flachskampf, F.A., Kursbuch Echokardiografie: Unter Berücksichtigung nationaler und internationaler Leitlinien. 6te Aufl. Stuttgart: Georg Thieme Verlag. 144-145, 310-311. 2017. 71. Hagendorff, A., et al., Echocardiographic assessment of mitral regurgitation: discussion of practical and methodologic aspects of severity quantification to improve diagnostic conclusiveness. Clin Res Cardiol, 2021. 72. Tabata, N., et al., Impact of the Leaflet-to-Annulus Index on Residual Mitral Regurgitation in Patients Undergoing Edge-to-Edge Mitral Repair. JACC: Cardiovascular Interventions, 2019. 12(24): p. 2462-2472. 73. Hyodo, E., et al., Accurate measurement of mitral annular area by using single and biplane linear measurements: comparison of conventional methods with the three-dimensional planimetric method. Eur Heart J Cardiovasc Imaging, 2012. 13(7): p. 605-11. 74. Lancellotti, P., et al., Effect of dynamic left ventricular dyssynchrony on dynamic mitral regurgitation in patients with heart failure due to coronary artery disease. Am J Cardiol, 2005. 96(9): p. 1304-7. 75. Namazi, F., et al., Sex differences in prognosis of significant secondary mitral regurgitation. ESC Heart Fail, 2021. 8(5): p. 3539-3546. 76. Izumo, M., et al., Three-dimensional echocardiographic assessments of exercise-induced changes in left ventricular shape and dyssynchrony in patients with dynamic functional mitral regurgitation. European Journal of Echocardiography, 2009. 10(8): p. 961-967. 77. Harada, Y., et al., Determinants of Exercise-Induced Mitral Regurgitation Using Three-Dimensional Transesophageal Echocardiography Combined With Isometric Handgrip Exercise. Am J Cardiol, 2021. 151: p. 78-85. 78. Yiu, S.F., et al., Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction: A quantitative clinical study. Circulation, 2000. 102(12): p. 1400-6. 79. Dini, F.L., et al., Plasma N-terminal protype-B natriuretic peptide levels in risk assessment of patients with mitral regurgitation secondary to ischemic and nonischemic dilated cardiomyopathy. Am Heart J, 2008. 155(6): p. 1121-7. 80. Kubo, S., et al., Dynamic severe mitral regurgitation on hospital arrival as prognostic predictor in patients hospitalized for acute decompensated heart failure. Int J Cardiol, 2018. 273: p. 177-182. 81. Kagiyama, N., et al., Physiological and prognostic differences between types of exercise stress echocardiography for functional mitral regurgitation. Open Heart, 2021. 8(1): p. e001583. 82. Bond, V., et al., Cardiovascular Responses to an Isometric Handgrip Exercise in Females with Prehypertension. N Am J Med Sci, 2016. 8(6): p. 243-9. 83. Haskell WL, S.W., Schroeder JS, Alderman EA, Ingles NB Jr, Daughters GT 2nd, Stinson EB. , Cardiovascular responses to handgrip isometric exercise in patients following cardiac transplantation. Circ Res., 1981. 6(2): p. 156-61. 84. Bakke, E.F., et al., Blood pressure response to isometric exercise in patients with peripheral atherosclerotic disease. Clin Physiol Funct Imaging, 2007. 27(2): p. 109-15. 85. Samuel, T.J., et al., Diastolic stress testing: similarities and differences between isometric handgrip and cycle echocardiography. J Appl Physiol (1985), 2018. 125(2): p. 529-535. 86. Lancellotti, P., et al., Prognostic importance of exercise-induced changes in mitral regurgitation in patients with chronic ischemic left ventricular dysfunction. Circulation, 2003. 108(14): p. 1713-7. 87. Bandera, F., et al., Mitral regurgitation in heart failure: insights from CPET combined with exercise echocardiography. Eur Heart J Cardiovasc Imaging, 2017. 18(3): p. 296-303. 88. Ennezat, P.V., et al., Myocardial asynchronism is a determinant of changes in functional mitral regurgitation severity during dynamic exercise in patients with chronic heart failure due to severe left ventricular systolic dysfunction. Eur Heart J, 2006. 27(6): p. 679-83. 89. Murphy, M.N., et al., Cardiovascular regulation by skeletal muscle reflexes in health and disease. Am J Physiol Heart Circ Physiol, 2011. 301(4): p. H1191-204. 90. Gonzalez-Camarena, R., et al., Effect of static and dynamic exercise on heart rate and blood pressure variabilities. Med Sci Sports Exerc, 2000. 32(10): p. 1719-28. 91. Flachskampf, F.A., et al., Analysis of shape and motion of the mitral annulus in subjects with and without cardiomyopathy by echocardiographic 3-dimensional reconstruction. J Am Soc Echocardiogr, 2000. 13(4): p. 277-87. 92. Silbiger, J.J., Anatomy, mechanics, and pathophysiology of the mitral annulus. American Heart Journal, 2012. 164(2): p. 163-176. 93. Otsuji, Y., et al., Mechanism of ischemic mitral regurgitation. J Cardiol, 2008. 51(3): p. 145-56. 94. Schoen, F.J., Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation, 2008. 118(18): p. 1864-80. 95. Balachandran, K., et al., Cyclic strain induces dual-mode endothelial-mesenchymal transformation of the cardiac valve. Proc Natl Acad Sci U S A, 2011. 108(50): p. 19943-8. 96. Aikawa, E., et al., Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering. Circulation, 2006. 113(10): p. 1344-52. 97. Levine, R.A., et al., Mitral valve disease--morphology and mechanisms. Nat Rev Cardiol, 2015. 12(12): p. 689-710. 98. Chaput, M., et al., Mitral leaflet adaptation to ventricular remodeling: occurrence and adequacy in patients with functional mitral regurgitation. Circulation, 2008. 118(8): p. 845-52. 99. May-Newman, K. and F.C. Yin, Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am J Physiol, 1995. 269(4 Pt 2): p. H1319-27. 100. Kunzelman, K.S., D.W. Quick, and R.P. Cochran, Altered collagen concentration in mitral valve leaflets: Biochemical and finite element analysis. Annals of Thoracic Surgery, 1998. 66(6): p. S198-S205. 101. Rausch, M.K., et al., Evidence of adaptive mitral leaflet growth. J Mech Behav Biomed Mater, 2012. 15: p. 208-17. 102. Calafiore, A.M., et al., The secret life of the mitral valve. Journal of Cardiac Surgery, 2021. 36(1): p. 247-259. 103. Li, C. and A.I. Gotlieb, Transforming growth factor-beta regulates the growth of valve interstitial cells in vitro. Am J Pathol, 2011. 179(4): p. 1746-55. 104. Iung, B., Management of ischaemic mitral regurgitation. Heart, 2003. 89(4): p. 459-64. 105. Kalra, K., et al., Temporal changes in interpapillary muscle dynamics as an active indicator of mitral valve and left ventricular interaction in ischemic mitral regurgitation. J Am Coll Cardiol, 2014. 64(18): p. 1867-79. 106. Liang, Y.J., et al., Incremental value of global systolic dyssynchrony in determining the occurrence of functional mitral regurgitation in patients with left ventricular systolic dysfunction. Eur Heart J, 2013. 34(10): p. 767-74. 107. Sullivan, M.J., et al., Relation between Central and Peripheral Hemodynamics during Exercise in Patients with Chronic Heart-Failure - Muscle Blood-Flow Is Reduced with Maintenance of Arterial Perfusion-Pressure. Circulation, 1989. 80(4): p. 769-781. 108. Lapu-Bula, R., et al., Contribution of exercise-induced mitral regurgitation to exercise stroke volume and exercise capacity in patients with left ventricular systolic dysfunction. Circulation, 2002. 106(11): p. 1342-8. 109. Izumo, M., et al., Changes in mitral regurgitation and left ventricular geometry during exercise affect exercise capacity in patients with systolic heart failure. Eur J Echocardiogr, 2011. 12(1): p. 54-60. 110. Naeije, R., et al., Exercise-induced Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2013. 187(6): p. 576-583. 111. Wood, P., Pulmonary hypertension with special reference to the vasoconstrictive factor. Br Heart J, 1958. 20(4): p. 557-70. 112. Tumminello, G., et al., Determinants of pulmonary artery hypertension at rest and during exercise in patients with heart failure. European Heart Journal, 2006. 28(5): p. 569-574. 113. Marechaux, S., et al., Cardiac correlates of exercise induced pulmonary hypertension in patients with chronic heart failure due to left ventricular systolic dysfunction. Echocardiography, 2008. 25(4): p. 386-93. 114. Kusunose, K., et al., Prognostic significance of exercise-induced right ventricular dysfunction in asymptomatic degenerative mitral regurgitation. Circ Cardiovasc Imaging, 2013. 6(2): p. 167-76. 115. Burke, M.A., et al., Prognostic importance of pathophysiologic markers in patients with heart failure and preserved ejection fraction. Circ Heart Fail, 2014. 7(2): p. 288-99. 116. Todaro, M.C., et al., Echocardiographic evaluation of right ventricular-arterial coupling in pulmonary hypertension. Am J Cardiovasc Dis, 2020. 10(4): p. 272-283. 117. Guazzi, M., et al., Echocardiography of Right Ventriculoarterial Coupling Combined With Cardiopulmonary Exercise Testing to Predict Outcome in Heart Failure. Chest, 2015. 148(1): p. 226-234. 118. Damy, T., et al., Prevalence of, associations with, and prognostic value of tricuspid annular plane systolic excursion (TAPSE) among out-patients referred for the evaluation of heart failure. J Card Fail, 2012. 18(3): p. 216-25. 119. Bursi, F., et al., Pulmonary pressures and death in heart failure: a community study. J Am Coll Cardiol, 2012. 59(3): p. 222-31. 120. Ghio, S., et al., Prognostic relevance of a non-invasive evaluation of right ventricular function and pulmonary artery pressure in patients with chronic heart failure. Eur J Heart Fail, 2013. 15(4): p. 408-14. 121. Guazzi, M., et al., Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: an index of right ventricular contractile function and prognosis. Am J Physiol Heart Circ Physiol, 2013. 305(9): p. H1373-81. 122. Tello, K., et al., Validation of the Tricuspid Annular Plane Systolic Excursion/Systolic Pulmonary Artery Pressure Ratio for the Assessment of Right Ventricular-Arterial Coupling in Severe Pulmonary Hypertension. Circ Cardiovasc Imaging, 2019. 12(9): p. e009047. 123. Guazzi, M., et al., Right Ventricular Contractile Reserve and Pulmonary Circulation Uncoupling During Exercise Challenge in Heart Failure: Pathophysiology and Clinical Phenotypes. JACC Heart Fail, 2016. 4(8): p. 625-35. 124. Fortuni, F., et al., Right Ventricular-Pulmonary Arterial Coupling in Secondary Tricuspid Regurgitation. Am J Cardiol, 2021. 148: p. 138-145. 125. Sugiura, A., et al., Impact of right ventricular-pulmonary arterial coupling on clinical outcomes of tricuspid regurgitation. EuroIntervention, 2022. 126. Lancellotti, P., P.L. Gerard, and L.A. Pierard, Long-term outcome of patients with heart failure and dynamic functional mitral regurgitation. Eur Heart J, 2005. 26(15): p. 1528-32. 127. Suzuki, T., et al., Prognostic value of exercise stress echocardiography in patients with secondary mitral regurgitation: a long-term follow-up study. J Echocardiogr, 2019. 17(3): p. 147-156. 128. Grigioni, F., et al., Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation, 2001. 103(13): p. 1759-64. 129. Rossi, A., et al., Independent prognostic value of functional mitral regurgitation in patients with heart failure. A quantitative analysis of 1256 patients with ischaemic and non-ischaemic dilated cardiomyopathy. Heart, 2011. 97(20): p. 1675-80. 130. Miller, W.L., D.W. Mahoney, and M. Enriquez-Sarano, Quantitative Doppler-echocardiographic imaging and clinical outcomes with left ventricular systolic dysfunction: independent effect of pulmonary hypertension. Circ Cardiovasc Imaging, 2014. 7(2): p. 330-6. | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 14.04.2025 | |||||||
Dateien geändert am: | 14.04.2025 | |||||||
Promotionsantrag am: | 06.03.2025 | |||||||
Datum der Promotion: | 10.03.2025 |