Dokument: Weighted weak convergence of the sequential tail empirical process for heteroscedastic time series with an application to extreme value index estimation

Titel:Weighted weak convergence of the sequential tail empirical process for heteroscedastic time series with an application to extreme value index estimation
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=68803
URN (NBN):urn:nbn:de:hbz:061-20250225-134005-7
Kollektion:Publikationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Texte » Artikel, Aufsatz
Medientyp:Text
Autoren: Jennessen, Tobias [Autor]
Bücher, Axel [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]3,86 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 25.02.2025 / geändert 25.02.2025
Stichwörter:Sequential tail empirical process, Regular varying time series, Weighted weak convergence, Extreme value index, Non-stationary extremes
Beschreibung:The sequential tail empirical process is analyzed in a stochastic model allowing for serially dependent observations and heteroscedasticity of extremes in the sense of Einmahl et al. (J. R. Stat. Soc. Ser. B. Stat. Methodol. 78(1), 31–51, 2016). Weighted weak convergence of the sequential tail empirical process is established. As an application, a central limit theorem for an estimator of the extreme value index is proven.
Rechtliche Vermerke:Originalveröffentlichung:
Jennessen, T., & Bücher, A. (2023). Weighted weak convergence of the sequential tail empirical process for heteroscedastic time series with an application to extreme value index estimation. Extremes, 27, 163–184. https://doi.org/10.1007/s10687-023-00476-8
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät
Dokument erstellt am:25.02.2025
Dateien geändert am:25.02.2025
english
Benutzer
Status: Gast
Aktionen