Dokument: Weighted weak convergence of the sequential tail empirical process for heteroscedastic time series with an application to extreme value index estimation
Titel: | Weighted weak convergence of the sequential tail empirical process for heteroscedastic time series with an application to extreme value index estimation | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=68803 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20250225-134005-7 | |||||||
Kollektion: | Publikationen | |||||||
Sprache: | Englisch | |||||||
Dokumententyp: | Wissenschaftliche Texte » Artikel, Aufsatz | |||||||
Medientyp: | Text | |||||||
Autoren: | Jennessen, Tobias [Autor] Bücher, Axel [Autor] | |||||||
Dateien: |
| |||||||
Stichwörter: | Sequential tail empirical process, Regular varying time series, Weighted weak convergence, Extreme value index, Non-stationary extremes | |||||||
Beschreibung: | The sequential tail empirical process is analyzed in a stochastic model allowing for serially dependent observations and heteroscedasticity of extremes in the sense of Einmahl et al. (J. R. Stat. Soc. Ser. B. Stat. Methodol. 78(1), 31–51, 2016). Weighted weak convergence of the sequential tail empirical process is established. As an application, a central limit theorem for an estimator of the extreme value index is proven. | |||||||
Rechtliche Vermerke: | Originalveröffentlichung:
Jennessen, T., & Bücher, A. (2023). Weighted weak convergence of the sequential tail empirical process for heteroscedastic time series with an application to extreme value index estimation. Extremes, 27, 163–184. https://doi.org/10.1007/s10687-023-00476-8 | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Fachbereich / Einrichtung: | Mathematisch- Naturwissenschaftliche Fakultät | |||||||
Dokument erstellt am: | 25.02.2025 | |||||||
Dateien geändert am: | 25.02.2025 |