Dokument: On regular but non-smooth integral curves
| Titel: | On regular but non-smooth integral curves | |||||||
| URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=68069 | |||||||
| URN (NBN): | urn:nbn:de:hbz:061-20250108-134908-9 | |||||||
| Kollektion: | Publikationen | |||||||
| Sprache: | Englisch | |||||||
| Dokumententyp: | Wissenschaftliche Texte » Artikel, Aufsatz | |||||||
| Medientyp: | Text | |||||||
| Autoren: | Hilario, Cesar [Autor] Stöhr, Karl-Otto [Autor] | |||||||
| Dateien: |
| |||||||
| Stichwörter: | Non-conservative functions fields, Fibrations by singular curves, imperfect fields, Bertini’s theorem, Regular but non-smooth curves over | |||||||
| Beschreibung: | Let C be a regular geometrically integral curve over an imperfect field K and assume that it admits a non-smooth point which — seen as a prime of the separable function field — is non-decomposed in the base field extension . In this paper we establish a bound for the number of iterated Frobenius pullbacks needed in order to transform into a rational point. This provides an algorithm to compute geometric δ-invariants of non-smooth points and a procedure to construct fibrations with moving singularities of prescribed δ-invariants. We show that the bound is sharp in characteristic 2. We further study the geometry of a pencil of plane projective rational quartics in characteristic 2 whose generic fibre attains our bound. On our way, we prove several results on separable and non-decomposed points that might be of independent interest. | |||||||
| Rechtliche Vermerke: | Originalveröffentlichung:
Hilario, C., & Stöhr, K.-O. (2024). On regular but non-smooth integral curves. Journal of Algebra, 661, 278–300. https://doi.org/10.1016/j.jalgebra.2024.08.002 | |||||||
| Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
| Fachbereich / Einrichtung: | Mathematisch- Naturwissenschaftliche Fakultät | |||||||
| Dokument erstellt am: | 08.01.2025 | |||||||
| Dateien geändert am: | 08.01.2025 |

