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Let C be a regular geometrically integral curve over an 
imperfect field K and assume that it admits a non-smooth 
point p which — seen as a prime of the separable function 
field K(C)|K — is non-decomposed in the base field extension 
K ⊗K K(C)|K. In this paper we establish a bound for the 
number of iterated Frobenius pullbacks needed in order to 
transform p into a rational point. This provides an algorithm 
to compute geometric δ-invariants of non-smooth points and 
a procedure to construct fibrations with moving singularities 
of prescribed δ-invariants. We show that the bound is sharp 
in characteristic 2. We further study the geometry of a pencil 
of plane projective rational quartics in characteristic 2 whose 
generic fibre attains our bound. On our way, we prove several 
results on separable and non-decomposed points that might 
be of independent interest.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Bertini’s theorem on variable singular points, also known as the Bertini–Sard theorem, 
is nowadays one of the most used theorems in algebraic geometry. In its modern version, 
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it states that in characteristic zero almost every fibre of a dominant morphism φ : T → B

of integral smooth algebraic varieties over an algebraically closed field k is smooth. This 
is no longer the case in positive characteristic, as already noted by Zariski [33] in the 
1940s. The most familiar counterexamples are the quasi-elliptic fibrations that arise in 
the classification of algebraic surfaces by Bombieri and Mumford in characteristics 2 and 
3 (see [2,14]).

From the point of view of Grothendieck’s scheme theory, the generic fibre

C := T ×B Spec k(B)

of the fibration φ : T → B is a regular scheme over the function field K := k(B) of the 
base B, yet it may happen that the geometric generic fibre

C ⊗K K = C ×Spec(K) SpecK

is not regular. Such non-regularity occurs precisely when every special fibre is singular, 
and so this reveals a deep connection between the failure of Bertini’s theorem and the 
existence of regular schemes C defined over an imperfect field K that are non-smooth, 
i.e., for which the base extension C⊗KK becomes non-regular. Such existence represents 
a striking feature of geometry in positive characteristic, that results from the fact that 
over imperfect fields the notions of smoothness and regularity differ: every smooth variety 
(i.e., smooth scheme of finite type over a field) is regular, but not every regular variety 
is smooth.1 In several areas such as birational geometry, and particularly in the Minimal 
Model Program, these regular but non-smooth schemes cause difficulties when one tries 
to apply zero characteristic techniques to positive characteristic situations; an explicit 
example: del Pezzo fibrations, where the picture seems more involved in characteristic 2
(see [16, p. 404], [13, Remark 1.2], and [4]). As a result, much effort has been devoted to 
understand this behaviour and to bound its occurrence (see e.g. [25,12,18,8]).

In this paper we explore the above phenomenon in the specific situation where the 
variety is a regular geometrically integral curve C over an imperfect field K. Note that 
since C has dimension one, regularity is the same as normality. If C|K is the generic fibre 
of a fibration f : T → B then its closed points correspond bijectively to the horizontal 
divisors on the total space T ; a closed point is non-smooth if and only if the corresponding 
divisor is a moving singularity of the fibration [27, Section 1].

Our approach to the non-smoothness of C relies on a central tool in geometry in 
positive characteristic: Frobenius pullbacks. As a non-smooth point p of C cannot be 
smoothed by performing Frobenius pullbacks, because its images in the sequence of iter-
ated Frobenius pullbacks

C → C(p) → C(p2) → C(p3) → · · ·

1 However, a rational point is smooth if and only if it is regular [4, Corollary 2.6]. For a discussion of 
regularity versus smoothness we refer to [17, Chap. 11.28].
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are non-regular [22, Lemma 2.2] and therefore non-smooth, we consider instead the 
images pn ∈ Cn of p in the sequence of regular integral curves

C0 = C → C1 → C2 → C3 → · · ·

obtained by passing to the normalizations Cn of the Frobenius pullbacks C(pn). Our 
main result, stated below as Theorem 1.1, provides an explicit description of an integer 
n for which the image point pn is separable (i.e., the residue field extension κ(pn)|K
is separable) and a fortiori smooth. In particular, if p is non-decomposed in the base 
extension C ⊗K K, that is, if there is only one point of C ⊗K K lying over p, then the 
separable point pn is actually rational (see Corollary 2.18).

Theorem 1.1 (see Theorem 2.24). Let C be a regular geometrically integral curve over 
a field K of characteristic p > 0. Let p be a non-smooth point of geometric δ-invariant 
δ(p) > 0.

(i) The image pn of p in the normalization Cn of the nth Frobenius pullback C(pn)

of C is separable for all n ≥ logp
(
2 δ(p)

[κ(p):K]sep + 1
)
; moreover, if the integer 

2
p−1

δ(p)
[κ(p):K]sep is not a sum of consecutive p-powers then pn is separable for all 

n ≥ logp
(
2 δ(p)

[κ(p):K]sep + 1
)
− 1.

(ii) Assume in addition that p is non-decomposed in C ⊗K K. Then the image pn is 
rational for all n ≥ logp

(
2δ(p) + 1

)
; moreover, if the integer 2

p−1δ(p) is not a sum 
of consecutive p-powers then pn is rational for all n ≥ logp

(
2δ(p) + 1

)
− 1.

Here [κ(p) : K]sep denotes the separable degree of the residue field extension κ(p)|K. 
Note that 2

p−1
δ(p)

[κ(p):K]sep and 2
p−1δ(p) are indeed integers (see Corollary 2.16).

Our motivation originates from the following observation: if an integer n is known such 
that the image pn is rational, then an algorithm developed in [1] by Bedoya–Stöhr can 
be applied to compute the geometric δ-invariant δ(p) of p and several other invariants 
associated to p.

To prove our results we employ methods from the theory of algebraic function fields 
(see [5, II.7.4]). Let F |K = K(C)|K be the function field of the regular integral curve 
C|K. The function fields of the iterated Frobenius pullbacks C(pn)|K and of their nor-
malizations Cn|K are the iterated Frobenius pullbacks of F |K:

Fn|K = KF pn |K, (n = 0, 1, 2, . . . ).

In order to study the sequence of normalized curves Cn we study the descending chain 
of function fields

F = F0 ⊃ F1 ⊃ F2 ⊃ F3 ⊃ · · · .
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A closed point of the curve C and its image in Cn correspond to a prime p of F |K and 
its restriction pn to Fn|K.

As a main application of the theorem we get a procedure to construct regular inte-
gral curves C|K equipped with non-decomposed non-smooth closed points p of a given 
geometric δ-invariant, or equivalently, a procedure to construct for each natural number 
d the function fields F |K equipped with non-decomposed singular primes p such that 
δ(p) = d. To this end let n = �logp(2d + 1)� or n = �logp(2d + 1)� − 1 be the corre-
sponding bound in the theorem. Each such pair (F |K, p) can be obtained by starting 
with a function field Fn|K equipped with a rational prime pn, and by constructing an 
ascending length-n chain of purely inseparable extensions of function fields

Fn ⊂ Fn−1 ⊂ Fn−2 ⊂ · · · ⊂ F0 = F

equipped with the (uniquely determined) primes pn, pn−1, pn−2, . . . , p0 = p lying over 
the rational prime pn, such that Fi|K is the Frobenius pullback of Fi−1|K for each 
i = n, n− 1, . . . , 1. The generators of the purely inseparable extensions Fi−1|Fi of de-
gree p are obtained by applying the Riemann-Roch theorem. With the Bedoya–Stöhr 
algorithm in mind the generators have to be chosen carefully, so that the sequence of 
geometric δ-invariants dn = 0 ≤ dn−1 ≤ · · · ≤ d0 ends with d = d0. Looking for 
decomposed non-smooth points we have to start our procedure with separable but non-
rational primes. Our method is illustrated in [9] and [10], where curves of arithmetic 
genus g = 3 equipped with non-smooth points of geometric δ-invariant d = 3 are con-
structed.

We show that the bound in the theorem is sharp in characteristic p = 2. Furthermore, 
on our way we obtain several results on separable and non-decomposed closed points 
that might be of independent interest (see Proposition 2.12 and Remark 2.21).

In the last section of the paper we study a pencil of singular rational quartics in 
characteristic p = 2, whose generic fibre C|K attains the sharp bound for δ(p) = 3. We 
discuss the geometry of the fibration in detail, and we further find its minimal regular 
model, which by a theorem of Lichtenbaum and Shafarevich is uniquely determined by 
the function field of C|K.
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2. Non-smooth points of regular integral curves

There is a one-to-one correspondence between the regular proper integral curves over 
(the spectrum of) a given field K and the one-dimensional function fields with base field 
K (see [5, II.7.4]). The function field F |K corresponding to such a curve C|K is the 
local ring at the generic point. Conversely, the points of the curve C different from the 
generic point, i.e., the closed points of C, are the primes p of the function field F |K, and 
their local rings Op are just the (discrete) valuation rings of F |K. If U is a non-empty 
open subset of C, that is, the complement of a finite set of closed points, then the space 
Γ(U, OC) of local sections of the structure sheaf OC is the intersection of the local rings 
Op of the closed points p ∈ U .

In this section we assume that F |K is a one-dimensional separable function field in 
positive characteristic p. This means that F |K is a separable finitely generated field 
extension of transcendence degree 1, such that K is algebraically closed in F . The latter 
assumption together with the separability of F |K mean that the corresponding regu-
lar proper integral curve C|K is geometrically integral, i.e., it remains integral under 
algebraic extensions of the base field.

Let p be a prime of F |K and consider its (discrete) valuation ring Op. If K ′ is an 
algebraic extension of the base field K, then the tensor product K ′·Op := K ′⊗K Op is a 
semilocal domain with fraction field Frac(K ′·Op) = K ′·F := K ′⊗KF that coincides with 
the finite intersection of its localizations (i.e., the localizations at its maximal ideals). 
Base extensions of local rings are therefore semilocal. For this reason, in order to study 
the behaviour of p under base field extensions it is convenient to work with the semilocal 
domains of F |K rather than with its local rings.

Let O be a semilocal domain of F |K (where K ⊂ Frac(O) = F ), which is equal to 
the finite intersection of its localizations, say

O = O1 ∩ · · · ∩ Or .

Let K ′ be an algebraic extension of the base field K. The K ′-singularity degree of O, 
which is defined as the K ′-codimension of the extended semilocal ring K ′·O = K ′ ⊗K O
in its integral closure K̃ ′·O, is finite (see [20, Theorem 1]) and equal to the sum of the 
K ′-singularity degrees of the localizations, i.e.,

dimK′ K̃ ′·O/K ′·O =
r∑

i=1
dimK′ K̃ ′·Oi/K

′·Oi (2.1)

(see [20, p. 172]); indeed, the canonical homomorphism K̃ ′·O →
⊕r

i=1 K̃
′·Oi/K

′·Oi has 
kernel K ′·O and is surjective, as follows by applying the Chinese remainder theorem to 
the conductor ideals of the rings K ′·Oi.
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If K ′′ is an algebraic extension field of K ′ then the K ′′-singularity degree of O is equal 
to the sum of the K ′-singularity degree of O and the K ′′-singularity degree of K̃ ′·O, as 
can be seen from

dimK′ K̃ ′·O/K ′·O = dimK′′(K ′′ ⊗K′ K̃ ′·O)/(K ′′ ⊗K′ K ′·O)

= dimK′′ K ′′·K̃ ′·O/K ′′·O

= dimK′′ K̃ ′′·O/K ′′·O − dimK′′(K̃ ′′·O/K ′′·K̃ ′·O). (2.2)

The geometric singularity degree2 of a prime p, denoted δ(p), is defined as the K-
singularity degree of its local ring Op, where K is the algebraic closure of K. The prime 

p is called singular if δ(p) > 0, i.e., K·Op � K̃·Op, i.e., p is a non-smooth point of the 
corresponding regular integral curve C|K.3

By Rosenlicht’s genus drop formula (see [20, Theorem 11]) the genus of the extended 
function field KF |K is equal to

g = g −
∑
p

δ(p) (2.3)

where g is the genus of the function field F |K and the sum is taken over the singular 
primes p of F |K. The genus drop g− g is divisible by (p − 1)/2 if p > 2, by a theorem of 
Tate [31] (see also [26] for a modern treatment). It follows that the function field F |K is 
conservative (i.e., g = g) if and only if it does not admit singular primes, or equivalently, 
if and only if the corresponding regular integral curve C|K is smooth.

For every non-negative integer n we consider the nth Frobenius pullback Fn|K :=
F pn ·K|K. This function field is uniquely determined by the property that the extension 
F |Fn is purely inseparable of degree pn (see [28, p. 33]). Let pn be the restriction of the 
prime p to Fn, and let p(n) be the only extension of p to the purely inseparable base 
field extension F (n) := Kp−n·F . The valuation ring Op(n) of p(n) is the integral closure 
˜Kp−n·Op of the domain Kp−n·Op in its field of fractions Kp−n·F . The nth Frobenius 

map z �→ zp
n defines an isomorphism between the function fields F (n)|Kp−n and Fn|K

which maps p(n) to pn. Since the ramification index of p(n)|pn is equal to pn we get 
e(p(n)|p) · e(p|pn) = pn and therefore

e(p(n+1)|p(n)) · e(pn|pn+1) = p for each n.

As the field extensions Fn|Fn+1 are purely inseparable of degree p, each residue field 
extension κ(pn)|κ(pn+1) is purely inseparable of degree [κ(pn) : κ(pn+1)] ∈ {1, p}.

2 Another name in the literature is “geometric δ-invariant”.
3 It might be tempting to use the term “non-smooth prime”, but the term “singular prime” is already in 

use in the literature on function fields.
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In this section we ask for an integer n such that the restricted prime pn is rational, 
i.e., such that its degree deg(pn) = [κ(pn) : K] is equal to 1. If such an integer is known, 
then the algorithm developed in [1] can be applied to compute several local invariants 
of F |K such as the singularity degrees of p or the orders of differentials at p. For each 
non-negative integer n we denote by

Δn = Δ(pn) := dimK1/p( ˜K1/p·Opn
/K1/p·Opn

)

the K1/p-singularity degree of pn.

Proposition 2.4. With the above notation, the non-negative integers Δ0, Δ1, Δ2, . . . are 
divisible by (p − 1)/2 if p > 2. Moreover

Δn+1 ≤ p−1Δn for each n.

Proof. See [29, Corollary 2.4 and Proposition 3.5]. �
In particular Δn = 0 for n sufficiently large, or more precisely

Δn = 0 whenever pn >

{
Δ0 if p = 2 or 3,

2
p−1Δ0 if p > 2.

Proposition 2.5. For every prime p of F |K the following equality holds

δ(p) = Δ0 + Δ1 + Δ2 + · · · .

In particular, the geometric singularity degree δ(p) is a multiple of (p − 1)/2.

Proof. Using the nth Frobenius map we see that Δn is equal to the Kp−(n+1)-singularity 
degree of p(n). Hence by considering the chain of local rings

Op = Op(0) ⊂ Op(1) ⊂ Op(2) ⊂ · · · ⊂ Op(n)

we deduce that the Kp−(n+1)-singularity degree of p is equal to the sum Δ0+Δ1+· · ·+Δn. 
As Kp−∞ :=

⋃
Kp−n and therefore

Kp−∞·F =
∞⋃

n=0
Kp−n·F = lim−−→Kp−n·F,

we conclude that the Kp−∞-singularity degree of p is equal to Δ0 + Δ1 + · · · .
Let p(∞) be the only extension of p to the purely inseparable base field extension 

Kp−∞·F . As the algebraic closure K is separable over Kp−∞ , the prime p(∞) is non-
singular and so the geometric singularity degree δ(p) of the prime p coincides with its 
Kp−∞-singularity degree (see also the proof of Proposition 2.12 below). �
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By applying the proposition to the restricted prime pn for each non-negative integer 
n we obtain

Corollary 2.6. For each prime p the following assertions hold

(i) δ(pn) = Δn + Δn+1 + · · · ;
(ii) Δn = δ(pn) − δ(pn+1);
(iii) the prime pn is non-singular if and only if Δn = 0;
(iv) if Δn = 0 and n > 0, then δ(pn−1) = Δ(pn−1);
(v) the prime pn is non-singular whenever pn > min{Δ0, 2

p−1Δ0}.

Using the genus drop formula (2.3) we get

Corollary 2.7. Let gn be the genus of the nth Frobenius pullback Fn|K of F |K. Then

(i) gn − gn+1 =
∑

p
Δn(p) for each n ≥ 0;

(ii) g − g =
∑

n≥0(gn − gn+1);
(iii) the differences gn − gn+1 are multiples of (p − 1)/2 and they satisfy gn+1 − gn+2 ≤

p−1(gn − gn+1);
(iv) gn − gn+1 = 0 if and only if the function field Fn|K is conservative, i.e., gn = g;
(v) the function field Fn|K is conservative whenever pn > min{g − g1, 2

p−1 (g − g1)}.

Proposition 2.8. Let p be a singular prime of F |K. Then the degree of p1 is a divisor of 
the integer 2

p−1Δ(p).

Proof. Let K ′ := K1/p. As K ′·Op is a Gorenstein ring (see [29, Theorem 1.1(b)]) we 
obtain

2Δ0 = dimK′ K̃ ′·Op/c
′
p

where c′p denotes the conductor ideal of the domain K ′·Op in its integral closure K̃ ′·Op. 
As K̃ ′·Op is the discrete valuation ring Op(1) , the non-zero ideal c′p is a power of the 

maximal ideal of Op(1) , and so the K ′-dimension of K̃ ′·Op/c
′
p is a multiple of deg(p(1)) =

deg(p1). By [29, Corollary 2.4] this dimension is even a multiple of (p − 1) deg(p1). �
We say that a prime p is separable if the residue field extension κ(p)|K is separable. 

Every separable prime is non-singular (see e.g. [4, Corollary 2.6]). The proposition below 
provides a converse.

Proposition 2.9. A prime p is separable if and only if it is non-singular and κ(p) = κ(p1).
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Proof. Since the extension κ(p)|κ(p1) is purely inseparable, it is trivial if p is separable. 
Thus we may assume κ(p) = κ(p1). Then [28], Satz 2 (ii) and Korollar 1 of Satz 4, ensure 
that p is singular if and only if κ(p)|K is inseparable. �
Proposition 2.10. Let p be a prime of F |K. Then for sufficiently large n the restricted 
prime pn is separable and its residue field κ(pn) is the separable closure of K in κ(p).

Proof. As κ(p) ⊇ κ(p1) ⊇ κ(p2) ⊇ · · · ⊇ K and [κ(p) : K] is finite we deduce that 
κ(pn) = κ(pn+1) = · · · for sufficiently large n. Moreover, for sufficiently large n the 
prime pn is non-singular by Corollary 2.6, and so pn is separable by Proposition 2.9. As 
κ(pn)|K is separable and κ(p)|κ(pn) is purely inseparable we conclude that κ(pn) is the 
separable closure of K in κ(p). �

We ask for an explicit description of the integers n for which the restricted primes pn
are separable. The answer is rather easy if the prime p is non-singular.

Proposition 2.11. Let p be a non-singular prime of F |K, and let m := logp[κ(p) : K]insep, 
i.e., let pm be the inseparable degree of the residue field extension κ(p)|K. Then

[κ(p) : κ(pi)] = pi for each i = 1, . . . ,m,

and m is the smallest integer such that pm is separable.

Proof. In the descending chain

κ(p) ⊇ κ(p1) ⊇ κ(p2) ⊇ · · · ⊇ K

the extensions κ(pn)|κ(pn+1) are purely inseparable of degree p or 1 for each n. As 
the prime p and therefore the restricted primes pn are non-singular, it follows from 
Proposition 2.9 that [κ(pn) : κ(pn+1)] = p if and only if pn is inseparable. �

An analogous result is much more involved if the prime p is singular (see Theo-
rem 2.24). The reason is that the extension κ(pn)|κ(pn+1) may be trivial when pn is 
singular, in which case the equalities [κ(p) : κ(pi)] = pi in the proposition no longer 
hold.

We now study the primes of the separable base field extension KsepF |Ksep.

Proposition 2.12. Let p be a prime of F |K. Then the number of the primes of KsepF |Ksep

that lie over p is equal to the separable degree [κ(p) : K]sep of the residue field extension 
κ(p)|K. Moreover, each such extended prime q has degree deg(q) = [κ(p) : K]insep and 
geometric singularity degree δ(q) = δ(p)/[κ(p) : K]sep.

Proof. Let L be a finite separable extension of K, and let q1, . . . , qr be the primes of 
LF |L lying over p. Then
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[L : K] =
r∑

i=1
eifi

where ei and fi are the ramification indices and the inertia indices of qi over p respec-
tively. As the trace of L·F |F = (L ⊗K F )|F is equal to trL|K ⊗ idF , where trL|K denotes 
the trace of the finite separable extension L|K, we deduce that the integral closure 
Oq1 ∩ · · · ∩Oqr

of Op in L·F is equal to L ⊗K Op (i.e., the L-singularity degree of Op is 
zero). It follows that the exponents of the Dedekind different of L·F |F are equal to zero, 
and so the ramification indices ei are equal to one. It also follows that each residue field 
κ(qi) (i = 1, . . . , r) is generated by the images of κ(p) and L inside it.

If L contains the separable closure of K in κ(p) then fi = [L : K]/[κ(p) : K]sep and 
r = [κ(p) : K]sep, so in particular deg(qi) = deg(p)/r = [κ(p) : K]insep. Note that the 
equality r = [κ(p) : K]sep holds without assuming that [L : K] is finite, and so it holds 
for L = Ksep. Since a similar remark applies to the identity deg(qi) = [κ(p) : K]insep, we 
conclude that there are precisely [κ(p) : K]sep primes of KsepF |Ksep lying over p, each 
of degree [κ(p) : K]insep. It remains to compute their geometric singularity degrees. By 
the preceding paragraph, the Ksep-singularity degree of p is zero. In light of (2.2), this 
means that the geometric singularity degree δ(p) is equal to the K-singularity degree of 
the semilocal ring Ksep·Op, which by (2.1) is equal to the sum of the geometric singularity 
degrees of the primes of KsepF |Ksep lying over p. But these primes are conjugate because 
the field extension KsepF |F is normal, so it follows that their geometric singularity 
degrees coincide, that is, each has geometric singularity degree δ(p)/[κ(p) : K]sep. �
Corollary 2.13. The decomposition of the prime p into [κ(p) : K]sep primes q with 
deg(q) = [κ(p) : K]insep and δ(q) = δ(p)/[κ(p) : K]sep already occurs in the extended 
function field LF |L, where L is the separable closure of K in κ(p).

Proof. The proof of the proposition shows that there are exactly [L : K]sep primes q in 
LF |L above p, which have deg(q) = [L : K]insep. Passing to the normal closure L′ of 
L|K, the proof also shows that the only prime q′ in L′F |L′ above a given prime q has 
δ(q′) = δ(p)/[L : K]sep, and that q has L′-singularity degree zero, i.e., δ(q) = δ(q′). �
Corollary 2.14. For a prime p the following assertions are equivalent

(i) p is separable,
(ii) p decomposes into rational primes in the extended function field KsepF |Ksep,
(iii) there is a finite separable extension field L of K such that p decomposes into rational 

primes in LF |L.

Corollary 2.15. The number of the primes of KF |K lying over a prime p is equal to the 
separable degree [κ(p) : K]sep of the residue field extension κ(p)|K.
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Proof. Since primes are non-decomposed in purely inseparable base field extensions, the 
number of the primes of KF |K lying over p coincides with the number of the primes of 
KsepF |Ksep lying over p. �
Corollary 2.16. Let p be a prime of F |K. Then [κ(p) : K]sep divides the geometric sin-
gularity degree δ(pn) and the K1/p-singularity degree Δn = Δ(pn) for each non-negative 
integer n. If p > 2 then [κ(p) : K]sep also divides the integers 2

p−1δ(pn) and 2
p−1Δ(pn).

Proof. For every prime q of KsepF |Ksep lying over p we have δ(p) = [κ(p) : K]sep δ(q), 
where both δ(p) and δ(q) are divisible by p−1

2 if p > 2 (see Proposition 2.5). Analogous 
statements hold for the restricted primes pn. Note now that each pn has separable degree 
[κ(pn) : K]sep = [κ(p) : K]sep and K1/p-singularity degree Δn = δ(pn) − δ(pn+1). �

We say that a prime p of F |K is decomposed if it is decomposed in the constant field 
extension KF |K, i.e., if there is more than one prime of KF |K lying over p, i.e., if its 
local ring Op is not geometrically unibranch. For an example of a decomposed singular 
prime we refer to [23, Example 2.5].

Corollary 2.17. For a prime p the following assertions are equivalent

(i) p is non-decomposed,
(ii) the residue field extension κ(p)|K is purely inseparable,
(iii) there is an integer n ≥ 0 such that the prime pn is rational.

Due to the second condition, non-decomposed points are also called purely inseparable
or perfect in the literature [3,21].

Proof. The equivalence between (i) and (ii) follows immediately from Corollary 2.15. We 
note that p is non-decomposed if and only if for some (and any) integer n ≥ 0 the prime 
p(n), and therefore the prime pn, is non-decomposed. By Proposition 2.10 there is an 
integer n ≥ 0 such that pn is separable. Clearly, a separable prime is purely inseparable 
if and only if it is rational. �
Corollary 2.18. A prime p is rational if and only if it is separable and non-decomposed.

In general, it may be hard to decide whether a given prime is non-decomposed. The 
corollary below, which follows immediately from Corollary 2.16, provides a sufficient 
criterion for a singular prime to be non-decomposed.

Corollary 2.19. If p = 2 and the integers Δ0, Δ1, Δ2, . . . are coprime, then the prime p
is non-decomposed. Likewise, if p > 2 and the integers 2

p−1Δ0, 2
p−1Δ1, 2

p−1Δ2, . . . are 
coprime, then p is non-decomposed.
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Specializing Proposition 2.11 to the non-decomposed case we get

Proposition 2.20. Let p be a non-singular non-decomposed prime of F |K, so in particular 
κ(p)|K is purely inseparable, say of degree pm. Then m is the smallest integer such that 
pm is rational.

Remark 2.21. Let C|K denote the regular geometrically integral curve associated to the 
function field F |K.

(i) Over each non-decomposed prime p there lies a unique closed point in the extended 
curve C|K := C ⊗K K|K, i.e., there is a unique point x ∈ C that is mapped to 
p under the natural morphism C → C. The geometric singularity degree δ(p) of p
coincides with the δ-invariant δ(C, x) of C at x as defined in [11, p. 69].

(ii) By Proposition 2.12, over each prime p in F |K there are exactly [κ(p) : K]sep (non-
decomposed) primes in KsepF |Ksep, each of singularity degree δ(p)/[κ(p) : K]sep. 
In other words, for each prime p there are precisely [κ(p) : K]sep closed points 
xi ∈ C (1 ≤ i ≤ [κ(p) : K]sep) that are mapped to p by the morphism C → C, each 
of δ-invariant δ(C, xi) = δ(p)/[κ(p) : K]sep.

(iii) Since singularity degrees are divisible by (p − 1)/2 (see Proposition 2.5) we deduce 
that the δ-invariants δ(C, x) of the curve C are all multiples of (p −1)/2. In particu-
lar, they cannot be strictly smaller than (p −1)/2 unless C is smooth. This provides 
a new proof of the smoothness criterion in [11, Theorem 5.7].

(iv) We also deduce that the singularities of C are unibranch. In other words, over each 
singular point x ∈ C there lies a unique point on the normalization of C.

We now address the question raised after Proposition 2.11. Given a singular prime p
we ask for a specific integer n such that the restriction pn is separable. To get an answer 
we work with the partitions of the geometric singularity degree δ(p) as the sum of the 
K1/p-singularity degrees Δi, as indicated in Proposition 2.5.

Let d be a positive integer. We consider the partitions

d = d1 + · · · + ds

of d by positive integers di satisfying

di+1 ≤ p−1di for each i = 1, . . . , s− 1.

We define

τp(d) := max{s + min{vp(d1), . . . , vp(ds)}},

where the maximum is taken over all such partitions and vp(di) denotes the exponent of 
the largest p-power that divides di.
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Proposition 2.22. Let p be a singular prime of F |K. Then the restricted prime pn is 
separable for all n ≥ τp

( 2
p−1

δ(p)
[κ(p):K]sep

)
.

Note that according to Corollary 2.16 the integer 2
p−1δ(p) is divisible by [κ(p) : K]sep, 

and so 2
p−1

δ(p)
[κ(p):K]sep is indeed an integer.

Proof. We take d := 2
p−1

δ(p)
[κ(p):K]sep and di := 2

p−1
Δ(pi−1)

[κ(p):K]sep . Let s be the largest integer 
such that ds > 0, that is, Δ(ps−1) �= 0 but Δ(ps) = 0, i.e., ps−1 is singular but ps
is non-singular. Let m = logp[κ(ps) : K]insep. By Proposition 2.11, the prime ps+m is 
separable. By Proposition 2.8, for each i = 1, . . . , s the degree deg(pi) is a divisor of 
[κ(p) : K]sep · di. Because deg(ps) = [κ(p) : K]sep · pm is a divisor of each deg(pi) we 
conclude m ≤ min{vp(d1), . . . , vp(ds)}. �

To get the desired bound on n so that pn is separable it remains to solve a combina-
torics problem, namely, we must determine the precise value of τp(d). As this will depend 
on whether d is a sum of consecutive p-powers we introduce the following notation: for 
a pair of non-negative integers j ≤ i we write

P i
j := pj + · · · + pi =

i∑
r=j

pr = pi+1 − pj

p− 1 .

Note that for every positive integer i the following inequalities hold

P i−1
0 < P i

i < P i
i−1 < · · · < P i

0.

Proposition 2.23. Let d be a positive integer. If P i−1
0 ≤ d ≤ P i

0, then

τp(d) =
{
i + 1 if d = P i

j for some j ≤ i,
i otherwise.

Equivalently,

τp(d) =
{
�logp((p− 1)d + 1)� if d is a sum of consecutive p-powers,
�logp((p− 1)d + 1)� − 1 otherwise.

A straightforward consequence is the identity

τp(pd) = τp(d) + 1.

Proof. The partition d = ((d − P i−1
0 ) + pi−1) + pi−2 + · · · + 1 shows that τp(d) ≥ i

whenever d ≥ P i−1
0 . Moreover, if d = P i

j for some j ≤ i then τp(d) > i, as follows from 
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the partition d = pi + · · ·+ pj . Thus it suffices to show that if d ≤ P i
0 then any partition 

d = d1 + · · · + ds with (d1, . . . , ds) �= (pi, . . . , pi+1−s) satisfies

s + min{vp(d1), . . . , vp(ds)} ≤ i.

We argue by induction on i. The base case i = 1 is clear, so we assume i > 1. We may 
suppose that s > 1; indeed, if s = 1 then vp(d1) < i because d1 ≤ P i

0 and d1 �= pi. As

d2 + · · · + ds ≤
d1

p
+ · · · + d1

ps−1 <
d1

p− 1 = d− d2 − · · · − ds
p− 1 ,

hence d2 + · · · + ds < p−1d ≤ p−1P i
0 = p−1 + P i−1

0 and therefore d2 + · · · + ds ≤ P i−1
0 , 

it follows from the induction hypothesis that either (d2, . . . , ds) = (pi−1, . . . , pi+1−s) or

s− 1 + min{vp(d2), . . . , vp(ds)} ≤ i− 1.

In the second case the claim follows. In the first case it remains to show that d1 is not 
a multiple of pi+1−s. This holds because on the one hand d1 ≥ pd2 = pi, d1 �= pi and 
therefore d1 − pi > 0, while on the other hand

d1 − pi = d− pi − d2 − · · · − ds = d− P i
i+1−s ≤ P i

0 − P i
i+1−s

= p0 + · · · + pi−s < pi−s+1. �
A combination of Propositions 2.22 and 2.23 yields the desired bound on n so that 

the prime pn is separable. This depends on the characteristic p > 0 and on the geometric 
singularity degree δ(p) of the singular prime p. In particular, when p is non-decomposed 
we obtain a bound on n so that pn is rational, thus answering the question raised before 
Proposition 2.5.

Theorem 2.24. Let F |K be a one-dimensional separable function field of characteristic 
p > 0. For a singular prime p the following assertions hold.

(i) The restriction pn of p to the nth Frobenius pullback Fn|K = F pn ·K|K is separable 
for all n ≥ logp

(
2 δ(p)

[κ(p):K]sep +1
)
; moreover, if the integer 2

p−1
δ(p)

[κ(p):K]sep is not a sum 

of consecutive p-powers then pn is separable for all n ≥ logp
(
2 δ(p)

[κ(p):K]sep + 1
)
− 1.

(ii) Assume in addition that the prime p is non-decomposed. Then pn is rational for all 
n ≥ logp

(
2δ(p) + 1

)
; moreover, if the integer 2

p−1δ(p) is not a sum of consecutive 
p-powers then pn is rational for all n ≥ logp

(
2δ(p) + 1

)
− 1.

In the special case where p > 2 and δ(p) = p(p − 1)/2, the bound in (ii) is equal to 2. 
This was obtained previously by Salomão [22, Corollary 3.3].

Let us look at the simplest example of the situation we are discussing. Let F |K be 
quasi-elliptic, i.e., suppose that F |K and its extension KF |K have genera g = 1 and 
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g = 0. By the genus change formula (2.3) there is a unique singular prime p, which 
has δ(p) = 1 and Δ0 = 1, Δ1 = 0. In particular p ≤ 3 (see Proposition 2.5). Also, the 
restricted prime p1 is non-singular and the first Frobenius pullback F1|K is conservative 
of genus g1 = 0. By Corollary 2.19 the prime p is non-decomposed. Then Theorem 2.24
implies that the restricted prime p2 (resp. p1) is rational if p = 2 (resp. p = 3), and in turn 
the Frobenius pullback F2|K (resp. F1|K) is a rational function field. As explained in 
Section 1, it is then possible to add generators to F2 (resp. F1) through the Bedoya–Stöhr 
algorithm to obtain a presentation of F |K, thus recovering Queen’s characterization of 
quasi-elliptic function fields [19] (see [9, Section 2] for details).

For non-hyperelliptic function fields F |K of genera g = 3, g = 0 in characteristic 
p = 2 one can show that the first Frobenius pullbacks F1|K are quasi-elliptic. Then the 
addition of a generator leads to a full characterization of these function fields (see [9,10]).

In the remaining of this section we show that the bound in Theorem 2.24 (ii) is sharp 
in characteristic p = 2. In characteristic p > 2, however, an analogous statement is false 
(see [7]).

Proposition 2.25. The bound provided by Theorem 2.24 (ii) is sharp in characteristic 
p = 2.

In order to prove the proposition, we must construct for every positive integer d a 
non-decomposed prime p of geometric singularity degree δ(p) = d whose restriction pn−1
is non-rational, where n is the smallest integer allowed by the bound in Theorem 2.24 (ii), 
i.e.,

n = τ2(2d) = τ2(d) + 1 =
{
i + 2 if d = P i

j for some j ≤ i,
i + 1 if P i−1

0 < d < P i
0 and d �= P i

j for all j ≤ i.

In Example 2.26 below we build for every i > j ≥ 0 and every � ≥ 0 a non-decomposed 
prime p of geometric singularity degree

δ(p) = P i
j + � · 2j+1

with the property that pi+1 and pi+2 are non-rational and rational respectively. Similarly, 
in Example 2.27 we construct for every i ≥ 0 a non-decomposed prime p of geometric 
singularity degree

δ(p) = 2i = P i
i

with the property that pi+1 and pi+2 are non-rational and rational respectively. Before 
getting to the examples themselves we show how the proposition is obtained from them.

Proof of Proposition 2.25. In view of the two examples, it is enough to show that if d
is a positive integer such that P i−1

0 < d < P i
0 and d �= P i

j for all j ≤ i, then it can be 
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written as d = P i−1
j + � · 2j+1 for some j < i − 1 and some � ≥ 0. Indeed, if this were 

not the case then

d �≡ 2j (mod 2j+1) for each j = 0, . . . , i− 2,

which means d ≡ 0 (mod 2i−1), and therefore d ∈ {P i
i , P

i
i−1} as P i−1

0 < d < P i
0, a 

contradiction. �
Example 2.26. Let i > j ≥ 0 and � ≥ 0. We construct a non-decomposed prime p of 
geometric singularity degree

δ(p) = P i
j + � · 2j+1

with the property that pi+1 and pi+2 are non-rational and rational respectively. Consider 
the function field F |K = K(y, u)|K in characteristic p = 2 given by the following relation

(a + z2j+1
)z + y2i−j

= 0,

where z := u2 + y1+2� and a ∈ K \K2. Then y2i−j = (a + z2j+1)z and u2 = z + y1+2�, 
whence the Frobenius pullbacks of F |K take the form

Fn|K =

⎧⎪⎪⎨⎪⎪⎩
K(y, u)|K if n = 0,
K(z, y2n−1)|K if 0 < n < i− j + 1,
K(z)|K if n = i− j + 1.

Let p be the zero of the function z2j+1 + a, i.e., let p be the only prime of F |K such that 
vp(z2j+1 + a) > 0. Then the restricted prime pi−j+1 is the (z2j+1 + a)-adic prime of the 
rational function field Fi−j+1|K = K(z)|K, i.e., vpi−j+1(z2j+1 + a) = 1, hence it is non-
singular with residue field κ(pi−j+1) = K(a1/2j+1) and degree deg(pi−j+1) = 2j+1. By 
Corollary 2.17 this prime is non-decomposed, and by Proposition 2.20 its restrictions pi+1

and pi+2 are non-rational and rational respectively. The function x := z2j+1 + a ∈ Fi+2

satisfies Fi+2 = K(x), and moreover it is a local parameter at the rational prime pi+2.
We compute the geometric singularity degree of the non-decomposed prime p by 

applying the algorithm developed in [1]. Because y ∈ F1 and y2i−j = xz ∈ Fi−j+1 is a 
local parameter at the prime pi−j+1, for every 0 < n < i − j +1 the prime pn is ramified 
over Fn+1, i.e., deg(pn) = deg(pn+1), and the function y2n−1 ∈ Fn is a local parameter 
at pn. As the differential d(y2n−1)2i+2−n = dy2i+1 = x2j+1

dx of Fi+2|K = K(x)|K has 
order 2j+1 at pi+2, this implies by [1, Theorem 2.3] that

δ(pn) = 2δ(pn+1) + 1vpi+2(dy2i+1
) = 2δ(pn+1) + 2j (0 < n < i− j + 1).
2
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Note now that the residue classes z(p), y(p), u(p) ∈ κ(p) satisfy y(p) = 0, z(p) = a1/2j+1 , 
u(p)2 = z(p), and κ(p1) = K(z(p)). Since u(p) = z(p)1/2 does not lie in κ(p1) the prime 
p is unramified over F1, so it follows from [1, Theorem 2.3] that

δ(p) = 2δ(p1) + 1
2vpi+2(du2i+2

) = 2δ(p1) + 2j + � · 2j+1,

where the last equality is due to the fact that the differential du2i+2 = x2j+1(1+2�)(a +
x)2�dx of Fi+2|K has order 2j+1(1 + 2�) at pi+2. This shows that p has the desired 
geometric singularity degree.

Example 2.27. Let i ≥ 0. We construct a non-decomposed prime p of geometric singular-
ity degree δ(p) = 2i, with the property that pi+1 and pi+2 are non-rational and rational 
respectively. Let F |K = K(z, y)|K be the function field in characteristic p = 2 defined 
by the equation

y2 = (a + z2i+1
)z,

where a ∈ K \K2. The first Frobenius pullback is equal to

F1|K = K(z)|K.

Let p be the zero of the function z2i+1 +a, so that its restriction p1 is the (z2i+1 +a)-adic 
prime of the rational function field F1|K = K(z)|K, i.e., vp1(z2i+1 +a) = 1. This implies 
that p1 is a non-singular prime of degree deg(p1) = 2i+1 and that the primes pi+2 and 
pi+1 are rational and non-rational respectively. As y2 = xz is a local parameter at p1 we 
conclude δ(p) = 2δ(p1) + 1

2vpi+2(dy2i+2) = 2i.

3. A pencil of singular quartics in characteristic 2

In this section we study the geometry of a fibration by singular rational plane projec-
tive quartics over the projective line in characteristic 2. The generic fibre of this fibration 
has a singular non-decomposed prime p of geometric singularity degree δ(p) = 3, with 
the property that its restriction p2 to the second Frobenius pullback is non-rational. This 
means that the generic fibre attains the bound provided by Theorem 2.24 (ii) for p = 2
and δ(p) = 3. We determine as well the minimal regular model of the fibration.

Let k be an algebraically closed field of characteristic p = 2. Consider the integral 
projective algebraic surface over k

S ⊂ P 2 × P 1

cut out by the bihomogeneous polynomial equation

T0(Z4 + X2Y 2 + X3Z) + T1(Y 4 + X2Z2) = 0, (3.1)
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where X, Y, Z and T0, T1 represent the homogenous coordinates of P 2 and P 1 respec-
tively. The surface S has a unique singular point, namely P = ((1 : 0 : 0), (0 : 1)), as 
follows from the Jacobian criterion. The second projection

φ : S −→ P 1,

which is proper and flat [6, Chapter III, Proposition 9.7], yields a fibration by plane 
projective quartic curves over P 1. The fibre over each point of the form (1 : c) in P 1 is 
isomorphic to the plane projective quartic curve Sc cut out by the equation

Z4 + X2Y 2 + X3Z + c(Y 4 + X2Z2) = 0,

which has a unique singular point at

Pc := (0 : 1 : c1/4).

This curve is rational and integral, and its arithmetic genus is equal to 3, as follows 
from the genus-degree formula for plane curves. The singular point Pc is unibranch of 
singularity degree 3 and multiplicity 2 (if c3 �= 1) or 3 (if c3 = 1), and its tangent line 
cuts the quartic curve only at Pc. The quartic curve is strange, that is, all its tangent 
lines pass through the unique common point (0 : 1 : 0). If c = 0, then this point coincides 
with the singular point Pc, and so each tangent line at a non-singular point intersects 
the curve at two points but is not a bitangent. In the opposite case c �= 0, every such 
tangent line is a bitangent.

In analogy to the theory of elliptic curves, we note that the curve Sc is homogeneous, 
that is, for any two non-singular points there is an automorphism that maps the first 
point to the second one. Indeed, given a non-singular point (x0 : y0 : z0) ∈ Sc, the 
projective transformation

(x : y : z) �−→ (x0x : x0y + y0x : x0z + z0x)

defines an automorphism of Sc mapping (x0 : y0 : z0) to the point (1 : 0 : 0).
Over the point (0 : 1) of the base P 1 the fibre of φ degenerates to the non-reduced 

curve

(Y 2 + XZ)2 = 0.

This is the bad fibre of the fibration in the sense that its behaviour differs from the 
generic behaviour of the fibres.

The fibration φ : S → P 1 has a section, namely the horizontal curve (1 : 0 : 0)×P 1⊂S. 
Also, the non-smooth locus, which comprises the singular points ((0 : 1 : c1/4), (1 : c)) on 
the fibres, is the curve in P 2 × P 1 defined by the bihomogeneous polynomial equations
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X = 0 and T0Z
4 + T1Y

4 = 0.

This is a rational curve, which cuts the bad fibre φ−1(0 : 1) at ((0 : 0 : 1), (0 : 1)). 
It is mapped onto the base P 1 according to (y : z) �→ (y4 : z4), and so it is a purely 
inseparable cover of degree 4 of P 1. (This will also follow from Proposition 3.3 below.)

The generic fibre C of the fibration φ : S → P 1 is the quartic curve over the function 
field K = k(t) := k(T1/T0) of the base P 1 defined by the homogeneous equation (3.1). 
Its function field F := K(C) coincides with the function field k(S) of the total space S. 
Dehomogenizing X �→ 1 and T0 �→ 1 in equation (3.1) we obtain

F = k(S) = k(t, y, z) = K(y, z)

where the affine coordinate functions t, y and z of the surface S satisfy the equation

(z4 + y2 + z) + t(y4 + z2) = 0. (3.2)

The function field F |K = K(y, z)|K of C is therefore generated over K = k(t) by the 
functions y and z, which satisfy equation (3.2). The following proposition lists some 
properties of the generic fibre C and its singular primes.

Proposition 3.3. The regular curve C has arithmetic genus h1(C, OC) = 3. The genus 
of the normalization of its extension C ⊗K K is equal to zero. Furthermore, there is a 
unique singular prime p in C, which is non-decomposed and satisfies

(i) δ(p) = 3, δ(p1) = 1, and δ(pn) = 0 for each n ≥ 2;
(ii) deg(p) = 4, deg(p1) = deg(p2) = 2, and deg(pn) = 1 for each n ≥ 3.

In particular, the prime p attains the bound in Theorem 2.24 (ii) for p = 2 and 
δ(p) = 3.

Proof. By the genus-degree formula for plane curves, the curve C has arithmetic genus 
h1(C, OC) = 3; equivalently, the function field F |K has genus g = 3. Consider the 
function u := z + y2 in F = K(y, z), and notice that it satisfies the relation

tu2 + u = z4.

The first three iterated Frobenius pullbacks of F |K are then given by

F1|K = K(u, z)|K, F2|K = K(u, z2)|K, F3|K = K(u)|K.

As the latter function field is rational, so is the extended function field KF |K, i.e., the 
extended curve C ⊗K K is rational and its normalization has genus g = 0.
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Let p denote the only pole of u, i.e., let p be the only prime of F |K such that vp(u) < 0. 
It is non-decomposed because its restriction p3 to F3|K is a rational prime with local 
parameter u−1 ∈ F3. In particular, we can determine its invariants by applying the 
algorithm in [1]. Since the function (z2u−1)2 + t = u−1 belongs to the maximal ideal 
of the local ring Op3 , the value (z2u−1)(p2) = t1/2 lies outside κ(p3) = K. Thus the 
prime p2 of F2|K is unramified over F3 with residue field κ(p2) = K(t1/2), and therefore 
δ(p2) = 1

2vp3(d(z2u−1)2
)

= 0 by [1, Theorem 2.3]. As the function zu−1 ∈ F1 has fourth 
power (zu−1)4 = tu−2 + u−3, it follows that the prime p1 of F1|K is ramified over F2

with local parameter zu−1, and thus δ(p1) = 1
2vp3(d(zu−1)4) = 1 by [1, Theorem 2.3].

It remains to determine the invariants of p. Note that δ(p) = 3, since on the one 
hand δ(p) ≤ g = 3, while on the other hand Δ0 ≥ 2Δ1 = 2 (see Proposition 2.4). 
Because g − g = 3, it follows from Rosenlicht’s genus drop formula (2.3) that p is the 
only singular prime of F |K. Moreover, as the function ( zy )8 + t2 ∈ F3 has order 2 at 
p3, the value ( zy )(p) = t1/4 does not belong to κ(p1) = K(t1/2). This proves that p has 
residue field κ(p) = K(t1/4) and degree deg(p) = 4. �

By a theorem of Lichtenbaum–Shafarevich, a (relatively) minimal regular model of 
the fibration S → P 1 exists and is unique up to isomorphism (see [15, Chapter 9, 
Theorem 3.21 and Corollary 3.24]). In general, it is difficult to unveil the structure of 
such a minimal model, but here we can achieve an explicit description by performing 
blowups, as described below. Similar results for families of curves on rational normal 
scrolls were established in [30].

Local computations show that the only singular point P = ((1 : 0 : 0), (0 : 1)) of the 
surface S is a rational double point of type A15, which is resolved by blowing up the 
surface eight times. This in turn gives a smooth surface S̃ and a new proper flat fibration

f : S̃ −→ S
φ−→ P 1

whose fibres over the points (1 : c) of P 1 coincide with those of φ. Over the point (0 : 1)
the fibre f∗(0 : 1) is given by a linear combination of smooth rational curves

f∗(0 : 1) = 2E + E
(1)
1 + E

(1)
2 + 2E(2)

1 + 2E(2)
2 + 3E(3)

1 + 3E(3)
2 + 4E(4)

1 + 4E(4)
2

+ 5E(5)
1 + 5E(5)

2 + 6E(6)
1 + 6E(6)

2 + 7E(7)
1 + 7E(7)

2 + 8E(8),
(3.4)

which intersect transversely according to the Coxeter-Dynkin diagram in Fig. 1. In this 
diagram the vertex E represents the strict transform of the support φ−1(0 : 1) of the bad 
fibre, while the dashed line means that the strict transform H of the horizontal curve 
(1 : 0 : 0) × P 1 ⊂ S intersects the fibre f∗(0 : 1) transversely at the component E(1)

2 but 
does not belong to f∗(0 : 1).

Since a fibre meets its components with intersection number zero, equation (3.4) allows 
us to compute the self-intersection number of each component of f∗(0 : 1). Thus
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E
(1)
1 E

(2)
1 E

(3)
1 E

(4)
1 E

(5)
1 E

(6)
1 E

(7)
1 E(8)

E

E
(7)
2 E

(6)
2 E

(5)
2 E

(4)
2 E

(3)
2 E

(2)
2 E

(1)
2 H

Fig. 1. Dual diagram of the fibre f∗(0 : 1).

E · E = −4, E
(i)
j · E(i)

j = −2 for each i, j, E(8) · E(8) = −2.

In particular, by Castelnuovo’s contractibility criterion the smooth projective surface S̃
is relatively minimal over P 1, and hence the fibration S̃ → P 1 is the minimal regular 
model of the original fibration S → P 1.

However, as we will see in a moment, the surface S̃ is not relatively minimal as an 
algebraic surface over Spec(k). In other words, it contains at least one smooth rational 
curve of self-intersection −1. To see this in detail, we note that the first projection

S −→ P 2

is a birational morphism whose inverse

P 2 ��� S, (x : y : z) �→
(
(x : y : z), (y4 + x2z2 : z4 + x2y2 + x3z)

)
is regular at all points of P 2 except (1 : 0 : 0). More precisely, the map S → P 2 con-
tracts the horizontal curve (1 : 0 : 0) × P 1 ⊂ S to the point (1 : 0 : 0) and induces an 
isomorphism between S \ ((1 : 0 : 0) × P 1) and P 2 \ {(1 : 0 : 0)}. Then S̃ → S → P 2

is a birational morphism between smooth projective surfaces, which factors as the com-
position of finitely many blowups centered at smooth points. Its exceptional fibre, i.e., 
the fibre over (1 : 0 : 0), comprises the sixteen smooth rational curves E(1)

1 , . . . , E(1)
2 , H, 

where H is the strict transform under S̃ → S of the horizontal curve (1 : 0 : 0) ×P 1 ⊂ S

(see Fig. 1). This shows that the smooth projective surface S̃ is rational, and that the 
smooth rational curve H is contractible, i.e., it has self-intersection −1.

We collect our results on the geometry of the surface S̃ in the following theorem.

Theorem 3.5. The fibration f : S̃ → P 1 is the minimal regular model of the fibration 
φ : S → P 1. Its fibres over the points (1 : c) coincide with the corresponding fibres of φ, 
while its fibre over the point (0 : 1) is a linear combination of smooth rational curves as 
in (3.4), which intersect transversely according to the diagram in Fig. 1.

The smooth projective surface S̃ is rational and the strict transform H ⊂ S̃ of the 
curve (1 : 0 : 0) ×P 1 ⊂ S is a horizontal smooth rational curve of self-intersection −1. If 
we blow down successively the curves H, E(1)

2 , E(2)
2 , . . . , E(2)

1 and E(1)
1 , then we obtain 

a surface isomorphic to the projective plane.
The non-smooth locus of the fibration f : S̃ → P 1 is a smooth rational horizontal 

curve, which is purely inseparable of degree 4 over the base P 1.
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By the variant of the Faltings-Mordell theorem for function fields [24,32], the generic 
fibre C|K has only finitely many K-rational points. This means that the fibration S̃ → P 1

has only finitely many horizontal prime divisors of degree 1 over the base P 1.

Proposition 3.6. The generic fibre C|K has only one K-rational point. The corresponding 
horizontal prime divisor of degree 1 is the contractible curve H.

Proof. Let q be the K-rational point of C corresponding to the horizontal curve H ⊂ S̃, 
i.e., let q be the only prime of F |K such that the rational functions z, y ∈ K(C) in (3.2)
satisfy z(q) = y(q) = 0. Clearly, the function u := z + y2 ∈ F introduced in the proof of 
Proposition 3.3 also satisfies u(q) = 0.

Seeking a contradiction, we assume that there is another rational prime q′ �= q. As 
follows from z4 = u + tu2 and y2 = z + u, the value u(q′) ∈ K is non-zero, and so is the 
value z(q′) ∈ K because otherwise the equality y(q′)2 + tu(q′)2 = z(q′)4 = 0 contradicts 
t /∈ K2. Thus there exist non-zero polynomials f, g, F, G ∈ k[t] with (f, g) = (F, G) = 1
satisfying the identity (FG )4 = f

g + t( fg )2, i.e.,

F 4g2 = G4f(g + tf).

Since G4 divides g2, the polynomial f is coprime with G and therefore it is a fourth 
power in k[t]. It follows that g = G2g′, f = f ′ 4 and F = f ′F ′ for some polynomials 
f ′, g′, F ′ in k[t]. From the relation F ′ 4g′ 2 = G2g′ + tf ′ 4 we deduce that g′ divides t, i.e., 
g′ is either a constant or a constant times t. In light of k = k2, both possibilities yield 
the contradiction t ∈ K2. �
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