Dokument: A nonparametric proportional risk model to assess a treatment effect in time-to-event data

Titel:A nonparametric proportional risk model to assess a treatment effect in time-to-event data
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=67967
URN (NBN):urn:nbn:de:hbz:061-20241212-124341-9
Kollektion:Publikationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Texte » Artikel, Aufsatz
Medientyp:Text
Autoren: Ameis, Lucia [Autor]
Kuss, Oliver [Autor]
Hoyer, Annika [Autor]
Möllenhoff, Kathrin [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]813,9 KB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 12.12.2024 / geändert 12.12.2024
Stichwörter:number needed to treat, time-to-event analysis, treatment effect, hazard ratio, risk
Beschreibung:Time-to-event analysis often relies on prior parametric assumptions, or, if a semiparametric approach is chosen, Cox’s model. This is inherently tied to the assumption of proportional hazards, with the analysis potentially invalidated if this assumption is not fulfilled. In addition, most interpretations focus on the hazard ratio, that is often misinterpreted as the relative risk (RR), the ratio of the cumulative distribution functions. In this paper, we introduce an alternative to current methodology for assessing a treatment effect in a two-group situation, not relying on the proportional hazards assumption but assuming proportional risks. Precisely, we propose a new nonparametric model to directly estimate the RR of two groups to experience an event under the assumption that the risk ratio is constant over time. In addition to this relative measure, our model allows for
calculating the number needed to treat as an absolute measure, providing the possibility of an easy and holistic interpretation of the data. We demonstrate the validity of the approach by means of a simulation study and present an application to data from a large randomized controlled trial investigating the effect of
dapagliflozin on all-cause mortality
Rechtliche Vermerke:Originalveröffentlichung:
Ameis, L., Kuß, O., Hoyer, A., & Möllenhoff, K. (2024). A nonparametric proportional risk model to assess a treatment effect in time‐to‐event data. Biometrical Journal, 66(4), Article 2300147. https://doi.org/10.1002/bimj.202300147
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät
Medizinische Fakultät
Dokument erstellt am:12.12.2024
Dateien geändert am:12.12.2024
english
Benutzer
Status: Gast
Aktionen