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Abstract
Time-to-event analysis often relies on prior parametric assumptions, or, if a
semiparametric approach is chosen, Cox’s model. This is inherently tied to the
assumption of proportional hazards, with the analysis potentially invalidated if
this assumption is not fulfilled. In addition, most interpretations focus on the
hazard ratio, that is often misinterpreted as the relative risk (RR), the ratio of the
cumulative distribution functions. In this paper, we introduce an alternative to
current methodology for assessing a treatment effect in a two-group situation,
not relying on the proportional hazards assumption but assuming proportional
risks. Precisely, we propose a new nonparametric model to directly estimate the
RR of two groups to experience an event under the assumption that the risk ratio
is constant over time. In addition to this relative measure, our model allows for
calculating the number needed to treat as an absolute measure, providing the
possibility of an easy and holistic interpretation of the data. We demonstrate the
validity of the approach by means of a simulation study and present an applica-
tion to data from a large randomized controlled trial investigating the effect of
dapagliflozin on all-cause mortality.
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1 INTRODUCTION

In medical research, time-to-event data measuring the time until a specific event, for example, the time until death or
the time until occurrence of a particular disease, are very common. In 2022, nearly 1000 articles including the phrase
“time-to-event” were collected on PubMed (NCBI, 1996). Therefore, proper analysis of this type of data is of great interest.
Well-known models include proportional hazard (PH) models like Cox’s PH model (Cox, 1972) or the Weibull PH model
(Kleinbaum & Klein, 2012) and proportional odds (PO) models like the log-logistic model (Kleinbaum & Klein, 2012),
resulting in a focus on the hazard ratio (HR) and the odds ratio (OR) as estimates for the treatment effect. This contradicts
the preference of reporting the relative risk (RR) when analyzing data given in form of 2 × 2 contingency tables (Sistrom
& Garvan, 2004).
The RR is characterized by its easy interpretability: If two groups, say A and B, have an RR of 𝑟 for an event, then group

A is 𝑟 times more likely to experience the event relative to group B. Consequently, an RR of 1 means an equal risk for both
groups. If 𝑟 larger than 1, group A has a larger risk than group B, and vice versa if it is smaller than 1 (Rosner, 2016). The
RR should always be reported in combination with an absolute risk measure like the numbers needed to treat, to classify
the relative measure. Once this has been done, even complex statistical results can be communicated easily (Sistrom &
Garvan, 2004).
The misinterpretation of the HR as an RR has a long tradition, starting with even basic literature using the two terms

interchangeably (Kalbfleisch & Prentice, 2002; Klein & Moeschberger, 2003). However, this is incorrect: both measures
indicate the same direction in regards to the treatment effect and hence have similar interpretation, but are technically
not the same (Sutradhar & Austin, 2018). The HR is a conditional measure, based on instantaneous rates (Hernán, 2010),
while the RR is not. Therefore, the two values should be strictly distinguished and handled with care. In addition, an
increase in studies reporting nonproportional hazard rates has been noted in recent years (Royston & Parmar, 2014),
putting the PH assumption into question. More precisely, the Cox model and the underlying PH assumption have been
criticized recently, as the PH assumption is only rarely assessed in practice, or, the model is even used regardless of the
presence of nonproportional hazards (Jachno et al., 2019). Although Cox’s model evaluates the mean HR over time in this
case (Struthers & Kalbfleisch, 1986) and therefore still allows for meaningful interpretation, it nonetheless should not be
confounded with the mean RR.
It is well-known that the OR approximates the RR if the event of interest has a low prevalence (Sistrom&Garvan, 2004).

Otherwise, these measures do not coincide, which led to widespread misinformation in the past (Schwartz et al., 1999). In
addition, just as the PH assumption, the PO assumption is sometimes not suitable. To fill in the gap of the estimation of the
RR for time-to-event data, Kuss and Hoyer recently proposed a parametric proportional risk (PPR) model for a two-group
situation as typically given in randomized controlled trials (RCTs) by using the exponentiated-uniform (EU) distribution
(Kuss & Hoyer, 2021). This circumvents the problem of the incorrect interpretation of the HR and the OR, respectively.
Based on this idea, this paper proposes a nonparametric proportional risk (NPPR) estimator for the RR that is easy

to implement, robust, and in particular independent of the underlying cumulative distribution function (CDF). For the
construction the Kaplan–Meier estimator, Kaplan&Meier (1958) is used, allowing for the inclusion of right-censored data.
The NPPR estimator also enables inference on a time interval, which is advantageous compared to a prior nonparametric
method based on the ratio of two Kaplan–Meier estimators (Lachin, 2010) that focuses on a single time point. By means
of a percentile bootstrap (Efron, 1981), we calculate confidence intervals (CIs) that allow to test for equal CDFs.
In addition to anRRmeasure, an absolutemeasure is needed to enable a holistic interpretation of the data (TheAcademy

of Medical Sciences, 2017). Therefore, estimators for the risk difference and its inverse, the number needed to treat (NNT,
Hildebrandt et al., 2009; Porta, 2016), are derived from the NPPR estimator. Especially, the NNT stands out due to its
simple interpretability: If the NNT equals 𝑥𝑡 at time point 𝑡, 𝑥𝑡 patients have to be administered the treatment, so that one
more event up to 𝑡 is prevented compared to the control group (Hildebrandt et al., 2009; Porta, 2016).
The paper is structured as follows: First, we introduce the NPPRmodel and show how to estimate the treatment effect,

given by the mean RR over time. Based on this, we present a formula for the risk difference and the NNT. Afterward, we
report a small simulation study that compares theNPPR estimator to the RR estimated by applying the PPRmodel, theHR
estimated by Cox’s PH model, and the OR estimated using a log-logistic PO model. Finally, the practical usability of the
model is illustrated by its application to data from the Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure
(DAPA-HF) trial (McMurray et al., 2019), a large RCT investigating the effect of dapagliflozin on all-cause mortality.
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2 METHODOLOGY

2.1 The NPPRmodel

We consider a situation with two groups, in terms of RCTs given by a treatment (indexed by 1) and a control (indexed by 0)
group, respectively. The corresponding (unknown) CDFs describing the probability of having experienced the outcome of
interest up to a specific time point, are assumed to be proportional. This implies that their ratio, the RR, is constant over
time, which we denote as proportional risk (PR) assumption.
To preventmathematical and interpretative problems,wewill restrict our analysis to the time interval𝑇 = (𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥) ⊂

ℝ, whereby 𝑡𝑚𝑖𝑛 denotes the larger of the first hypothetical event time points in each group and 𝑡𝑚𝑎𝑥 denotes the smaller of
the latest hypothetical event time points. Mathematically, this is done to (1) avoid dividing by zero and (2) avoid artificially
underestimating the RR. After the first of the two CDFs reaches (or asymptotically comes close to) 1, the RR will, by
definition, converge to 1. Of note, a meaningful interpretation of an RR outside this time range is hardly possible. Now,
let 𝐹1 and 𝐹0 denote the corresponding unknown CDFs in the treatment and control group, respectively. Given the PR
assumption evaluating the ratio of probabilities at any time point 𝑡 ∈ 𝑇, yields a treatment effect of

𝐹1(𝑡)

𝐹0(𝑡)
= 𝑟

for a constant 𝑟 > 0. From this, we define 𝛽 ∈ ℝ so that the equation

exp (−𝛽) =
𝐹1(𝑡)

𝐹0(𝑡)
= 𝑟

holds. Solving for 𝛽 we obtain

𝛽 ∶= − log

(
𝐹1(𝑡)

𝐹0(𝑡)

)
. (1)

Moving to the log scale allows for a more symmetric interpretation of 𝛽. More precisely, a positive 𝛽 corresponds to a
positive treatment effect, a negative 𝛽 to a negative one, and 𝛽 = 0 to no effect, respectively. The main goal is to estimate
𝛽 without any parametric assumptions on the CDFs. Therefore, we estimate 𝐹1 and 𝐹0 by means of the nonparametric
Kaplan–Meier estimators �̂�1, �̂�0, using the relationship between CDFs and their corresponding survival functions. The
resulting estimated CDFs will be denoted by �̂�𝑖 = 1 − �̂�𝑖 , 𝑖 = 0, 1. As the underlying data are possibly right-censored, we
need this slightly more complicated method of estimation instead of using the empirical CDFs.
Let �̃�1 and �̃�0 be the ordered sets of observed event time points for the two groups.We set 𝑡𝑚𝑖𝑛 = max(min(�̃�1), min(�̃�0))

and 𝑡𝑚𝑎𝑥 = min(max(�̃�1), max(�̃�0)). By defining

�̃� = (𝑡 ∣ 𝑡 ∈ �̃�1 or 𝑡 ∈ �̃�0, 𝑡𝑚𝑖𝑛 ≤ 𝑡 ≤ 𝑡𝑚𝑎𝑥),

we restrict the time interval such that the fraction of �̂�1 and �̂�0 can be evaluated properly and to comply with the restric-
tions described above. Of note, tied observations are retained in �̃�1, �̃�0, and �̃� for later inclusion. Inserting the estimated
CDFs instead of the true unknown CDFs in Equation (1) for any 𝑡, 𝑡𝑚𝑖𝑛 ≤ 𝑡 ≤ 𝑡𝑚𝑎𝑥, yields a (time-dependent) estimator 𝛽𝑡

for 𝛽. Conceivably, the method might benefit from further restricting �̃�, for example, if the data suggest a high variability
at the beginning or at the end of the study.
To arrive at a single estimate for 𝛽, we compute a weighted mean of the 𝛽𝑡 where the weights are derived from their

variance. Precisely, as the Kaplan–Meier estimator is asymptotically normally distributed with a variance which can
be approximated by Greenwood’s formula (Breslow & Crowley, 1974), we estimate the variance of 𝛽𝑡 = − log

(
�̂�1(𝑡)

�̂�0(𝑡)

)
=

− log
(
�̂�1(𝑡)

)
+ log

(
�̂�0(𝑡)

)
for every 𝑡 ∈ �̃� by applying the delta method (Oehlert, 1992) to log(�̂�𝑖(𝑡)), 𝑖 = 0, 1. This yields

�̂�2
𝑖
(𝑡) ∶= v̂ar

(
log(�̂�𝑖(𝑡))

)
=

1

�̂�𝑖(𝑡)2
v̂ar

(
�̂�𝑖(𝑡)

)
, 𝑖 = 0, 1.
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F IGURE 1 Visualization of the nonparametric
proportional risk (NPPR) estimator. The size of the pluses
symbolizes the weight given to the respective estimated
relative risk (RR) at this time point. The larger the plus, the
larger the weight. For a visualization on a logarithmic
scale, we refer to the supplementary material (Figure A).

Since �̂�1(𝑡) and �̂�0(𝑡) are independent and consequently their covariance is equal to 0, we define the weight function by

𝜔(𝑡) ∶= v̂ar
(

𝛽𝑡

)
=

1

�̂�1(𝑡)2
v̂ar

(
�̂�1(𝑡)

)
+

1

�̂�0(𝑡)2
v̂ar

(
�̂�0(𝑡)

)
for 𝑡 ∈ �̃�. This choice was inspired by inverse-variance weighting (Hartung et al., 2008) and the weighted least square
method (Mandel, 1984). Consequently, with 𝑊 ∶=

∑
𝑡∈�̃�

1

𝜔(𝑡)
, a nonparametric estimator of 𝛽, the NPPR estimator, is

defined by

𝛽𝑁𝑃𝑃𝑅 =
1

𝑊

∑
𝑡∈�̃�

1

𝜔(𝑡)
𝛽𝑡 = −

1

𝑊

∑
𝑡∈�̃�

1

𝜔(𝑡)
log

(
�̂�1(𝑡)

�̂�0(𝑡)

)
. (2)

As stated above, tied observations were retained in �̃�. Therefore, if an event time point 𝑡′ is included 𝑚 times over both
𝑇1 and 𝑇0, the term

1

𝜔(𝑡′)
𝛽𝑡′ is also included 𝑚 times in the sum in (2). A visualization of the situation is given in Figure 1.

Also, the estimator does, in general, estimate the mean RR over time. This holds even if the PR assumption is violated. In
this case, the estimator still provides a summary of the RR.
The NPPR estimator 𝛽 is a consistent estimator for 𝛽, which is a direct consequence of its construction, the continuous

mapping theorem (van der Vaart, 1998), and the fact that the Kaplan–Meier estimators are consistent for every 𝑡 ∈ �̃�

(Andersen et al., 1993).

2.2 Risk difference and NNT

In order to ensure a holistic interpretation of the data, an absolute measure is needed in addition to the relative measure
provided by the RR. The risk difference for the unknown true CDFs is defined by

𝑅𝐷(𝑡) = 𝐹0(𝑡) − 𝐹1(𝑡)

for 𝑡 ∈ 𝑇. Using the PR assumption, we can write 𝐹1(𝑡) = exp(−𝛽)𝐹0(𝑡) and substitute 𝐹1(𝑡) in the formula. This yields

𝑅𝐷(𝑡) = (1 − exp(−𝛽))𝐹0(𝑡).
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TABLE 1 Overview of the three different assumptions and their abbreviations.

Assumption Abbr. Mathematical formulation

Proportional risks PR It exists 𝑟 > 0 so that 𝐹1(𝑡)

𝐹0(𝑡)
= 𝑟, with 𝐹𝑖(𝑡), 𝑖 = 0, 1, as CDFs

Proportional hazards PH It exists 𝑟 > 0 so that ℎ1(𝑡)

ℎ0(𝑡)
= 𝑟, with ℎ𝑖(𝑡), 𝑖 = 0, 1, as hazard functions

Proportional (failure) odds PO It exists 𝑟 > 0 so that
𝐹1(𝑡)

1−𝐹1(𝑡)

𝐹0(𝑡)

1−𝐹0(𝑡)

= 𝑟, with 𝐹𝑖(𝑡), 𝑖 = 0, 1, as CDFs

Abbreviation: CDF, cumulative distribution function.

Nowwe can insert the estimated CDF �̂�0 corresponding to the Kaplan–Meier estimator �̂�0 and the NPPR estimator 𝛽𝑁𝑃𝑃𝑅

obtained by (2). The resulting estimator of the risk difference is defined by

𝑅𝐷(𝑡) =
(

1 − exp(−𝛽𝑁𝑃𝑃𝑅)
)

�̂�0(𝑡)

for 𝑡𝑚𝑖𝑛 ≤ 𝑡 ≤ 𝑡𝑚𝑎𝑥. Of note, this still does depend on the time 𝑡 and given the PR assumption monotonically increases if
exp(−𝛽𝑁𝑃𝑃𝑅) < 1 and decreases if exp(−𝛽𝑁𝑃𝑃𝑅) > 1, respectively.
The NNT is defined as the reciprocal of the risk difference. Therefore, an estimator is given by

𝑁𝑁𝑇(𝑡) =
1

𝑅𝐷(𝑡)
=

1(
1 − exp(−𝛽𝑁𝑃𝑃𝑅)

)
�̂�0(𝑡)

.

It is also possible to estimate the NNT based on �̂�1(𝑡):

𝑁𝑁𝑇𝑎𝑙𝑡1(𝑡) =
1

𝑅𝐷𝑎𝑙𝑡1(𝑡)
=

1(
exp(−𝛽𝑁𝑃𝑃𝑅) − 1

)
�̂�1(𝑡)

.

This is beneficial, for example, if the treatment group size significantly exceeds the control group size since in this case
�̂�1(𝑡) would be a more reliable estimator than �̂�0(𝑡). Another alternative is defined using both �̂�0(𝑡) and �̂�1(𝑡):

𝑁𝑁𝑇𝑎𝑙𝑡2(𝑡) =
1

𝑅𝐷𝑎𝑙𝑡2(𝑡)
=

1(
�̂�0(𝑡) − �̂�1(𝑡)

) .

However, this estimator strongly depends on the precise time point used for evaluation since it is subject to the jumps
of both �̂�1(𝑡) and �̂�0(𝑡), while 𝑁𝑁𝑇(𝑡) and 𝑁𝑁𝑇𝑎𝑙𝑡1(𝑡) only depend on the jumps of one of the curves. In case of a small
data set, one could look at all three estimators and infer on the range of the respective CIs (calculated using the percentile
bootstrap (Efron, 1981) as described below).

3 SIMULATION STUDY

3.1 Setting and data generation

In order to evaluate the performance of theNPPRestimator compared to an alternativemethod,we conducted a simulation
study. As competitors we chose the PPR model for estimating the RR, the Cox’s PH model estimating the HR and a log-
logistic PO model estimating the OR. An overview of the different assumptions and the different models are provided in
Tables 1 and 2. The PPR model is based on the EU distribution (Kuss & Hoyer, 2021), and the corresponding CDFs are
given by

𝐹𝐸𝑈,𝑖(𝑡) = (𝜃𝑖𝑡)
𝛼
, 𝑡 ≤

1

𝜃𝑖
, for 𝑖 = 0, 1,
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TABLE 2 Overview of all models. Note, that the Weibull proportional hazard (PH) model is only used for data generation and not for
parameter estimation in the simulation study. More information on the relative risk (RR), the hazard ratio (HR), and the odds ratio (OR) of
the different models as well as the calculation of the formula is presented in the supplementary material Section 3.0.

Model name Abbr. Asm. Type Mathematical description 𝑹𝑹∕𝑯𝑹∕𝑶𝑹

Nonparametric
proportional risk model

NPPR PR Nonparametric 𝛽𝑁𝑃𝑃𝑅 = −
1

𝑊

∑
𝑡∈�̃�

1

𝜔(𝑡)
log

(
�̂�1(𝑡)

�̂�0(𝑡)

)
𝑅𝑅𝑁𝑃𝑃𝑅 = exp(−𝛽)

Parametric proportional
risk model

PPR PR Parametric 𝐹𝐸𝑈,𝑖(𝑡) = (𝜃𝑖𝑡)
𝛼

𝑅𝑅𝑃𝑃𝑅 =
(

𝜃1

𝜃0

)�̂�

Cox’s proportional hazards
model

Cox’s PH PH Semiparametric ℎ𝐶𝑜𝑥(𝑡, 𝑋𝑖) = ℎ0(𝑡) exp(𝛽𝑋𝑖) ℎ0(𝑡)

baseline hazard

𝑋𝑖 =

{
1 treatment
0 control

𝐻𝑅𝐶𝑜𝑥 = exp(𝛽)

Log-logistic proportional
odds model

LL PO PO Parametric 𝐹𝐿𝐿,𝑖(𝑡) = 1 −
1

1+

(
𝑡

𝑏𝑖

)𝑎 𝑂𝑅𝐿𝐿 =
(

𝑏0

𝑏1

)�̂�

Weibull proportional
hazards model

Weibull PH PH Parametric 𝐹𝑊𝑒𝑖𝑏,𝑖(𝑡) = 1 − 𝑒
−

(
𝑡

𝜆𝑖

)𝑘

𝐻𝑅𝑊𝑒𝑖𝑏𝑢𝑙𝑙 =
(

𝜆0

𝜆1

)�̂�

Abbreviations: PH, proportional hazard; PO, proportional odds; PR, proportional risk.

in which the shape parameter 𝛼 > 0 is assumed to be the same for both the treatment and the control group and the scale
parameters 𝜃𝑖 > 0, 𝑖 = 0, 1, are assumed to be group-specific. By calculating maximum-likelihood estimates using the R
function optim for 𝜃𝑖 , 𝑖 = 0, 1, and 𝛼, the estimated RR is given by

𝑅𝑅𝑃𝑃𝑅 =

(
𝜃1

𝜃0

)�̂�

.

Of note, the OR and HR are identical and vary over time, as can be shown by inserting the CDF into the respective defi-
nition (see supplementary material Section 3.0 for details). For the log-logistic PO model, we chose the parameterization
as provided by the R package flexsurv (Jackson, 2016):

𝐹𝐿𝐿,𝑖(𝑡) = 1 −
1

1 +
(

𝑡

𝑏𝑖

)𝑎 , for 𝑖 = 0, 1,

in which the shape parameter 𝑎 > 0 and the scale parameters 𝑏𝑖 > 0, 𝑖 = 0, 1, are similarly assumed to be the same and
group-specific, respectively. Again, using optim to calculate maximum-likelihood estimates, the estimated (failure) OR is
given by

𝑂𝑅𝐿𝐿 =

(
𝑏0

𝑏1

)�̂�

.

Outcomes of the simulation study were bias, mean squared error (MSE), and empirical coverage of the estimated RR,
respectively. In addition, we evaluated numerical robustness in terms of the number of converged simulation runs. Pre-
cisely, it might happen that all events of one group have already occurred before the first event of the other group occurs.
Under these circumstances, or when all participants were censored, �̃� might be empty. Then, the NPPR estimator is not
defined. Among the simulations, these cases are few in numbers and were excluded from further analysis. Similarly, data
sets yielding estimates obtained by the PPR model, Cox’s PH model, and the log-logistic PO model of an absolute effect
(| − log(𝑅𝑅𝑃𝑃𝑅)|, | − log(𝐻𝑅𝐶𝑜𝑥)|, | − log(𝑂𝑅𝐿𝐿)|) larger than 3 were removed. This choice was informed by the analysis
of the simulated data with Cox’s PHmodel. That is, limiting the analysis to estimated HRs smaller than 20 (≈ exp(3)) was
the most conservative way to exclude estimations suffering from obvious numerical issues. Of note, the NPPR estimator
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AMEIS et al. 7 of 18

F IGURE 2 The relative risk (RR) of the Weibull proportional hazard (PH) model and the log-logistic (LL) proportional odds (PO) model
over time in comparison with the constant value indicated by the straight lines. HR, hazard ratio; OR, odds ratio.

exceeded this limit in no case. The numerical robustness describes the number of estimates used for further analysis after
the removal. All initial analyses have been done using R version 4.2.2. Analyses with Cox’s PH model, the log-logistic PO
model, and the simulation studies without censoring were added later and have been done using R version 4.3.0.
The simulation setting was inspired by the DAPA-HF trial discussed as a case study example in Section 4. Instead of

focusing on the secondary outcome “death of all causes,” we based the simulations on the data set regarding the studies
primary outcome “worsening heart failure or cardiovascular death.” Figure C (see supplementary material) contains an
analysis of this data set analogous to Section 4. We simulated a PR, PH, and a PO situation with different true underlying
effects for the RR, HR, or OR, respectively. For the generation of data satisfying the PR assumption, the PPR model was
used and the log-logistic POmodel for PO data. For a PH scenario, we used aWeibull PHmodel. The corresponding CDFs
are given by

𝐹𝑊𝑒𝑖𝑏,𝑖(𝑡) =

⎧⎪⎨⎪⎩1 − e
−

(
𝑡

𝜆𝑖

)𝑘

for 𝑡 ≥ 0

0 for 𝑡 < 0

for 𝑖 = 0, 1.

Here, 𝑘 > 0 is the shape parameter, which is assumed to be equal for both groups, and 𝜆𝑖 , 𝑖 = 0, 1, are the group-specific
scale parameters. In all scenarios, we used the parameters obtained from the placebo group of the data set as underlying
truth to simulate data for the reference group, where we chose true underlying parameters 𝛽 = 0, 0.5, 0.25, −0.25, −0.5

which correspond to an RR/HR/OR equal to 1, 0.607, 0.779, 1.284, and 1.649 (see Figure 2 for a visualization of the RRs
over time). All configurations used for the simulations are summarized in Table 3. For a visualization of the CDFs, we
refer to Figure E in the supplementary material.
To achieve different amounts of censoring (30%, 50%, and 70%), we simulated censoring times from an appropriate

uniform distribution. Also, we simulated studies without any censoring. For each of these combinations, we varied the
number of study participants (50, 100, and 500). All simulation results were obtained from simulating 1000 studies. Com-
bining the PR, PH, and PO cases resulted in 180 simulation scenarios representing a situation with no, a realistic, and a
more extreme effect on both sides of the null effect. In all cases, we first drew the group assignment using inverse trans-
formation sampling of a binomial distribution with probability 𝑝 = 0.5. Therefore, the group sizes of the treatment and
control group in the individual simulated study vary with an expected number of half the number of study participants
in each group. However, the number of all patients always equals 𝑛. Afterward, corresponding to the declared underlying
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8 of 18 AMEIS et al.

TABLE 3 Parameters of the parametric proportional risk (PPR) model, the Weibull proportional hazard (PH) model, and the log-logistic
proportional odds (PO) model corresponding to the true underlying effects for all different cases.

True underlying effect Parameters
PPR Weibull PH log-logistic PO

𝜷 RR/HR/OR 𝜶 𝜽𝟎 𝜽𝟏 𝒌 𝝀𝟏 𝝀𝟎 𝒂 𝒃𝟎 𝒃𝟏

0 1 0.859 0.009 0.009 0.916 88.296 88.296 0.973 70.817 70.817
0.5 0.607 0.859 0.009 0.005 0.916 152.428 88.296 0.973 70.817 118.362
0.25 0.779 0.859 0.009 0.007 0.916 116.012 88.296 0.973 70.817 91.553
−0.25 1.284 0.859 0.009 0.012 0.916 67.201 88.296 0.973 70.817 54.777
−0.5 1.649 0.859 0.009 0.016 0.916 51.146 88.296 0.973 70.817 42.370

Abbreviations: HR, hazard ratio; OR, odds ratio; RR, relative risk.

true effect, we drew survival times from the PPR model, the Weibull PH model, or the log-logistic PO model, again using
inverse transformation sampling.
In case of censoring, given the censoring proportion we then drew censoring times from the uniform distribution—for

the specific parameters, see the supplementarymaterial (Table A) - for each participant. Finally, the observed time of each
individual was defined as minimum of the survival and censoring time and the status adjusted accordingly. In case of no
censoring, the observed time of each individual is equal to the survival time.

3.2 Estimation

We compared the NPPR estimator with the RR estimated using the PPR model only if for the underlying data-generating
model the PR assumptionwas satisfied. Due to numerical problems, we fitted the PPRmodel only if censoringwas present.
For the performance of the PPR model in case of PH data, we refer to Kuss & Hoyer (2021). Similarly, we fitted Cox’s PH
model and the log-logistic POmodel only for PR data as well as for the data that fulfill the respective assumption. Of note,
theWeibull PH and the log-logistic POmodels violate the PR assumption. However, the NPPR estimator is in this case still
applicable to estimate the mean RR over time. We used this measure as substitute for an estimator of the true underlying
HR/OR and preceded with the analysis if these parameters were identical. This was done to examine the behavior of the
NPPR model, if the PR assumption does not hold, which can be the case in practical applications. In correspondence to
this, we interpreted the estimated HR/OR for the PR data using Cox’s PH and the log-logistic POmodels as mean HR/OR
and used it as substitute to estimate the true RR in order to mimic the often seen practice to use the RR and the HR/OR
interchangeably (Schwartz et al., 1999; Sutradhar & Austin, 2018).
The PPR and the log-logistic POmodels were estimated using the R function optim as described above. Cox’s PHmodel

was fitted using the function coxph from the survival (Therneau, 2023; Therneau & Grambsch, 2000) package.

3.3 Results

In the following, we will present the results of the simulation study. As the NPPR model directly estimates 𝛽𝑁𝑃𝑃𝑅 =

− log(𝑅𝑅𝑁𝑃𝑃𝑅), we transform the estimate 𝑅𝑅𝑃𝑃𝑅 obtained by the PPRmodel to− log(𝑅𝑅𝑃𝑃𝑅) for an easier comparability.
We preceded accordingly with the estimated 𝐻𝑅𝐶𝑜𝑥 and 𝑂𝑅𝐿𝐿. Tables 4–6 display the bias and the MSE for the different
scenarios if censoring was present, respectively. The bias and MSE corresponding to the scenarios without censoring are
displayed in Table B (see supplementary material). For details on the coverage and the numerical robustness, we refer to
the supplementary material (Tables C–J).
For a quick introduction, Figure 3 displays a comparison between the estimated values for a censoring rate of 50% and

500 participants if the PR assumption is fulfilled. If the true underlying effect 𝛽 equals 0, the NPPR estimator has a larger
interquartile range (IQR) than the PPR model with equal median. In all remaining cases, the median is closer to the true
value, while the IQR is still a bit larger. We observe that the NPPR estimator produces fewer outliers compared to the
PPR model. The number of outliers and the IQR of Cox’s PH model and the log-logistic PO model are similar to those
of the NPPR model. As expected, the median is larger in case of 𝛽 ≠ 0. Similar findings are achieved for situations with
a censoring rate of 30% and only in case of a high censoring rate, that is 70%, the number of outliers is comparable (see
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AMEIS et al. 9 of 18

TABLE 4 Bias and mean squared error (MSE) of 𝛽𝑁𝑃𝑃𝑅 (NPPR, nonparametric proportional risk), − log(𝑅𝑅𝑃𝑃𝑅) (PPR, parametric
proportional risk), − log(𝐻𝑅𝐶𝑜𝑥) (Cox’s PH model), and − log(𝑂𝑅𝐿𝐿) (log-logistic PO model) if the PPR model is the true underlying model.

Bias MSE
Effect Censoring (%) Participants NPPR PPR Cox LL NPPR PPR Cox LL
0.00 30 500 0.000 −0.006 0.000 0.000 0.011 0.140 0.013 0.026
0.00 30 100 −0.002 −0.017 −0.001 −0.006 0.052 0.365 0.065 0.132
0.00 30 50 0.010 0.021 0.007 0.010 0.092 0.436 0.139 0.250
0.00 50 500 0.005 0.001 0.002 0.006 0.016 0.005 0.018 0.030
0.00 50 100 0.004 0.007 0.008 0.011 0.082 0.047 0.093 0.162
0.00 50 50 −0.011 0.000 −0.009 −0.015 0.153 0.111 0.192 0.316
0.00 70 500 −0.003 −0.002 −0.002 −0.003 0.027 0.016 0.028 0.040
0.00 70 100 −0.011 −0.005 −0.012 −0.012 0.145 0.084 0.146 0.211
0.00 70 50 0.016 0.017 0.025 0.027 0.280 0.205 0.324 0.463
0.50 30 500 0.002 0.196 0.495 0.426 0.013 0.144 0.259 0.210
0.50 30 100 0.009 0.314 0.490 0.444 0.066 0.530 0.314 0.337
0.50 30 50 0.007 0.349 0.494 0.476 0.129 0.583 0.397 0.521
0.50 50 500 −0.004 0.070 0.367 0.378 0.015 0.020 0.151 0.171
0.50 50 100 0.003 0.193 0.359 0.399 0.084 0.203 0.222 0.316
0.50 50 50 −0.012 0.242 0.347 0.414 0.168 0.291 0.328 0.520
0.50 70 500 −0.003 0.000 0.138 0.221 0.031 0.019 0.050 0.093
0.50 70 100 −0.014 0.011 0.141 0.234 0.169 0.101 0.186 0.293
0.50 70 50 −0.033 0.037 0.162 0.269 0.288 0.237 0.342 0.529
0.25 30 500 0.003 0.107 0.305 0.217 0.011 0.118 0.105 0.071
0.25 30 100 0.017 0.160 0.309 0.248 0.051 0.358 0.158 0.183
0.25 30 50 0.002 0.212 0.293 0.234 0.118 0.422 0.229 0.356
0.25 50 500 0.004 0.046 0.209 0.206 0.014 0.010 0.059 0.069
0.25 50 100 0.009 0.104 0.204 0.221 0.071 0.092 0.129 0.196
0.25 50 50 −0.014 0.127 0.175 0.197 0.157 0.193 0.232 0.361
0.25 70 500 −0.002 −0.004 0.069 0.113 0.022 0.014 0.028 0.045
0.25 70 100 0.004 0.005 0.079 0.126 0.130 0.079 0.142 0.211
0.25 70 50 0.000 0.033 0.104 0.166 0.277 0.195 0.322 0.479
−0.25 30 500 −0.001 −0.089 −0.304 −0.215 0.011 0.144 0.104 0.070
−0.25 30 100 0.000 −0.189 −0.290 −0.222 0.056 0.365 0.145 0.181
−0.25 30 50 −0.014 −0.175 −0.298 −0.252 0.116 0.446 0.227 0.362
−0.25 50 500 0.003 −0.027 −0.183 −0.188 0.015 0.008 0.050 0.064
−0.25 50 100 0.005 −0.071 −0.166 −0.192 0.070 0.079 0.115 0.179
−0.25 50 50 0.012 −0.117 −0.162 −0.194 0.148 0.157 0.207 0.348
−0.25 70 500 −0.007 −0.003 −0.075 −0.120 0.025 0.016 0.032 0.052
−0.25 70 100 −0.025 −0.027 −0.101 −0.156 0.154 0.096 0.167 0.250
−0.25 70 50 0.001 −0.028 −0.103 −0.154 0.310 0.215 0.348 0.493
−0.50 30 500 0.003 −0.219 −0.485 −0.419 0.012 0.193 0.248 0.200
−0.50 30 100 −0.014 −0.306 −0.487 −0.454 0.061 0.467 0.307 0.334
−0.50 30 50 0.006 −0.300 −0.463 −0.448 0.119 0.600 0.358 0.478
−0.50 50 500 −0.004 −0.102 −0.377 −0.390 0.016 0.052 0.159 0.180
−0.50 50 100 0.007 −0.200 −0.353 −0.388 0.080 0.171 0.208 0.302
−0.50 50 50 0.009 −0.232 −0.359 −0.419 0.160 0.244 0.326 0.501
−0.50 70 500 −0.010 −0.008 −0.140 −0.225 0.029 0.017 0.047 0.089
−0.50 70 100 −0.005 −0.027 −0.149 −0.244 0.157 0.111 0.182 0.280
−0.50 70 50 0.053 −0.031 −0.149 −0.250 0.311 0.261 0.373 0.546

Abbreviations: LL, log-logistic; PH, proportional hazard; PO, proportional odds.
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10 of 18 AMEIS et al.

TABLE 5 Bias and mean squared error (MSE) of 𝛽𝑁𝑃𝑃𝑅 (NPPR, nonparametric proportional risk) and − log(𝐻𝑅𝐶𝑜𝑥) (Cox’s proportional
hazard [PH]) if the Weibull PH model is the true underlying model.

Bias MSE
Effect Censoring (%) Participants NPPR Cox NPPR Cox
0.00 30 500 −0.004 −0.005 0.010 0.012
0.00 30 100 −0.007 −0.001 0.049 0.063
0.00 30 50 −0.002 −0.006 0.108 0.138
0.00 50 500 −0.001 −0.004 0.016 0.018
0.00 50 100 −0.005 −0.003 0.076 0.086
0.00 50 50 −0.024 −0.020 0.157 0.179
0.00 70 500 −0.001 0.004 0.028 0.027
0.00 70 100 −0.015 −0.020 0.141 0.151
0.00 70 50 0.009 0.007 0.302 0.344
0.50 30 500 −0.128 0.002 0.027 0.012
0.50 30 100 −0.128 0.015 0.071 0.063
0.50 30 50 −0.126 0.012 0.116 0.128
0.50 50 500 −0.091 −0.001 0.026 0.018
0.50 50 100 −0.082 0.012 0.098 0.106
0.50 50 50 −0.073 0.034 0.189 0.217
0.50 70 500 −0.061 −0.001 0.036 0.032
0.50 70 100 −0.051 0.015 0.167 0.162
0.50 70 50 −0.076 0.061 0.343 0.397
0.25 30 500 −0.066 0.003 0.014 0.011
0.25 30 100 −0.066 −0.005 0.051 0.058
0.25 30 50 −0.062 0.018 0.099 0.124
0.25 50 500 −0.051 0.000 0.017 0.016
0.25 50 100 −0.047 0.000 0.075 0.086
0.25 50 50 −0.041 0.006 0.174 0.201
0.25 70 500 −0.033 0.002 0.027 0.027
0.25 70 100 −0.028 0.004 0.146 0.149
0.25 70 50 −0.022 0.035 0.309 0.358
−0.25 30 500 0.056 −0.010 0.014 0.012
−0.25 30 100 0.073 −0.003 0.053 0.064
−0.25 30 50 0.069 −0.008 0.105 0.128
−0.25 50 500 0.058 0.009 0.018 0.016
−0.25 50 100 0.050 −0.002 0.087 0.095
−0.25 50 50 0.049 −0.010 0.149 0.184
−0.25 70 500 0.030 0.002 0.032 0.031
−0.25 70 100 0.008 −0.024 0.152 0.161
−0.25 70 50 0.056 −0.016 0.321 0.344
−0.50 30 500 0.120 −0.012 0.024 0.012
−0.50 30 100 0.138 0.000 0.071 0.065
−0.50 30 50 0.119 −0.023 0.120 0.140
−0.50 50 500 0.101 −0.001 0.024 0.016
−0.50 50 100 0.096 −0.015 0.085 0.090
−0.50 50 50 0.120 −0.006 0.165 0.183
−0.50 70 500 0.060 −0.002 0.033 0.028
−0.50 70 100 0.045 −0.036 0.148 0.151
−0.50 70 50 0.103 −0.015 0.350 0.348
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TABLE 6 Bias and mean squared error (MSE) of 𝛽𝑁𝑃𝑃𝑅 (NPPR, nonparametric proportional risk) and − log(𝑂𝑅𝐿𝐿) (log-logistic PO,
proportional odds) if the log-logistic PO model is the true underlying model.

Bias MSE
Effect Censoring (%) Participants NPPR LL NPPR LL
0.00 30 500 −0.002 −0.003 0.009 0.026
0.00 30 100 0.008 0.009 0.043 0.124
0.00 30 50 0.010 0.020 0.096 0.294
0.00 50 500 −0.005 −0.005 0.014 0.028
0.00 50 100 0.000 0.001 0.077 0.160
0.00 50 50 0.007 0.016 0.145 0.324
0.00 70 500 0.008 0.011 0.028 0.039
0.00 70 100 −0.013 −0.014 0.160 0.236
0.00 70 50 −0.013 −0.024 0.331 0.517
0.50 30 500 −0.206 0.009 0.052 0.027
0.50 30 100 −0.211 0.011 0.089 0.125
0.50 30 50 −0.211 0.018 0.149 0.313
0.50 50 500 −0.163 0.008 0.041 0.030
0.50 50 100 −0.164 0.013 0.100 0.160
0.50 50 50 −0.191 −0.009 0.204 0.364
0.50 70 500 −0.107 −0.002 0.039 0.038
0.50 70 100 −0.119 0.004 0.180 0.229
0.50 70 50 −0.108 0.078 0.363 0.548
0.25 30 500 −0.105 0.001 0.020 0.025
0.25 30 100 −0.111 −0.003 0.062 0.139
0.25 30 50 −0.118 −0.007 0.102 0.262
0.25 50 500 −0.082 0.001 0.021 0.031
0.25 50 100 −0.069 0.022 0.074 0.149
0.25 50 50 −0.080 0.007 0.165 0.332
0.25 70 500 −0.059 0.000 0.030 0.040
0.25 70 100 −0.046 0.025 0.146 0.210
0.25 70 50 −0.073 −0.003 0.293 0.442
−0.25 30 500 0.099 −0.010 0.020 0.026
−0.25 30 100 0.089 −0.025 0.055 0.128
−0.25 30 50 0.115 0.012 0.110 0.296
−0.25 50 500 0.090 0.012 0.023 0.030
−0.25 50 100 0.091 0.003 0.075 0.136
−0.25 50 50 0.065 −0.036 0.163 0.327
−0.25 70 500 0.056 0.001 0.030 0.039
−0.25 70 100 0.061 0.010 0.153 0.207
−0.25 70 50 0.055 −0.035 0.313 0.515
−0.50 30 500 0.208 −0.007 0.053 0.026
−0.50 30 100 0.223 0.010 0.100 0.142
−0.50 30 50 0.219 −0.010 0.154 0.327
−0.50 50 500 0.164 −0.001 0.045 0.036
−0.50 50 100 0.158 −0.016 0.103 0.159
−0.50 50 50 0.166 −0.028 0.189 0.338
−0.50 70 500 0.108 −0.011 0.039 0.040
−0.50 70 100 0.105 −0.026 0.167 0.233
−0.50 70 50 0.133 −0.028 0.319 0.481

Abbreviation: LL, log-logistic.
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12 of 18 AMEIS et al.

F IGURE 3 Comparison of boxplots for the estimated 𝛽𝑁𝑃𝑃𝑅 (NPPR, nonparametric proportional risk), − log(𝑅𝑅𝑃𝑃𝑅) (PPR, parametric
proportional risk), − log(𝐻𝑅𝐶𝑜𝑥) (Cox), and − log(𝑂𝑅𝐿𝐿) (LL, log-logistic) for different choices of 𝛽 if the PPR model is the underlying model,
each in case of 500 participants and 50% censoring rate. Horizontal bars indicate the true underlying effect. Boxplots for 30% and 70%
censoring rates and for the proportional hazard/proportional odds (PH/PO) cases are displayed in the supplementary material (Figures H–M).

supplementary material Figures F–G). For a comparison of different numbers of participants in case of a moderate effect
of 𝛽 = 0.25, under no censoring and assuming that all respective assumptions of the models are fulfilled, see Figure N of
the supplementary material.

3.3.1 Bias

Tables 4–6 and B (see supplementary material) depict the bias. In general, the bias is larger if the underlying model
assumption is violated. In this case, a larger true effect results in a larger bias for all models.
It turns out that if the censoring rate is 50% or smaller the NPPR estimator consistently outperforms the PPR model

for all underlying effects except of 𝛽 = 0. This also holds for almost all other configurations, with only a few exceptions.
For instance, considering a censoring rate of 70% and a true effect of 𝛽 = −0.25 the bias of the NPPR model is for some
configurations slightly larger than the one presented by the PPR model. If there is no treatment effect, that is, 𝛽 = 0, the
difference in biases mostly ranges in order of a magnitude of 0.004, which is very small. Only in case of a rather high
amount of censoring, that is, 50%, and a small sample size of 50 participants this difference, given by 0.011, is noticeably
larger. As expected, an application of Cox’s PH model or the log-logistic PO model results in general in a larger bias, up
to an absolute value of 0.495 (true value 𝛽 = 0.50, 30% censoring, 500 participants) and 0.476 (true value 𝛽 = 0.50, 30%

censoring, 50 participants), respectively. In case of no censoring, the biases even exceed an absolute value of 0.500multiple
times for bothmodels. If the true value of 𝛽 is positive, bothmodels tend to overestimate it, and underestimate it if the true
value is negative. This is consistent with the trend observed for the HR and OR of the EU model over time (see Figure D
in the supplementary material). Only in case of 𝛽 = 0, the biases of all models are comparable in size, since with no effect
present the PR, PH, and PO assumptions are fulfilled at the same time.
If the Weibull PH model is the true underlying model, the NPPR estimator has a slightly larger bias when trying to

approximate the HR. It still never exceeds an absolute value of 0.138 if censoring is present, and an absolute value of 0.173
if there is no censoring. The negative values of 𝛽 tend to be overestimated, while the positive ones are underestimated.
Again, this behavior is consistent with the trend observed for the RR over time (see Figure 2). Similar results are observed
if the log-logistic POmodel is the true underlying model. The bias still never exceeds an absolute value of 0.223 and 0.259,
respectively. BothCox’s PH and the log-logistic POmodels performed adequate if the respective assumption is fulfilled.We
note that the NPPR estimator is more precise for smaller censoring rates and a higher number of participants, as expected.
Overall, it performs satisfactory and reliable in all cases under consideration.
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Interestingly, all models tend to show a smaller bias for larger censoring rates if the respective assumption is violated.
Thismost likely results from the censoringmethod, since later observations tend to be censoredmore often. Therefore, the
events tend to concentrate on earlier time points for higher censoring rates. As seen in Figures 2 andD (see supplementary
material), the RR, HR, andOR differmore at later time points. Consistent with this trend, the observed biases of all models
are largest in case of no censoring if the respective assumption is violated.

3.3.2 MSE

Tables 4–6 and B (see supplementarymaterial) also depict the observedMSE. If the PPRmodel was assumed to be the true
model, we note the same tendencies as seenwith the bias. TheNPPR estimator presents a smallerMSE for a low censoring
rate of 30% in all cases. Considering 50% censoring it is overall smaller or equal to the one observed with the PPR model
if 𝛽 ≠ 0 and for less than 500 participants if 𝛽 = 0.25 or 𝛽 = −0.25. The MSE of the NPPR estimator never exceeds 0.311
(true value 𝛽 = −0.50, 70% censoring, 50 participants). On the other hand, the PPR model shows an MSE up to 0.600

(true value −0.50, 30% censoring, 50 participants). Again, the observed MSEs of Cox’s PH model and the log-logistic PO
model are in general rather large for 𝛽 ≠ 0 since the PH/PO assumption is violated. However, even in case of 𝛽 = 0, the
NPPR outperforms these twomodels. If theWeibull PHmodel is the true underlying model, the NPPR estimator presents
a similar MSE as for the PR case. It never exceeds 0.350 (true value 𝛽 = −0.50, 70% censoring, 50 participants). Cox’s
PH model performs comparable indicating a slightly larger variance as the bias is generally smaller. If the log-logistic PO
model is the true underlying model, the observed MSEs behave similarly. In this case, the MSE of the NPPR model never
exceeds 0.363. If no censoring is present, the MSE of the NPPR model only exceeds 0.100 twice (PO data, 50 participants,
true value 𝛽 = −0.5, 0.5). Overall, we conclude that theMSEs corresponding to theNPPRmodel showpromising behavior,
also in case of a violation of the PR assumption.

3.3.3 Coverage

As in general, the covariances cov(𝛽𝑡, 𝛽𝑡′ ) for 𝑡 ≠ 𝑡′, 𝑡, 𝑡′ ∈ �̃�, are unknown and it is therefore impossible to determine
the variance of 𝛽 in (2) directly, the CIs for the NPPR estimator were constructed according to the percentile bootstrap
approach (Efron, 1981). Precisely, for each study with 𝑛 participants, we drew an independent sample with replacement
of size 𝑛 from the simulated study. Consequently, the number of participants in each individual group is random and
can differ from the one in the originally simulated study. The group assignment and status were not changed throughout.
From this sample, 𝛽∗ was estimated again using theNPPR estimator as described in Section 2. This procedurewas repeated
500 times, yielding 𝛽∗(1), … , 𝛽∗(500). From these values, the empirical 2.5%-quantile and 97.5%-quantile, respectively, were
determined, defining the corresponding 95% CI. For the PPR and the log-logistic PO models, we used the multivariate
delta method (van der Vaart, 1998) to construct the CIs. CIs for Cox’s PHmodel were directly extracted from output of the
coxph function.
Details on the coverage for each simulated case are presented in the supplementary material (Tables C–F). In general,

if the PPR model is the true underlying model, the simulated coverage of the CI for the NPPR estimator is very close to
the desired confidence level of 95%. It rarely falls below this value, the smallest value is given by 93.4% and the highest
coverage is given by 98.2%. The latter is reached in case of a true effect of−0.25, 70% censoring, and 50 participants, which
underlines the fact that CIs become rather conservative if the number of events is low.
Overall, the PPR model performs comparably. The smallest simulated coverage equals 89.4% and is observed in case of

a true effect equal to 0.50 with a censoring rate of 30% and 100 participants. On the other hand, the smallest simulated
coverage of Cox’s PH model if censoring is present is equal to 80% (𝛽 = −0.5, 30% censoring, and 500 participants). The
cases presenting a smaller coverage also present a larger bias. The coverage is lowest in case of no censoring (see Table
F). Interestingly, it decreases with an increasing number of participants, most likely due to a more precise estimation of
the HR, that is, close to the time-dependent RR but not equal to it. Therefore, the resulting bias and smaller variance
combine to a lower coverage. However, in general, the coverage is very close to 95% especially for larger censoring rates.
The coverage of the log-logistic PO model indicates a numerical problem since it often exceeds 99% and is never less
than 94.4%. This is most likely caused by both the PO assumption and the parametric assumption being violated. If the
Weibull PHmodel is the true underlying model, the coverage of the HR, approximated by the mean RR, is overall too low,
which is a direct consequence of the violated PR assumption. However, we conclude that also in this case, for most of the

 15214036, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202300147 by U
niversitäts- U

nd L
andesbibliothek D

üsseldorf, W
iley O

nline L
ibrary on [12/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 of 18 AMEIS et al.

F IGURE 4 Event probability of the secondary outcome, all-cause mortality, and event time points during the DAPA-HF trial estimated
with the Kaplan–Meier estimator.

configurations the approximation of the 95% level is still rather precise. If the log-logistic POmodel is the true underlying
model, the results are similar. The coverage of the OR is overall slightly smaller consistent with the bias being slightly
larger. Both Cox’s PH and the log-logistic PO models perform as expected if the respective assumption is fulfilled.

3.3.4 Numerical robustness

The NPPR estimator proves to be overall robust, independent of the true underlying model. Assuming the PPR model,
failures (less than 12 in 1000 simulation runs)were only observed in five of the 45 scenarios. This is also true for theWeibull
PH model and the log-logistic PO model as underlying model, where the NPPR model only failed a very few times (≤13),
occurring only in case of a high censoring rate of 70% and a small sample size of 50 participants. Concerning the numerical
robustness, the PPRmodel is clearly outperformed by the NPPRmodel, showing a higher robustness in almost every case.
Cox’s PH and the log-logistic PO models both mostly present an even greater robustness. For the sake of brevity, details
are deferred to the supplementary material (Tables G–J).

4 CASE STUDY: DAPA-HF TRIAL

To illustrate the NPPR estimator, we use data from the DAPA-HF trial (McMurray et al., 2019). This randomized, double-
blind, placebo-controlled trial evaluated dapagliflozin, a sodium glucose cotransporter-2 (SGLT-2) inhibitor, for reducing
severe cardiovascular outcomes in patients with heart failure, and reduced ejection fraction. In 410 sites in 20 countries,
4744 patientswere treated for amedian observation time of 18.2months.Here, we report the results for the trial’s secondary
outcome, all-cause mortality, 274 (of 2373) patients experienced this outcome in the treatment group, but 324 (of 2371) in
the control group. As we had no access to the original data, we digitized the Kaplan–Meier estimates from the original
paper by the open software toolWebPlotDigitizer, version 3.8 (Rohatgi, 2015) and extracted the data by using the algorithms
and R tools of Guyot et al. (2012). In order to validate this extraction process, we calculated an HR from the extracted data
given by 0.837 (95% CI [0.712, 0.983]), which is essentially the same as the HR and its CI in the original paper, which was
0.83 (95% CI [0.71, 0.97]).
Figure 4 displays the estimated CDFs from the DAPA-HF trial. The assumption of PR seems to be reasonable. Using

the method described in Section 2, we obtain 𝛽𝑁𝑃𝑃𝑅 = 0.178 (95% CI [0.031, 0.346]), which corresponds to an RR of 0.837
(95% CI [0.708, 0.970]). The patients in the treatment group are therefore only 83.7% at risk of death for any cause relative
to the patients in the placebo group. CIs were estimated using the bootstrap as described in Section 3.3.3. To visualize the
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(a) (b)

F IGURE 5 (a) Estimated 𝛽𝑡 for the DAPA-HF trial at every event time point. The estimated 𝛽𝑁𝑃𝑃𝑅 overall is displayed by the horizontal
line. (b) Weights at every event time point.

estimation process, Figure 5a shows the estimated 𝛽𝑡 for each event time point. The weighted mean defining the NPPR
estimator as defined in (2) is displayed by the solid line. The weights at each event time point are shown in Figure 5b.
The estimated NNT quickly decreases over time, likely due to the small number of reported events in the study.

For instance, at the end of study (𝑡 = 24), only 29 (95% CI [19.256, 53.947]) patients treated with dapagliflozin would
prevent one death relative to the placebo treatment. A detailed visualization of the NNT is shown in Figure O in the
supplementary material.

5 DISCUSSION AND CONCLUSION

In this paper, we proposed an NPPRmodel to assess a treatment effect in case of a two-group situation. Thereby, we solved
the conceptional problems the HR and OR have shown in the past without losing the advantages of a nonparametric
estimation method. By deducing the NNT from the model, we further provide an absolute measure in addition to the
estimated RR. As no further specification beyond the PR assumption is necessary, the model is broadly applicable and
provides a promising tool for the analysis of numerous applications, ranging from preclinical toxicology studies to late
phase clinical trials, as, for instance RCTs. While not regarded in this paper, left truncated data could also be included
(Tsai et al., 1987).
Using a bootstrap approach (Efron, 1981), we can construct CIs for the NPPR estimator and derive those of the estimated

RR bymultiplying with−1 and exponentiating. Due to the duality between CIs and statistical hypothesis tests, this further
provides a test for the difference/ratio of the CDFs. To a certain degree, this holds true even if the PR assumption is violated
since in this case the NPPR estimator evaluates the mean RR over time. Similar to the mean HR over time (Hernán,
2010) only regarding the mean RR from the beginning to the end of study might limit its interpretability. Therefore, again
inspired by the mean HR (Hernán, 2010), we suggest to estimate the mean RR from the beginning up to multiple time
points if the PR assumption is violated. However, if the estimated CDFs cross, the effect could be underestimated due
to negative and positive 𝛽𝑡 cancelling out and the method should be used with care. Hence, the NPPR estimator would
highly benefit from the development of a goodness-of-fit test for the PR assumption.
Of course, theNPPRestimator comes alongwith some limitations.Up to this point, themodel contains only one (binary)

variable and it is not possible to include further variables in the model. A possible extension could be based on further
stratification butmight result in subgroup sample sizes that are too small for a proper evaluation of the Kaplan–Meier esti-
mators. Moreover, the consideration of continuous variables is a challenging problem, which demands some future work.
Another drawback, especially if compared to the parametric model, is the necessity of using bootstrap to calculate a CI as
a formula for the variance of the estimator is not available yet. Alternatively, a different approach based on nonparametric
maximum-likelihood estimation could circumvent these problems as well as supersede the calculation of weights.
Also, one important starting point of further research is the inclusion of competing risks, which is not possible as of

now. A feasible way to address this issue without the need for a complicated construction might be to replace 1 − �̂�𝑖(𝑡),
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𝑖 = 0, 1, with the respective Aalen–Johansen estimator (Aalen& Johansen, 1978) since it is less susceptible to bias resulting
from competing risks (Aalen & Johansen, 1978). However, in combination with an extension to multiple covariates, the
incorporation of competing risks could offer an easier-to-interpret alternative (Andersen&Keiding, 2012) to the Fine–Gray
subdistribution hazard model (Fine & Gray, 1999).
Another related topic would be a comparison of the PH and PR assumptions in terms of which is fulfilled more often

in practice. This is a limitation of the given data example since the data do not seem to violate either.
We demonstrated that the NPPR estimator shows a very good performance if the PR assumption is fulfilled. For small

to moderate censoring rates, it mostly outperforms the PPR model and is numerically more robust. The comparison with
Cox’s PH and the log-logistic models also shows that the direct estimation of the RR is advantageous over the approxima-
tion with the mean HR or the OR. If the PR assumption is not fulfilled it still shows satisfying behavior. However, if there
are only few events, either due to high censoring rates or generally small sample sizes, problems can arise or even make
an application impossible. In those cases, while still less robust, the PPR model can provide a better solution. The NPPR
estimator, in general, estimates the mean RR over time. Therefore, applications outside of a PR scenario might also be of
interest. Furthermore, similarly to the discussion about the PH assumption required from Cox’s model, possible problems
resulting from a violated PR assumption should be taken into consideration.
In summary, we strongly believe that the NPPR estimator is a useful addition to the existing tools for the analysis of

time-to-event data, which not only circumvents the technical problems of the HR and the OR, respectively, but is also easy
to interpret and comes along without an assumption on the underlying survival distribution.
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