Dokument: Data‐driven MEG analysis to extract fMRI resting‐state networks

Titel:Data‐driven MEG analysis to extract fMRI resting‐state networks
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=67957
URN (NBN):urn:nbn:de:hbz:061-20241212-101332-2
Kollektion:Publikationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Texte » Artikel, Aufsatz
Medientyp:Text
Autoren: Pelzer, Esther A. [Autor]
Sharma, Abhinav [Autor]
Florin, Esther [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]7,77 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 12.12.2024 / geändert 12.12.2024
Stichwörter:fMRI, phase-amplitude coupling, MEG, ICA, Envelope correlation
Beschreibung:The electrophysiological basis of resting-state networks (RSN) is still under debate. In particular, no principled mechanism has been determined that is capable of explaining all RSN equally well. While magnetoencephalography (MEG) and electroencephalography are the methods of choice to determine the electrophysiological basis of RSN, no standard analysis pipeline of RSN yet exists. In this article, we compare the two
main existing data-driven analysis strategies for extracting RSNs from MEG data and introduce a third approach. The first approach uses phase–amplitude coupling to determine the RSN. The second approach extracts RSN through an independent
component analysis of the Hilbert envelope in different frequency bands, while the third new approach uses a singular value decomposition instead. To evaluate these approaches, we compare the MEG-RSN to the functional magnetic resonance imaging (fMRI)-RSN from the same subjects. Overall, it was possible to extract RSN with MEG using all three techniques, which matched the group-specific fMRI-RSN. Interestingly the new approach based on SVD yielded significantly higher correspondence to five out of seven fMRI-RSN than the two existing approaches. Importantly, with this approach, all networks—except for the visual network—had the highest corre-
spondence to the fMRI networks within one frequency band. Thereby we provide further insights into the electrophysiological underpinnings of the fMRI-RSNs. This knowledge will be important for the analysis of the electrophysiological connectome
Rechtliche Vermerke:Originalveröffentlichung:
Pelzer, E. A., Sharma, A., & Florin, E. (2024). Data‐driven MEG analysis to extract fMRI resting‐state networks. Human Brain Mapping, 45(4), Article e26644. https://doi.org/10.1002/hbm.26644
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:12.12.2024
Dateien geändert am:12.12.2024
english
Benutzer
Status: Gast
Aktionen