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Abstract

The electrophysiological basis of resting-state networks (RSN) is still under debate. In

particular, no principled mechanism has been determined that is capable of explaining

all RSN equally well. While magnetoencephalography (MEG) and electroencephalog-

raphy are the methods of choice to determine the electrophysiological basis of RSN,

no standard analysis pipeline of RSN yet exists. In this article, we compare the two

main existing data-driven analysis strategies for extracting RSNs from MEG data and

introduce a third approach. The first approach uses phase–amplitude coupling to

determine the RSN. The second approach extracts RSN through an independent

component analysis of the Hilbert envelope in different frequency bands, while the

third new approach uses a singular value decomposition instead. To evaluate these

approaches, we compare the MEG-RSN to the functional magnetic resonance imag-

ing (fMRI)-RSN from the same subjects. Overall, it was possible to extract RSN with

MEG using all three techniques, which matched the group-specific fMRI-RSN. Inter-

estingly the new approach based on SVD yielded significantly higher correspondence

to five out of seven fMRI-RSN than the two existing approaches. Importantly, with

this approach, all networks—except for the visual network—had the highest corre-

spondence to the fMRI networks within one frequency band. Thereby we provide

further insights into the electrophysiological underpinnings of the fMRI-RSNs. This

knowledge will be important for the analysis of the electrophysiological connectome.

K E YWORD S

Envelope correlation, fMRI, ICA, MEG, phase-amplitude coupling

1 | INTRODUCTION

During the past decade, a well-reproducible connectivity map of brain

activity during rest has been identified and thoroughly investigated in

healthy humans using functional magnetic resonance imaging (fMRI)

(Damoiseaux et al., 2006). Resting-state analysis has gained increasing

popularity in neuroscience because the data are relatively easy to

acquire and do not depend on a task. Using magnetoencephalography

(MEG), recent studies have started investigating the temporal

dynamics of resting-state networks (RSN) (Baker et al., 2014; Vidaurre

et al., 2016). However, despite these advances, the electrophysiologi-

cal underpinnings of the canonical fMRI-RSN are still not completely

understood as also discussed by Sadaghiani et al. (2022).

In this article, we aim to provide a rigorous comparison of differ-

ent approaches to extract these canonical fMRI-RSN from MEG data.

We do so by comparing RSN extracted from resting-state recordings

for the same subjects in the MEG and fMRI. Using RSN from the same

subjects allows us to eliminate potential biases stemming from
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variability in fMRI RSN. Another approach—not possible with MEG—is

the simultaneous recording of electroencephalography (EEG) and

fMRI in humans (Wirsich et al., 2021). In this study, the focus was,

however, slightly different with the aim of comparing the overall con-

nectivity matrix and not a comparison between extracted RSN.

Because the literature considers the networks extracted from

fMRI as the gold standard, we take those as the benchmark and evalu-

ate the MEG approaches according to their ability to match the fMRI

results in the same subjects. In our comparison, we restrict our atten-

tion to data-driven approaches and provide a further methodological

advancement of the Envelope-independent component analysis (ICA)

approach (Brookes et al., 2011), which has been applied in numerous

studies (Hall et al., 2013; Liu et al., 2017; Schneider et al., 2020; Wens

et al., 2014). While seed-based approaches can also be found in the

literature (Hillebrand et al., 2012; Hipp et al., 2012; Marzetti

et al., 2013), the seed choice adds a degree of freedom to the analysis

that is difficult to control for. The ultimate goal of our study is to pro-

vide researchers with guidelines on how to extract canonical RSN in a

data-driven manner from MEG data.

The MEG-RSN literature has provided non-consistent findings on

the main frequencies underlying individual RSN. For example, seed-

based envelope correlation ascribes the dominant frequency ranges

for the default mode network (DMN) to theta and alpha, and for the

dorsal attention network (DAN) the alpha and beta ranges

(de Pasquale et al., 2010). In contrast, a data-driven approach based

on ICA of frequency-specific envelopes (Envelope-ICA approach,

Brookes et al. (2011)) obtained the best correspondence for the DMN

within the alpha band and for the DAN within the beta band. In this

article, we investigate the role of RSN extraction techniques for

potentially explaining some of these differences.

The phase lag index has also been proposed to obtain MEG-RSN

(Hillebrand et al., 2012; Marzetti et al., 2013; Stam et al., 2007) and

this information might add further information to the seed-based net-

work estimation based on phase compared to amplitude alone

(Tewarie et al., 2016). According to these studies, most of the func-

tional connectivity in the tested RSN is promoted through alpha and

beta oscillations. Unfortunately, these phase-lag index studies have so

far been limited to seed-based analysis and no data-driven approach

exists for purely phase-based resting-state extractions. On the other

hand, it was demonstrated with a data-driven approach that phase-

amplitude coupling between a low-frequency phase and high-gamma

amplitude can explain the formation of the fMRI-RSN (Florin & Bail-

let, 2015) (megPAC approach)—thereby combining the information

from amplitude and phase.

Within this article, we compare the different data-driven

approaches to extract RSN from MEG data based on resting-state

recordings from the same subjects in the MEG and fMRI. Their advan-

tage is that they can be applied without any a priori assumptions on

particular seed locations. Insights on the correspondence to fMRI-

RSN from such data-driven approaches will be generalizable for future

MEG studies and, therefore might provide important insights on the

electrophysiological underpinnings of fMRI-RSN.

2 | MATERIALS AND METHODS

We included 26 healthy right-handed male subjects. Three of these

subjects had to be excluded due to movement artifacts or technical

problems during data acquisition (23 subjects with age: 26.7 ± 3.9 SD;

Edinburgh Handedness index 88.6 ± 20.7; mini mental status test:

29.8 ± 0.5). Before data acquisition, all subjects gave their informed

consent and were then included in the experiment in line with the

ethical guidelines of the declaration of Helsinki (Ethics committee

Cologne: 14-264, Ethics committee Düsseldorf: 5608R).

In the following, we will first explain the MEG data preprocessing

and the RSN extraction, before describing the fMRI RSN extraction

and our approach for comparing the two. The overall analysis outline

is depicted in Figure 1.

MEG

RSN with megPAC

Extrac�on of
Hilbert Envelope
with 4 different 

filter se�ngs

Processing and
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MEG data

RSN based on 
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F IGURE 1 Flowchart of the
analysis.
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2.1 | MEG data acquisition and preprocessing

The MEG resting-state data were acquired in a 306 channel MEG

(Elekta-Neuromag) system with a sampling rate of 2400 Hz and a

800 Hz anti-aliasing filter. In total, 30 min of resting-state activity in

the MEG was recorded in a seated position for each subject. Subjects

were asked to rest with eyes open and to look onto a fixation cross to

reduce eye movement. The fixation cross was printed on paper and

placed in front of the subject. This analog setup was used to exclude

the possibility that the projector's refresh rate would lead to further

extraneous frequency components (Logothetis et al., 2009). The MEG

data were acquired in blocks of 10 min so that subjects could move in

between the 10-min blocks. Each 10-min block should be long enough

to capture the basic resting-state fluctuations, as was recently recom-

mended for MEG measurements (Liuzzi et al., 2017). To monitor the

subject's head position, four head-positioning coils were taped to

the subject's scalp. The positions of the coils were measured relative

to the subject's head using a 3D digitizer system (Polhemus Isotrack).

For anatomical co-registration with MRI, about 100 additional scalp

points on the subject's scalp were also digitized. In addition to the

MEG, we simultaneously recorded an electrocardiogram (ECG) and

electrooculogram (EOG).

After data acquisition, the preprocessing of the MEG data was

done with standard processes implemented in brainstorm (Tadel

et al., 2011; https://neuroimage.usc.edu/brainstorm/, preproces-

sing and source reconstruction was done with brainstorm version

of 10.08.2018). After the recording, the line noise and its harmonics

were removed (50, 100, 150, 200, 250 Hz) with matched sinusoi-

dals and sensors with high noise levels (based on their power-spec-

trum) were excluded. The ECG and EOG were used to

automatically detect eye-blinks and heartbeats and to then remove

them with signal space projectors. The data were then visually

inspected for artifacts (muscle artifacts, head movements), with

problematic time segments being excluded from further analysis.

The cleaned MEG data were down-sampled to 1000 Hz to reduce

the amount of data.

A 5-min empty-room recording with the same sampling rate of

2400 Hz and an anti-aliasing filter of 800 Hz, but with no subject pre-

sent in the magnetically shielded room, was obtained on each record-

ing day. The goal is capturing the sensor and environmental noise

statistics. Based on these recordings the noise covariance matrices

were calculated for use in the source estimation process.

Forward modeling of neural magnetic fields was performed using

the overlapping-sphere technique implemented in brainstorm (Huang

et al., 1999). For the cortically constrained weighted minimum norm

estimate (wMNE), the lead-fields were computed from elementary

current dipoles distributed perpendicularly to the individual cortical

surface (Baillet et al., 2001). The individual surfaces were extracted

with Freesurfer (version 5.3.0) using a tessellation of 15,000 (https://

surfer.mnr.mgh.harvard.edu).

The MEG data preparation described in this section was common

for the two compared approaches.

2.1.1 | Extracting the MEG RSNs

Once the source-level data had been constructed, we extracted the

MEG RSNs. We used the megPAC approach as described in Florin

and Baillet (2015) and the Envelope-ICA approach by Brookes et al.

(2011). Both RSN extraction approaches first operate on the individ-

ual source-reconstructed MEG-data. To project the data from the

individual to the standard anatomy for the cortical source model,

Freesurfer's coregistered spheres were used as implemented in brain-

storm (Fischl et al., 1999).

2.1.2 | megPAC approach

For the megPAC approach, we used the exact same parameters as

described in the paper by Florin and Baillet (2015). First, for each

source time series of each subject the low-frequency phase that cou-

ples most strongly to the high gamma amplitude from 80 to 150 Hz

was determined based on a phase-amplitude coupling measure

(Özkurt & Schnitzler, 2011). Figure 2 shows the average low-fre-

quency across subjects that exhibited the maximal phase-amplitude

coupling to the gamma amplitude in each subject. Similar to previous

results, the low frequency was in the delta/theta range with no clear

spatial pattern (Florin & Baillet, 2015). Both the phase and amplitude

were extracted with a chirplet transform (Mann & Haykin, 1995), with

a chirp factor of 0. For the low frequency corresponding to the identi-

fied phase of each individual vertex, the peaks and troughs were iden-

tified, and the gamma amplitude (80–150 Hz) was linearly

interpolated between these events to 1000 Hz using the MATLAB

function interp1. Through this process, for each source a new time

series is obtained. The resulting time series were down-sampled to

10 Hz and then projected to the Colin27 brain. Within the Montreal

Neurological Institute (MNI) space the cortical time-series from all

subjects were first spatially smoothed (5 mm Gaussian Kernel) and

then concatenated. Subsequently, the correlation matrix between all

pair-wise time-series was calculated, yielding a connectivity matrix C

of 15002 � 15002. Finally, the RSNs were determined as the principal

spatial modes based on a singular value decomposition. To make this

approach tractable each row of C was projected orthogonally on a

subspace of 1175 cortically evenly distributed sources (Florin & Bail-

let, 2015). This approach was proposed in RSN fMRI by Yeo et al.

(2011). This yields a new connectivity array P = C CT
1175, where T

stands for matrix transpose. To correct for the different sensitivity of

the MEG recording depending on the cortical location, we also gener-

ated independent and identically distributed (i.i.d.) time series with

zero mean and unit variance for each sensor with the same length as

the original 26 data sets. Those time-series were assigned a sampling

frequency of 10 Hz and were accordingly low-pass filtered by an anti-

aliasing filter. These data were then projected onto the Colin 27 brain

using a precomputed Imaging-Kernel for a wMNE of an Elekta sys-

tem's sensor distribution. This yields a 15002*timepoints matrix,

representing noise data on the cortical surface. Those were then

PELZER ET AL. 3 of 14
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spatially smoothed (5 mm Gaussian Kernel) and the correlation matrix

between all pair-wise time-series was calculated. This correlation

matrix was also projected onto the subspace of 1175 cortically evenly

distributed sources. From this reduced connectivity array the first sin-

gular mode from a singular value decomposition was used to create

an orthogonal projector ~π. The connectivity array P was multiplied by

this projector, that is, P~π and with a singular value decomposition the

RSNs were identified as U: P~π¼USVT (see Florin & Baillet, 2015).

These RSNs were compared to the fMRI RSNs obtained from the

same subjects.

2.1.3 | Envelope-ICA approach

For the Envelope-ICA approach by Brookes et al. (2011), the Hilbert

envelope is calculated in the five most common electrophysiological

frequency bands: delta (1–4 Hz), theta (4-8 Hz), alpha (8–12 Hz), beta

(12–30 Hz), and gamma (30–50 Hz). We restricted our analysis to the

approach by Brookes et al. (2011), except for also testing the effect of

variations in filter settings and the ICA approach. To extract the enve-

lope data for these five frequency bands we tested two different vari-

ants of filtering the data to obtain the Hilbert envelope:

1. Wide band: Filter width based on the predefined frequency bands

(delta, theta, alpha, beta, and gamma). After filtering, the data were

Hilbert transformed to obtain the envelope. This is the original

approach described in Brookes et al. (2011).

2. Small band: From 1 to 4 Hz, we band-pass filtered the data in 1 Hz

bins, from 4 to 30 Hz in 2 Hz bins, and above 30 Hz in 5 Hz bins.

The reason for this approach is that, based on the typical 1/f

characteristics in wide frequency bands, the lower frequencies will

dominate the envelope estimation. The resulting filtered time-

series were Hilbert transformed to obtain the envelope. To obtain

a single time series for the whole frequency band, we standardized

the envelope data by z-scoring for each frequency bin and then

averaged across the frequency bins within the respective band.

For each of the two binning approaches to obtain the Hilbert

envelope we tested two different filter types: an infinite impulse

response (IIR) filter and a finite impulse response (FIR) filter, both as

implemented in the brainstorm function bst_bandpass_filtfilt. Both the

IIR and the FIR filter were tested with the wide band and small band,

resulting in four different filter combinations: small band FIR, small

band IIR, wide band FIR, and wide band IIR filter.

Once the Hilbert envelope data at the individual level were

obtained for each of the four filtering combinations, they were down-

sampled to 1 Hz and projected onto the Colin27 brain. On the tem-

plate brain the individual cortically constrained data were spatially

smoothed with a 5 mm Gaussian Kernel and then z-scored in the

time-domain. The data from all subjects were subsequently

concatenated in each frequency band. To extract the RSN, we follow

Brookes et al. (2011) and employ the fastICA on the pre-whitened

data based on a dimensionality reduction to 30 principal components.

Because the reliability and numerical stability of one single ICA-run is

usually not known, we performed an additional analysis using the

ICASSO algorithm with random initialization to extract the temporal

independent components of each frequency band (Himberg

et al., 2004). For the ICASSO calculation, we used the toolbox GroupI-

CATv4.0b. In the ICASSO algorithm, the fastICA was run 500 times

on the pre-whitened data. The selection of the ICASSO parameters is

F IGURE 2 Low frequency of
the megPAC approach. The
cortical distribution of the low-
frequencies averaged across
subjects is displayed. This is the
frequency that exhibited the
strongest coupling to the high
gamma amplitude and was
subsequently used to extract the

resting-state networks with the
megPAC approach.
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based on the suggestions from (Nugent et al., 2015). For the pre-whit-

ening, a principal component analysis was used to reduce the dimen-

sionality to 30 components. The resulting independent components

from each ICASSO run were then clustered based on the absolute

value of the linear correlation coefficient between components (Him-

berg et al., 2004). For these clusters the centrotype, which is the esti-

mate that best represents all other estimates in the same cluster, was

estimated and used for further calculations. To obtain spatial RSNs,

the temporal independent components (the centrotype in case of

ICASSO) were correlated with the envelope data. These correlation

maps for each of the analyzed frequency bands were compared to the

resting-state maps based on the fMRI data.

2.1.4 | Envelope-SVD approach

In addition to extracting the RSNs from the envelope data with ICA,

we also tested an SVD similar to the megPAC approach. This Enve-

lope-SVD approach uses the same approach for the extraction of the

Hilbert envelope as the Envelope-ICA approach, including the down

sampling to 1 Hz and the projection to the standard brain. To extract

the RSN from the Hilbert envelope data, however, the approach of

the megPAC method is used: the temporal correlation between all

envelopes within a given frequency band was calculated, yielding a

15,002 by 15,002 correlation matrix. The dimensionality of this matrix

was reduced to 1175 patches in the same manner as for the megPAC

approach. The RSNs within each frequency band were extracted as

the principal modes of these correlation matrices based on a SVD. We

also performed a noise reduction based on i.i.d. sensor data as

described for the megPAC approach above and in Florin and Baillet

(2015). This noise reduction was done for each frequency band

separately.

2.2 | MRI data acquisition and extraction of RSNs

All magnetic resonance imaging data were obtained using a Siemens

3 T PRISMA scanner using a 64-channel head coil. The high-resolution

T1-weighted images were acquired by applying a 3D MPRAGE

sequence (TR = 2300 ms, TE = 2.32 ms, ES = 7.2 ms, FA = 8�,

FOV = 230 mm � 230 mm, isotropic pixel resolution of

0.9 � 0.9 � 0.9 mm, slice thickness of 0.9 mm, 192 slices). Resting

fMRI data were recorded with echo-planar-imaging acquisition,

(TR = 776 ms, multiband acceleration of 8, TE = 37.4 ms, flip

angle = 55�, resolution 2.0 � 2.0 � 2.0 mm, slice thickness of

2.0 mm, 72 slices). The resting fMRI scan lasted 30 min. Subjects were

also asked to rest with eyes open and to fixate on a paper cross to

reduce eye movement.

T1-weighted images were automatically preprocessed with Free-

surfer version 5.3.0 (recon-all) in order to extract the brain and cortex

surface; brain extraction performed with Freesurfer yielded better

results in the differentiation of cortical areas from the skull than FSL-

BET. The resulting skull-stripped T1-weighted datasets were used as

reference images in MELODIC 3.0 (https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/MELODIC) after affine registration to standard MNI 2 mm

space via FLIRT, a registration tool in FSL 5.0 (Jenkinson &

Smith, 2001).

Data preprocessing of the fMRI 4D images was further carried

out with FSL tools and the results were visually inspected. The follow-

ing preprocessing was applied for each subject using MELODIC's Pre-

Stats feature: head motion correction via MCFLIRT (Jenkinson &

Smith, 2001); removal of non-brain areas using BET (Smith, 2002),

spatial smoothing with a Gaussian kernel of full width at half maxi-

mum 4 mm; grand-mean intensity normalization of the entire 4D

dataset by a single multiplicative factor; 100 s high-pass temporal

filtering.

Registration of each subject's fMRI data to that subject's high-res-

olution structural image was carried out by using 6 degrees of free-

dom registration with FLIRT (Jenkinson & Smith, 2001). Registration

to the high-resolution structural MNI-152-2-mm standard space was

achieved by using FLIRT affine registration.

For the cortically constrained analysis, we used the binarized cor-

tical mask obtained from Freesurfer for the MEG case to restrict the

fMRI ICA analysis to those cortical areas. We chose to variance-nor-

malize time courses to make sure that mere differences in the voxel-

wise standard deviations do not bias the PCA step and ICA cost func-

tion. Consistent with our MEG analysis, 20 ICA components were

computed on data temporally concatenated across subjects.

After ICA decomposition, we chose the standard threshold of 0.5

for the IC maps following the recommendations in FSL Melodic. A

threshold level of 0.5 in the case of alternative hypothesis testing

means that a voxel “survives” thresholding as soon as the probability

of being in the “active” class (as modeled by the Gamma densities)

exceeds the probability of being in the “background” noise class (see

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC).

In order to compare the fMRI RSNs with MEG RSNs, we finally

registered IC components, located in the MNI-152-2mm standard

space, to the Colin27 brain.

2.3 | Comparison of the fMRI and MEG RSNs

In accordance with the previous literature, we consider the fMRI

RSNs to be the benchmark and judge the success of the MEG RSN

identification approaches based on their ability to reproduce these

fMRI networks.

To make the range of values across networks and approaches

(in particular to the fMRI scaling) comparable, we assign to each of the

15,002 vertices in the MEG networks the cumulative probability of its

value, that is, the likelihood of the respective vertex value within a

given network vector being at least as big as its current value. In the

case of megPAC and Envelope-SVD, there is a natural mass point at

0 that is excluded before computing the CDF.

To identify the best-matching MEG maps for both the megPAC

and Envelope-ICA approach as compared to the fMRI maps relies on

the spatial correlation between the MEG and fMRI RSN. As the fMRI

PELZER ET AL. 5 of 14
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maps are provided in volumetric nifti format, we also converted our

vertex-based MEG results into volumetric nifti files with the same res-

olution as the fMRI networks using dedicated conversion functions

within brainstorm. The correlation was calculated across all voxels,

which matched the cortical mask, between the RSN from the two

modalities. For each fMRI RSN we selected the best matching MEG

component with the highest spatial correlation. In this case, neither

the fMRI nor the MEG maps were thresholded.

2.4 | Statistics for the comparison of the MEG
approaches

To statistically compare the different approaches to extract the RSNs,

we bootstrapped the envelope time series of each frequency

100 times across subjects with replacement for the Envelope-ICA and

Envelope-SVD approach and the megPAC time series 100 times for

the megPAC approach. This yielded us new envelope/megPAC time-

series of 23 randomly selected subjects. Afterward, the networks

were extracted for each method as described above and the spatial

correlation was computed for each of those repetitions. This provides

a statistical distribution that captures sampling variability and allows

for statistical inference. We first used a two-way ANOVA to deter-

mine whether the bandwidth of the filter or the chosen filter type

have a significant influence on the network estimation when employ-

ing the Envelope-ICA and Envelope-SVD. We used Bonferroni correc-

tion to correct for the seven networks tested and report only those

results as significant which are lower than p = .05 after Bonferroni

correction. Using post hoc tests with Bonferroni correction, we then

identified significant differences based on the filter choice. To com-

pare the Envelope-ICA, Envelope-SVD, and the megPAC method, we

used the best filter setting for the Envelope-ICA and Envelope-SVD

and performed a one-way ANOVA with a two-sided post hoc t test

using Bonferroni correction to determine the method with the signifi-

cantly highest spatial correlation for each network.

3 | RESULTS

In total, we extracted 20 ICs from the fMRI and MEG data. From the

fMRI data, we used seven RSNs for the further comparison: the fron-

tal, parietal, left and right front-parietal, motor, visual, and DMN (see

Figure 3). While motor, visual, DMN, and frontoparietal network

match with the canonical definition of RSN (Yeo et al., 2011), the

frontal and parietal network were named based on their anatomical

locations, as there was no clear correspondence to those in Yeo et al.

(2011). Of note, the frontoparietal network was separated into a left

and right component in our analysis—likely because we calculated

20 ICs. In addition, the visual network in our case did not contain V1,

but was mainly located in V2 and V3. Such variations can happen due

the sample selection as well as the chosen number of ICs. This is also

the reason why we chose to extract the fMRI and MEG RSN from the

same participant pool to account for such variability. In the following,

we will quantify in more detail the correspondence between the

MEG-RSN and fMRI-RSN as well as several crucial choices for

the Envelope based approaches.

3.1 | Choice of filter for the envelope-based
approaches

When extracting the Hilbert envelope for the Envelope-ICA and

Envelope-SVD approach, different choices for the filter settings can

be made. As described in the methods section, four different filter set-

tings were tested. Using an ANOVA, we identified that the filter type

had a significant influence with a medium effect size on the spatial

correlation for all networks in the case of Envelope-SVD. This was

accompanied by a significant interaction with the chosen frequency

band. In the case of Envelope-ICA, the filter type had only in three

cases a significant but weak influence (see Table 1 for the correspond-

ing F-values and effect sizes).

Next, post hoc analysis was performed to identify the filter com-

bination, which yielded the highest correspondence to the fMRI net-

work. Of note, this is only an absolute evaluation of the correlation

value and was not based on significance testing, that is, the highest

corresponding filter setting is not necessarily the significantly highest.

This analysis revealed that the wide-band filter yielded higher corre-

spondence to the fMRI resting-state maps for six networks in the case

of SVD and for five networks in the case of ICA. Concerning the use

of an IIR or FIR filter, the IIR filter led to significantly better correspon-

dence to the fMRI networks for four out of seven networks. Based on

this, all following results will be presented for a wide-band IIR filter—

even though the choice of IIR and FIR filter does not have a large

effect.

3.2 | Comparison of the different RSN extraction
techniques

As an example for the actual RSNs, we show four networks along the

rows of Figure 3—all networks including each network within each

frequency band for the Envelope-ICA and Envelope-SVD approach

are shown in Supplementary Figures 1–3. The left column in these fig-

ures depicts the fMRI network, the right columns the matched MEG

network for each method according to spatial correlation. Please note

that for the Envelope-ICA and Envelope-SVD approach the displayed

network is for the frequency-band which on average yielded the best

correspondence to the fMRI network, as seen in Figure 4. This also

implies that, for example, in the case of the Envelope-ICA approach

the motor network is displayed in the alpha-band, while as can be

seen in Supplementary Figure 3 for this particular ICA run the best

spatial correspondence to the fMRI network was obtained in the

gamma frequency range. Overall, three qualitative things stand out.

First, the MEG networks from all three approaches resemble the fMRI

networks. Second, the spatial extent of the networks is largest for the

Envelope-ICA approach. Third, megPAC and Envelope-SVD result in
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networks of similar spatial extent, but the latter better matches those

of the fMRI data. This is particularly true for the motor, visual, and

parietal network.

To more formally quantify the correspondence between fMRI

and MEG networks across approaches, we calculated their spatial cor-

relation (Figure 4). Therefore, we first evaluated the performance of

all three approaches. To have a quantitative criterion of performance

we calculated the average correlation across all seven networks for

each method. For each network, we used the frequency with the

highest average spatial correlation to the fMRI networks. Based on a

one-way ANOVA and post hoc testing, the Envelope-SVD yields a sig-

nificantly higher spatial correlation than both other methods and the

megPAC has a significantly higher spatial correlation than then Enve-

lope-ICA approach (spatial correlation [mean ± std]: Envelope-SVD:

0.37 ± 0.13, Envelope-ICA: 0.24 ± 0.06, megPAC: 0.30 ± 0.11; one-

way ANOVA: F = 284.11, dof = 2, p = 6.9091e-110). In addition, for

all networks, there was a significant main effect of the chosen

methods (see Table 2).

Summarizing our findings, the Envelope-SVD approach yielded

the significantly best correspondence for all networks except for the

DMN and the right frontoparietal network, for which the megPAC

had the highest correspondence. However, this difference is not sig-

nificant compared to the Envelope-SVD (post hoc two-sided t test

p > .05, Bonferroni corrected). In regard to the frequency band, there

is a significant effect on the correspondence with the fMRI maps for

both the Envelope-ICA and the Envelope-SVD approach (see Table 2

for the F-values). However, in case of the Envelope-ICA, for the fron-

tal and frontoparietal left network, there was no effect of the fre-

quency. Moreover, a single dominant frequency band where the

spatial correlation was significantly higher than in all other bands

could only be identified for the DMN and visual network with alpha

and the parietal network with beta (post hoc two-sided t test p < .05,

Bonferroni corrected). In contrast, for the Envelope-SVD there was a

clear frequency specificity, that is, one frequency had significantly

higher correspondence than all other frequencies, for all networks

except for the visual network (Figure 4), where both the alpha and

beta range had a significantly higher correspondence than the other

networks.

To further identify the frequency contribution to each RSN, we

also performed a linear regression model as described and

F IGURE 3 Highest correspondence resting-state networks obtained from magnetoencephalography (MEG) and functional magnetic
resonance imaging (fMRI) recordings using the three different approaches. For each MEG method, the resting-state network (RSN) with the
largest spatial correspondence to the fMRI-RSN across all frequency bands and extracted networks is displayed. The row represents the

respective RSN, while the columns show the spatial extent comparing fMRI to each of the three MEG approaches. The frequencies for the
Envelope-SVD and Envelope-independent component analysis (ICA) approach are written on the left of each network based on the average best
frequency across the 100 bootstrap repetitions as displayed in Figure 4. Note also that the results are based on ICA in this figure. The networks
are all thresholded at 0.85 based on the probability distribution of the network's values.
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summarized in Table 3. The estimated coefficients for the different

frequency components align with the spatial correlation results, that

is, the frequency with the highest average correlation has also the

highest regression coefficient. As expected the explanatory power of

the frequencies overlap and thus the coefficients for the other fre-

quencies are smaller than the reported spatial correlation. Also the R2

of the linear regression reflects the visual impression on which net-

works have a better or lesser correspondence with the fMRI RSNs.

RSNfMRI ¼ a�RSNδ
MEGþb�RSNθ

MEGþc�RSNα
MEGþd�RSNβ

MEG

þe�RSNγ
MEGþnoise:

3.3 | ICASSO for Envelope-ICA

The Envelope-ICA requires identifying independent components for

each frequency band. However, as ICA is a high-dimensional optimiza-

tion problem, the reliability of a single ICA run is not known (Eriks-

son & Koivunen, 2004; Hyvarinen & Sabo, 2013), because this is

dependent on the initial seed. Therefore, to stabilize the results, we

ran the ICASSO algorithm four times for each frequency band.

We then investigated whether the frequency components

characterizing the individual networks are consistently the same

across repetitions. When determining the IC map best matching the

fMRI map, the spatial correlation value varied, resulting in ICs from

different frequency bands showing the best (qualitative) correspon-

dence to a particular fMRI RSN. An example is provided in Figure 5

for four RSNs when using the wide-band IIR filter settings. Within this

figure, the spatial correlation between the fMRI RSNs and these four

RSNs obtained with Envelope-ICA for the five frequency bands is

plotted. For each RSN, the spatial correlation values for the four

ICASSO repetitions are provided. As can be seen from the figure,

these are highly variable across repetitions. Given these variable

results, assigning the best match to a particular frequency band seems

arbitrary. Importantly in this section, no statistical test is performed

between the four repetitions. This is, however, the same as when one

would run an ICA analysis and then select a network within one fre-

quency band which qualitatively best matches an fMRI RSN.

4 | DISCUSSION

Within this article, we propose a novel data-driven approach to

extract RSNs from MEG and compare it with other data-driven

approaches to extract RSNs from MEG data as similar as possible to

TABLE 1 Effect of filter type on network identification.

SVD

Filter Frequency Filter � frequency

Best filterF η2 ƒ F η2 F η2 ƒ

Visual 106.45 0.05 0.22 709.75 0.42 0.85 135.84 0.24 0.56 Wide IIR

Frontoparietal-l 118.90 0.09 0.32 140.69 0.15 0.42 72.76 0.23 0.55 Small FIR

Frontal 246.65 0.06 0.26 1756.80 0.59 1.21 175.94 0.18 0.47 Wide IIR

Motor 449.76 0.25 0.58 170.58 0.13 0.38 114.41 0.26 0.59 Wide FIR

DMN 106.73 0.09 0.32 223.55 0.26 0.60 17.75 0.06 0.26 Wide FIR

Parietal 97.76 0.03 0.19 1393.93 0.66 1.40 48.56 0.07 0.27 Wide IIR

Frontoparietal-r 82.18 0.08 0.30 28.20 0.04 0.20 55.85 0.22 0.54 Wide IIR

ICA

Filter Frequency Filter � frequency

Best filterF η2 ƒ F η2 ƒ F η2 ƒ

Visual 10.21 0.01 0.12 55.01 0.10 0.33 3.50 0.02 0.14 Wide IIR

Frontoparietal-l 0.26 (n.s.) 0.00 0.02 5.37 0.01 0.10 1.53 (n.s.) 0.01 0.10 Small FIR

Frontal 2.95 (n.s.) 0.00 0.07 7.03 0.01 0.12 3.12 0.02 0.14 Small IIR

Motor 19.84 0.03 0.17 30.22 0.05 0.24 5.62 0.03 0.18 Wide FIR

DMN 3.38 (n.s.) 0.00 0.07 32.88 0.06 0.25 4.82 0.03 0.17 Wide IIR

Parietal 4.15 0.01 0.08 23.08 0.04 0.22 1.76 (n.s.) 0.01 0.10 Wide FIR

Frontoparietal-r 3.29 (n.s.) 0.00 0.07 5.63 0.01 0.11 2.31 0.01 0.12 Wide IIR

Note: For each network, the main effect (F-value) based on an ANOVA for the filter choice, frequency, and the interaction are reported. The nonsignificant

effects after Bonferroni correction are marked with n.s. Moreover, we report the effect size η2 and ƒ. η2 was computed with the effect size toolbox in

MATLAB (Hentschke & Stuttgen, 2011) and based on this ƒ was computed as provided in G*Power (Faul et al., 2007). In addition, the filter choice is

reported, which led, in combination with the frequency band, to the highest correspondence with the fMRI network.
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fMRI. To minimize distortions introduced by RSN variability at the

group level, the comparison was made on recordings of the same sub-

jects once in the MEG and once in the fMRI. This is in contrast to pre-

vious studies employing standard fMRI maps for their comparison

(Brookes et al., 2011; Florin & Baillet, 2015). The performance of

MEG-RSN approaches was evaluated based on the spatial correspon-

dence to the fMRI-RSN maps. Concerning the use of a method the

correspondence between fMRI-RSN maps and MEG-RSN maps was

significantly highest with the novel Envelope-SVD approach followed

by the megPAC approach, which yielded similar results for two net-

works. Furthermore, when employing the Envelope-ICA or Envelope-

SVD approach, the filter settings affected the results: A wide-band IIR

band-pass filter provided the best results. Concerning the physiologi-

cal underpinnings of the fMRI-RSN, we demonstrate that anatomically

confined RSNs are frequency-specific, while distributed RSNs seem to

be communicating within multiple frequencies.

TABLE 2 Influence of chosen method and frequency on networks for wide IIR filter.

All methods and frequencies Frequency ICA Frequency SVD

F η2 ƒ F η2 ƒ F η2 ƒ

Visual 829.26 0.88 2.76 18.06 0.13 0.38 314.36 0.72 1.59

Frontoparietal-l 97.33 0.47 0.95 1.15 (n.s.) 0.01 0.10 82.74 0.40 0.82

Frontal 308.87 0.74 1.69 1.26 (n.s.) 0.01 0.10 455.51 0.79 1.92

Motor 388.44 0.76 1.77 16.60 0.12 0.37 163.51 0.57 1.15

DMN 67.12 0.38 0.79 19.78 0.14 0.40 42.21 0.25 0.58

Parietal 243.34 0.69 1.50 5.52 0.04 0.21 548.92 0.82 2.11

Frontoparietal-r 107.27 0.50 0.99 5.79 0.05 0.22 69.49 0.36 0.75

Note: Using the previously identified filter option (wide IIR) we provide for each network the main effect (F-value) based on a one-way ANOVA for all

methods and frequencies. The nonsignificant effect after Bonferroni correction is marked with n.s. Moreover, we report the effect size η2 and ƒ.
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F IGURE 4 Spatial correlation between functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) resting-state
network (RSN). The Envelope-independent component analysis (ICA)-based results were obtained with the optimal filter setting of a wide band
IIR filter (see methods for details). The different frequency bands for the Envelope-ICA approach, megPAC, and the Envelope-SVD approach are
plotted on the x-axis and are grouped based on the seven tested resting-state networks. The y-axis depicts the spatial correlation �1≤ ρ≤1
between the fMRI-RSN and the corresponding MEG-RSN for the respective method. The whisker plots indicate the mean and 1 SD across
bootstrap repetitions.
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4.1 | Choice of method

The Envelope-SVD approach provided the highest correspondence to

the anatomically confined fMRI networks. Moreover, the Envelope-

SVD shows a better fit to the fMRI networks than the Envelope-ICA,

has a unique solution, and exhibits a clear frequency specificity.

An interesting exception to the superior performance of the

Envelope-SVD approach are the DMN and the right frontoparietal

network, where the megPAC approach delivered a similarly good

match between MEG and fMRI networks. In contrast to the spatially

more confined networks, these two networks encompass brain

regions that are quite far apart. As a consequence, the principles of

TABLE 3 Linear regression model.
Below the regression coefficients as well
as the R2 are reported.

a b c d e R2

SVD

Visual 0.005 0.009 0.759 0.130 0.007 .388

Frontoparietal-l 0.178 0.068 0.105 0.127 0.110 .115

Frontal �0.015 0.076 0.299 0.066 0.052 .161

Motor 0.045 0.337 0.172 0.149 �0.015 .229

DMN 0.065 0.093 0.019 0.085 0.179 .080

Parietal 0.058 0.028 �0.022 0.190 0.076 .086

Frontoparietal-r 0.211 0.021 0.096 0.025 0.071 .099

ICA

Visual 0.090 0.116 0.168 0.104 0.065 .142

Frontoparietal-l 0.090 0.102 0.082 0.105 0.081 .075

Frontal 0.068 0.073 0.065 0.056 0.068 .068

Motor 0.062 0.090 0.158 0.128 0.063 .115

DMN 0.070 0.062 0.122 0.071 0.063 .067

Parietal 0.051 0.042 0.048 0.067 0.045 .045

Frontoparietal-r 0.070 0.079 0.055 0.049 0.090 .064

Note: In addition to the spatial regression shown in Figure 4, we also fit a linear regression for each RSN

to determine the frequency contribution to each RSN.

Frequency of MEG RSN

0.1
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F IGURE 5 Independent component
analysis (ICA)-induced variability of spatial
correlation for the Envelope-ICA
approach for four resting-state networks
(color coded). Within each frequency
band, four repetitions of the ICASSO
algorithm were conducted. The spatial
correlation between the functional
magnetic resonance imaging (fMRI) and
magnetoencephalography (MEG) map is
displayed. Note the variability across
repetitions (black circle: default mode
network [DMN], yellow diamond: motor,
blue square: frontoparietal left, red star:
visual). The different frequency bands for
the Envelope-ICA approach are plotted on
the x-axis. On the y-axis, the spatial
correlation between the fMRI resting-
state network and the corresponding

MEG resting-state network is plotted.
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long-range communication being mediated by low frequencies (Stein &

Sarnthein, 2000) and of local communication by gamma oscillations

(Buzsaki & Wang, 2012) are expected to play a more important role.

This could explain why the megPAC approach, which considers both

the local high gamma as well as the long-range low-frequency infor-

mation, yielded a similar spatial correspondence for the DMN and

right frontoparietal network.

This finding also indicates that there may be different electro-

physiological underpinnings between the anatomically more focal

RSN and those that are distributed across the cortex. For the local

networks, communication mostly takes place within one frequency

band via the amplitude of this frequency band. In contrast, for the dis-

tributed networks such as the DMN, communication is mediated via

the principles of synchronized gating. In line with this finding on the

DMN, it was recently shown that both amplitude and phase contain

information relevant for understanding the resting brain (Siems &

Siegel, 2020).

4.2 | Frequency-specificity of the Envelope-ICA
and Envelope-SVD results

In the previous literature on Envelope-ICA-based RSN extraction from

EEG or MEG, the activity of each RSN network was ascribed to a par-

ticular frequency band within each study—with findings not always

converging across studies. For example, the DMN has been ascribed

to both alpha and theta frequencies (Brookes et al., 2011; de Pasquale

et al., 2010). When looking at the bootstrapped results in Figure 4, it

was not the case that there was a single dominant frequency band for

each RSN with the Envelope-ICA approach. On the other hand, there

is a clear frequency specificity for almost all networks and particularly

for those which are anatomically and functionally confined with the

Envelope-SVD approach: The frontal network is best captured by

alpha-frequencies, the motor by theta, the visual by alpha and beta,

and the parietal network by beta frequencies. The identified promi-

nence of alpha and beta oscillations for the formation of RSNs is con-

sistent with theory. Alpha oscillations are most prominent during rest

and are linked with attentional processes (Klimesch, 2012). Beta oscil-

lations on the other hand, signal the status-quo (Engel & Fries, 2010).

It is also broadly consistent with the previous literature on RSN

extraction from EEG or MEG that have identified alpha and beta as

the main frequency components (Brookes et al., 2011; de Pasquale

et al., 2010; Hipp et al., 2012). At the same time, each study has

ascribed the activity of each RSN network to a particular but often

different frequency band. Our own experiments show that these non-

consistent previous findings on different dominant frequency compo-

nents for a given RSN when applying the Envelope-ICA can at least

partially be explained by the variability in the ICA due to the depen-

dence on the initial seed for optimization (Hyvarinen, 1999).

One further indication that the previously identified frequency

specificity of the RSN might be a result of a bias was provided by Hipp

and Siegel (2015), who investigated the frequency specificity of

whole-brain correlation of resting-state MEG data. They identified a

bias by the signal-to-noise ratio (SNR) of the different frequencies

toward alpha and beta, which, if corrected, leads to an fMRI MEG cor-

respondence over a wider range of frequencies. We also correct for

the different SNR within frequencies by normalizing each frequency

map independently by its cumulative density. Thus, our finding that

the RSNs are not only best described by alpha and beta, but across

the whole tested frequency range for the Envelope-SVD approach

aligns with the findings of Hipp and Siegel (2015).

When using ICA, it became apparent that for the MEG data the

initial seed has a large influence, making the results not reproducible

across different runs. Even using a stabilization procedure such as

ICASSO (Himberg et al., 2004) did not improve the reproducibility

across ICASSO runs—using previously proposed parameters for fMRI

(Nugent et al., 2015). Our results indicate that different frequency

components can be identified as the best match for a RSN with ICA

just because (i) there was a different initial seed for the ICA and

(ii) the RSNs obtained from different frequency bands do not differ

too much. On the other hand, the ICA results for the fMRI are repro-

ducible based on the current literature. To achieve this, a probabilistic

ICA is implemented in Melodic, which has under the assumption of

non-Gaussian sources and Gaussian noise a unique solution (Beck-

mann & Smith, 2004). However, for the fMRI data not a temporal, but

a spatial ICA is applied, so it is not clear if this approach is transferable

to the MEG data. Based on the current literature on ICA, it is impor-

tant to use an ICA approach optimized for the data. In line with this,

Nugent et al. have proposed a multiband-ICA approach, which esti-

mates the ICA across all bands together. With this technique, it is pos-

sible to determine the shared loading across frequency bands—thus

providing information on the frequency interaction (Nugent

et al., 2017). Interestingly, they report that there is not one single fre-

quency band best capturing the analyzed motor network.

In addition, one has to keep in mind that the current ICA approach

enforces independence in the temporal domain but not in the fre-

quency domain. Therefore, this approach may be ill-suited to identify

frequency-specific RSNs. To obtain frequency-specific information one

should aim for independence in the frequency domain and factorize

appropriate matrices to yield spectro-spatial components (Hyvarinen

et al., 2010). Future work should investigate this conjecture.

4.3 | Choice of filter for Hilbert envelope

Before calculating the Hilbert transform for the Envelope-ICA and

Envelope-SVD, the data have to be band-pass filtered within the fre-

quency bands of interest. When doing so the question arises whether

the band-pass is chosen in small enough frequency bands to correct

for the natural 1/f power decrease in MEG data. Within our tests,

using a wide-band filter provided better correspondence to the fMRI

networks. One potential explanation for this unexpected result could

be that the wide band filtering emphasizes the lower frequencies,

which also seem to be mainly driving the RSNs. On the other hand,

the choice of an IIR or FIR filter did not seem to influence the results

to a large degree.
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4.4 | Limitations

Within our study, we only included right-handed young male subjects

to avoid one additional source of variability within our data set. On

the other hand, this means that our result might not transfer to all

other populations. In addition, we did not control for head movement

during the MEG recordings, because with the Elekta-Neuromag sys-

tem this is only possible when simultaneously using Maxfilter. How-

ever, as we have previously shown, maxfiltering can lead to

unpredictable and uncontrollable changes in the frequency spectrum

(Kandemir et al., 2020). Therefore, we refrained from continuous head

tracking and only during the visual artifact rejection checked for

movement artifacts. Ideally, this is something which future studies

control for.

In general, source-reconstructed MEG and EEG data are prone to

source leakage (Palva & Palva, 2012), that is, nearby sources are corre-

lated due to the imperfect source reconstruction. One common way

to reduce source leakage is by orthogonalizing the envelope data (see,

e.g., Hipp et al. (2012); Colclough et al. (2015)). We did not do this for

the current paper, because it was also not applied in the original

Brookes et al.'s (2011) paper and still the RSNs were well obtained

with ICA. For the megPAC approach and the Envelope-SVD approach,

this problem is reduced by the application of the noise projectors,

which are based on the same forward and inverse solution. Thereby

the leakage inherent in the source reconstruction is also present in

the noise data and thus reduced by this noise projector.

4.5 | Comparison to previous studies

There have been several studies that investigated the test–retest reli-

ability of different estimates of resting-state connectivity (Colclough

et al., 2016; Dimitriadis et al., 2018; Garces et al., 2016). These studies

have provided important guidelines on the choice of connectivity

measures. Overall, amplitude-correlation based methods were more

reliable than purely phase-based methods. Compared to our study a

direct comparison to the fMRI RSNs has been missing, that is, the aim

of those older studies was not to identify networks as similar as possi-

ble to the fMRI RSNs but to provide guidelines on connectivity mea-

sures in general. This is also the reason why we had to limit our

comparison to Envelope-ICA/SVD and megPAC.

At the same time, the focus of our study was on data-driven

methods, as seed-based approaches necessarily involve a human ele-

ment that is impossible to control for. Additional data-driven

approaches involve finding time-resolved networks (Baker et al., 2014;

Cribben et al., 2012; Shappell et al., 2019; Vidaurre et al., 2018; Yae-

soubi et al., 2015; Yaesoubi et al., 2018). The methods used to study

time-resolved activity vary widely in their underlying statistical

assumptions as well as biological details (Lurie et al., 2020). Further-

more, source-level network estimation using the time-resolved

methods employs a limited number of regions of interest based on

atlases. Both the spatial reduction and statistical assumptions of the

time-resolved methods make them difficult to compare with ICA-based

fMRI networks—even though the HMM-based approach provided very

similar networks compared to the fMRI RSNs (Baker et al., 2014; Sitni-

kova et al., 2018; Vidaurre et al., 2016). However, the aim of our study

was to identify markers of the static RSNs. A systematic evaluation of

the time-resolved approaches needs to be left for future research, but

provided that MEG actually affords the high-temporal resolution, these

approaches make use of the distinct advantages of MEG. This also indi-

cates a need to move away from trying to obtain the same RSNs as

fMRI but focus more on features, which are uniquely identifiable with

MEG. Still, the direct comparison between fMRI and MEG as done in

the present study is a necessary step to make MEG accepted for the

identification of RSN as known from the fMRI literature.

4.6 | Recommendation for data-driven RSN
analysis

Based on our systematic comparison the recommendation for extract-

ing data-driven RSN from MEG data is to use the Envelope-SVD

approach, because it yielded significantly better correspondence for

most fMRI-RSN and in the two remaining cases, it was similar to the

other approaches (i.e., no significant difference). As this approach

requires the extraction of the Hilbert-Envelope in different frequency

bands, the filter setting is also a relevant choice and here the recom-

mendation is to use a wide-band, that is, a filter that encompasses the

whole frequency band of interest, IIR filter.

5 | CONCLUSION

In summary, the novel Envelope-SVD approach successfully extracted

the RSN from electrophysiological recordings. Consistent with theory,

this approach identified a dominant frequency component for the

RSNs. For five RSNs, in particular those, which are anatomically con-

fined, the Envelope-SVD yielded significantly higher correspondence

to fMRI-RSNs compared to other data-driven methods. The excep-

tions were the DMN and the right frontoparietal network, where

megPAC yielded a similar correspondence by incorporating the princi-

ples of long- and short-range communication. Overall, these findings

enhance our understanding on the electrophysiological underpinnings

of the fMRI-RSN.
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