Dokument: Deep Learning-Based Denoising of CEST MR Data: A Feasibility Study on Applying Synthetic Phantoms in Medical Imaging

Titel:Deep Learning-Based Denoising of CEST MR Data: A Feasibility Study on Applying Synthetic Phantoms in Medical Imaging
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=67257
URN (NBN):urn:nbn:de:hbz:061-20241029-121046-5
Kollektion:Publikationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Texte » Artikel, Aufsatz
Medientyp:Text
Autoren: Radke, Karl Ludger [Autor]
Kamp, Benedikt [Autor]
Adriaenssens, Vibhu [Autor]
Stabinska, Julia [Autor]
Wittsack, Hans-Jörg [Autor]
Gallinnis, Patrik [Autor]
Antoch, Gerald [Autor]
Müller-Lutz, Anja [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]3,72 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 29.10.2024 / geändert 29.10.2024
Stichwörter:noise reduction, noise detection, deep learning, CEST, synthetic phantoms, noise suppression
Beschreibung:Chemical Exchange Saturation Transfer (CEST) magnetic resonance imaging (MRI) provides a novel method for analyzing biomolecule concentrations in tissues without exogenous contrast agents. Despite its potential, achieving a high signal-to-noise ratio (SNR) is imperative for detecting small CEST effects. Traditional metrics such as Magnetization Transfer Ratio Asymmetry (MTRasym) and Lorentzian analyses are vulnerable to image noise, hampering their precision in quantitative concentration estimations. Recent noise-reduction algorithms like principal component analysis (PCA), nonlocal mean filtering (NLM), and block matching combined with 3D filtering (BM3D) have shown promise, as there is a burgeoning interest in the utilization of neural networks (NNs), particularly autoencoders, for imaging denoising. This study uses the Bloch–McConnell equations, which allow for the synthetic generation of CEST images and explores NNs efficacy in denoising these images. Using synthetically generated phantoms, autoencoders were created, and their performance was compared with traditional denoising methods using various datasets. The results underscored the superior performance of NNs, notably the ResUNet architectures, in noise identification and abatement compared to analytical approaches across a wide noise gamut. This superiority was particularly pronounced at elevated noise intensities in the in vitro data. Notably, the neural architectures significantly improved the PSNR values, achieving up to 35.0, while some traditional methods struggled, especially in low-noise reduction scenarios. However, the application to the in vivo data presented challenges due to varying noise profiles. This study accentuates the potential of NNs as robust denoising tools, but their translation to clinical settings warrants further investigation.
Rechtliche Vermerke:Originalveröffentlichung:
Radke, K. L., Kamp, B., Adriaenssens, V., Stabinska, J., Gallinnis, P., Wittsack, H.-J., Antoch, G., & Müller-Lutz, A. (2023). Deep Learning-Based Denoising of CEST MR Data: A Feasibility Study on Applying Synthetic Phantoms in Medical Imaging [OnlineRessource]. Diagnostics , 13(21), Article 3326. https://doi.org/10.3390/diagnostics13213326
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:29.10.2024
Dateien geändert am:29.10.2024
english
Benutzer
Status: Gast
Aktionen