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Abstract: Chemical Exchange Saturation Transfer (CEST) magnetic resonance imaging (MRI) pro-
vides a novel method for analyzing biomolecule concentrations in tissues without exogenous contrast
agents. Despite its potential, achieving a high signal-to-noise ratio (SNR) is imperative for detecting
small CEST effects. Traditional metrics such as Magnetization Transfer Ratio Asymmetry (MTRasym)
and Lorentzian analyses are vulnerable to image noise, hampering their precision in quantitative
concentration estimations. Recent noise-reduction algorithms like principal component analysis
(PCA), nonlocal mean filtering (NLM), and block matching combined with 3D filtering (BM3D)
have shown promise, as there is a burgeoning interest in the utilization of neural networks (NNs),
particularly autoencoders, for imaging denoising. This study uses the Bloch–McConnell equations,
which allow for the synthetic generation of CEST images and explores NNs efficacy in denoising these
images. Using synthetically generated phantoms, autoencoders were created, and their performance
was compared with traditional denoising methods using various datasets. The results underscored
the superior performance of NNs, notably the ResUNet architectures, in noise identification and
abatement compared to analytical approaches across a wide noise gamut. This superiority was
particularly pronounced at elevated noise intensities in the in vitro data. Notably, the neural architec-
tures significantly improved the PSNR values, achieving up to 35.0, while some traditional methods
struggled, especially in low-noise reduction scenarios. However, the application to the in vivo data
presented challenges due to varying noise profiles. This study accentuates the potential of NNs as
robust denoising tools, but their translation to clinical settings warrants further investigation.

Keywords: CEST; deep learning; synthetic phantoms; noise detection; noise reduction; noise suppression

1. Introduction

Chemical Exchange Saturation Transfer (CEST) imaging has been recognized as a
pivotal tool in the realm of biosensitive magnetic resonance (MR) imaging (MRI) [1,2]. It
allows for the comprehensive analysis of tissue biomolecule concentrations without the
need for exogenous contrast agents [3]. Although CEST imaging can provide valuable infor-
mation about solutes at low concentrations, a high signal-to-noise ratio (SNR) is essential
for accurately detecting subtle CEST effects [4,5]. Achieving a high SNR ensures that the
CEST effects, no matter how subtle, are distinctly discernible against the background noise.
This becomes especially crucial when working with low concentrations or when the effects
are inherently small, as a compromised SNR could lead to potential misinterpretations or
even missed detections.
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While conventional methodologies, including Magnetization Transfer Ratio Asymme-
try (MTRasym) and Lorentzian analyses, are effective metrics for CEST imaging [6,7], they
do exhibit susceptibility to image noise [5,8]. Mathematically, MTRasym is defined as the
difference between the signals at positive and negative frequency offsets with respect to
the water resonance. This metric essentially compares the two sides of the Z spectrum. The
symmetry of the Z spectrum is disturbed by the presence of noise, leading MTRasym to pro-
vide skewed results. Lorentzian analysis involves fitting the CEST spectrum to Lorentzian
line shapes, where noise in the spectrum can invalidate this assumption especially since
the peaks are no longer symmetrical.

This susceptibility inherently lowers the precision, complicating the shift to quanti-
tative concentration estimations by CEST in the in vivo analyses [5]. However, one must
acknowledge the omnipresence of noise across all image-processing modalities. In response,
a slew of noise-reduction algorithms have been introduced in recent years, notable among
which are principal component analysis (PCA), which allows noise reduction based on
ordering noise and signal components in the Z-spectrum signal curve [8,9], nonlocal mean
filtering (NLM), which is based on a weighted signal adjustment of the nearest neigh-
bors [7,10], and block matching combined with 3D filtering (BM3D), which associates 2D
blocks of the image with similar areas in the image to reduce noise [10–12].

In recent years, neural networks (NNs) have been applied in many areas, such as
segmentation [13,14], classification [15], and also noise reduction [16–18]. While there
are already studies like the one by Hunger et al. that have shown the potential of Deep
Learning (DL) for CEST imaging [19], to our knowledge, the potential for noise reduction
has not yet been investigated. For techniques like Diffusion Tensor Imaging (DTI), the
feasibility of noise reduction using DL has already been demonstrated [20]. These networks,
consisting of an encoder and a decoder, are characterized by their structure and operation
as effective means for noise reduction [21,22].

Nevertheless, the efficacy of these NNs is invariably tethered to the volume and
quality of the training data on hand. In medical imaging, challenges such as patient
privacy concerns, data variability, rarity of certain conditions, and the need for expert
annotations make procuring pertinent data particularly difficult [13,23,24]. However, the
Bloch–McConnell equations offer an optimistic perspective. With these equations, the
signal response inherent in CEST images can be determined numerically, paving the way
for the generation of synthetic MR images [5,6,25,26].

In this work, we analyze the use and efficiency of NNs in CEST imaging, focusing
mainly on applying autoencoders. Based on synthetically generated phantoms, we aimed
to develop autoencoders for the noise reduction in CEST images. We compared the perfor-
mance of these neural architectures with established analytical image denoising methods
such as PCA, BM3D, and NLM based on simulated anatomical data, in vitro phantom
measurements, and an in vivo intervertebral disc (IVD) measurement. Our hypotheses are

(1) Neural Networks, especially autoencoders, are potentially superior in denoising CEST
images compared to traditional denoising methods.

(2) Given adequate training data, NNs can consistently detect and suppress noise more
efficiently than analytical algorithms.

(3) The models trained in this study can be applied effectively to real CEST data.

For this purpose, this study generates synthetic data, trains NNs based on this data,
and validates the performance on the anatomical Zubal phantom, phantom measurements,
and in vivo data.

2. Materials and Methods
2.1. Study Design

The present work was designed as a prospective feasibility study. It includes sequen-
tial in silico, in vitro, and in vivo CEST MRI examinations performed in the following
order: (1) implementation and validation of an autoencoder for denoising in silico data,
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(2) validation of the developed approach using in vitro experiments, (3) evaluation of
in vivo transferability of an in silico-developed autoencoder on IVDs.

Written informed consent was obtained from the female volunteer and the study was
approved by the local ethics committee (Ethical Committee, Medical Faculty, University of
Düsseldorf, Germany, study number 5087R).

2.2. Generation of In Silico Phantoms

First, we created a synthetic CEST dataset to serve as a reference standard (similar
to ground truth) for improving the NN noise reduction methods. This was achieved by
creating in silico phantoms and combining various geometric shapes of different sizes and
arrangements. Over 2000 iterations of layering these shapes, along with morphological
optimization, resulted in complex geometric phantoms with smoothed outlines, as depicted
in Figure 1.
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Figure 1. Synthesized In Silico Phantom Pool Parameter Maps: This illustration presents a system-
atically conceived in silico phantom generated via iterative layering of geometric forms and the
corresponding spatial distribution of pool parameters. The CEST effects for each voxel are calculated
using the Bloch–McConnell equations.

In addition, an ellipsoidal foreground with morphological structures was created to
simulate the diversity of biological structures. We created specific distribution maps for
each defined pool and the associated parameters (Table 1). These maps were integrated
with Pool A, symbolized by water, to uniformly depict geometric shapes and water signals.



Diagnostics 2023, 13, 3326 4 of 20

Table 1. Overview of the specified chemical exchange and sequence parameters for the
CEST phantoms.

Exchange Parameters Sequence Parameters

Water
(Pool 1)

T1 (s) 0.5–2.5 ∆ω (ppm) 4–6
T2 (ms) 40–500 N 8–40
∆ (ppm) 0 Tp (ms) 20–100

Metabolites
(Pool 2–5)

T1 (s) 0.5–2.5 DC 0.5
T2 (ms) 1–20 TE (ms) 2–40

Exchange rate k (Hz) 50–4000 TR (ms) 11–60
Fractional concentration (mM) 0–800 Dyn 50

∆ (ppm) 0.5–5.0
Abbreviations: T1—Longitudinal relaxation time, T2: Transverse relaxation time, ∆ω—Frequency acquisition
range, N—Number of saturation pulses, Tp—Pulse duration, ∆—Chemical shift difference to water, DC—Duty
Cycle, TE—Echo time, TR—Repetition time, Dyn—Number of equidistant offset frequencies in the Z spectra.

The foundation of our synthetic image generation lies in the Bloch–McConnell equa-
tions, a set of differential equations that describe the evolution of nuclear magnetization
in a multi-pool exchange system under the influence of radiofrequency irradiation. In the
context of CEST MRI, these equations allow for an accurate representation of the mag-
netization transfer between the solute and solvent pools. The capacity to simulate these
exchange dynamics provides a nuanced understanding of CEST contrast mechanisms,
making it possible to generate realistic synthetic images that replicate the intricacies of
actual CEST MRI scenarios. Utilizing the Bloch–McConnell equations, we extrapolated
the CEST exchange dynamics across discrete spin systems. By employing the created
phantoms along with the set thresholds for CEST and relevant MR parameters (Table 1), we
generated a collection of 10,000 random 2D CEST datasets, each with a resolution matrix
of 128 × 128 pixels and including 50 offset frequencies. The Z spectra for each dataset
were customized at a voxel level, encompassing a spectrum of 2–5 pool systems, includ-
ing a singular water reservoir and up to a quartet of exchange pools. We used Gaussian
saturation pulses throughout the computational process, reflecting our standard clinical
MRI protocols [5,27]. However, parameters such as echo time (TE), repetition time (TR),
and offset frequency range (∆ω) were subjected to variations. The digital framework we
developed, available at [GitHub: https://github.com/MPR-UKD/CEST-Generator, last
access on: 7 May 2023], is based on the Bloch–McConnell Simulation Tool by Zaiss et al. (ac-
cessible at https://github.com/cest-sources/BM_sim_fit/, last access on: 7 May 2023) and
is made available to the scientific community under a GNU license. The Bloch–McConnell
simulation by Zaiss et al. has already been validated in numerous studies [25,26] and
allowed a transfer from the in silico experiments to the in vivo studies [5,6]. With our
extension, 2D images can be simulated, offering new potential for further studies.

2.3. Neural Network Architectural Design

The designed models are based on the UNet architecture and its modified form, the
ResUNet (Figure 2). Both architectures are characterized by an encoder, a latent space, and
a decoder [22,28].

The UNet and its modification, ResUNet, are deep convolutional neural network
architectures that have shown significant prowess in medical image processing tasks,
especially in image denoising. Their design, which conserves spatial context throughout
the encoding and decoding phases, makes them inherently adept for denoising applications.
The ResUNet, with its enhanced structure featuring additional residual blocks, facilitates an
efficient flow of information through the network. This ensures a meticulous suppression
of noise while preserving the essential features of the image [29].

In the UNet encoder, a sequence of “down” blocks extracts abstract representations of
the input data x ∈ X, and at the same time, the dimensionality is reduced. Each “down”
block processes the input via a sequence of 2D convolution layers (Figure 2: left path).

https://github.com/MPR-UKD/CEST-Generator
https://github.com/cest-sources/BM_sim_fit/
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Figure 2. Comparative Architectures of UNet and ResUNet: This figure depicts schematic repre-
sentations of the standard UNet and its advanced derivative, the ResUNet, both modified for CEST
dataset denoising. Each subordinate layer clearly displays channel numbers juxtaposed with image
magnitude relative to primary input dimension, denoted as “I”.

The latent space further transforms the data using two residual blocks, doubling the
number of features: z = Rl(F(x)), where Rl represents the residual block in the latent
space [30].

The decoder of the UNet uses “Up” modules to gradually increase the spatial resolu-
tion (Figure 2: right path). Each “Up” module U can be represented as U(z) = G(z)⊕ z,
where G(z) symbolizes the transformation via the decoder and⊕ signifies the concatenation
of features [28].

The ResUNet extends the UNet using additional residual blocks in the encoder and
decoder. These blocks allow input information to be passed directly to the output layers,
minimizing information loss during training [22,30]. A residual block Rd can be described
as Rd(x) = F(x) + x, where F(x) represents the transformation via two successive 2D
convolution layers. The 1x1 convolution, which serves as a shortcut, allows for channel
matching between the input and output [13,31].
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For both proposed models, namely the U-Net and its counterpart ResUNet, a dual-
pronged training strategy was implemented. The first model M1 was trained to estimate
the noise and subtract it from the image x: x′ = x −M1(x). The second model M2 was
trained to remove the noise directly from the image data, x′ = M2(x). For ease of reference
in the subsequent sections, the models are denominated as “ResUNet-NE-yes” when the
ResUNet incorporates noise estimation and “ResUNet-NE-no” when it omits this feature.
A parallel nomenclature will be adopted for the U-Net variants.

To guarantee each structure achieves the best middle ground between intricacy and
capability, their depth was set at four levels. This provided a sufficient abstraction gradi-
ent which is crucial for the effective extraction of relevant data features including noise
assessment and its following reduction.

2.4. Training

The computational experiments were executed on a specialized workstation, forti-
fied with dual Intel®Xeon®Gold 6242R CPUs (Intel Corporation, Santa Clara, CA, USA)
and an expansive memory allocation of 376 GB RAM. For the purpose of expediting the
training and computational tasks, the infrastructure incorporated four RTX 3090 GPUs
(NVIDIA, Santa Clara, CA, USA), facilitating parallelized training across the entirety of the
graphical processing units. The computational framework was constructed upon Python
(version 3.10), with the architectural designs of the models being instantiated via PyTorch
v1.13.0 [32] and further enhanced using PyTorch Lightning [33]. Model tuning was per-
formed using the ADAM optimization algorithm initialized with a learning rate parameter
of 0.01 and supplemented by a weight loss coefficient of 10−6 [34]. To ensure adaptive
learning rate modulation throughout the training trajectory, a scheduler mechanism (“Re-
duceLROnPlateau”) was integrated, characterized by a patience parameter of three and a
decrement factor of 0.1. The training was over 30 epochs. The selected loss metric was the
Mean Squared Error (MSE) and the data batches were partitioned into batches of 40. Mim-
icking real operational conditions, each image during training was exposed to a variable
noise parameter sigma ranging between 0 and 0.2. Initially, a Fourier transformation was
applied to convert the image data to the frequency domain. Afterwards, Gaussian noise
was added to both the real and imaginary components. A subsequent inverse Fourier trans-
formation allowed the reconstruction of the image, incorporating the noise elements [35].
Once the noise was added, the altered image was fed into the model. Additionally, a
random frequency deviation was applied, extracting a sequence of 41 dynamics from the
original set of 50 dynamics.

2.5. Analytical Denoising Techniques

In this study, we compared the neural model’s denoising performance against ana-
lytical noise suppression methodologies. These techniques encompassed non-local means
(NLM), principal component analysis (PCA), and block matching combined with 3D filter-
ing (BM3D).

PCA: The PCA technique aims to denoise the multidimensional dataset D by retaining
only the principal components with the highest variance [8,9]. Mathematically, the dataset
D is transformed into a set of orthogonal vectors, with each vector representing a principal
component. The decision on the number of principal components to retain is guided by
criteria such as “median”, “Nelson”, and “Malinowski” [8], where k represents the optimal
number of principal components:

D′ = PCAk(D) (1)

Naming Convention: For instance, a PCA using the Nelson criteria would be named
PCA-Nelson.

BM3D: The BM3D technique, based on the work of Dabov et al. [36], is an advanced
image-denoising method characterized by its high efficiency and quality [37]. The algorithm
has two main phases: Block matching and 3D filtering [36], of which these two main phases
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are run through twice to obtain a baseline estimate and then the denoised image. During
the block-matching phase, the algorithm searches for blocks similar to each reference block
within the image. These analogous blocks are then arranged in a 3D array, with the number
of similar blocks defining the third dimension. Mathematically, this process can be depicted
using the mapping function M, which, given the reference block Br, yields a stack of similar
blocks S [36,37]:

S = M(Br) (2)

In the 3D filtering phase, this 3D block stack is transformed, typically with a 3D
transform function T; in this work, it is the 3D discrete cosine transform. After the transfor-
mation, the coefficients in the transform space are filtered to reduce noise. Then, an inverse
3D transform is performed to return the filtered block stack to the image space. This can be
mathematically described as

S′ = T−1(F(T(S))) (3)

where F is the filter function in the transformation space. The optimization in BM3D
includes the variation in the 2D block size B and the search window size N. By varying
these parameters, a balance between noise reduction and the preservation of image infor-
mation is sought. These parameters have a decisive influence on the computation time of
the algorithm.

Naming Convention: For instance, a BM3D configuration with a window size of 11
and block size of 4 would be denoted as BM3D WS_11_BS_4.

NLM: NLM is an adaptive filtering method that exploits image redundancy to mitigate
noise [7,38,39]. For any pixel p and its associated search window W, the weight of neigh-
boring pixels is determined using the likeness of their local surroundings. This relationship
can be expressed:

p′ = NLMW(p) (4)

The dimension of the search window W directly impacts noise suppression. A broader
W enhances noise reduction, albeit with the trade-off of potential image blurring. The
NLM algorithm employs two key window sizes: A larger “search” window and a smaller
“local” window.

Naming Convention: For instance, a configuration using a big window of 21 and a
small window of 5 is denoted as NLM BW_21_SW_5.

2.6. In Silico Validation

Digital phantom: To investigate the properties of digital phantoms in the presence
of noise, two specific Zubal phantoms [40], specifically of the abdomen and head, were
used (Figure 3). These phantoms are publicly available from the Image Processing and
Analysis Group at Yale University (https://noodle.med.yale.edu/zubal/, last access on:
20 August 2023). In each defined region of these phantoms, different generated Z spectra
were superimposed based on Bloch–McConnell simulations and using the same parameters
as the neural training phantoms. A total of 200 such customized phantoms were created,
with an equal distribution of 100 each for the head and abdomen phantoms. Considering
the three-dimensional nature of these phantoms, a single, random layer was selected for
analytical examination during each iteration.

Analysis: The collection of 200 CEST datasets was systematically contaminated with
different noise levels, indicated by sigma values from 0.01 to 0.25 (0.01, 0.02, 0.03, 0.04, 0.05,
0.075, 0.1, 0.15, 0.2, and 0.25). After the introduction of this noise, the datasets underwent
detailed analysis and processing using various denoising methods. The peak signal-to-
noise ratio (PSNR) of the Z spectra was used as a quantitative measure to evaluate the
effectiveness of each denoising method. PSNR can be mathematically expressed as

PSNR = 10·log10

(
MAX2

I
MSE

)

https://noodle.med.yale.edu/zubal/
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where MAXI is the maximum possible pixel value on the image (1 for the Z spectra) and
MSE is the mean squared error. This metric offers an impartial benchmark to ascertain the
caliber of the denoised data vis-à-vis the unadulterated signal.
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Figure 3. Visualization of Color-coded Layers in Zubal Phantoms: A visual representation of selected
layers and corresponding color codings within Zubal phantoms is provided, depicting a subset of the
overall dataset. Each unique color represents a specific region with a generated Z spectrum, based on
parameters detailed in Table 1 and calculated using the Bloch–McConnell equations.

2.7. MRI Validation

All MRI evaluations were performed on a 3T MRI (MAGNETOM Prisma, Siemens
Healthineers, Erlangen, Germany). Depending on the specific examination, either a ded-
icated 15-channel knee coil (Tx/Rx Knee 15 Flare Coil, Siemens Healthineers, Erlangen,
Germany) for the phantom CEST study or a 32-channel body coil (Siemens Healthineers,
Erlangen, Germany) for the in vivo CEST study was employed. MRI protocols comprised a
set of localization sequences tailored for planning and a region-specific CEST measurement,
detailed in Table 2. Mirroring the design of the simulated phantoms, a series of 42 presatu-
rated images were captured at distinct saturation frequencies, all symmetrically centered
around the water resonance, with a reference image at 300 ppm.

Table 2. MRI parameters for both CEST experiments.

In Vitro CEST In Vivo CEST

TE (ms) 5.76 3.50
TR (ms) 11 * 2500

Flip Angle (◦) 10 15
Slices 1 1

Slice Thickness (mm) 10.0 and 1.5 6.0
FoV (mm ×mm) 128 × 128 200 × 200

Pixel Size (mm ×mm) 1.0 × 1.0 1.6 × 1.6
B1 (µT) 0.4 0.9
tp (ms) 50 100
td (ms) 50 100

DC 0.5 0.5
n 15 40

Duration (min:s) 3:37 12:05
Abbreviations: TE: Echo Time, TR: Repetition Time, FoV: Field of View, B1: Magnetic Field Strength, tp: Pulse
Time, td: Delay Time, DC: Duty Cycle, and n: Number of saturation pulses, * break between the offsets 2 s.
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2.7.1. In Vitro Study

Phantom Construction: An MR-compatible phantom with slots for eight test tubes was
used, as outlined in a previous study [6]. Creatine (Carl ROTH, Karlsruhe, Germany) was
introduced into these tubes at progressive concentrations: 50 mM, 100 mM, 150 mM, and
200 mM. This was achieved by dissolving the creatine in a PBS (phosphate-buffered saline)
solution stabilized to a pH of 7.3. Tubes located across from each other in the phantom held
the same concentration (Figure 4).
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Figure 4. Creatine Concentration Distribution in Phantom: This figure displays an MR image of
the 8-chamber phantom at 300 pm, illustrating the positions of sample tubes filled with varying
concentrations of creatine.

In vitro phantom measurement: After preparation, the phantom was placed at the
center of both the knee coil and the MR scanner. Subsequently, two separate recordings of
the phantom were initiated using the same CEST sequence in terms of saturation time, echo
time, and base resolution. The first measurement, considered as the reference or “ground
truth”, had a slice thickness of 10 mm, whereas the second had a slice thickness of 1.5 mm,
to introduce a higher noise profile.

Evaluation: Post-measurement, both datasets underwent evaluations, encompassing
their original state and denoised versions. In this evaluation, a Python-based algorithm
was utilized to calculate the MTRasym values, focusing specifically on the creatine-relevant
frequency range of 1.5–2.5 ppm. The Water saturation shift referencing (WASSR) the
correction was applied to the denoised CEST signal for B0 accuracy [41]. Following the
correction, MTRasym maps were generated and the mean as well as the standard deviation
for each tube were calculated.

2.7.2. In Vivo Studies

In vivo measurement: To investigate the transferability of our trained deep learning
models to the in vivo data, a 26-year-old female volunteer was positioned feet-first in the
supine position in the MR scanner. A body coil was placed at the level of the lumbar spine,
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while the spine coil integrated into the MR scanner table was located below the back. The
volunteer was positioned so that the lumbar spine was centrally located in the isocenter
of the scanner. For the MR measurement, a B1 of 0.9 µT was used, analogous to previous
studies [5,27].

Evaluation: The measurement was evaluated both without and with denoising.
MTRasym values were determined in the OH-specific range of glycosaminoglycans
(0.9 ppm–1.9 ppm) [42]. Analogous to the phantom measurement, the Z spectra were
self-corrected with WASSR and MTRasym maps were generated.

2.8. Evaluation Metrics

The investigation of the trained autoencoders regarding their ability to denoise CEST
images by compressing and reconstructing the image data was the focus of our study. Anal-
ogous to the analytical methods, a noisy Z spectrum is passed and a denoised Z spectrum
is returned. To provide a reliable quantitative measure for evaluating the effectiveness of
the various denoising strategies, the peak signal-to-noise ratio (PSNR) was used as the
primary assessment criterion.

For the digital (in silico) phantom evaluations, PSNR acted as a critical tool to measure
the accuracy of the reconstructed signal profiles on a pixel-by-pixel basis throughout each
Z spectrum. This allowed for an unbiased assessment of the denoising methods’ ability to
reproduce the noise-free signal characteristics.

For the MRI data, a visual inspection of the generated MTRasym maps was prioritized.
The focus of evaluation was on identifying a consistent signal pattern within individ-
ual tubes and detecting the clear boundary between different concentration levels and
consistent values between IVDs were expected.

3. Results
3.1. Neural Network Training Assessment

Throughout the iterative training over 30 epochs, the NN architectures—UNet-NE-No,
ResUNet-Ne-Yes, and UNet-NE-No—showed significant improvement in reconstructing
the CEST signals. The benchmark PSNR for the test dataset was 20 without denoising, but
the neural architectures improved this metric to 34.3, 35.0, and 32.9, respectively, indicat-
ing a considerable increase in signal accuracy. Contrarily, the UNet-NE-Yes architecture
demonstrated only incremental enhancement in the signal-to-noise ratio, achieving a PSNR
of 21.2. This suggests that this UNet variant largely replicated the original image without
making significant contributions to the denoising process.

Furthermore, the final trained models, as well as the implemented denoising meth-
ods, can be used via a simple command line tool and are freely available on GitHub:
https://github.com/MPR-UKD/CEST-Denoise, last access on: 7 May 2023.

3.2. Digital Phantom (In Silico) Analysis

The simulations showed a clear relationship between the denoising performance, the
magnitude of the noise perturbation, and the denoising strategy used (Figure 5). When
applying the PCA algorithm, both the “median” and “Malinowski” criteria led to a steady
increase in PSNR values via the varying noise levels. This trend suggests that as the noise
levels rose, the PCA methods attempted to retain more signal information. However,
there was significant variance between the different layers of the phantom, which was
reflected in substantial standard deviations. In contrast, the Nelson criterion provided
PSNR results comparable to the noise, indicating excessive component retention, implying
a potential overfitting in noise representation. Although the BM3D and NLM techniques
also produced successful results as the noise level increased, they proved inapplicable,
potentially due to their inherent design for more generic noise patterns. Notably, the NN
models, which were effective during the training phase, continued to show commendable
denoising capabilities, achieving PSNR ranges of 30–40. This highlights the adaptability
and robustness of neural networks in handling diverse noise structures. Their performance

https://github.com/MPR-UKD/CEST-Denoise
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distinctly outperformed the PCA-based methods, which was particularly evident above a
noise intensity of 0.05, underscoring the superiority of trained neural models in challenging
the noise conditions.
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Figure 5. Comparative PSNR Results Across Various Noise Sigma Levels: This figure displays PSNR
results for different noise levels and denoising methods determined over 200 in silico phantoms. It
illustrates the efficiency of methods like PCA and ResUNets in noise reduction and the ineffectiveness
of methods like BM3D in low-noise reduction conditions.

3.3. In Vitro Phantom Measurement

When studying the phantom with a slice thickness of 10 mm, a noise level (sigma) of
0.02 was measured and most of the denoising methods were effective in minimizing noise
in the CEST MTRasym values (Figure 6, left panel). However, deviations from this pattern
were noted in the two UNet-based neural algorithms and the BM3D techniques with a
window size of 37. The phantoms integrated with creatine concentrations manifested a
progressive augmentation in the MTRasym metrics, commencing at approximately 0.5% at
50 mM and culminating at a substantial 3.6% at 200 mM. In evaluations with a reduced
slice thickness of 1.5 mm, an increase in the noise sigma = 0.24 was observed. In align-
ment with the trajectories delineated in prior in the in silico investigations, the ResUnet
algorithms approximated the MTRasym metrics ascertained for the 10 mm phantom under
pronounced noise conditions, effectuating noise attenuation (Figure 6, right panel). While
the PCA methods aided in noise reduction, discrepancies occurred at concentrations be-
tween 150 mM and 200 mM. Supporting the findings of the in silico analyses, the NLM
method provided minimal noise suppression. In contrast, the BM3D approach struggled
to effectively neutralize the noise within the MTRasym dataset, leading to physiologically
incompatible results.
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and Methods: This figure visually presents MTRasym map overlays from in vitro phantom studies,
highlighting methodological annotations and resulting MTRasym metrics for each tube, providing
insights into the impact of different methodologies on noise reduction and MTRasym values at varying
slice thicknesses.

3.4. In Lumbar IVD Evaluation

In vivo, the studies of the lumbar IVD quantified a noise parameter (sigma) of 0.15.
PCA-based methods, especially those utilizing “median” and “Malinowski” criteria, achieved
an improved MTRasym effect within the IVD. In addition, the observed variability between
IVD segments was subtly attenuated, enhancing the differentiation between the nucleus
pulposus (NP) and annulus fibrosus (AF). In contrast, the NN methods (ResUnet and UNet)
caused a significant reduction in MTRasym effects beyond the anticipated physiological
ranges, with the MTRasym metrics displaying values below zero (Figure 7). Non-local
means (NLM) techniques tended to homogenize the data, resulting in slightly attenuated
CEST responses, but they were still consistent with the datasets without denoising. In line
with prior in vitro evaluations, the BM3D method produced MTRasym results that strayed
from the physiological standards.
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Figure 7. Overlay of MTRasym Map on In Vivo IVD Measurement: The overlay of the MTRasym

map on the in vivo IVD measurement is depicted with methodological annotations, showcasing the
variations in noise reduction and delineation between NP and AF using different methods such as
PCA, neural approaches, and BM3D methods.

4. Discussion

In this study, we assessed the efficacy of various denoising methods, emphasizing the
role of NNs in enhancing CEST images. Our findings underscore that the in silico-generated
phantom data acts as a valuable resource for developing and fine-tuning neural methods
that efficiently remove noise from CEST MRI images. Notably, the two distinct ResUNet
methods proved particularly effective for the data contaminated by substantial noise from
thermal processes, delivering results comparable to, if not superior to, analytical methods
like PCA. The performance assessment of ResUNet on our synthetic phantoms revealed
its significant capabilities in noise suppression, particularly for thermal process-related
noise. Crucially, our results indicate that while traditional denoising methods offer consis-
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tent performance, neural network-based approaches, particularly ResUNet, demonstrate
enhanced adaptability and precision in diverse and challenging noise scenarios. Among
the evaluated neural architectures, ResUNet-NE-yes, which employs a two-step approach
of noise identification followed by image combination, showcased a marginally superior
performance over the direct denoising method. These outcomes reiterate the potential of
neural networks, especially architectures like ResUNet, in enhancing CEST MRI images
and further emphasize the instrumental role of in silico phantoms in refining and validating
such neural methods. It is important to note that a method, which first identifies the noise
and then combines it with the original image (referred to here as ResUNet-NE-yes), slightly
excelled over the approach that exclusively reconstructs the denoised image. However, a
significant difference was seen when comparing the in silico and in vitro datasets with the
in vivo data. This divergence is primarily due to different noise distributions, which were
not considered during the NN training phase but appeared in vivo. Visible movements in
the image space due to respiration and peristalsis were not visible in the ROIs, but the NNs
analyzed the whole image without a prior selection of ROIs.

Furthermore, the proficiency of noise reduction algorithms, especially when utilizing
neural network-based strategies, plays a pivotal role in the quantitative estimation of
biomolecule concentrations in tissues via CEST MRI. As concentration determinations typi-
cally depend on discerning differences in the MTRasym values obtained at varied B1 field
strengths, it becomes essential that the data remain consistent and free from noise-induced
distortions across multiple measurements. With the enhanced image clarity offered by
neural network denoising, we can ensure a more dependable extraction of these values,
leading to accurate biomolecular concentration measurements. This advancement, in turn,
magnifies the diagnostic and prognostic acumen of CEST MRI, solidifying its stature as a
trusted tool in clinical studies. From an analytical denoising standpoint, the PCA method
demonstrated consistent superiority, overshadowing the NLM and the BM3D techniques.
This observation aligns with the foundational work presented by Breitling et al. [8], where
the essence of segregating the signal into pertinent segments as opposed to noise-laden com-
ponents was emphasized for CEST MR imaging. After this segmentation, noise elimination
is simplified. A challenge, however, persists in determining the optimal number of compo-
nents to ensure effective noise reduction. Mirroring observations from the aforementioned
study by Breitling et al., our research confirmed that while the Nelson criterion showed less
than ideal denoising effectiveness, both the Median and Malinowski criteria showed strong
performance [8]. A notable challenge encountered during the study was the 1.5 mm in vitro
phantom. Here, while the data was successfully denoised, the reduction in components
curtailed the discernment between the concentrations of 150 mM and 200 mM creatine,
a distinction that was clear in the baseline 10 mm measurement. Contrarily, the neural
methodologies under investigation achieved robust noise reduction an almost impeccable
MTRasym distribution. However, for the in vivo evaluation of the IVD, the PCA methods
were again convincing and allowed differences as described in the literature between NP
and AF, where these differences were visible in the image. In contrast, in previous studies,
they were only marginal and not always clearly visible [27,43].

The application of NLM as a denoising technique in MRI has been validated via
numerous studies and its utility in CEST studies is also well documented [7,10,38,39]. In a
parallel development, BM3D has surfaced as a modern extension, mainly in the field of
image processing. However, our research findings indicated that both NLM and BM3D
were not ideally suited for our specific CEST experiments. This observation is in contrast
to a recent study by Romdhane et al., where the effective application of both BM3D and
NLM to the CEST data was displayed [10]. However, in the study, Iopamidol was used to
enhance the CEST effect and only a field of view of 3 cm was evaluated, where the pixels in
the image therefore had higher spatial correlations than in our study and in clinical use. It
is imperative to highlight that our MR measurements presented inherent challenges for
these image-centric algorithms. For instance, in the phantom measurement, the subtle
luminance variations between the creatine tubes and the adjacent water might render them
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indistinguishable. Similarly, in the lumbar spine measurement, the diminutive size of
the discs juxtaposed with the surrounding tissue devoid of CEST effects posed specific
challenges for BM3D, which operates on a global scale. This was evident in our findings.
Concurrently, NLM’s performance was suboptimal, resulting in only slight noise reduction
in our tests. Like BM3D, NLM considers the relationship with the nearest neighbors. At
3 Tesla, CEST effects typically are minimal [40,41].

The focus of this study was to investigate the capabilities of NNs in the complicated
area of noise reduction in CEST datasets using only simulated data for the training process.
The exchange of CEST processes can be described and simulated mathematically via the
Bloch–McConnell equations [5,6,25,26]. This foundational theory was augmented using
a systematic combination of synthetic phantoms, exchange rates, relaxation times, and
concentrations, leading to an extensive collection of 10,000 phantoms, each calculated
meticulously on a detailed, pixel-wise level. The inherent noise in MR images is mainly
due to thermal fluctuations [44]. Such thermal noise, principally arising from the random
motion of electrons within the coils, induces intrinsic signal fluctuations [45]. We modelled
this by superimposing noise in the frequency space on both the real and imaginary signal.
Afterwards, we successfully trained different model architectures over 30 epochs.

In our study, we were able to demonstrate the potential of NNs trained only on sim-
ulated data and the transfer to the in vitro data, but we also observed challenges for the
in vivo data. The idealized noise types utilized during our training sessions did not appear
to align with the complex noise environment encountered in the in vivo experiments. For
example, variables such as respiratory- or intestinal movement-related signal fluctuations
in the abdomen degrade the quality of our neural models, thus leading to misinterpre-
tations. For our simulation experiments, at low noise intensity, the superiority of NNs
over the PCA method remains inconclusive. However, as the noise intensity increased,
the neural algorithms began to show pronounced effectiveness. For transferability to the
phantom measurements, it was noticeable that only the ResUNet methods could accurately
distinguish between concentrations of 150 mM and 200 mM of the phantom acquired with
a slice thickness of 1.5 mm. This underscores the versatility of DL algorithms in identifying
and alleviating noise, surpassing the PCA method in this instance. However, our study re-
vealed no transferability beyond static phantom measurements; for in vivo measurements,
as presented in our study, the current models are inapplicable considering the noise model
used in training. The idealized noise types utilized during our training sessions did not ap-
pear to align with the complex noise environment encountered in in vivo experiments. For
example, variables such as respiratory- or intestinal movement-related signal fluctuations
in the abdomen degrade the quality of our neural models, thus leading to misinterpre-
tations. In addressing potential enhancements to our noise reduction algorithms, it is
vital to acknowledge that while our models showed promise, particularly with the in vitro
data, they were trained on idealized noise models. To address the nuanced noise profiles
of the in vivo data, it is essential to include more comprehensive noise models during
training. Incorporating elements such as respiratory or intestinal movement-related signal
fluctuations can result in algorithms that are more apt for real-world clinical scenarios.
Therefore, future efforts to achieve flawless transferability to the in vivo data will require a
comprehensive representation of noise and movement dynamics during the training phase,
which might be a resource-intensive endeavor.

Moreover, even when trained with varying configurations and MR parameters, our
models were constrained to a matrix of 128 × 128 pixels and 41 normalized offset fre-
quencies. This limitation means that any deviation from these parameters requires a new
cycle of data generation and re-training. Specifically, data generation was cumbersome
as we utilized the framework developed by Zaiss et al., which operates on MATLAB
(Matlab R2018a, Natick, MA, USA) [25,26] and cannot be parallelized without additional
licenses. In our study, generating the 10,000 phantoms without multiprocessing on a stan-
dard clinical computer (CPU: Intel® Xeon® W-1250P @4.10 GHz with 16 GB RAM) took
approximately 4000 h. The subsequent training in Python was performed on the clinic’s
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internal GPU server, concluding in just 3 h. It is notable that a recent tool by Herz et al.
enables the computation of Z spectra based on C, potentially significantly accelerating the
data generation [46]. This development offers potential for rapidly generating phantoms in
future research, allowing flexibility in the resolution and dynamic count. In contrast, the
PCA methods are readily adaptable and versatile. However, it is crucial to highlight that
specific challenges emanate from the selected network architectures. In recent years, U-
Net-based models have primarily shown efficacy in image evaluation [47], as corroborated
by our study. However, alternative model architectures, like Long Short-Term Memory
(LSTM) [48], have been particularly effective in the signal evaluation of speech and can
handle data of variable lengths. The exploration of such methodologies is warranted in
future studies for CEST imaging, allowing a trained model to analyze images with different
numbers of dynamics. While the adaptability and precision of neural networks, such as
ResUNet, are commendable, they come with trade-offs in terms of computational demands.
Training these models, even at the specific resolution of 128 × 128 pixels used in our study,
necessitates robust GPUs and extended computational hours. This underscores the need to
strike a balance between algorithmic complexity and computational feasibility. To further
the advancements in this field and build upon our study’s findings, we suggest several key
areas for exploration. These encompass refined in vivo noise modeling, the investigation of
diverse neural network architectures, ensuring greater model flexibility and streamlining
the computational processes for efficiency.

Furthermore, transfer learning has established itself as a cornerstone in the field of
medical image analysis [49,50], as it offers the possibility to use the performance of already
existing trained models for new but similar tasks. Especially in scenarios where data
availability is limited or where domain-specific fine-tuning is desired, transfer learning can
significantly streamline the modelling process. In the context of our study, future studies
could potentially use transfer learning to improve the adaptability of models generalized
based on the simulated data, especially when moving from in vitro to in vivo scenarios.

Although the in silico generated data and NN training were successfully applied
to the phantom data, it is important to highlight that artefacts were visible in the ROIs.
Upon closer inspection, especially for the phantom with a layer thickness of 10 mm, a
checkerboard-like pattern could be observed in the resulting MTRasym values due to the
convolutions. Although these patterns did not affect the average value, they could be
a problem in detecting tiny defects, e.g., in cartilage. Even though such approaches can
denoise 95% of the image more effectively than methods such as PCA, they are prone to
local artifacts, which limits their clinical application. The PCA method proved to be robust
in all experiments.

We have obtained promising results and comprehensive analyses in our study. Never-
theless, some limitations must also be considered:

(1) Resolution and Offset Frequency Limitations: Our study’s results were anchored on a
resolution of 128 × 128 pixels and 41 offset frequencies. As discussed, the number
of offset frequencies is intricately linked to the number of feasible features for PCA.
Notably, some studies, such as those cited [51,52], operated with fewer than 30 offset
frequencies. This can potentially compromise the denoising performance, especially
when utilizing the PCA method. For higher image resolutions, it is expected that the
BM3D approach becomes applicable, as shown in previous studies [12], while NN
training becomes more time-consuming and requires better GPUs.

(2) Specific Dataset Limitations: Our evaluations were primarily centered on a phantom
and an in vivo dataset that was limited to the lumbar IVDs. As discussed, other body
regions might present unique artifacts, leading to varied noise distributions that our
study did not account for.

(3) Comparative Analysis Limitations: In our evaluations, the PCA method consistently
outperformed both the NLM and BM3D techniques. However, it is pivotal to note
that our comparative exploration was restricted to these specific denoising methods.
As mentioned, other denoising techniques could potentially offer enhanced results.
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For instance, recent work by Chen et al. showcased a k-means clustering strategy
designed to accelerate Lorentzian evaluations while inherently reducing noise [53].
Further, as discussed, methods such as the Image Downsampling Expedited Adaptive
Least-squares (IDEAL) [7,54] have been proposed as effective alternatives for reducing
noise during Lorentzian analyses.

(4) Noise Model Disparities: As we emphasized in our discussion, the idealized noise
models used during our training sessions seemed misaligned with the intricate noise
landscapes of in vivo experiments, particularly due to variables like respiratory or
intestinal movement-related signal fluctuations.

(5) Potential for Local Artifacts: As discussed, even though strategies like neural networks
can effectively denoise a significant portion of the image, they are susceptible to local
artifacts, which can hinder their broader clinical applications.

5. Conclusions

Our exploration of noise reduction in CEST-MRI data using neural networks illumi-
nates both the potentials and challenges of modern computational imaging. While neural
networks show promise under specific conditions, conventional PCA methods consistently
provide reliable results, notably outperforming NLM and BM3D.

The application of ResUNet stands out for its ability to detect subtle concentration dif-
ferences. However, translating these findings from simulated to in vivo scenarios remains
a central challenge. This underscores the necessity for designing future CEST-MRI studies
with advanced noise management strategies.

In summary, our study paves the way for future research while emphasizing the need
for continuous optimization and collaboration to fully harness the capabilities of advanced
noise reduction techniques in CEST-MRI.
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