Dokument: Micro-Level Reserving for Claim Count Data

Titel:Micro-Level Reserving for Claim Count Data
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=65522
URN (NBN):urn:nbn:de:hbz:061-20240422-112043-7
Kollektion:Dissertationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Rosenstock, Alexander [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]6,90 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 12.04.2024 / geändert 15.04.2024
Beitragende:Prof. Dr. Bücher, Axel [Gutachter]
Prof. Dr. Scherer, Matthias [Gutachter]
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 510 Mathematik
Beschreibung:Determining the ultimate loss of all claims occurred in an accident year is of primal importance
in actuarial practice. Widely used methods to determine these losses work on so-called loss
triangles, contracting the available information to a tally of all payments for a particular
accident year and development year combination. These triangles, while easier to work with
than individual claims data, contain only a fraction of the information available to an insurer
at a specific point in time, resulting in subpar predictions. With the progress of computational
power and the advent of advanced analytical methods, research interest in more granular
claim reserving methods has picked up in recent years, going back to Norberg [12]. For the
subtask of determining the ultimate claim counts, a micro-level model with individual claims
and individual contracts as the smallest unit of observation is developed. The model is used
to derive a set of micro-level predictors for claim counts which are analyzed in a large scale
simulation study and on a real-world general insurance dataset, showing increased out-of-
sample accuracy on real-world data and increased robustness to violations of basic model
assumptions on synthetic data.
When analyzing observable insurance data the random truncation inherent in the observations
must be taken into account. Methods to perform parameter estimation and distribution
learning for arbitrary distributions in this setting are developed. Accompanying software in
the form of an R package available on CRAN enables swift application of the methods.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Mathematik » Mathematische Statistik und Wahrscheinlichkeitstheorie
Dokument erstellt am:22.04.2024
Dateien geändert am:22.04.2024
Promotionsantrag am:15.11.2023
Datum der Promotion:11.04.2024
english
Benutzer
Status: Gast
Aktionen