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Abstract

Determining the ultimate loss of all claims occurred in an accident year is of primal importance
in actuarial practice. Widely used methods to determine these losses work on so-called loss
triangles, contracting the available information to a tally of all payments for a particular
accident year and development year combination. These triangles, while easier to work with
than individual claims data, contain only a fraction of the information available to an insurer
at a specific point in time, resulting in subpar predictions. With the progress of computational
power and the advent of advanced analytical methods, research interest in more granular
claim reserving methods has picked up in recent years, going back to Norberg [12]. For the
subtask of determining the ultimate claim counts, a micro-level model with individual claims
and individual contracts as the smallest unit of observation is developed. The model is used
to derive a set of micro-level predictors for claim counts which are analyzed in a large scale
simulation study and on a real-world general insurance dataset, showing increased out-of-
sample accuracy on real-world data and increased robustness to violations of basic model
assumptions on synthetic data.

When analyzing observable insurance data the random truncation inherent in the observations
must be taken into account. Methods to perform parameter estimation and distribution
learning for arbitrary distributions in this setting are developed. Accompanying software in
the form of an R package available on CRAN enables swift application of the methods.
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1 Introduction

Modelling the number of incurred but not reported (IBNR) claims is a central problem in
actuarial loss reserving. When combined with models for losses incurred during settlement of
reported but not settled (RBNS) claims and losses for IBNR claims, one obtains a model of
the ultimate loss, a driving factor in the financial reserves required by an insurance company
under general accounting principles, such as the Solvency II framework. Actuarial pricing
using a frequency-severity approach also requires estimation of ultimate claim numbers as
part of the claims frequency modelling. Accurate prediction of claim counts is thus of pri-
mal importance in securing financial stability and profitability of insurance companies. An
overview of established actuarial loss reserving methods can be found in Radtke, Schmidt,
and Schnaus [15].

Insurance operations generate a large amount of structured data during claims handling.
Each claim is linked to a policy with contract features x(i) ∈ X, such as the coverage period
and choice of deductible. The policies at risk, and their features x(i), are known beforehand by

the insurer. In addition to that, upon its reporting to the insurer at time T
(i)
j,report, additional

information about the j-th claim of the i-th policy becomes available to the insurer. Among

this is the accident time T
(i)
j and additional information about the claim, Y

(i)
j ∈ Y, such as

a claims code. Classical reserving methods aggregate this data into so-called loss triangles,
typically split by manually selected, sufficiently homogeneous subsets of X×Y and discretized
by accident period and development period. Development triangles for a subset A ⊂ X×Y
can be defined for claim counts as well as for payments. We introduce loss triangles with
notation similar to Radtke, Schmidt, and Schnaus [15]. For claim counts, the incremental
triangle N (A) is defined by

N
(A)
k,l := #

{︁
i, j
⃓⃓
(x(i), Y

(i)
j ) ∈ A, ⌊T (i)

j ⌋ = k, ⌊T (i)
j,report⌋ − ⌊T

(i)
j ⌋ = l

}︁
.

0 ≤ k < ⌊τ⌋ is the index for the accident period and 0 ≤ l < ⌊τ⌋ denotes the development
period, the difference between the accident period and the calendar period in which the claim
is reported. It is called a triangle, because at calendar time τ , the insurer can observe all

data where 0 ≤ k + l = ⌊T (i)
j,report⌋ < ⌊τ⌋, i.e., the upper left triangle of N (A). See Figure 1.1

for an illustration of N (A).

Aggregate reserving methods aim to complete this development triangle to a square by pre-

dicting entries below the observable diagonal N
(A)
k,l for k + l ≥ ⌊τ⌋. Note that in contrast to

Nk,l from Radtke, Schmidt, and Schnaus [15] (indexed by i, j therein), we allow restriction
to a subset A of the available micro-level feature data. In practice, these subsets could be,
for example, restrictions to certain lines of business or claims codes. When modelled inde-
pendently across different sub-portfolios, these restrictions are equivalent to treating each
sub-portfolio of policies and claims as a separate reserving problem. The number of IBNR
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claims by accident period, R
IBNR(A)
k , is then defined by

R
IBNR(A)
k :=

⌊τ⌋−1∑︂

l=⌊τ⌋−k

N
(A)
k,l ,

where it is assumed that development is complete after at most τ development periods,
i.e. claim development for accident period k = 0 is complete. This assumption can be
relaxed in practice using so-called tail estimation methods that aim to extrapolate further

link ratios (link ratios are introduced below) f̂
(A)

l for l ≥ ⌊τ⌋. For expository purposes, this
tail estimation will not be considered here. We instead refer to the relevant section in [15,
Tail Estimation].

A common reserving method, the Chain Ladder (CL) method, is based on estimating link

ratios f
(A)
l that describe multiplicative development of the cumulative claim triangle

C
(A)
k,l :=

l∑︂

m=0

N
(A)
k,m = #

{︁
i, j
⃓⃓
(x(i), Y

(i)
j ) ∈ A, ⌊T (i)

j ⌋ = k, ⌊T (i)
j,report⌋ − ⌊T

(i)
j ⌋ ≤ l

}︁
, s.t.

R
IBNR(A)
k = C

(A)
k,⌊τ⌋−1 − C

(A)
k,⌊τ⌋−k−1.

More precisely, the standard CL method obtains predictions as follows. First, link ratios are
estimated using observable data,

f̂
(A)

l :=

∑︁⌊τ⌋−l−1
k=0 C

(A)
k,l+1∑︁⌊τ⌋−l−1

k=0 C
(A)
k,l

. 0 ≤ l < ⌊τ⌋ − 1

Then, the estimated link ratios are used to estimate future cumulative claim counts by mul-
tiplying the most recent available information for each accident period with the appropriate
link ratios

Ĉ
(A)
k,l :=

{︄
C

(A)
k,l if k + l < ⌊τ⌋

Ĉ
(A)
k,l−1f̂

(A)

l−1 if k + l ≥ ⌊τ⌋
. 0 ≤ k < ⌊τ⌋, 0 ≤ l < ⌊τ⌋

12



This leads to a reserve prediction for accident period k that only depends on C
(A)
k,⌊τ⌋−k−1 and

k:

R̂
IBNR(A)
k = C

(A)
k,⌊τ⌋−k−1 · (FtU

(A)
k − 1),

where

FtU
(A)
k :=

⌊τ⌋−2∏︂

l=⌊τ⌋−k−1

f̂
(A)

l for 0 ≤ k < ⌊τ⌋

is called the factor to ultimate and the empty product is defined as 1.

The CL method can be equipped with model assumptions to allow for analysis of prediction
errors. Under some of these assumptions it can be shown that the CL method results in a
minimum variannce unbiased estimator, motivating its popularity. Mack [11] introduced the
model for losses, but it can be applied to claim numbers as well. This model makes three
assumptions, under which the CL prediction is an unbiased estimator of the number of claims
given the available data.

(CL1) There exist link ratios f
(A)
l , 0 ≤ l < ⌊τ⌋ − 1, such that

E(C(A)
k,l+1|C

(A)
k,0 , . . . , C

(A)
k,l ) = C

(A)
k,l · f

(A)
l for 0 ≤ k < ⌊τ⌋ − 1.

(CL2) There exist parameters σ
2(A)
k , 0 ≤ l < ⌊τ⌋ − 1, such that

Var(C
(A)
k,l+1|C

(A)
k,0 , . . . , C

(A)
k,l ) = C

(A)
k,l · σ

2;(A)
k for 0 ≤ k < ⌊τ⌋ − 1.

(CL3) Accident periods {C(A)
k,0 , . . . , C

(A)
k,⌊τ⌋−1}, {C

(A)
j,0 , . . . , C

(A)
j,⌊τ⌋−1} are independent for k ̸= j

and 0 ≤ k, j < ⌊τ⌋.

It should be noted that Assumption (CL3) in particular is hardly satisfied under real-world
conditions because of calendar effects such as inflation or media attention (e.g. legal expenses
insurance claims resulting from the media attention to the Dieselgate scandal [16]). Mack
[11] has shown that under assumptions (CL1), (CL2) and (CL3), and with the estimators

σ̂
2(A)
l :=

1

⌊τ⌋ − l − 2

⌊τ⌋−l−2∑︂

k=0

C
(A)
k,l

(︄
C

(A)
k,l+1

C
(A)
k,l

− f̂ (A)

l

)︄2

0 ≤ l < ⌊τ⌋ − 2, and

σ̂
2(A)
⌊τ⌋−2

:= min
(︂
σ̂
4(A)
⌊τ⌋−3/σ̂

2(A)
⌊τ⌋−4, σ̂

2(A)
⌊τ⌋−3, σ̂

2(A)
⌊τ⌋−4

)︂
,

f̂
(A)

l and σ̂
2(A)
l (for 0 ≤ l < ⌊τ⌋−2) are unbiased estimators for f

(A)
l and σ

2(A)
l . This suggests

to estimate the mean squared error of prediction for the reserve,

mse(R̂
IBNR(A)
k ) := E

(︂(︁
R̂

IBNR(A)
k −RIBNR(A)

k

)︁2 ⃓⃓⃓ {C(A)
k,l |k + l < ⌊τ⌋}

)︂

= C
2(A)
k,⌊τ⌋−1 ·

⌊τ⌋−2∑︂

l=⌊τ⌋−k

σ
2(A)
l

f
2(A)
l

(︄
1

C
(A)
k,l

+
1

∑︁⌊τ⌋−l−1
j=0 C

(A)
j,l

)︄
.
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by the plug-in approach for f
(A)
l , σ

2(A)
l (for 0 ≤ l < ⌊τ⌋ − 2) and unknown parts of the

cumulative claim triangle C
(A)
k,l yielding

ˆ︃mse(R̂
IBNR(A)
k ) = Ĉ

2(A)
k,⌊τ⌋−1 ·

⌊τ⌋−2∑︂

l=⌊τ⌋−k

σ̂
2(A)
l

f̂
2(A)

l

(︄
1

Ĉ
(A)
k,l

+
1

∑︁⌊τ⌋−l−1
j=0 C

(A)
j,l

)︄
.

In addition to the distribution-free CL model by Mack [11], several parametric CL models
were also studied, e.g. by Verrall [19] and Taylor [18]. Verrall and Wüthrich [20, Section 6.1]
showed that assuming the micro-level claim occurrence process to be a homogeneous marked

poisson process implies N
(A)
k,l to be poisson distributed, i.e. the (over-dispersed) Poisson CL

model holds and thus the CL method obtains a minimum variance unbiased estimator of the
total IBNR claim counts [18, Theorem 6.2].

Tackling the claim reserving problem using triangles requires choice of a partition A = {A ⊂
X×Y} of disjoint subsets such that

⋃︂

A∈A
A = X×Y.

Compared to the set of individual data points, {(x(i), Y (i)
j )}i,j , a large amount of informa-

tion remains unused when aggregating claims data into triangles {N (A)}A∈A. This loss of
information incurred when using established reserving methods, and the increase in available
computational resources has lead to research in the area of micro-level reserving, investigat-
ing methods for predicting claims reserves using more of the available claim-level informa-
tion. Approaches to micro-level reserving presently examined can be broadly categorized
into (1) discrete-time process models, jointly modelling a set of highly granular triangle data
{N (A)}A∈A and (2) continuous-time process models, directly modelling the claim occurrence
process of individual policies or of sub-portfolios as a point process.

Triangle-based micro-level methods can be applied to different parts of the reserving problem
and combined with macro-level triangle-based methods in other parts. For example, De Felice
and Moriconi [6] suggest combining a micro-level RBNS model using individual-level triangle
data A =

{︁
{(x, y)}

⃓⃓
x ∈ X, y ∈ Y

}︁
with an aggregate prediction for IBNR losses. Similarly,

Wüthrich [21] examines a discrete-time model for the number of RBNS payments and suggests
application of the CL method to IBNR claim counts. Baudry and Robert [3] propose working
with a discretized non-parametric position-dependent marked point process, using individual-
level triangle data A =

{︁
{(x, y)}

⃓⃓
x ∈ X, y ∈ Y

}︁
for IBNR claim counts, RBNS and IBNR

loss. Antonio, Godecharle, and Van Oirbeek [1] model claim development for the RBNS
reserve using a discrete-time multi-state approach, not considering IBNR claims.

One continuous-time occurrence process approach to the reserving problem, which is central
to this thesis, goes back to Norberg [12], suggesting a position-dependent marked Poisson
process (PDMPP) to model individual policies that can incur claims (points of the process)
with features (markings of the process), among which we find the reporting delay D :=
Treport−T . This framework is also used by Antonio and Plat [2] on a portfolio level, implicitly
assuming all policies in the portfolio to be independent - an assumption also made in the
work of this thesis. A gentle introduction to poisson processes can be found in Karr [9] and
Last and Penrose [10]. PDMPPs are defined by an intensity measure µ on R+ ×M that
decomposes into an intensity (called the claim frequency in the insurance context) λ(t) and a

14



marking distribution PM |T=t on M where M denotes the mark such that the process ξ with
intensity measure µ satisfies

µ(S) =

∫︂ ∞

0
λ(t)

∫︂

M
1((t,m) ∈ S) dPM |T=t(m) dt,

and ξ(S) ∼ Poi(µ(S)), for S ⊂ R+ × M measurable. Furthermore, ξ(S) and ξ(S′) are
independent for all disjoint sets S, S′ ⊂ R+ ×M. In the context of insurance claims, the set
of markings is M = Y × R+, the claim features and reporting delay respectively, and the
processes of interest are ξ(i) associated to policy i = 1, . . . , Npol, where Npol is the number of
policies under consideration. Position-dependence refers to the marking distribution PM |T=t

being dependent on the position T (accident time in the insurance context). Individual claim
frequencies λ(i) are usually assumed to obey some global structure, such as λ(i)(t) = λ̃(x(i), t)
for some global frequency function λ̃ : X × R+ → R+, i.e. the claim frequency is completely
determined by the policy features x(i). The process ξ(i) is not fully observable due to reporting

delays. Instead, we observe the restriction ξ
(i)
r := ξ(i) ∩ Sτ where

Sτ := {(T acc, Y,D) ∈ [0, τ)×Y× R+|D < τ − T acc}.

We do not observe the complement ξ
(i)
nr := ξ(i) ∩ SC

τ where D ≥ τ − T acc. The quantities of
interest are usually the number of IBNR claims for some subset X ⊂ X of risk features and
some occurrence period [t0, t1), possibly restricted to claim features Y ⊂ Y:

RµIBNR(X × [t0, t1)× Y) :=
Npol∑︂

i=1

1(x(i) ∈ X )ξ(i)nr ([t0, t1)× Y × R+),

where the index µ refers to “micro-level”. Under the assumptions D < τ − 1, so that all
claims are reported after at most τ development periods, and τ ∈ N, so that τ = ⌊τ⌋, we
have

RµIBNR(X × [k, k + 1)× Y) =
Npol∑︂

i=1

1(x(i) ∈ X )ξ(i)nr ([k, k + 1)× Y × R+)

=

Npol∑︂

i=1

1(x(i) ∈ X )ξ(i)
(︂{︁

(T acc, Y,D)
⃓⃓
⌊T acc⌋ = k, T acc +D ≥ τ, Y ∈ Y

}︁)︂

=
τ−1∑︂

l=τ−k

Npol∑︂

i=1

1(x(i) ∈ X )ξ(i)
(︂{︁

(T acc, Y,D)
⃓⃓
⌊T acc⌋ = k, ⌊T acc +D⌋ = k + l, Y ∈ Y

}︁)︂

=
τ−1∑︂

l=τ−k

N
(X×Y)
k,l

= R
IBNR(X×Y)
k

for 0 ≤ k < ⌊τ⌋, linking the micro-level reserve to the aggregate reserve.

Micro-level reserving aims to predict RµIBNR given {ξ(i)r }Npol

i=1 . The first approach, introduced
in detail in Article 1, is to estimate the conditional distribution of D = D given X = x(i), T =
T acc = t and the claim features Y = y to obtain an individual factor to ultimate for each
reported claim, via

FtUind(x, t, y) :=

(︄∫︂

[⌊t⌋,⌊t⌋+1)
P (D < τ − s|X = x, T = s, Y = y) ds

)︄−1

.
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This requires estimating the conditional distribution PD|X=x,T=t,Y=y given randomly trun-
cated observations (x, t, y, d) ∈ X× [0, τ)×Y×R+ which we only happen to see if t+ d < τ .
Given a parametric family F = {Fθ|θ ∈ Θ} of distributions on R+ with densities fθ,
and a parametric function family, such as a multi-layer perceptron (MLP), G = {g : X ×
[0, τ) ×Y → Θ}, distributional regression aims to find ĝ such that, given the claim dataset

Dτ = {(x, t, y, d)|x = x(i), (t, y, d) ∈ ξ(i)r , i = 1, . . . , Npol}

ĝ ∈ argmax
g∈G

∑︂

(x,t,y,d)∈Dτ

log fg(x,t,y)(d)− logFg(x,t,y)([0, τ − d)),

the right-hand term reflecting random truncation. This results in an estimate

ˆ︂RµIBNR(X × [k, k + 1)× Y) :=
∑︂

(x,t,y,d)∈Dτ ,x∈X ,t∈[k,k+1),y∈Y

ˆ︂FtUind(x, t, y)− 1,

where ˆ︂FtUind(x, t, y) is defined by replacing the term P (D < τ − s|X = x, T = t, Y = y)
in FtUind by Fĝ(x,t,y)([0, τ − s)). The second approach to obtaining micro-level reserves,
developed in Aritcle 2, is to estimate the full micro-level model, such that it becomes feasible

to estimate the expected value of ξ
(i)
nr directly, i.e.,

˜︂RµIBNR(X × [t0, t1)× Y)

:=

Npol∑︂

i=1

1(x(i) ∈ X )E(ξ(i)nr ([t0, t1)× Y × R+))

=

Npol∑︂

i=1

1(x(i) ∈ X )
∫︂

[t0,t1)
λ̃(x(i), t)

∫︂

Y
P (D ≥ τ − s|X = x(i), T = s, Y = y) dPY |X=x(i),T=s(y) ds.

In comparison to factor-to-ultimate based prediction methods, this method predicts a positive
reserve even for sub-portfolios without any reported claims as long as the estimated frequency
λ̃(x(i), t) is positive and the probability of a claim occurrence being reported, P (D+s < τ |X =
x(i), T = s) is less than 1.

The estimation problems mentioned in the previous paragraphs can be regarded as spe-
cial cases of distributional regression subject to random right-truncation. Article 3 revolves
around distributional regression, also allowing for non-informative interval censoring in addi-
tion to random truncation. Given a sample Ireg = {(y, x)i}Ni=1 of N ∈ N paired observations
from X × Y, a parametric family of distributions F = {Fθ|θ ∈ Θ} on Y, and a family of
functions G = {g : X→ Θ}, distributional regression aims to find an optimal approximation
ĝ such that Y |X = x ∼ Fĝ(x) approximately. This means

ĝ ∈ argmax
g∈G

ℓ(g|Ireg),

where

ℓ(g|Ireg) =
N∑︂

i=1

log fg(xi)(yi)

16



is the log-likelihood. In comparison to classical regression, such as generalized linear models
(GLMs), where the regression function links predictors x to the expected value E(Y |X = x),
distributional regression allows for more flexible influence of the predictors on the outcome
distribution by regressing the entire distribution. The loss function given here can be extended
by adding weights to the observation, and by accounting for non-informative interval censoring
and for random truncation, resulting in a more complex sample Jreg = {(m, v, l, u, w, x)i}Ni=1

where an observation is only made if the unobserved outcome y is within the truncation
interval (l, u] and we can observe an interval (m, v] which contains the observation y (or
the observation y directly, encoded as y = m = v). In this case, the loss for distributional
regression of a non-informatively interval censored and randomly truncated sample, motivated
in Article 3, is defined by

ℓ(g|Jreg) =
∑︂

(m,v,l,u,w,x)∈Jreg
w ·
{︄
log fg(x)(m)− logFg(x)((l, u]) m = v

logFg(x)((m, v])− logFg(x)((l, u]) m < v
.

Note that openness or closedness of the interval bounds considered for randomly truncated,
non-informatively interval censored samples, can be chosen flexibly as required by the ap-
plication at hand. Distributional regression for a sample Jreg is defined analogously to the
simpler case with a fully observed sample Ireg.

This thesis has a cumulative structure consisting of three separate articles in which the
author was involved. These articles are listed in Chapter 2. Article 1 contains the first paper
and its supplements, which is concerned with estimating the reporting delay distribution D
under a PDMPP model of the claim occurrence process, conditional on the policy features
X, the accident time T acc and additional claim features Y . A predictor of the number of
IBNR claims is constructed from the estimated conditional distribution and examined in
two case studies, one on simulated datasets with various perturbations and the other on a
real dataset from a german legal expenses insurer. The method is extended to a method
for estimating the full claim occurrence process model in Article 2. Novel predictors for
the number of IBNR claims which are suitable for application to smaller sub-portfolios are
proposed and studied on the same datasets as the first article. Among the newly developed
predictors is also a micro-level adaptation of the CL method that does not require estimation
of the PDMPP model introduced in Article 1. Finally, Article 3 presents the R [14] package
“reservr” which was developed to facilitate the calculations performed in the first two articles.
The package features a more general framework that allows for distributional regression using
neural networks with randomly truncated, non-informatively censored outcome variables. A
brief outlook regarding future research opportunities is given in Chapter 3.
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Abstract
Predicting the number of outstanding claims (IBNR) is a central problem in actu-
arial loss reserving. Classical approaches like the Chain Ladder method rely on 
aggregating the available data in form of loss triangles, thereby wasting potentially 
useful additional claims information. A new approach based on a micro-level model 
for reporting delays involving neural networks is proposed. It is shown by extensive 
simulation experiments and an application to a large-scale real data set involving 
motor legal insurance claims that the new approach provides more accurate predic-
tions in case of non-homogeneous portfolios.

Keywords Loss reserving · Individual claim features · General insurance · 
Randomly truncated data · Expectation maximization algorithm · Mixture 
distribution

1 Introduction

One of the classical challenges in non-life insurance consists of predicting param-
eters associated with outstanding claims, commonly referred to as IBNR claims 
for incurred but not reported [30]. Conventional approaches like the Chain Ladder 
method or the Bornhuetter-Ferguson method (see  [33] for an introduction), which 
were proposed decades ago in view of the historic need for moderate computational 
costs, are based on aggregate claims data collected in so-called development trian-
gles. Such an aggregation of claims data, however, is known to result in a huge loss 
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of information, and likewise, possible computational restrictions became more and 
more superfluous due to the significant progress in technology. Therefore, many 
researchers have recently promoted the development of claims reserving methods 
that operate on individual data.

Many proposals regarding individual loss reserving rely on applications of cel-
ebrated Machine Learning (ML) techniques (see  [18, 20] for general overviews), 
see, e.g.,  [8, 10–13, 28, 37, 38], among others. Most of the proposed methods have 
in common that they aim at modeling the development of each individual claim (in 
particular, each RBNS claim, for reported but not settled) and, if at all, use a Fre-
quency-Severity or Chain Ladder based approach to estimate IBNR reserves over 
discrete time steps, usually one year. More precisely,  [37] uses neural networks to 
obtain individualized Chain Ladder factors. Reference [12] uses neural networks to 
predict sets of aggregated IBNR run-off triangles. References [10, 38] model RBNS 
reserves using ML models and feature a Chain Ladder based approach to IBNR 
reserves. References [11, 28] focus completely on predicting RBNS reserves using 
ML models. Reference [8] applies tree based methods to both parts of the reserve.

The current paper contributes to this branch of the literature by proposing a new 
method to predict IBNR claim numbers. Our approach is based on a new flexible 
parametric model for the reporting delay distribution of an incurred claim, whose 
parameters are explained in terms of observed claims features by a classical multi-
layer perceptron neural network with multiple outputs.

The new parametric model, which might be of independent interest for general 
time-to-event modeling, builds upon a mixture construction proposed in  [21] and 
involves a generalized Pareto tail, an Erlang mixture body and certain point meas-
ures. Statistical challenges to fit the model arise from the fact that observed report-
ing delays are subject to (random) truncation, which hampers a direct application 
of the classical EM algorithm [14] for mixture fitting based on (conditional) maxi-
mum likelihood (see [35] for fitting Erlang mixtures with non-random truncation). 
As a circumvent, we propose a suitable adaptation that relies on the ECME algo-
rithm [27]; note that the ECME algorithm may exhibit faster convergence properties 
than the EM algorithm.

Estimation of the neural network parameters is done using TensorFlow, an indus-
try-standard implementation framework for neural networks  [1]. Optimization is 
carried out using the Adam and Nesterov-Accelerated Adam optimizers (see  [15, 
23], respectively) and a custom loss function is developed to adapt to the problem 
of fitting a parametric distribution to (randomly) truncated data. Starting values are 
provided by the global model fit based on the ECME-algorithm. Most implementa-
tion code is written using the R language and involves the keras and tensorflow 
R packages from [2, 9], respecively, as a binding to TensorFlow. The implementa-
tions are freely available as an R package called reservr on GitHub ([34]).

Finally, once the joint model for reporting delays has been fitted, we construct 
predictors for IBNR claim numbers based on a classical model for claims devel-
opment involving a position-dependent marked Poisson processes, see [6, 31, 32]. 
Successful applications of this general idea can be found in [4, 5, 22], among others.

The new predictors are evaluated in a simulation study as well as in an appli-
cation to a large-scale real-life dataset (about 250,000 contracts) concerning motor 
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legal insurance claims. It is found that the new predictors outperform classical Chain 
Ladder approaches in simulation scenarios involving non-homogeneous portfolios 
and in the real-life example, with quite some advantage in the latter case.

The papers which are closest in spirit to the present approach are  [4, 13]. The 
authors of the first paper concentrate on claim severities rather than claim numbers, 
and also use a neural network based approach for fitting semi-parametric distribu-
tion models of mixture type. A key difference to our approach is that the authors 
rely on three neural networks for modeling the distribution parameters, while our 
approach relies on only one neural network with multiple outputs. Additionally, we 
also face the challenge of (random) truncation, which is not present in the prob-
lem studied by [13]. On the other hand, [4] explicitly model reporting delays subject 
to (random) truncation using a parametric distribution. In contrast to our approach, 
they model small numbers of subgroups to allow more claim-level features to influ-
ence the distribution, which is close to our global approach used for finding suitable 
starting values for the neural network model.

The remaining parts of this paper are organized as follows. In Sect. 2, we start 
by summarizing the notation and then make some preliminary remarks on the inte-
gration of reporting delays into the classical position-dependent marked Poisson 
process model from  [31]. We then construct both a new global model for report-
ing delays, with constant parameters not depending on individual claims features, 
and then a micro-level that incorporates the latter in terms of neural networks. 
Approaches to fit the models to (randomly) truncated data are presented in Sect. 3. 
The estimators may be transferred into predictors for IBNR claim counts, which is 
treated in Sect. 4. Results on a large-scale simulation study are presented in Sect. 5, 
and an application to a real dataset involving motor legal insurance claims is pre-
sented in Sect. 6.

2  Modelling reporting delays

2.1  Preliminaries on insurance portfolio data

Consider an insurance portfolio containing Npol independent risks. Each risk P is 
described by a coverage period C = [tstart, tend] , and by risk features x̄ ∈ �̄ , where 
�̄ is a feature space containing both discrete and continuous features; for example, 
information on the insured product and chosen options such as deductibles. Subse-
quently, we write x = (C, x̄) ∈ � = {intervals on [0,∞)} × �̄ , and assume that x is 
constant over the course of the contract. In practice, risk features do change over 
time, but not very often, whence such a contract could be modelled as two separate 
risks.

Each risk can potentially incur claims during its coverage period, formally 
modelled by a claim arrival process. If a claim occurs at a (calendar) accident 
time tacc ∈ [tstart, tend] , it will not be immediately known to the insurer. The delay 
between accident time and time of reporting ( treport ) results in incomplete informa-
tion on the insurers side and thus necessitates the assessment of incurred but not yet 
reported (IBNR) claims. Of primal importance for any subsequent analysis (e.g., on 
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cumulated claim sizes) is an accurate prediction of the number of IBNR claims, see 
below for details.

We view the reporting delay ( dreport ∶= treport − tacc ) as a mark on the claim arrival 
process. In addition to the reporting delay, there are several other claim features that 
are known to the insurer as soon as the claim is reported. We denote this feature 
space by � . It will typically include information on the type of claim and maybe on 
its severity. The individual claim arrival processes, associated with the individual 
risks in the portfolio, are assumed to be (position-dependent) marked Poisson pro-
cesses as in [31]. More precisely, following the notation in [24], we make the fol-
lowing assumption.

Model 1 (Claim Arrivals) Associated with each risk P(i) in the portfolio, with risk 
features x(i) ∈ � among which we find the coverage period C(i) , there is a position-
dependent marked Poisson process with N(i) ∼ Poi

(∫
C(i) �(x

(i), t) dt
)
 points

on [0,∞) ×� × [0,∞) with: 

 (i) Intensity �(x(i), t) ⋅ 1(t ∈ C(i)) , i.e., for all intervals [t0, t1] ⊆ [0,∞) , we have 

 (ii) Conditional claim feature distribution PY (x
(i), t) = PY|X=x(i),Tacc=t . Here, Y 

denotes a generic claim feature variable containing all claim features except 
for the reporting delay, while X and Tacc are generic risk feature and accident 
time variables, respectively.

 (iii) Conditional reporting delay distribution PD(x
(i), t, y) = PD|X=x(i),Tacc=t,Y=y . Here, 

D = Dreport denotes a generic reporting delay variable, whose distribution is 
modelled conditional on the risk-claim variable (X, Tacc, Y).

Moreover, �(1),… , �(Npol) are mutually independent.
Note that the overall intensity measure of �(i) can be written as

This paper is mainly concerned with the reporting delay Dreport . More precisely, 
in the subsequent sections, we will propose (1) a parametric model for PD that is 
both flexible and analytically tractable (Sects.  2.2 and 2.3), and (2) an estimation 
approach for the model that adequately takes care of the major nuisance that avail-
able observations are typically randomly right-truncated (Sect.  3). We impose the 
following assumption on the data-generating process.

�(i) =

N(i)∑
j=1

�(
T
(i)

acc,j
,Y

(i)

j
,D

(i)

report,j

)

N(i)∑
j=1

1(T (i)

acc,j
∈ [t0, t1]) = ∫

t1

t0

�(i)(dt,�, [0,∞)) ∼ Poi

(
∫

t1

t0

1(t ∈ C(i))�(x(i), t) dt

)
.

�(i)(A) = ∫C(i) ∫� ∫[0,∞)

1((t, y, d) ∈ A)�
(
x(i), t

)
PD

(
x(i), t, y

)
(dd)PY

(
x(i), t

)
(dy) dt.
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Observation Scheme 1 At given calendar time � , the available dataset � = �� con-
sists of all risk features x(i) , i ∈ {1,… ,Npol} , and all reported claim data up to calen-
dar time � , i.e.

Equivalently, we observe, for each i ∈ {1,… ,Npol} , the risk feature x(i) and the 
restriction �(i)

r
(⋅) = �(i)( ⋅ ∩ R�) , where R� = {(t, y, d) ∶ d + t ≤ �} and where the 

lower index r stands for ‘reported’. Note that the observations in (1) are randomly 
right-truncated, which requires additional care when estimating the model.

Note that the ultimate objective of claims reserving is to obtain good (aggre-
gate) predictions for characteristics that depend on the partly unobserved paths of 
�(i) across different time and feature sections, based on reported observations �(i)

r
 as 

in Observation Scheme 1. Details are provided in Sect. 4, where explicit predictors 
are derived that depend on the (fitted) reporting delay models described in the next 
two sections.

2.2  A Global Parametric Model based on Blended Distributions

Reporting delays exhibit some stylized facts that appear to be present in many 
empirical data sets:

• First, in the lower tail, they are non-negative with very short reporting delays 
(such as 0, 1, 2,… days) being quite common. Short reporting delays may further 
be influenced by certain calendar effects (e.g., across weekends), whence rather 
flexible models are needed for the lower tail.

• On an intermediate timescale (the body of the distribution), reporting delays can 
be considered quasi-continuous and only exhibit small specific patterns. How-
ever, the general shape of the distribution differs significantly between clusters of 
similar claims, suggesting the use of mixture type models for large heterogene-
ous portfolios.

• Finally, in the upper tail, very long reporting delays may exist depending on the 
line of business, suggesting some heavy tailed behaviour.

Models for each of the three parts of the distribution are described below, to be 
merged later into an appropriate mixture model.

First, in the interest of maximizing flexibility, we propose to model the discrete 
lower tail by a mixture of Dirac-components (see also [4]), i.e., by 

∑n

i=1
p
(�)
i
�i−1 , 

where �i denotes the Dirac measure at i, where p(�)
i

 are mixture weights, and where 
the choice of n is driven by a case-specific analysis of the data, a reasonable starting 
value being n = 8 corresponding to one week.

Next, consider modeling the body of the reporting delay distribution. A good 
choice for a flexible continuous model is provided by a (translated) Erlang Mixture, 
because the latter family is dense in the space of positive distributions with respect 
to weak convergence  [26], and hence provides sufficient flexibility for adapting 

(1)
{
(x(i), t

(i)

acc,j
, y

(i)

j
, d

(i)

report,j
) || t(i)report,j ∶= d

(i)

report,j
+ t

(i)

acc,j
≤ �

}
.
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to real-life distributions. For combining (mixing) the Erlang Mixture component 
with the discrete lower tail, we propose to translate the Erlang Mixture component 
by n − 1

2
 such that its support does not intersect with the discrete components but 

additionally the smallest possible observation that does not belong to the discrete 
components, namely dreport = n , is in the interior of the support of the continuous 
component. If we translated by n or n − 1 instead, observations from the data would 
touch the boundary of the support, leading to numerical instability.

Next, consider the tail model, whose need is motivated by the fact that the tail 
behaviour of Erlang Mixtures is, as they are mixtures of Gamma Distributions, fixed 
to exponential decay (i.e., the extreme value index is 0, see [16]). In order to better 
capture possible heavy tail behaviour, we chose to attach to the Erlang Mixture body 
a Generalized Pareto Distribution with non-negative shape parameter. The latter 
family satisfies our need for flexibility in the heaviness of the tail and for a parsimo-
nious parametrization, and may further be motivated by the Pickands-Balkema-de 
Haan theorem ([16]). Recall that the Generalized Pareto Distribution GPD (�, �, �) 
has cumulative distribution function (cdf)

with parameters � ∈ ℝ (location), 𝜎 > 0 (scale), and � ≥ 0 (shape). Practically the 
reporting delay should have finite expectation, so we constrain the GPD component 
to have shape parameter 0 ≤ 𝜉 < 1 , where � = 0 degenerates to an Exponential dis-
tribution which is also a member of the Erlang Mixtures.

Classical approaches of attaching a heavy-tailed distribution to a body distribu-
tion use hard cut-off thresholds that result in jump discontinuities in the resulting 
density. This jump can be avoided at little extra computational cost by using what 
we call blended distributions below. The construction goes back to [21, Section 2], 
and relies on gradually mixing two cumulative distribution functions in a blending 
interval A centered at some (high) threshold � , eventually yielding a smooth density. 
We follow up on their ideas but, in the interest of increased flexibility, allow � to be 
a parameter of the family instead of being determined by the blended component 
distributions.

Definition 1 (Blended Distribution family) Given two distributions P,  Q on ℝ 
with cdfs F(⋅) = P((−∞, ⋅]) and G(⋅) = Q((−∞, ⋅]) , respectively, and parameters 
� ∈ ℝ, � ∈ ℝ+, p ∈ [0, 1]2, p1 + p2 = 1 such that F(𝜅) > 0 and G(𝜅) < 1 , we define 
the Blended Distribution B = Blended (P,Q;p, �, �) of P and Q with blending inter-
val [� − �, � + �] and mixture probabilities p via its cdf FB:

(2)G�,�,�(x) = 1 −
(
1 + �

x − �

�

)−1∕�

, x ≥ �,
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See the right panel in Fig. 1 for the graph of p�,� and q�,�.
Given two families F,G of distributions on ℝ , and parameters � ∈ ℝ, � ∈ ℝ+ 

(where F  or G are allowed to depend on � and � ), we define the Blended Distribu-
tion family as the family of Distributions

Note that FB defined in (3) is a mixture of two distributions, say P′ and Q′ , that 
are obtained from a certain truncation-like transformation applied to input distri-
butions P and Q, respectively, in such a way that P′ is supported on a subset of 
(−∞, � + �] , while Q′ is supported on a subset of [� − �,∞) . The transformed cdfs 
and densities are illustrated for P = N(−1, 1) and Q = Exp (1) in Fig. 1, alongside 
with respective curves for the distributions obtained by plain upper or lower trun-
cation at � . Note that, in practice, the choice of a suitable blending region defined 
by � and � is similar to the choice of the cut-off threshold in conventional tail 
modelling problems. Throughout the applications in this paper, we experimented 

(3)

p�,�(x) =

⎧
⎪⎨⎪⎩

x , x ∈ (−∞, � − �],
1

2
(x + � − �) + �

�
cos

�
�(x−�)

2�

�
, x ∈ (� − �, � + �],

� , x ∈ (� + �,∞),

q�,�(x) =

⎧⎪⎨⎪⎩

� , x ∈ (−∞, � − �],
1

2
(x + � + �) − �

�
cos

�
�(x−�)

2�

�
, x ∈ (� − �, � + �],

x , x ∈ (� + �,∞),

FB(x) = p1
F(p�,�(x))

F(�)
+ p2

G(q�,�(x)) − G(�)

1 − G(�)
.

(4)
Blended (F,G;�, �) ∶= {Blended (P,Q;p, �, �) ∣ P ∈ F,Q ∈ G, p ∈ [0, 1]2, ‖p‖1 = 1}.
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N(−1, 1) and truncation from below at � = 0 for Exp (1) ; note that the latter coincides with the original 
Exp (1) distribution. The right panel shows the corresponding blending functions, p�,� and q�,� . Irrelevant 
regions, where the corresponding components have no mass, are dotted. Compare [21, Figure 1]
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with blending regions that are defined by different empirical quantiles close to 1. 
By doing so, we eventually control the number of observations used for fitting the 
tail.

If the families F  and G in (4) are parameterized by sets ΘF and ΘG , then the 
mixture component families making up Blended (F,G;�, �) are defined by their 
cdfs

which are naturally parameterized by the same parameter space. Care 
must be taken to preserve identifiability of the parametrization as 
‘ �1 ≠ �2 ⇒ F�1

≠ F�2
 ’ does not necessarily imply the same property for F′ . For 

an example where this in not the case, consider the family of uniform distributions 
U = {Ub = Unif(0, b) ∶ b ∈ ΘU = (0,∞)} . If taken as the left side ( F  ) of a blended 
distribution, the blended components U′

b
 will be the same distribution for all b ≥ � . 

Note that a simple sufficient condition for identifiability is 
⋃

𝜃∈ΘF
suppF𝜃 ⊆ (−∞, 𝜅] 

and 
⋃

𝜃∈ΘG
suppG𝜃 ⊆ [𝜅,∞).

The final distribution model that we employ for modelling reporting delays is 
as follows.

Definition 2 (Blended Dirac-Erlang-Generalized Pareto family) Given parameters 
n,m ∈ ℕ0 , and �, � ∈ (0,∞) , we define the Blended Dirac-Erlang-Generalized 
Pareto family as the family of Distributions

A specific distribution from BDEGP (2, 3, 10, 3) is illustrated in Fig. 2.

This distribution family has 2m + n + 3 degrees of freedom due to the con-
straints placed on the mixture parameters p(�), p(e) , and p(b) . Note that due to 
the restriction of 𝜉 < 1 , all members of this family are guaranteed to have finite 
expectation, though higher moments may not exist.

Returning to the context of Sect. 2, in a simplified parametric global model we 
assume that, for some fixed hyperparameters n, m, � , and � , the reporting delay 

(5)F� =
{
F� ||| F

� =
F◦p�,�

F(�)
for some F ∈ F

}
,

(6)G� =
{
G� ||| G

� =
G◦q�,� − G(�)

1 − G(�)
for some G ∈ G

}
,

BDEGP (n,m, 𝜅, 𝜀)

∶=
{ n∑

i=1

p
(𝛿)
i
𝛿i−1 + p

(𝛿)
n+1

Blended
( m∑

i=1

p
(e)

i
(Γ𝛼i,𝜃

+ n −
1

2
), GPD 𝜇=𝜅,𝜎,𝜉 ;p

(b), 𝜅, 𝜀
)

||| p
(𝛿) ∈ [0, 1]n+1, p(e) ∈ [0, 1]m, p(b) ∈ [0, 1]2,

∑
p
(𝛿)
i

=
∑

p
(e)

i
= p

(b)

1
+ p

(b)

2
= 1,

𝛼 ∈ ℕ
m, 𝛼1 < ⋯ < 𝛼m, 𝜃 ∈ ℝ+, 𝜎 ∈ ℝ+, 𝜉 ∈ [0, 1)

}
.
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distribution for each claim lies in BDEGP (n,m, �, �) . Here, ‘global’ refers to the 
fact the reporting delay distribution does not depend on accident time or risk and 
claim features.

Model 2 (Parametric Global Model) Next to the assumptions made in Model 1 
assume that, for some given (known) parameters n,m, � , and � , we have

for some B𝜃 ∈ BDEGP (n,m, 𝜅, 𝜀) . Here, all free parameters of the BDEGP (n,m, �, �)
-model are collected in a vector 𝜃 = (p(𝛿), p(e), p(b), 𝛼, 𝜃, 𝜎, 𝜉) with respective param-
eter space Θ ⊂ [0, 1]n+1 × [0, 1]m × [0, 1]2 × ℕ

m ×ℝ+ ×ℝ+ × [0, 1) ⊂ ℝ
2m+n+6 with 

effective dimension 2m + n + 3.

Despite its simplicity, the global model will prove useful for finding good starting 
values for a fitting algorithm for the micro-level model introduced next.

2.3  A micro‑level model based on neural networks

Quite naturally, the micro-level model is based on an extension of the global model 
by allowing 𝜃 = g(x, t, y) to depend on claim and risk features. More precisely, we 
assume that g is a neural network of some predefined architecture.

Model 3 (Micro-Level Model) Next to the assumptions made in Model  1 assume 
that, for some given (known) parameters n,m, � , and � , we have

for some g ∈ G , where G denotes a set of neural networks g ∶ � ×ℝ ×� → Θ such 
that Bg(x,t,y) ∈ BDEGP (n,m, �, �) for all (x, t, y) ∈ dom (g).

(7)PD(x, t, y) ≡ B𝜃 for all x, t, y

PD(x, t, y) ≡ Bg(x,t,y) for all x, t, y
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Fig. 2  BDEGP (2, 3, 10, 3) distribution. Parameters: p(�) = (0.15, 0.1, 0.75) , p(b) = (0.7, 0.3) , 
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right: cdf. Note how the component densities are smoothed over (7,  13) in comparison to truncated 
Erlang distributions or GPD �=10,�=0.4,�=0.2
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Remark 1 Instead of postulating G to be a family of neural networks, it is also pos-
sible to consider alternative functional relationships g ∶ � ×ℝ ×� → Θ . For the 
sake of brevity, we limit ourselves to neural networks in this paper, which have 
proven useful in numerous applications due to their great flexibility and the efficient 
fitting algorithms. Likewise, neural networks may be combined with other paramet-
ric global models such as the Dirac-Weibull-mixture model from [4]. The latter was 
found to provide less efficient predictors in preliminary experiments, whence we 
restrict attention to the BDEGP family.

It remains to explain the class of neural networks G ; see [18] for a good introduction 
to neural networks. We chose a classical multilayer perceptron (MLP) neural network 
with Ndense hidden layers of dimension n1,… , nNdense

 . Discrete data were incorporated 
using embedding layers, and the final dense layer was mapped to the parameter space 
Θ via canonical transformations (softmax for probability weights, softplus for posi-
tive parameters, sigmoid for interval-bounded parameters, and identity for unbounded 
parameters). We call this canonical mapping fadaptor ∶ ℝ

ntail → Θ where ntail is the out-
put dimension of the final dense layer. A more detailed description of the neural net-
work architecture can be found in Appendix A in the supplementary material.

The neural network construction is not valid for integer components in Θ . For this 
reason, we must fix the shape parameters of the erlang components in the micro-level 
BDEGP-model. In the interest of maximizing flexibility, one could argue to fix the 
shapes to 1,… ,M for some large integer M, such that F  contains all erlang mixtures 
with shapes at most M. However, this heuristically results in overparametrization, 
whence we propose to fix the shapes to the values obtained from estimating the global 
model instead, say � = (�1,… , �m) . In addition to that, we have found the parameter 
� , although real-valued, to pose numerical challenges. Individual-level parameter esti-
mates of � quickly converged to 1 leading to poor performance and instability. There-
fore, � was replaced by the (fixed) initial value obtained from fitting Model 2. Formally, 
this means that BDEGP (n,m, �, �) in Model 3 will be replaced by

This family leads to ntail = n + m + 5 and the concrete defini-
tion fadaptor(x) = (�, �, p(�), p(e), p(b)) = (sp(x1), sp(x2), smℝn+1(x3∶n+3), 
sm

ℝm(xn+4∶n+m+3), smℝ2(xn+m+4∶n+m+5))
� where xi∶j = (xi, xi+1,… , xj)

� denotes vector 
slices and where sp = sof tplus and sm = sof tmax.

BDEGP fix(n,m, �, �, �, �)

∶=
{ n∑

i=1

p
(�)
i
�i−1 + p

(�)
n+1

Blended
( m∑

i=1

p
(e)

i
(Γ�i,�

+ n −
1

2
), GPD �=�,�,�=� ;p

(b), �, �
)

||| p
(�) ∈ [0, 1]n+1, p(e) ∈ [0, 1]m, p(b) ∈ [0, 1]2,

∑
p
(�)
i

=
∑

p
(e)

i
= p

(b)

1
+ p

(b)

2
= 1, � ∈ ℝ+, � ∈ ℝ+

}
.
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3  Fitting the reporting delay model to truncated data

In this section, we describe a conditional maximum-likelihood-based approach for fit-
ting Model 3 in detail. We will start by deriving the conditional likelihood function 
for observed reporting delays from Observation Scheme  1 under the general setting 
of Model 1, see Sect.  3.1. We then proceed by considering the global model from 
Model 2, and describe an estimation approach based on a modified EM-Algorithm, see 
Sect. 3.2. Once we have an estimate for the global parameters, we can use them as start-
ing values for an estimation procedure for the micro-level model from Model 3, see 
Sect. 3.3. Not using good starting values for the micro-level model proved detrimental 
to convergence of the estimation routine to the point of becoming unusable.

3.1  The conditional likelihood for truncated reporting delays

In this section we derive a conditional likelihood function for observed reporting delays 
from Observation Scheme 1 under the general setting of Model 1. It is worthwhile to 
mention that the resulting conditional likelihood is not bound to the case of reporting 
delays, but applies in any setting involving a parametric model for randomly truncated 
data, provided the model is dominated by a �-finite measure and some (conditional) 
independence assumptions are met.

It follows from Model 1 that the reporting delays are conditionally independent 
given the claim features as well as the accident time, i.e.,

for some distribution PD(x
(i), t, y) depending only on x(i), t, y . While Models 2 and 3 

are based on specific parametric assumptions, it is instructive to keep things uni-
versal, and only make the assumption that PD(x

(i), t, y) has cumulative distribution 
function Fg(x(i),t,y) ∈ {Fg(x(i),t,y) ∶ g ∈ G} for some suitable family F = {F� ∶ � ∈ Θ} 
of distributions that is dominated by some �-finite measure � (the �-densities are 
denoted by f� ), and for some family G of functions g ∶ � × (0,∞) ×� → Θ (in a 
global model, G would be the class of all constant functions g ≡ � with � ∈ Θ ). Note 
that a natural dominating measure for the BDEGP family is � = Leb +

∑n−1

i=0
�i.

To see how the data �� observed by an insurer at calendar time � can be described 
as a truncated sample, consider points from � = �(i) (for the sake of readability, we omit 
the upper index i for the moment). They contain (tacc,j, dreport,j) , and are observed by 
the insurer if tacc,j + dreport,j ≤ � . Hence, every observed reporting delay is truncated to 
the interval dreport,j ∈ [0, � − tacc,j] . As a consequence, the likelihood of every observed 
reporting delay must be calculated conditional on the event Dj ∈ [0, � − Tacc,j] , i.e.,

(D
(i)

j
|X(i) = x(i), T

(i)

acc,j
= t, Y

(i)

j
= y) are independent with distribution PD(x

(i), t, y),
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where (x, tacc,j, yj, dj) = (x(i), t
(i)

acc,j
, y

(i)

j
, d

(i)

j
) . This leads to the following conditional 

log-likelihoods for Models 2 and 3, respectively:

Strategies to efficiently calculate the maximum of these functions are presented in 
the next two sections.

3.2  Estimating the global model

In this section, we describe how to maximize � ↦ �
G(�|��) from  (8). In view of 

the fact that the underlying BDEGP family is essentially a mixture family, a natural 
approach consists of using a suitable version of the EM algorithm [14]. In fact, the pro-
cedure for fitting a BDEGP family to data is divided into subproblems which maximize 
conditional likelihoods on subsets of the parameter space. These building blocks need 
slight adaptations for blended distributions and Erlang mixture distributions, but are 
largely similar.

Before describing the algorithms, it is instructive to consider the underlying basics 
of a generic version of the EM algorithm that may be applied to samples of (both upper 
and lower) randomly truncated observations from a mixture model. Here, the generic 
mixture model shall be defined in terms of given parametric families F1,… ,Fk , where 
the jth component family Fj has �-density fj,�j with parameter �j ∈ Θj , for some com-
mon dominating sigma-finite measure � (often the sum of the Lebesgue measure on ℝ 
and the counting measure on some subset of ℤ ). The mixture model, denoted F  , is then 
given by the family of �-densities that are of the form

for some mixture weights p ∈ (0, 1)k (with 
∑k

j=1
pj = 1) and some 

� = (�1,… , �k) ∈ Θ =
⨂k

j=1
Θj.

The fact that observations are truncated can be modelled as follows: let (X, L, U) 
denote a random vector, where X is the variable of interest that is supposed to have a 
mixture density f(p,�) as in (10). The pair (L, U) is assumed to be independent of X and 

fD|D∈[0,�−Tacc],X=x,Tacc=tacc,j,Y=yj (dj) =
fg(x,tacc,j,yj)(dj)

Fg(x,tacc,j,yj)
(� − tacc,j)

,

(8)�
G(�|��) =

∑
(x,t,y,d)∈��

log f�(d) − logF�(� − t),

(9)�
M(g|��) =

∑
(x,t,y,d)∈��

log fg(x,t,y)(d) − logFg(x,t,y)(� − t).

(10)f(p,�)(x) =

k∑
j=1

pjfj;�j (x)
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shall satisfy L ≤ U , with L possibly equal to −∞ and U possibly equal to +∞ . Further, 
(L, U) shall have a density f(L,U) with respect to some dominating sigma-finite measure 
� . A sample of interval truncated observations from (X, L, U) consists of independent 
observations (xi,�i, ui) that we only happen to see if �i ≤ xi ≤ ui . As a consequence, 
any observed value can be regarded as being drawn from the (𝜇 ⊗ 𝜈)-density

Subsequently, we write (Xt, Lt,Ut) for a random vector following the above density, 
i.e,

Estimating (p, �) based on plain maximum likelihood requires specifying a distribu-
tion for (L, U) (which can be regarded as a nuisance parameter) and calculating the 
denominator in (11). This (major) nuisance can be avoided by instead considering 
conditional maximum likelihood [3], which is known to produce consistent estima-
tors as well. In our case, we rely on considering the density of Xt conditional on the 
value of (Lt,Ut) = (�, u) , which is given by

for � ≤ x ≤ u , where F(p,�)([�, u]) = ∫
[�,u]

f(p,�)(z) d�(z) . As can be seen, the condi-
tional density/likelihood is independent of the distribution of (L, U), and hence eas-
ily accessible.

For later purposes, it is helpful to attach a weight wi to each observation 
(�i, xi, ui) (one might think of wi = 1 for the moment). Denote the resulting sample 
by ℑ = ℑw = {(xi,�i, ui,wi)|�i ≤ xi ≤ ui}, with sample size N = |ℑ| . Based on the 
motivation in the previous paragraph, we aim at maximizing

which is akin to maximizing �G(�|��) from (8), after identifying � = 0 , x = dreport , 
u = � − tacc and w = 1 . An approximate maximizer of (12), say (p̂, �̂�) , may be 
obtained by Algorithm 1. 

(11)f(X,L,U)∣L≤X≤U(x,�, u) =
f(L,U)(�, u)f(p,�)(x)

Pr(L ≤ X ≤ U)
1(� ≤ x ≤ u).

f(Xt ,Lt ,Ut)(x,�, u) = f(X,L,U)∣L≤X≤U(x,�, u).

fXt ∣Lt=�,Ut=u(x) =
f(Xt ,Lt ,Ut)(x,�, u)

f(Lt ,Ut)(�, u)

=
f(X,L,U)∣L≤X≤U(x,�, u)

∫
[�,u]

f(X,L,U)∣L≤X≤U(z,�, u) dz
=

f(p,�)(x)

F(p,�)([�, u])

(12)𝓁(p, �|ℑ) =
∑

(x,𝓁,u,w)∈ℑ

w ⋅

[
log f(p,�)(x) − logF(p,�)([𝓁, u])

]
,
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The algorithm can be motivated by the ECME principle (see [14, 27, 29]), and 
is derived in great detail in the supplementary material. The function CML used 
in line 11 of Algorithm 1 is defined as follows: for some given family H consisting 
of densities h� parametrized by � ∈ Θ and given a truncated and weighted sample 
ℑ , possibly utilizing a starting value �0 ∈ Θ for assessing the following maximum 
numerically, let

where H� is the corresponding distribution. Note that calculating the argmax can 
itself be based on applying an instance of an ECME algorithm if H is a mixture fam-
ily (which is the case when applying Algorithm 1 to the BDEGP family from Defini-
tion 2). Furthermore, the densities fj;�j used for computing the posterior probability 
matrix P in line 7 need to be with respect to the dominating �-finite measure of F  , 
which may differ from the natural dominating measure of Fj . This essentially leads 
to a separate treatment of discrete and continuous components since for each xi for 
which there exists a component j such that {xi} has positive probability over Fj , Pi,j 
will be zero for all components with zero probability of {xi} even if xi is in their sup-
port and has positive (Lebesgue) density.

Adaptations for blended distributions. In view of the fact that a blended distribu-
tion family (Definition 1) is of mixture type with k = 2 , we could in principle directly 
use the general ECME algorithm to calculate a maximizer of the associated weighted 
conditional log-likelihood. However, this would require working with transformed 
versions of the original blended families, see  (5) and  (6). Alternatively, in each 
ECM-step, one may optimise the weighted conditional log-likelihood with respect to 
the original families by transforming the data ℑ to the scale of the original families. 

(13)CML(H,ℑ, �0) ∶= argmax �∈Θ

∑
(x,�,u,w)∈ℑ

w
[
log h�(x) − logH�([�, u])

]
,
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More precisely, consider the first ECM step: if F1 = {f1;�1 ∶ �1 ∈ Θ1} denotes the 
first component of the blended family Blended (F1,F2;�, �) , then, in view of (5), the 
contribution of an observation (x,�, u,w) ∈ ℑ1 ∩ {(x,�, u,w) ∶ x < 𝜅 + 𝜀} to the 
objective function is

where p = p�,� . Hence, instead of calculating CML(F�
1
,ℑ1, �1) (line 11 

of Algorithm  1) we may equivalently calculate CML(F1, ℑ̃1, 𝜃1) , where 
ℑ̃1 ∶= {(p(x), p(�), p(u),w) ∣ (x,�, u,w) ∈ ℑ1} is the transformed dataset. An analo-
gous result can be obtained for the second component F2 , where the transforma-
tion uses q = q�,� . Note that the associated transformed sample ℑ̃2 is a left-truncated 
sample, truncated at � = � − � . Overall, we obtain Algorithm 2, where we define 
b1(x) ∶= p�,�(x) and b2(x) ∶= q�,�(x) for notational convenience. 

Adaptations for Erlang Mixtures. Erlang Mixture families 
F = {

∑k

i=1
pi ⋅ Γ𝛼i,𝜃

∶ p ∈ (0, 1)k, ‖p‖1 = 1, 𝜃 ∈ (0,∞), 𝛼 ∈ ℕ
k, 𝛼1 < … < 𝛼k} do 

not satisfy the definition of a mixture-type family because they possess the additional 
constraint that each of the Erlang components has the same scale parameter. This pre-
vents fitting Erlang mixtures based on direct applications of the EM or the ECME algo-
rithm, see also [19, 25, 35] for related problems with no or constant truncation bounds. 
For our current setting of truncation bounds that may vary with each observation, we 
need to adapt ideas from these papers. In particular, we rely on a version of the ECME 
algorithm when treating the (integer) shape parameters as fixed, and then propose a 
shape search algorithm to solve the remaining integer optimization problem. Details are 

log f �
1;�1

(x) − logF�
1;�1

([𝓁, u]) = log
f1;�1(p(x)) ⋅

d

d x
p(x)

F1;�1
(�)

− log
F1;�1

([p(𝓁), p(u)])

F�(�)

= log f1;�1 (p(x)) + log
d

d x
p(x) − logF1;�1

([p(𝓁), p(u)]),
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provided in Section C in the supplementary material, where we also explain the choice 
of starting values.

3.3  Estimating neural networks

In this section we describe our approach to fitting a neural network model G as 
described in Sect. 2.3 based on maximization of (9) under Model 3 with the BDEGP fix 
adaptation, i.e., holding � and � fixed as obtained from fitting the global model. As a 
consequence, the loss function is −�M(g ∣ �) , which is a rather complex loss in com-
parison to standard losses used in ML. Training of the neural network was performed 
with the Adam algorithm [23] ( lr = 0.05, �1 = �2 = 0 ) and stepsize reduction on pla-
teau ( factor = 0.5, patience = 2,min_lr = 10−4, min_delta = 10−6 ). TensorFlow  [1] 
was used as the runtime for performing all necessary computations.

Once a specific network architecture G and a specific optimization routine have been 
chosen, fitting the neural network requires network initialization, i.e., choosing starting 
values for all free parameters of the model. The most common approach, introduced by 
Ref. [17], consists of global random initialization, where all free matrix parameters are 
i.i.d. uniform with mean zero and range dependent on the layer dimensions, and all free 
bias parameters are initialised to 0, which is then possibly applied repeatedly to poten-
tially find better local optima. Such an approach, however, implies that the starting 
value of the distribution parameters feeding into the log-likelihood  (9) is essentially 
random, and in view of the fact that the network is trained by direct optimization of the 
loss function, one may expect poor convergence (the latter has been confirmed in exten-
sive preliminary experiments with simulated and real data). To alleviate this problem, 
we propose to only randomly initialise the free parameters of the embedding and hid-
den layers according to [17], while the output layer weights are chosen in such a way 
that the network output g(x,  t, y), for each observation (x,  t, y), is close to some pre-
specified value, for instance the global estimate �̂� from Sect. 3.2. This may be achieved 
by choosing the weights A and the bias b in the output layer in such a way that A ≈ 0 
has sufficiently small entries (see below) and b = f −1

adaptor
(�̂�) , where f −1

adaptor
∶ Θ → ℝ

ntail 
is an inverse of the output layer link function fadaptor defined in Sect. 2.3.

We have experimented with three different approaches to initialise A: either A ≡ 0 (then 
g(x, t, y) ≡ �̂� deterministically), or A initialised by the default initialization [17], or A initial-
ised with small random parameters on the same scale as b, i.e. Ai,j ∼ U[−0.1, 0.1] ⋅ bi for 
all rows i = 1,… , ntail and columns j = 1,… , nNdense

 where nNdense
 is the dimension of the 

final hidden layer in the MLP architecture. The latter method, called scaled uniform initializa-
tion, proved most efficient in practice, see Sect. 5.2 for more details. The method is summa-
rized in Algorithm S.1 in the supplementary material.

4  Claims count prediction

The objective of claims reserving is to obtain good (aggregate) predictions for char-
acteristics that depend on the partly unobserved paths of �(i) across different time 
and feature sections, based on reported observations �(i)

r
 as in Observation Scheme 1. 
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Among such characteristics is for instance the afore-mentioned total number of 
IBNR claims at calendar time � , i.e.,

where S𝜏 ∶= {(t, y, d) ∶ t ≤ 𝜏, t + d > 𝜏} . A further object, of primal interest for 
insurance pricing, is given by the total number of claims in a given time period 
[t0, t1] , for instance an occurence year that is not necessarily related in any specific 
way to � , and for a certain class of risk feature �′ ⊂ � and claim features �′ ⊆ � , 
i.e.,

The specific problems in the previous paragraph are special cases of the following 
task: for sets of interest �′ ⊂ � and S = {(t, y, d) ∶ t ∈ [t0, t1], y ∈ ��, d ∈ It} with 
[t0, t1] ⊂ [0,∞) , some �′ ⊂ � and some It ⊂ [0,∞) , predict the unobserved individ-
ual (and/or aggregated) claim counts in S, i.e.,

based on a sample � as in Observation Scheme 1. We will next discuss how such 
predictors may be derived based on knowledge of PD only, given some suitable 
homogeneity constraints are met. In practice, PD may be replaced by some estimate 
P̂D , for instance the neural network estimator from Sect. 3.3.

4.1  Predictions under local homogeneity assumptions

We start by simplifying the prediction problem by restricting attention to predic-
tors that depend on � = �� through the reported numbers N(i)

r
(S) = �(i)

r
(S) only. 

Let �(i)
nr

= �(i) − �(i)
r

= �(i)( ⋅ ∩ Rc
�
) denote the claim arrivals that are not reported by 

calendar time � . By the restriction theorem (Theorem 5.2 in  [24]), �(i)
nr

 and �(i)
r

 are 
independent Poisson processes with intensity measures �(i)( ⋅ ∩ Rc

�
) and �(i)( ⋅ ∩ R�) , 

respectively. As a consequence, the best L2-predictor for N(i)(S) in terms of N(i)
r
(S) is 

given by

and it remains to calculate the unconditional expectation on the right-hand side. 
Since

Npol∑
i=1

N(i)∑
j=1

1(T (i)

acc,j
≤ 𝜏, T (i)

acc,j
+ D

(i)

report,j
> 𝜏) =

Npol∑
i=1

𝜉(i)(S𝜏),

∑
i∶x(i)∈��

N(i)∑
j=1

1(T (i)

acc,j
∈ [t0, t1], Y

(i)

j
∈ ��) =

∑
i∶x(i)∈��

�(i)([t0, t1] ×�� × [0,∞)).

N(i)(S) = �(i)(S) and/or N(�� × S) =
∑

i∶x(i)∈��

�(i)(S)

(14)N̂(i)(S) = �[N(i)(S) ∣ N(i)
r
(S)] = N(i)

r
(S) + �[N(i)

nr
(S)],

(15)

�[N(i)
nr
(S)] = �(i)(S ∩ Rc

�
) = ∫S∩C(i)∩Rc

�

�(x(i), t)PD(x
(i), t, y)(dd)PY (x

(i), t)(dy) dt
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by Campbell’s theorem, the latter boils down to calculating a complicated high-
dimensional integral. The fact that calculation of this integral must be feasible in 
practice is a major demand when designing models for the distributions involved in 
Model 1, i.e., for �,PY and PD . Under the following local homogeneity assumption, 
the calculation simplifies significantly.

Assumption 1 (Local homogeneity of claims developement) For a given interval 
T ⊂ [0,∞) and �′ ⊂ �:

• t ↦ 𝜆(x, t) =∶ 𝜆(x) > 0 is constant on T for any x.
• t ↦ PY (x, t)(�

�) =∶ PY (x)(�
�) > 0 is constant on T for any x.

• (t, y) ↦ PD(x, t, y) =∶ PD(x) is constant on T ×�� for any x.

Even if the global claims process is highly inhomogeneous, these assumptions 
are approximately met for sufficiently small intervals T and sufficiently similar 
sets of claims �′ (for continuity reasons, this particularly applies for the distribu-
tions PD from Model 3). For instance, [4] implicitly imposes Assumption 1 for all 
subsequent intervals of length corresponding to one month and for �′ represent-
ing either material or injury claims. Under Assumption 1, we can simplify

and likewise

As a consequence of (17), the predictor in (14) greatly simplifies, with only univari-
ate integrals to be calculated for each i. Moreover, the previous equations may be 
manipulated in such a way that one obtains a natural estimator for the expectation on 
the right-hand side of (14) that does not depend on �(x(i)) or PY (x

(i))(��) . Indeed, by 
Eqs. (16) and (17),

provided the denominator is positive. Replacing �(i)(S ∩ R�) by its (unbiased) empir-
ical analogue, N(i)

r
(S) , and then replacing the expectation on the right-hand side 

of (14) by the obtained expression, we finally obtain the predictor

�(i)(S) = ∫T∩C(i) ∫�� ∫It

�(x(i), t)PD(x
(i), t, y)(dd)PY (x

(i), t)(dy) dt

= �(x(i))PY (x
(i))(��)∫T∩C(i)

PD(x
(i))(It) dt,

(16)�(i)(S ∩ R�) = �(x(i))PY (x
(i))(��)∫T∩C(i)

PD(x
(i))(It ∩ [0, (� − t)+]) dt,

(17)�(i)(S ∩ Rc
�
) = �(x(i))PY (x

(i))(��)∫T∩C(i)

PD(x
(i))(It ∩ ((� − t)+,∞)) dt.

�(i)(S ∩ Rc
�
) = �(i)(S ∩ R�) ⋅

∫
T∩C(i) PD(x

(i))(It ∩ ((� − t)+,∞)) dt

∫
T∩C(i) PD(x

(i))(It ∩ [0, (� − t)+]) dt
,
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where P̂D is a suitable estimate of PD . Note that, for the important special case of 
S = T ×�� × [0,∞) , i.e., It = [0,∞) , the numerator further reduces to Leb(T ∩ C(i)).

Throughout the remaining parts of this paper, we will impose the homo-
geneity assumption from Assumption 1 for all intervals ((𝓁 − 1) ⋅ p,𝓁 ⋅ p] 
with � = 1,… , ⌈�∕p⌉ , and for all sufficiently small neighborhoods of points 
y ∈ � . Note that the parameter p allows to control the restrictiveness of 
the local homogeneity assumption, which is less restrictive for smaller val-
ues of p. Given a set of features and accident times to be evaluated, say 
A = �� × [t0, t1] ×�� ⊂ � × [0, 𝜏] ×� , we aim at predicting the number of 
claims in A that are reported within a given (calendar) time interval (�0, �1] with 
0 ≤ 𝜏0 < 𝜏1 ≤ ∞ , i.e.,

with S𝜏0∶𝜏1 = {(t, y, d) ∶ t ∈ [t0, t1], y ∈ ��, 𝜏0 < t + d ≤ 𝜏1} . Note that N0∶∞(A) cor-
responds to the ultimate number of claims in A, while N�∶�+q(A) , is the number of 
claims in A that are reported within a period of length q > 0 after calendar time � . 
The argumentation that lead to (18) suggests the following predictor for N�0∶�1

(A) 
based on observed values ��:

where P̂D(x, t, y) ≈ PD(x, t, y) is the estimated reporting delay distribution and 
Ip(x, t) = C(x) ∩ (p ⋅ ⌊t∕p⌋, p ⋅ (⌊t∕p⌋ + 1)] with C(x) the coverage period of policy x 
and (p ⋅ ⌊t∕p⌋, p ⋅ (⌊t∕p⌋ + 1)] the interval containing accident time t on which �(i) is 
assumed homogeneous.

Note that the predictor in  (19) can be updated continuously with the passing 
of time, either by reestimating P̂D and then recalculating the predictor (which is 
computationally expensive), or by just updating the predictor with the estimated 
model P̂D held fixed/updated only once in a while (which is less expensive). The 
main computational cost for predictor updates with fixed P̂D lies in evaluation of 
the univariate integral in (19).

4.2  Evaluating claim count predictors

For comparing different methods we define evaluation metrics that measure pre-
diction errors in a standardized way. These evaluation metrics will be used in case 
studies to compare model performance, as well as to perform model selection in a 
backtesting context. All methods will be supplied with a sample �� as in Obser-
vation Scheme 1.

(18)Ñ(i)(S) = N(i)
r
(S) ⋅

∫
T∩C(i) P̂D(x

(i))(It) dt

∫
T∩C(i) P̂D(x

(i))(It ∩ [0, (𝜏 − t)+, ]) dt
,

N�0∶�1
(A) =

∑
i∶x(i)∈��

�(i)(S�0∶�1)

(19)

N̂
p
𝜏0∶𝜏1

(A;�𝜏) ∶=
∑

(x,t,y,d)∈(A×ℝ+)∩�𝜏

∫
Ip(x,t)∩[t0,t1]

P̂D(x, t, y)((𝜏0 − s, 𝜏1 − s]) ds

∫
Ip(x,t)∩[t0,t1]

P̂D(x, t, y)([0, 𝜏 − s]) ds
,
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A generic predictor for N�0∶�1
(A) based on observations �� is denoted 

by N̂𝜏0∶𝜏1
(A;�𝜏) . For simplicity, we only consider (�0, �1) = (0,∞) and 

(�0, �1) = (�, � + q) , which correspond to the ultimate number of claims 
and to the number of claims reported within the next period of length 
q ∈ {365, 365∕4, 365∕12} (measured in days), respectively. For evaluating the 
predictor, we restrict attention to sets

where � ∈ {1,… , �∕q} denotes the � th period and �′ ⊂ � . Root-mean-squared-
error performance measures are then used to evaluate the performance, i.e.,

considered for (�0, �1) = (0,∞) and for (�0, �1) = (�, � + q) . Note that other error 
measures were examined as well, but the subsequent presentation is restricted to the 
above choices. In a real world scenario, RMSE�0∶�1

 is computable from ��1
 at calen-

dar time �1 , enabling use of error measures with 𝜏1 < ∞ outside of laboratory set-
tings where the ground truth is known.

5  Simulation study

To demonstrate the effectiveness of the micro-level approach compared to a clas-
sical Chain Ladder based approach, we compare predictors arising from the two 
methods on simulated data from Model 1. Apart from a homogeneous portfolio 
with constant exposure, we also examine how the methods perform in the pres-
ence of smooth or abrupt changes in the claim arrival process.

5.1  Simulating car insurance portfolios

The portfolios considered throughout the simulation study build upon the car 
insurance data set described in Appendix A in [36]. The latter data set provides 
claim counts for 500,000 insurance policies, where each policy is associated with 
the risk features

(���, ��, �����, ���, �����, ����, ����, ��),
which correspond to age of driver, age of car, power of car, fuel type of car, 

brand of car, and area code, respectively; see also (A.1) in [36] for further details. 
Next to that, the data set also provides the variable truefreq, which corre-
sponds to the claim intensity �(x) in our model. Note that the precise functional 
relationship x ↦ �(x) has not been published by the authors.

In the following, we describe how the above data set was used to define nine dif-
ferent portfolios meeting the model assumptions described in Model 1 (in particu-
lar, we need to introduce a dynamic component, claim features as well as reporting 

Aq,𝓁,�� = � × [(𝓁 − 1) ⋅ q,𝓁 ⋅ q) ×��,

(20)RMSE𝜏0∶𝜏1
(��, q) ∶=

(
q

𝜏
⋅

𝜏∕q∑
𝓁=1

(
N̂𝜏0∶𝜏1

(Aq,𝓁,�� ;�𝜏) − N𝜏0∶𝜏1
(Aq,𝓁,�� )

)2) 1

2

,
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delays). Each portfolio is considered over ten periods of 365 days, that is, the port-
folio coverage period is the interval [0, 3650]. We start with a baseline setting that 
corresponds to the classical homogeneous portfolio.

5.1.1  Scenario 1: a homogeneous portfolio

The homogeneous portfolio is characterized by a homogeneous exposure as well as 
position-independent claim intensity, occurrence process, and reporting process. 
It may be considered the vanilla portfolio that practitioners often aim at by care-
ful selection of considered risks and suitable transformations, e.g., adjustment for 
inflation.

Exposure. New risks arrive according to a homogeneous Poisson process with 
intensity 50, 000∕365 ≈ 137 and contracts are assumed to run for exactly one year 
(the latter could be extended to some non-trivial annual churn rate; however, the fact 
that some of the considered claim features depend on calendar time and we do not 
know the true functional from of x ↦ �(x) prevent us from doing this). Moreover, 
the portfolio starts with exactly 50,000 policies with tstart = 0 and with remaining 
contract duration that is uniform on [0, 365]. As a consequence, the total exposure 
is constant in expectation and we have Npol ∼ 50, 000 + Poi (500, 000) . Finally, for 
each risk in the portfolio we randomly draw (with replacement) risk features from 
the aforementioned data set from [36].

Claim Intensity. The claim frequency �(t, x) = �(x) is independent of t and tstart 
and given by the variable truefreq that belongs to the risk selected in the previ-
ous paragraph.

Occurrence Process. The occurrence process is position-independent, i.e., 
PY (x, t) = PY (x) . In view of the fact that the original data set from [36] does not con-
tain any individual claim variables, we employed a simple but realistic process that 
fits into the setting of motor liability claims. More precisely, we choose to work with 
two claim variables, y = (��, ��������) , with claims code �� ∈ {injury,material} , 
and claim size �������� ∈ ℝ+ . The claim feature distribution of cc is chosen to be 
a function of the policy features ac, power, and dens in such a way that material 
damages are more likely to occur in densely populated areas and with low-powered 
and newer cars (see Appendix D in the supplement for details on the precise rela-
tionship). The claim severity distribution of severity is log-normal with � con-
stant and with � depending on cc, brand, ac and power in such a way that injury 
claims, especially with older high-powered cars, are more severe. Moreover, mate-
rial damages for certain premium brands are also more severe. Again, details are 
provided in Appendix D in the supplement.

Reporting Process. The reporting process is position-inde-
pendent, i.e, PD(x, t, y) = PD(x, y) . We choose to work with 
PD(x, y) ∈ BDEGP (n = 1,m = 3, � = 3 ⋅ 365, � = 365∕2) as a basic family, with 
fixed erlang shapes � = (1, 3, 6) that do not depend on x and y. The remaining 7 param-
eters (i.e., the four mixture weights of �0,Γ(1, �),Γ(3, �),Γ(6, �) , and GPD (�, �, �) , 
as well as �, � , and � ) are chosen to depend on age, dens, ac (only if cc is mate-
rial), cc, and severity in such a way that more severe claims, material claims with 
new cars, and claims with younger drivers in populated areas will be reported sooner, 
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while low-severity injuries will be reported later; see Appendix D in the supplement 
for details.

A simulated portfolio from the baseline setting is illustrated in Fig. 3.

5.1.2  Scenarios 2a and 2b: changes in the exposure

The baseline setting from Scenario 1 is modified in such a way that the exposure is 
not constant, but either changes smoothly or abruptly in time.

In practice, smooth changes may result from a shift in the risk class distribu-
tion within the portfolio, for instance due to the fact that a competitor introduces 
a new product which is more attractive than the insurers own product for some 
risk class. In such a case, adverse selection would cause a shift in the newly writ-
ten risks as the competitor product gains more visibility in the market. On the 
other hand, abrupt changes in the exposure may be caused by the introduction of 
a new risk class within the portfolio, for instance as a consequence of the intro-
duction of a completely new product to the market, or the addition of a new sales 
channel reaching a new target group. Likewise, abrupt removal of an existing risk 
class may occur if underwriting policies change such that a product is no longer 
sold to a certain group, or if external factors such as OEM-provided insurance 
make the product obsolete for some risks.

For the simulation study, a smooth shift in exposure is realized by gradually 
reducing the proportion of new cars insured ( �� ≤ 5 ); see Appendix D in the sup-
plement for details. Over the course of the simulation, the expected proportion of 
contracts with new cars reduces gradually from the starting value of 51.15–9.48% . 
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Fig. 3  A path simulated from the baseline scenario. Left: exposure by time t (i.e. active policies; 
#{t ∈ C(i)|i ∈ {1,… ,Npol} ) Center: claims frequency by accident time t (i.e. mean number of claims per 
policy and year). Reported claims (dashed) and occurred claims (solid). Right: monthly summary statis-
tics of reporting delay D by accident time t 
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An abrupt change is introduced in the same way, by abruptly lowering the expected 
proportion of new cars insured to 9.48% halfway through the simulation.

5.1.3  Scenarios 3a and 3b: changes in the claim intensity

The baseline setting from Scenario 1 is modified in such a way that the claim 
intensity is not constant, but either changes smoothly or abruptly in time.

In practice, smooth shifts in the claim intensity may result from improved 
security devices reducing the risk of accidents by prevention. Preventive meas-
ures could also be implemented by the insurer, e.g. by rewarding safer driving 
styles in insurance telematics products  [7]. On the other hand, abrupt changes 
may be caused by the introduction of a product with extended coverage or by 
external factors such as reduced traffic volume and thus decreased risk of traffic 
accidents, for instance due to COVID-19 related lockdown measures.

For the simulation study, a smooth shift of the claim intensity is realized by 
reducing the individual claim frequencies by 20% over the course of the simula-
tion. Note that this also implies non-uniform occurrences. A shock is introduced 
by abruptly lowering the individual claim frequencies by 20% halfway through 
the simulation.

5.1.4  Scenarios 4a and 4b: changes in the occurrence process

The baseline setting from Scenario 1 is modified in such a way that the occur-
rence process is not constant, but either changes smoothly or abruptly in time.

In practice, smooth shifts in the claim feature distribution can be caused by a 
gradual macroeconomic or social change such as developments on the labor market. 
Abrupt changes in the claim feature distribution can be caused by external factors 
such as highly publicized events covered by the insurance in question. A practical 
example for legal insurance would be the Volkswagen emissions scandal 2015.

For the simulation study, a shift in the occurrence process is realized by making 
the probability P(�� = material) depend on the accident time. More precisely, the 
probability is chosen to increase from 58.73 to 77.51% ( +0.9 on a logit scale for 
each risk). In addition, the severity distribution for material claims gets an increase 
by 1 in log-� whereas injuries have a decrease of 0.5 in log-� and an increase of 0.5 
in log-� . A shock is introduced in the same way, by abruptly increasing the probabil-
ity of material claims and the severity distributions halfway through the simulation.

5.1.5  Scenarios 5a and 5b: changes in the reporting process

The baseline setting from Scenario 1 is modified in such a way that the reporting 
process is not constant, but either changes smoothly or abruptly in time.

In practice, smooth shifts in the reporting delay distribution could be caused by 
adaption of a new optional method for reporting claims, such as a customer portal. 
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An abrupt change in the reporting delay distribution could be caused by introducing 
a new product with specific requirements for the claims reporting process, or by a 
legislative change in the definition of accident occurrence.

For the simulation study, a shift in the reporting process is realized by gradually 
increasing the probabilities p0 and p1 of the �0 and Γ(1, �) components by 2 on the 
logit scale, linearly with the accident time. The Γ(3, �) component is also shifted 
such that the equation p2 = (1 − p1) ⋅ p1 still holds, see Appendix D in the supple-
ment for details. A shock is introduced in the same way, by abruptly changing these 
probabilities halfway through the simulation.

Simulated portfolios from the eight non-homogeneous scenarios are illustrated 
in Fig. 4. Note that Scenarios 2a–3b do not yield large changes in the monthly sum-
mary statistics of the reporting delays, which suggests that IBNR prediction in these 
scenarios is simpler than in Scenarios 4a–5b.
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Fig. 4  Overview of all drift (left column) and shock (right column) scenarios applied to the various com-
ponents (rows). The plots are explained in Fig. 3
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5.2  Details on neural network predictors

Recall the generic predictor from  (19), which depends on an estimated reporting 
delay distribution P̂D(x, t, y) and a homogeneity parameter p. When employing the 
neural network estimator from Sect. 3.3, we denote the resulting predictor by N̂NNet,p

𝜏0∶𝜏1
.

For computational reasons, we choose the correct BDEGP model specifica-
tion (i.e., the BDEGP (n = 1,m = 3, � = 3 ⋅ 365, � = 365∕2) family with unknown 
parameters) throughout the simulation study, as additional model selection is not 
feasible within a large scale simulation experiment. Note however that model selec-
tion was successfully applied in the real data application in Sect. 6.

A number of further choices have to be made for modelling and estimating PD , 
the most crucial ones concerning the neural network architecture, the activation 
function and the weight initialization. In view of the fact that a case-by-case choice 
based on training and validation sets is computationally too demanding for a large-
scale simulation study, we chose to fix one particular choice based on the results of a 
preliminary experiment in the baseline setting. The results are presented in Table 1; 
they concern the RMSE0∶∞(�, 365)-performance measure each evaluated in 5000 
simulation runs (50 portfolios with 100 initial weights), and suggest to use the 
sof tplus activation function, the scaled uniform initialization strategy and the neural 
network architecture with Ndense = 1 hidden layer of size n1 = 5.

Next, in view of the well-known nuisance that neural network training crucially 
depends on the initial network weights, a procedure is needed to choose among fits 
calculated from various initial weights. A natural approach consists of choosing the fit 
with the smallest loss. However, extensive experiments not shown in detail for the sake 
of brevity suggest that the following approach, partly tailored to the prediction problem 
at hand, yields substantially better results: among all candidate predictors (we use 100 
initial weights for each data set), keep the one which minimizes the yearly backtesting 
error

R̂MSE0:∞(N̂0:∞;�, 365): =
(

1
9
⋅

9
∑

�=1

(

N̂0:∞(A365,�,�;��−365) − N̂0:∞(A365,�,�;�� )
)2
)

1
2
,

Table 1  Median from 5000 runs of RMSE0∶∞(�, 365) for different hyperparameter choices, after 2000 
epochs in the baseline setting. The Adam optimizer was used with 2000 epochs and parameters hand 
tuned to lr = 0.05 , �1 = �2 = 0 . Hyperparameters are tuned one-by-one, the other parameters being held 
at sof tplus , Ndense = 1 , n1 = 5 , and scaled uniform initialization

Activation function Architecture Weight initialisation

RMSEu RMSEu RMSEu

Relu 69.638 5 68.398 A ← 0 68.414
Softplus 68.398 10 69.382 Ai ← U[−0.1, 0.1]⊗nNdense ⋅ bi 68.398

10,5 71.600 A ← [17] 69.377
15,10,5 73.687
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which is obtained from RMSE0∶∞(�, 365) in Eq. (20) by plugging in N̂0∶∞(… ;�𝜏) 
for N0∶∞(… ) and evaluating on N̂0∶∞(… ;�𝜏−365) . Note that the selection does not 
involve any data unseen by time �.

5.3  Details on Chain Ladder predictors

Similar to the NNet predictor, the Chain Ladder method was used with different discre-
tization periods p ∈ {365, 365∕4, 365∕12} . Based on cumulative link ratios fj = fj(p) 
for development period j ∈ {1,… , �∕p − 1},

the Chain Ladder predictors, for A ⊂ � ×ℝ+ ×� , are given by

Note that, unlike the neural network predictors, the Chain Ladder method can only 
be updated in discrete time steps which are multiples of the discretization period.

In view of the fact that cc is the main feature causing the perturbations in 
the non-homogeneous scenarios, we also applied Chain Ladder separately for 
cc ∈ {material, injury} , resulting in the predictors

where the Chain Ladder factors {f c
j
}j are calculated as in (21), but with �� replaced 

by �� ∩ {�� = c}.

5.4  Results

Throughout this section we highlight important findings from the simulation study.

(21)fj =
#{(x, t, y, d) ∈ �� ∶ ⌊ t+d

p
⌋ ≤ ⌊t∕p⌋ + j ≤ �∕p}

#{(x, t, y, d) ∈ �� ∶ ⌊ t+d

p
⌋ + 1 ≤ ⌊t∕p⌋ + j ≤ �∕p}

,

N̂
CL,p

0∶∞
(A) =

3650∕p∑
i=1

N̂
CL,p

0∶∞
(A ∩ Ap,i,�)

=

3650∕p∑
i=1

Nr(A ∩ Ap,i,�) ⋅
𝜏∕p−1∏

j=𝜏∕p−i+1

fj

N̂
CL,p

𝜏∶𝜏+365
(A) =

3650∕p∑
i=1

N̂
CL,p

𝜏∶𝜏+365
(A ∩ Ap,i,�)

=

3650∕p∑
i=1

Nr(A ∩ Ap,i,�) ⋅
((𝜏+365)∕p−i∧𝜏∕p−1∏

j=𝜏∕p−i+1

fj − 1

)
.

N̂
CLcc,p

0∶∞
(A) =

3650∕p∑
i=1

∑
c∈{material,injury}

Nr(A ∩ Ap,i,{c}×ℝ+
) ⋅

𝜏∕p−1∏
j=𝜏∕p−i+1

f c
j
,

N̂
CLcc,p

𝜏∶𝜏+365
(A) =

3650∕p∑
i=1

∑
c∈{material,injury}

Nr(A ∩ Ap,i,{c}×ℝ+
) ⋅

((𝜏+365)∕p−i∧𝜏∕p−1∏
j=𝜏∕p−i+1

f c
j
− 1

)
,
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We start by providing a general overview of the performance across scenarios. 
For the sake of illustration, we restrict attention to three predictors only, namely 
N̂

CL,365

0∶∞
, N̂

CLcc,365

0∶∞
 and N̂NNet,365

0∶∞
 , and to the evaluation metric RMSE0∶∞(�, q) with 

q = 365 (other predictors and evaluation periods lengths q will be considered 
below). The results are summarized in Fig. 5, where we depict, for each scenario 
described in Sect. 5.1, boxplots of the evaluation metric obtained from 50 simula-
tion runs each. We observe that, for the baseline setting as well as for Scenarios 
3a and 3b (Intensity), both Chain Ladder methods exhibit a slightly smaller over-
all error than the neural network predictor. This behavior may have been expected, 
since the global reporting delay distribution and thus the development pattern which 
Chain Ladder relies on is essentially constant over time in the two scenarios, as 
can be seen from Figs. 3 and 4. Within Scenarios 2a and 2b (Exposure), the global 
Chain Ladder predictor performs slightly worse that the neural network predictor, 
while CLcc performs best. The latter may be explained by the fact that the introduced 
inhomogeneities have rather little influence on the frequency of the injury claims 
(see Fig. 4), whence restricted Chain Ladder performs well on that subset. The neu-
ral network predictor shines in Scenarios 4 and 5 (Occurrence and Reporting Delay, 
respectively), which both exhibit rather large inhomogeneities in the reporting pro-
cess (see Fig. 4). These two scenarios greatly deteriorate the performance of Chain 
Ladder, while the neural network is able to adapt to the changes. Summarizing the 
findings, we find that the neural network predictor works reasonably well in all situ-
ations under consideration, with rather minor disadvantages in some scenarios, and 
substantial advantages in others.
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Fig. 5  Boxplots of the overall error measure RMSE0∶∞(�, 365) , each based on n = 50 simulated paths
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Next, in Fig.  6, we report analogous results separately by claims code for 
the performance measures RMSE0∶∞(�m, 365) and RMSE0∶∞(�i, 365) , where 
�m ∶= {material} ×ℝ+ and �i ∶= {injury} ×ℝ+ are the subsets of � restricted to 
a single claims code. The message is simple: for all scenarios under considera-
tion, the plain Chain Ladder predictor is unable to provide accurate, competitive 
predictions on the subsets defined by �� = material and �� = injury . When com-
paring the neural network predictor with CLcc , we observe the same qualitative 
behavior as in Fig. 5. It is, however, important to mention that the latter method 
requires prior identification of the relevant features (which might not be pos-
sible), while the neural network approach is universal, and can be applied with 
ease to any evaluation set of interest.

Finally, the results presented in Fig. 7 allow to compare the predictors with 
development period p ∈ {365, 365∕4, 365∕12} with respect to performance 
measures with evaluation period q ∈ {365, 365∕4, 365∕12} . For the sake of brev-
ity, we restrict attention to the baseline setting; qualitatively similar results were 
obtained for the other scenarios. We observe that, if the development period 
is larger than the evaluation period, the errors tend to increase drastically, in 
particular for the Chain Ladder method. On the other hand, if the development 
period is smaller than the evaluation period, the error increases slightly show-
ing reduced stability. Overall it seems preferable to choose the smallest devel-
opment period that still yields stable results as the period of choice. Another 
observation that can be made is that the difference between Chain Ladder and 
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neural network based approaches gets smaller for shorter evaluation periods. In 
other words, the stability advantage of Chain Ladder with its comparatively few 
parameters diminishes as the number of Chain Ladder parameters (link ratios to 
be estimated) increases—even in the optimal setting for chain ladder where the 
portfolio and the occurrence process is homogeneous.

6  Application to real data

Throughout this section, we compare our new approach with Chain Ladder in an 
application to a large real dataset containing motor legal insurance claims provided 
by a German insurance company. Details on the dataset are provided in Sect. 6.1. 
The methods and results, including strategies applied for model selection (which 
have been omitted in Sect. 5), are discussed in Sect. 6.2. In a nutshell, the results 
show that the neural network predictors robustly provide more efficient predictions 
than Chain Ladder.
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Fig. 7  Boxplots of error measure RMSE0∶∞(�, q) for different evaluation periods 
q ∈ {365, 365∕4, 365∕12} in the baseline setting
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6.1  The dataset

The dataset contains a portfolio of about 250,000 motor legal insurance contracts 
with exposure information available monthly from 31st January 2014 to 31st 
December 2020. Information on the claims of this portfolio is available up to 31st 
December 2020. as well. In total, there are about 65,000 reported claims.

The policy features considered for modelling reporting delays are
(������, ������, ������, ���),

where

• tstart is the start date of the contract.
• cstart is the start date of the customer relationship.
• tariff gives information on the tariff (regular, public service, self-employed).
• dob contains the date of birth of the customer (accurate to months, contains 

missing values). Missing values were imputed using the median observed age at 
contract start (tstart) as a reference. An indicator variable to show missing-
ness was also added.

In addition, several low-cardinality claim features available at time of reporting, as 
well as the accident time were included:

(����, ��, �������, �������, ��������),

where

• tacc is the accident date. The dataset contains inaccurate data, where the true 
accident time is unknown. These are encoded as January 1st and flagged with an 
indicator variable. Moreover, some rare claims have ���� = ������ (which, for 
instance, is due to legal consulting regarding claims that have happened before 
the contract has started); these claims are identified with an additional indicator 
variable.

• cc is the claims code, a rough categorization of the type of claim. It has five dif-
ferent categories numbered from 1 to 5.

• covered is the coverage status of the claim. It has four different categories, 
but is almost binary (covered, not covered, partially covered, coverage status 
unknown), with ‘covered’ and ‘not covered’ making up the majority of cases.

• channel is the channel by which the claim was reported. It has six different 
categories (mail, e-mail, fax, online, in person, telephone).

• reporter denotes the reporter of the claim. It has six different categories, but 
is almost binary (policyholder, additional insured, lawyer, intermediary, other, 
unknown). Most claims are reported by the policyholder or filed directly by a 
lawyer.

The rationale for including tacc as a feature in the neural network predictors is to 
help identify drifts in the reporting process.

Due to the extreme shock the COVID-19 pandemic had on the dataset, we chose 
to only consider data available up to 31st December 2019 for model evaluation, 
since none of the prediction methods provided remotely acceptable results when 
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validating the predicted number of claims given data up to 31st December 2019 
compared to the actual numbers observed in 2020.

6.2  Results

Predictions were calculated based on a conventional Chain Ladder approach as well 
as on various neural network predictors (among which a final, data-adaptive choice 
was made as described below). To reduce the effect of a single calendar year on our 
studies, we examined two artificial truncation points, � = 31st December 2017 and 
� = 31st December 2018 , and evaluated the methods using the one-year-ahead vali-
dation error RMSE�∶�+365(�, q = 365) for both truncation points.

Regarding Chain Ladder, we chose to separately apply it to the five datasets 
defined by the different claims code (which corresponds to CLcc from the previous 
section, and could be regarded as common actuarial practice). A visualization of the 
different reporting delay distributions by cc can be found in Fig. 8. Note that further 
subdivision may severely impact the stability of Chain Ladder methods, due to the 
combinatorial explosion of the number of different link ratio sequences that would 
have to be estimated.

Regarding the neural network predictors, the underlying BDEGP family was 
specified as follows: first, we held � = 160 and � = 90 fixed; mainly for computa-
tional reasons. Next, we chose to consider all combinations of n ∈ {7, 14, 21, 30} 
and m ∈ {3, 5, 10, 15} . After computing global fits for all these families, we 
proceeded to repeatedly train a neural network model with fixed architecture 
n1 = 10, n2 = 5 for 2000 epochs, each ten times with different random starting 
values. During training, the available data were split into a training and a valida-
tion set in a ratio of 75% ∶ 25% . The loss, i.e., the mean negative log-likelihood, 
was monitored for both datasets and logged for each epoch. This process was 
repeated for both data truncation points �.

In an effort to reduce computational cost, only the six best families accord-
ing to the mean backtesting error RMSE�−365∶�(�, q = 365) over both years were 

1 2 3 4 5
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Fig. 8  Empirical reporting delay distributions by cc. Logarithmic axis. Vertical lines mark the chosen 
blending region � and � ± �
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trained for additional 3000 epochs with the same method. The selected families 
correspond to (n,m) ∈ {(30, 10), (30, 3), (7, 10), (7, 15), (7, 3), (7, 5)} . The training 
and validation loss as a function of the epochs is exemplarily illustrated in Fig. 9 
for the final selected models (n,m) = (30, 3) with � = 31st December 2017 and 
(n,m) = (30, 10) with � = 31st December 2018 , which shows big loss improve-
ments after 2000 epochs and a final loss close to convergence after 5000 epochs. 
Remarkably, the training loss is larger than the validation loss, which is due to a 
fortunate selection of the validation set.

Next, in order to select a final unique model, we performed model selection 
as follows: first, the best model per family (i.e, the best of ten random seeds for 
parameter initialization) was selected based on validation loss. Next, the overall 
model among the six remaining candidates was selected based on the backtesting 
error RMSE�−365∶�(�, q = 365) . Note that the latter evaluates the trained model 
on data it has already partially seen during training, which is readily available, 
and that it is a selection criterion which, unlike the final log-likelihood, allows for 
comparison across different architectures.

The results for the six models that were trained 5000 epochs, as well as the 
final selection and the Chain Ladder benchmark, are summarized in Fig.  10, 
where the 10 runs per model and year ( � ) are illustrated by a boxplot. Horizontal 
lines show the corresponding values for Chain Ladder and for the final selected 
model.

It can be seen that, irrespective of the model or the random seed used for 
parameter initialization, the neural network predictors outperform Chain Lad-
der, with very few exceptions for 2017 and huge improvements for most cases. 
In view of the fact that the final selected models show a substantially different 
performance for 2017 and 2018, the model selection procedure should be taken 
with some care. Nevertheless, even a random choice would provide a viable selec-
tion criterion, which shows that the neural network approach is quite robust with 
respect to model selection.

2017: BDEGP(n = 30,m = 3, κ = 160, ε = 90) 2018: BDEGP(n = 30,m = 10, κ = 160, ε = 90)
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Fig. 9  Training and validation losses by epoch for the final selected models per �
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Finally, predicted distributions for two exemplary claims in the training set are 
shown in Fig. 11 for � = 31st December 2017 . The claims have claim codes 1 and 2 
respectively and show the flexibility of the BDEGP (30, 3, 160, 90) family underly-
ing the neural network model.

τ = 2017 τ = 2018

(30, 10) (30, 3) (7, 10) (7, 15) (7, 3) (7, 5) (30, 10) (30, 3) (7, 10) (7, 15) (7, 3) (7, 5)
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Fig. 10  Comparison of RMSE�∶�+365(�, q = 365) for all runs with 5000 epochs. Horizontal lines show 
the corresponding values for CLcc and the final selected model
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Fig. 11  Predicted reporting delay distributions for two claims from the final fit with 
� = 31st December 2017 . Note the discreteness of the distributions on 0 ≤ d < 30
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7  Conclusion

A new, flexible micro-level model for reporting delays has been developed and 
applied to predict IBNR claim counts. It was demonstrated that the approach per-
forms well in comparison to classical actuarial methods in both simulation studies 
and on real world data. Strengths of the micro-level approach particularly emerge in 
the presence of heterogeneity in the data generating process, as is often the case in 
real world examples, and in the presence of complex relationships involving many 
features. Incorporating many features into classical methods becomes prohibitively 
difficult with an ever-increasing amount of available information. Another advantage 
of the newly developed method is the ability to continuously update predictions as 
new data becomes available, reducing critical information delay for stakeholders.

There are ample opportunities for further development on the approach: 

1. The BDEGP family, while very flexible, might not be suitable for all applications. 
Future work could examine the choice of different families.

2. While Model 3 assumes a neural network functional relationship between report-
ing delay distribution and predictors, different functional relationships could be 
examined. The non-trivial nature of the conditional likelihood under study makes 
finding alternative functional forms with corresponding estimation techniques an 
interesting task.

3. The chosen MLP architecture is rather simple. Other architectures could be exam-
ined for their performance for the problem at hand.

4. The proposed claim count predictors are based on the the number of reported 
claims. This leads to the prediction becoming identical to zero if, in a particular 
portfolio, no claims were yet observed. By developing methods for estimating 
PY and � , access to a predictor based on (15) would allow to overcome this dis-
advantage.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s13385- 022- 00314-4.

Acknowledgements Computational infrastructure and support were provided by the Centre for Informa-
tion and Media Technology at Heinrich Heine University Düsseldorf. The dataset studied in Sect. 6 and 
computational infrastructure was provided by ARAG SE, Düsseldorf. The authors are grateful to two 
unknown referees, the co-editor and the editor for their useful comments on a previous version of this 
article.

Funding Open Access funding enabled and organized by Projekt DEAL. See Acknowledgements.

Availability of data, materials and code The script used for simulation studies is provided as supple-
mentary material. It requires an R package hosted on GitHub  [34]. The real dataset used in Sect. 6 is 
proprietary.

Declarations 

Conflict of interest The authors declare that they have no conflict of interest.



89

1 3

Micro‑level prediction of outstanding claim counts based…

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

 1. Abadi M, Agarwal A, Barham P,  Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin 
M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L,  Kudlur 
M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner 
B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, 
Wattenberg M, Wicke M, Yu Y, and Zheng X (2015) TensorFlow: Large-scale machine learning on 
heterogeneous systems. https:// www. tenso rflow. org/. (Software available from tensorflow.org)

 2. Allaire J, Eddelbuettel D, Golding N and Tang Y (2016) tensorflow: R interface to tensorflow. 
https:// github. com/ rstud io/ tenso rflow

 3. Andersen EB (1970) Asymptotic properties of conditional maximum-likelihood estimators. J Roy 
Stat Soc 32(2):283–301

 4. Antonio K, Plat R (2014) Micro-level stochastic loss reserving for general insurance. Scand Actuar J 
2014(7):649–669

 5. Antonio K, Godecharle E and Van Oirbeek R (2016) A multi-state approach and flexible payment 
distributions for micro-level reserving in general insurance. https:// doi. org/ 10. 2139/ ssrn. 27774 67

 6. Arjas E (1989) The claims reserving problem in non-life insurance: some structural ideas. ASTIN 
Bull 19(2):139–152

 7. Arvidsson S (2010) Reducing asymmetric information with usage-based automobile insurance. 
Swedish Natl Road Transp Res Inst (VTI) 2:2011

 8. Baudry M, Robert CY (2019) A machine learning approach for individual claims reserving in insur-
ance. Appl Stoch Model Bus Ind 2019(35):1127–1155

 9. Chollet F, Allaire J, et al (2017) R interface to keras. https:// github. com/ rstud io/ keras
 10. De Felice M, Moriconi F (2019) Claim watching and individual claims reserving using classifica-

tion and regression trees. Risks 7(4):102
 11. Delong Ł, Wüthrich MV (2020) Neural networks for the joint development of individual payments 

and claim incurred. Risks 8(2):33
 12. Delong Ł, Lindholm M and Wüthrich MV (2021) Collective reserving using individual claims data. 

Scandinavian Actuarial J 1–28
 13. Delong Ł, Lindholm M, Wüthrich MV (2021) Gamma mixture density networks and their applica-

tion to modelling insurance claim amounts. Insur Math Econ 101:240–261
 14. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM 

algorithm. J Roy Stat Soc 39(1):1–38
 15. Dozat T (2016) Incorporating Nesterov momentum into Adam. https:// openr eview. net/ pdf/ OM0jv 

wB8jI p57ZJ jtNEZ. pdf
 16. Embrechts P, Mikosch T, Klüppelberg C (1997) Modelling extremal events: for insurance and 

finance. Springer-Verlag, Berlin
 17. Glorot X and Bengio Y (2010) Understanding the difficulty of training deep feedforward neural 

networks. In: Teh YW and Titterington M (eds) Proceedings of the thirteenth international confer-
ence on artificial intelligence and statistics, volume 9 of proceedings of machine learning research, 
pp 249–256, Chia Laguna Resort, Sardinia, Italy. PMLR. http:// proce edings. mlr. press/ v9/ gloro t10a. 
html

 18. Goodfellow IJ, Bengio Y and Courville A (2016) Deep learning. MIT Press, Cambridge. http:// 
www. deepl earni ngbook. org



90 A. Bücher, A. Rosenstock 

1 3

 19. Gui W, Rongtan H, Lin X (2018) Fitting the erlang mixture model to data via a Gem-CMM algo-
rithm. J Comput Appl Math 343:05

 20. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Springer series in 
statistics. Springer LLC, New York

 21. Holden L and Haug O (2009) A mixture model for unsupervised tail estimation. http:// arxiv. org/ abs/ 
0902. 4137

 22. Jin X (2013) Micro-level loss reserving models with applications in workers compensation insur-
ance. https:// sites. google. com/ site/ xiaol ijin2 013/ resea rch/ worki ng- paper2

 23. Kingma DP and Ba J (2015) Adam: a method for stochastic optimization. In: Proceedings of the 
third international conference on learning representations. ICLR’15. http:// arxiv. org/ abs/ 1412. 6980

 24. Last G, Penrose M (2018) Lectures on the poisson process. Cambridge University Press, Cambridge
 25. Lee SCK, Lin XS (2010) Modeling and evaluating insurance losses via mixtures of erlang distribu-

tions. North Am Actuarial J 14(1):107–130
 26. Lee SC, Lin XS (2012) Modeling dependent risks with multivariate erlang mixtures. ASTIN Bull 

42(1):153–180
 27. Liu C, Rubin DB (1994) The ECME algorithm: a simple extension of EM and ECM with faster 

monotone convergence. Biometrika 81(4):633–648
 28. Lopez O, Milhaud X (2021) Individual reserving and nonparametric estimation of claim amounts 

subject to large reporting delays. Scand Actuar J 1:34–53
 29. Meng X-L, Rubin DB (1993) Maximum likelihood estimation via the ECM algorithm: a general 

framework. Biometrika 80(2):267–278
 30. Mikosch T (2009) Non-life insurance mathematics, 2nd edn. Universitext. Springer-Verlag, Berlin
 31. Norberg R (1993) Prediction of outstanding liabilities in non-life insurance. ASTIN Bull 

23(1):95–115
 32. Norberg R (1999) Prediction of outstanding liabilities II. Model variations and extensions. ASTIN 

Bull 29(1):5–25
 33. Radtke M, Schmidt KD, Schnaus A (eds) (2016) Handbook on loss reserving. European Actuarial 

Academy (EAA) series. Springer, Cham
 34. Rosenstock A (2021) Reservr. https:// github. com/ Ashes ITR/ reser vr
 35. Verbelen R, Gong L, Antonio K, Badescu A, Lin S (2015) Fitting mixtures of erlangs to censored 

and truncated data using the EM algorithm. ASTIN Bull 45(3):729–758
 36. Wüthrich MV and Buser C (2019) Data analytics for non-life insurance pricing. https:// doi. org/ 10. 

2139/ ssrn. 28703 08
 37. Wüthrich MV (2018) Neural networks applied to chain-ladder reserving. Eur Actuar J 8(2):407–436
 38. Wüthrich M (2018) Machine learning in individual claims reserving. Scand Actuar J 1–16:2018

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.



Springer Nature 2021 LATEX template

Supplementary Material: Micro-level

Prediction of Outstanding Claim Counts

using Neural Networks
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Abstract

This supplement contains more details on the neural net-
work model and its estimation (Appendix A), on the general
ECME-algorithm (Appendix B) and its adaptations for fitting
Erlang mixtures (Appendix C), and on the model specifica-
tions used in the simulation study (Appendix D). Throughout,
arabic section numbers always refer to the main paper.

Appendix A Details on the neural network
architecture

In this section we provide a detailed description of the neural network
architecture used for modelling the reporting delay distribution in Section 2.3.

Basics on neural networks can be found in [1]. Each function g ∈ G shall be a
composition of different layer functions, each with their own set of independent
parameters. For a general overview of the structure of g, we refer to Figure A1.
It aids understanding to give an informal summary of the structure of G before
diving into the formal definition:

• The head of the network consists of embedding layers for categorical
features and scaling transformations for continuous features, which serves

1
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Figure A1: Schematic flow of input features to output for a neural network
architecture with three hidden layers. The network will be trained with (9) as
its loss.

to create a uniform-scale, continuous representation of all input features.
The uniformity of scale is particularly important to conserve numer-
ical stability in the presence of random initialization, see Section 3.3 for
details.

• The body of the network aims at transforming the preprocessed features
into an internal representation of the available information, based on one
or more densely connected layers. This ‘narrow’ encoding of the data
serves to extract the most important features with respect to the output
variable (reporting delay in our case).

• The tail of the network aims at transforming the rich internal represent-
ation into concrete distributional parameters θ ∈ Θ. Intuitively, the tail
doesn’t need more complexity because all relevant structure is captured
already in the internal representation.

We start by describing the input layer, which does not contain any free
model parameters. Given an input (x, t, y) ∈ X × R ×Y, we first reorder the
features, putting Nd discrete features to the front and Nc continuous features
(e.g. t) to the back of a new intermediate vector. Furthermore, we shall code
the ith discrete feature as an integer in {1, . . . , ci} where ci ∈ N is the number
of different values that feature i can attain. Overall, we obtain the input layer
function

gin : X× R×Y→
Nd∏

i=1

{1, . . . , ci} × RNc

Next, for each of the discrete features, a so-called embedding layer is needed
to transform the feature into a continuous variable for further use. For the
ith discrete feature, the embedding function gembed,i : {1, . . . , ci} → Rdi has a
fixed hyperparameter di, the embedding dimension, and di · ci free parameters,
denoted by α1, . . . , αci with αj ∈ Rdi , and is defined as

gembed,i : {1, . . . , ci} → Rdi , v 7→ αv.

gembed,i(v) = αv ∈ Rdi is called the embedding of value v. As illustrated
in [2], continuous features should be brought to a common scale to improve
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the numerical condition of the problem. This is realized with an affine trans-
formation with parameters µ ∈ RNc , σ ∈ RNc

+ , namely gscale := x 7→ x−µ
σ with

component-wise division to center and scale continuous features. When fitting
the neural network (see Section 3.3), we employ empirical means and standard
deviations, respectively. The overall embedding layer of the neural network is
defined as

gembed :

Nd∏

i=1

{1, . . . , ci} × RNc → R
∑Nd

i=1 di+Nc , gembed :=

Nd⊗

i=1

gembed,i ⊗ gscale

which is a function with a total of
∑Nd

i=1 ci · di free parameters. We write

ghead := gembed ◦ gin : X× R×Y→ R
∑Nd

i=1 di+Nc .

After the head function that transforms all inputs into continuous vari-
ables, a series of densely connected layers (dense layers for short) are applied.
The total number Ndense ∈ N of dense layers is to be considered as a hyper-
parameter of the model, and the same holds for the output dimension nj , the

number of nodes, of the jth layer. For brevity, we write n0 := Nc +
∑Nd

i=1 di.
The jth dense layer is then defined as

gdense,j : Rnj−1 → Rnj , v 7→ gdense,j(v) := softplus(Av + b),

where A ∈ Rnj×nj−1 and b ∈ Rnj are the free parameters and where the
nonlinear function softplus : x 7→ log(1+ ex), called the activation function, is
applied coordinate-wise. The composition of the Ndense dense layers defines a
function

gbody := gdense,Ndense
◦ · · · ◦ gdense,1 : R

∑Nd
i=1 di+Nc → RnNdense

with
∑Ndense

j=1 (nj−1 + 1) · nj free parameters. When fitting the model (see Sec-
tion 3.3), we also experimented with gdense,j(v) := ReLU(Av + b) but found
results to be worse than with the smooth softplus activation function.

Composing ghead and gbody gives a function gbody ◦ ghead : X × R × Y →
RnNdense which now needs to be mapped to the parameter set Θ of the chosen
reporting delay distribution family F in order to obtain a usable family G. A
common feature of the families F that we invoke is that the parameter space
Θ factors into (possibly bounded) intervals and probability parameters, that
is parameters p constrained to [0, 1]d with ∥p∥1 = 1 (a method to cope with
integer parameters present in Erlang mixtures and derived distributions is
presented below). We can thus construct a natural adapter family of functions



Springer Nature 2021 LATEX template

4 Supplement: Prediction of IBNR using Neural Networks

gtail : RnNdense → Θ as follows: assume

Θ = RN1 × (0,∞)N2 × (0, 1)N3 ×
NP∏

i=1

[0, 1]pi ∩ S1
pi
,

where S1
n denotes the unit sphere in Rn with respect to the 1-norm. Note that

other interval constraints can be trivially reproduced by adding affine trans-
formations, e.g. if θ1 ∈ (a, b) is a constraint in the original parametrization,
substitute θ̃1 = θ1−a

b−a ∈ (0, 1) as an equivalent parameter. The adaptor func-
tion for the BDEGPfix(n,m, κ, ε, α, ξ) family used in the paper is obtained by
setting N1 = 0, N2 = 2, N3 = 0, NP = 3, p1 = n + 1, p2 = m, p3 = 2 in this
general parametrization and ordering the free parameters (θ, σ, p(δ), p(e), p(b)).

With ntail = nNdense+1 := N1 +N2 +N3 +
∑NP

i=1 pi the dimension of Θ, we
define

sigmoid : R→ (0, 1), x 7→ exp(x)

exp(x) + 1

softmaxRn : Rn → (0, 1)n ∩ S1
n, x 7→

(
exp(xi)/

n∑

j=1

exp(xj)
)n
i=1

fadaptor : Rntail → Θ, fadaptor := IdRN1 ⊗
N2⊗

i=1

softplus⊗
N3⊗

i=1

sigmoid⊗
NP⊗

i=1

softmaxRpi

gtail : RnNdense → Θ, v 7→ fadaptor(Av + b) (S1)

where A ∈ Rntail×nNdense and b ∈ Rntail are free parameters. Finally, G is
defined as the collection of all g = gtail ◦ gbody ◦ ghead. G is a family with

nΨ =

Nd∑

i=1

ci · di +
Ndense∑

j=1

(nj−1 + 1)nj + (ndense + 1)ntail

free real parameters. We denote the natural parametrization of G by Ψ = RnΨ

and identify a network g ∈ G by its nΨ weights ψ ∈ Ψ.
The output layer link function fadaptor has a preimage given by

f−1
adaptor = IdRN1 ⊗

N2⊗

i=1

softplus−1 ⊗
N3⊗

i=1

sigmoid−1 ⊗
NP⊗

i=1

softmax−1
Rpi

with softmax−1
Rpi (p) =

(
log(pj)− log(∥p∥∞)

)pi

j=1
and ∥p∥∞ the maximum norm

of p (note that softplus and sigmoid are invertible). This is useful for choice of

initial values based on a global estimate θ̂ during neural network initialization.
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Algorithm S.1 Network Initialization

1: function InitialiseNNet(G, θ̂)
2: ψ ← ()
3: for i = 1, . . . , Nd do ▷ Initialise embedding layers
4: Draw α ∼ U [−0.05, 0.05]di⊗ci

5: Append α to ψ
6: end for
7: for j = 1, . . . , Ndense do ▷ Initialise dense layers

8: l←
√

6
nj+nj−1

9: Draw A ∼ U [−l, l]nj⊗nj−1 ▷ [3]
10: b← 0⃗ ∈ Rnj

11: Append (A, b) to ψ
12: end for
13: b← f−1

adaptor(θ̂) ▷ Initialize tail

14: A← Diag(b) · U [−0.1, 0.1]ntail⊗nNdense

15: Append (A, b) to ψ
16: Flatten ψ ∈ RnΨ

17: end function

Appendix B Derivation of the ECME
Algorithm

In this section we provide a detailed motivation of Algorithm 1 given
in Section 3.2. We follow the notation of the section in the paper.

First note that the conditional density of truncated observations is again
of mixture type:

fXt|Lt=ℓ,Ut=u(x) =

k∑

j=1

pj
fj;θj (x)

F(p,θ)([ℓ, u])
=

k∑

j=1

p̃j;p,θ(ℓ, u)f̃j;θj (x; ℓ, u), ℓ ≤ x ≤ u,

(S2)
where, using the notation Fj;θj ([ℓ, u]) =

∫
[ℓ,u]

fj;θj (z) dµ(z),

p̃j;p,θ(ℓ, u) = pj ·
Fj;θj ([ℓ, u])

F(p,θ)([ℓ, u])
, f̃j;θj (x; ℓ, u) =

fj;θj (x)

Fj;θj ([ℓ, u])
, ℓ ≤ x ≤ u.

(S3)

The EM-algorithm for calculating a maximizer of ℓ(p, θ|I) is based on
regarding the observations (ℓi, xi, ui) as being incomplete, in view of the
fact we do not know from which conditional truncated component dens-
ity f̃j;θj ( · ; ℓi, ui), see (S3), the observation xi ∼ (Xt | (Lt, U t) = (ℓi, ui))
was simulated. More formally let Z = Z(ℓ, u) = (Z1, . . . , Zk), conditioned
on (Lt, U t) = (ℓ, u), follow a multinomial distribution Z|(Lt = ℓ, U t =
u) ∼ Mult(1, p̃1;p,θ(ℓ, u), . . . , p̃k;p,θ(ℓ, u)), i.e., Pr(Z = z|Lt = ℓ, U t = u) =
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p̃z11;p,θ(ℓ, u) · . . . · p̃zkk;p,θ(ℓ, u) for z = (z1, . . . , zk) ∈ {0, 1}k with
∑k

j=1 zj = 1. If,

conditional on (Lt, U t) = (ℓ, u) and Zj = 1, the random variableXt has density

f̃j;θj from (S3), then the conditional distribution of Xt given (Lt, U t) = (ℓ, u)
is precisely given by (S2). In view of this representation, we now regard
each (xi, ℓi, ui) as an incomplete observation of (xi, ℓi, ui; zi,1, . . . , zi,k) where

zi,j = zi,j(ℓi, ui) encodes the truncated component density f̃j;θj from which
xi has been drawn. The respective conditional density of a generic complete
observations of (Xt, Z) given (Lt, U t) = (ℓ, u) becomes

f(Xt,Z)|(Lt=ℓ,Ut=u)(x, z) = fXt|(Z,Lt,Ut)=(z,ℓ,u)(x) · Pr(Z = z | Lt = ℓ, U t = u)

=
( k∏

j=1

f̃j;θj (x; ℓ, u)
zj
)
·
( k∏

j=1

p̃j;p,θ(ℓ, u)
zj
)
.

As a consequence, the complete sample weighted conditional likelihood is given
by

ℓ(p, θ|C)

=

N∑

i=1

k∑

j=1

wizi,j

[
log p̃j;p,θ(ℓi, ui) + log fj,θj (xi)− logFj;θj ([ℓi, ui])

]

=

k∑

j=1

N∑

i=1

wizi,j

[
log pj + log fj;θj (xi)− log

(
pjFj;θj ([ℓi, ui]) +

∑

m ̸=j

pmFm;θm([ℓi, ui])
)]
,

where C = (xi, ℓi, ui, wi; zi,1, . . . , zi,k)
N
i=1.

The E-step of the EM-algorithm now involves calculating the conditional
expectation of the complete sample weighted conditional likelihood given the
incomplete sample I = (xi, ℓi, ui, wi)

N
i=1. For that purpose, note that

Pj(x; p, θ) ≡ Pr(Zj = 1 | Xt = x, Lt = ℓ, U t = u)

=
p̃j;p,θ(ℓ, u) · f̃j;θj (x; ℓ, u)∑k

m=1 p̃m;p;θ(ℓ, u) · f̃m;θm(x; ℓ, u)
=

pj · fj;θj (x)∑k
m=1 pm · fm;θm(x)

(S4)

where the last equation follows from (S3). Next suppose that, at the tth it-
eration of the algorithm, we are given an estimate (p(t), θ(t)). Then, under
the assumption that (p(t), θ(t)) is the true parameter that generated C, the
conditional expectation of ℓ(p, θ|C) given the incomplete sample I = I1 =
(xi, ℓi, ui)

N
i=1 is given by

Q(p(t),θ(t))(p, θ|I) ≡ E(p(t),θ(t))[ℓ(p, θ|C) | I]

=

N∑

i=1

k∑

j=1

wiPj(xi; p
(t), θ(t))

[
log pj + log fj;θj (xi)
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− log
(
pjFj;θj ([ℓi, ui]) +

∑

m ̸=j

pmFm;θm([ℓi, ui])
)]
,

(S5)

where we have used (S4). The M-step of the plain EM-algorithm [4]
would now involve updating the parameter (p(t), θ(t)) by (p(t+1), θ(t+1)) ∈
argmax(p,θ)Q(p(t),θ(t))(p, θ|I) and iterating until convergence. However, the
M-step maximization problem is not feasible (which is essentially due to the
random truncation), whence we propose to instead rely on a version of the
EM-algorithm known as the ECME-algorithm [5]. The latter consists of divid-
ing the M-step maximization problem into a series of k + 1 lower-dimensional
and feasible maximization problems (either ‘ECM’ or ‘CM’ steps), that are es-
sentially based on successively maximizing θj 7→ Q(p(t),θ(t))(p, θ|I) (ECM) and
then p 7→ ℓ(p, θ|I) (CM), holding all other parameters fixed:
Step 1. Maximize Q(p(t),θ(t))(p, θ|I) subject to g1(p, θ) = g1(p

(t), θ(t)) where

g1(p, θ) = (p, (θj)j ̸=1)

with solution (p(t+1/(k+1)), θ(t+1/(k+1))).
Step 2. Maximize Q(p(t),θ(t))(p, θ|I) subject to g2(p, θ) =

g2(p
(t+1/(k+1)), θ(t+1/(k+1))) where

g2(p, θ) = (p, (θj)j ̸=2)

with solution (p(t+2/(k+1)), θ(t+2/(k+1))).
...

Step k. Maximize Q(p(t),θ(t))(p, θ|I) subject to gk(p, θ) =

gk(p
(t+(k−1)/(k+1)), θ(t+(k−1)/(k+1))) where

gk(p, θ) = (p, (θj)j ̸=k)

with solution (p(t+k/(k+1)), θ(t+k/(k+1))).
Step k + 1. Maximize ℓ(p, θ|I) from (12) subject to gk+1(p, θ) =

gk+1(p
(t+k/(k+1)), θ(t+k/(k+1))) where

gk+1(p, θ) = θ

with solution (p(t+1), θ(t+1)).
It can be shown that the space filling condition from Definition 2 in [6]

is met (in that paper’s notation we have J1(p, θ) = Rk × {0} × RdΘ2 · · · ×
RdΘk , . . . , Jk(p, θ) = Rk ×RdΘ1 × · · · ×RdΘk−1 ×{0}, Jk+1(p, θ) = {0}k ×RdΘ ,

whence J(p, θ) =
⋂k+1

j=1 Jj(p, θ) = {0}), and the algorithm is therefore known
to converge to local maxima of ℓ(p, θ|I), given suitable regularity conditions.
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Experimenting with the ECME-algorithm, we did in fact found a slight
variant of the above algorithm that proved to converge more quickly in ex-
tensive computing experiments. The variant is based on modifying the jth
step (j = 1, . . . , k) described above as follows: instead of maximizing (p, θ) 7→
Q(p(t),θ(t))(p, θ|I) subject to the given constraint, maximize

θj 7→ Qj;(p(t),θ(t))(θj) =

N∑

i=1

wiPj(xi; p
(t), θ(t))

[
log fj;θj (xi)− logFj;θj ([ℓi, ui])

]
.

(S6)

Here, the change of the objective function may be motivated by rewriting

Q(p(t),θ(t))(p, θ|I)

=

N∑

i=1

k∑

j=1

wiPj(xi; p
(t), θ(t))

[
log p̃j;p,θ(ℓi, ui) + log fj,θj (xi)− logFj;θj ([ℓi, ui])

]

≈
N∑

i=1

k∑

j=1

wiPj(xi; p
(t), θ(t))

[
log p̃j;p(t),θ(t)(ℓi, ui) + log fj,θj (xi)− logFj;θj ([ℓi, ui])

]
,

and maximizing the latter subject to the given constraints is equivalent to
maximizing (S6). Note that the approximation in the last display is typically
quite accurate for large t, when the algorithm is close to convergence.

Calculating a maximum of the function in (S6) may involve a further al-
gorithm depending on some starting value, say θj,0. Following the notation in
(13) from the main paper, we rewrite any solution of such an algorithm as
CML(Fj ,Ij , θj,0), where Fj = {fj;θj : θj ∈ Θj} denotes the jth (untruncated)

component family, where Ij = I
(t)
j := {(xi, ℓi, ui, wiPj(xi; p

(t), θ(t)))} denotes
re-weighted truncated data, and where θj,0 denotes a starting value. In view
of this notation, the overall algorithm may be summarized as in Algorithm 1
in the paper.

Appendix C Derivation of the Erlang Mixture
adapted ECME Algorithm

In this section we will derive the adaptations for fitting Erlang Mixtures in
the setting of Section 3.2. Recall that Erlang Mixture families are given by
F = {∑k

i=1 pi ·Γαi,θ : p ∈ (0, 1)k, ∥p∥1 = 1, θ ∈ (0,∞), α ∈ Nk, α1 < . . . < αk}.
We will start by providing details on a suitable version of the ECME when

treating the shape parameters α ∈ Nk as fixed and known. For some given in-
terval truncated sample I = {(xi, ℓi, ui, wi)|ℓi ≤ xi ≤ ui} the goal is to find

(p̂, θ̂) = argmaxp,θ ℓ(p, θ|I, α), where ℓ is the weighted conditional log likeli-

hood function from (12) with f(p,θ) =
∑k

j=1 pjdΓαj ,θ and F(p,θ) the respective
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cdf. For solving the maximization problem, we propose to use an ECME al-
gorithm that involves two maximization steps within each iteration. For that
purpose note that, following the ideas at the beginning of Appendix B, the
adaption from (S6) becomes

Q(p(t),θ(t))(θ) :=

N∑

i=1

k∑

j=1

wi · Pj(xi; p
(t), θ(t))

[
log dΓαj ,θ(xi)− log Γαj ,θ([ℓi, ui])

]
.

Each iteration in the adapted ECME-Algorithm for Erlang Mixtures now
consists of two steps:
Step 1. Maximize Q(p(t),θ(t))(θ) with solution θ(t+1/2).

Step 2. Maximize ℓ(p, θ|I, α) subject to g2(p, θ) = g2(p
(t), θ(t+1/2)) where

g2(p, θ) = θ with solution (p(t+1), θ(t+1)).
Note that the first step was decomposed into k separate steps when treating

general mixtures that do not involve common parameters. The procedure is
summarized in Algorithm S.2.

Algorithm S.2 Erlang Mixture ECME-Algorithm

1: function ErlangECME(F ,I, p0, θ0, α, ε)
2: p← p0
3: θ ← θ0
4: l← −∞
5: repeat
6: l0 ← l
7: θ′ ← argmaxθ′ Q(p,θ)(θ

′) ▷ Erlang ECM-Step
8: θ ← θ′

9: p← argmaxp ℓ(p, θ|I, α) ▷ Erlang CM-Step
10: l← ℓ(p, θ, α|I)
11: until l − l0 < ε ▷ Likelihood converged
12: end function

Algorithm S.2 requires starting values p0 and θ0 and a fixed shape para-
meter α0, for which we found a K-Means approach that is partly similar to [7]
to work well:
1. Run K-Means on the observed data {x : (x, ℓ, u) ∈ I1} – ignoring trun-

cation – with prescribed number of components k. Denote the obtained
cluster centers by c1 < c2 < · · · < ck.

2. Estimate the preliminary scale parameter δ = minj{cj − cj−1} with c0 =
0. This choice ensures that all clusters are separated enough to obtain
pairwise different shape parameters in the next step.

3. Use α0,j = round(ci/δ), j = 1, . . . , k as starting values for the shape
parameters.

4. Setm = max(x,ℓ,u,w)∈I x/α0,k such that (0,mα0,k] covers all observations.
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5. Initialise the mixture weights p0,j = #({(x, ℓ, u) ∈ I1 : α0,j−1m < x ≤
α0,jm})/N (where α0,0 := 0) by tabulating, compare [8, Sec. 3.2].

6. Initialise θ0 via moment matching – ignoring truncation, that is, let

θ0 =
x̄

∑k
j=1 p0;jα0,j

,

where x̄ = 1
N

∑
(x,ℓ,u,w)∈I x is the observed mean value.

Finally, optimising the shape parameter essentially requires to solve an
integer optimization problem. We propose to use a local shape search as in [8,
Sec. 3.3]:
1. Compute a fit with starting values α0, p0, θ0 as described above, and set
α = α0, with components (α1, . . . , αk).

2. Try fitting (α1, . . . , αk−1, αk + 1), and keep the new parameters if the
log-likelihood improves, repeating until it no longer increases. Proceed
increasing αk−1, . . . , α1 one by one until no more improvements are found.

3. Try fitting (α1 − 1, α2, . . . , αk) and keep the new parameters if the
log-likelihood improves, repeating until it no longer decreases. Proceed
decreasing α2, . . . , αk one by one until no more improvements are found.

4. Go back to 2. if any improvement was found.
For steps 2. and 3. good starting values for p and θ are those from the currently
selected parameters, since the potential changes in α are small for each step.

Appendix D True relationships in simulation

Throughout this section we provide details on the model specifications used
within the simulation experiment in Section 5.

Baseline.

The following paragraph describes the relationships chosen for the baseline
scenario. Other scenarios inherit their relationships from the baseline, changing
only one relationship at a time.

The conditional claim feature distribution PY (x, t) = PY (x) is defined
in terms of the binary conditional distribution of cc and the conditional
distribution of severity, conditioned on the variables shown:

P (cc = material|ac, power, dens) = logit−1
(
0.5 + 0.05 log(dens)− 0.1 ·min(10, ac)

− 0.05 · power+ 0.01 ·min(10, ac) · power
)
,

=: PBaseline(ac, power, dens)

P (severity ∈ ·|cc, brand, ac, power) = logN (µ, σ),

where

µBaseline := µ = 5 + 0.35 · power+ 0.35 · (2− ac)+ − 0.05 · 1(brand ∈ {B1,B2,B12})
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+ 1.0 · 1(brand ∈ {B10,B11}),
σBaseline := σ = 9− 0.01 · (5− ac)+ + 0.08 · power.

The parametrization for the log-normal distribution is such that X ∼
logN (µ, σ) means logX ∼ N (µ, σ); in particular, E(X) = exp(µ+ σ2/2).

The reporting delay distribution PD(x, t, y) = PD(x, y) is chosen as a
BDEGP(n = 1,m = 3, κ = 3 · 365, ε = 365/2)-distribution with parameters
depending on dens, ac, cc and severity as follows: denoting

• p0, the weight for δ0
• p1, the weight for Γ(1, θ)
• p2, the weight for Γ(3, θ)
• p3, the weight for Γ(6, θ)
• p4, the weight for GPD(κ, σ, ξ)
• θ, the common Erlang scale
• σ, the GPD scale
• ξ, the GPD shape

we set

p0 = (1− p4) logit−1
(
−4− 0.5 · 1(cc = material) + 0.5 · 1(ac ≤ 1 ∧ cc = material)

− 0.25 · severity ·
{
10−3 cc = material

10−4 cc = injury
+ 0.2 ·min(1, |age− 45|/15)2

+ 0.01 · log(dens)
)

=: (1− p4)qBaseline
0

p1 = (1− p4 − p0) · logit−1
(
1− 0.5 · 1(cc = material) + 1(ac ≤ 1 ∧ cc = material)

− 2 · severity ·
{
10−3 cc = material

10−4 cc = injury
+ 0.2 ·min(1, 2− age/25)+

)

=: (1− p4 − p0)qBaseline
1

p2 = (1− p4 − p0 − p1) ·
p1

1− p4 − p0
p3 = 1− p4 − p0 − p1 − p2

p4 =

{
0.0005 cc = material

0.02 cc = injury

θ =

{
30 cc = material

180 cc = injury

σ =

{
180 cc = material

365 cc = injury

ξ = 0.2
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Exposure Scenarios

There is a pool of 500, 000 risks from the original dataset, risk features of
policies created at time t are drawn uniformly from the pool. In the exposure
scenario, this pool for new risks is downsampled for ac ≤ 5 by a factor of
f(t) = 0.1 + 0.9 · (1 − t/3650) (2a) and f(t) = 0.1 + 0.9 · 1(t ≥ 3650/2) (2b).
That means, policies created at time t are drawn uniformly from a modified
pool consisting of all 244, 230 original risks with ac > 5, and f(t)·255, 770 risks
with ac ≤ 5 where the original dataset consists of 255, 770 risks with ac ≤ 5.

Claim Intensity Scenarios

The baseline claim intensity of λ(x, t) = truefreq is reduced by 20% for all
risks:

λ(x, t) = truefreq · (1− 0.2 · t/3650), (3a)

λ(x, t) = truefreq · (1− 0.2 · 1(t ≥ 3650/2)). (3b)

Occurence Process Scenarios

The parameters for the claim feature distributions (cc and severity) are
changed depending on t: writing p = P (cc = material|ac, power, dens, t), we
have





p = logit−1
(
logit(PBaseline(ac, power, dens)) + 0.9t/3650

)
,

µ = µBaseline +

{
1.0 cc = material

−0.5 cc = injury
· t/3650,

σ = σBaseline + 0.5 · 1(cc = injury) · t/3650,

(4a)





p = logit−1
(
logit(PBaseline(ac, power, dens)) + 0.9 · 1(t ≥ 3650/2)

)
,

µ = µBaseline +

{
1.0 cc = material

−0.5 cc = injury
· 1(t ≥ 3650/2),

σ = σBaseline + 0.5 · 1(cc = injury, t ≥ 3650/2).

(4b)

Reporting Process Scenarios

The baseline probabilities p0 and p1 are modified on the logit scale, keeping
all other relationships in tact (i.e. p4 does not change, p2 and p3 are defined
via the modified p0 and p1 in the same way as in the baseline scenario):

{
p0 = (1− p4) · logit−1(logit(qBaseline

0 ) + 2t/3650),

p1 = (1− p4 − p0) · logit−1(logit(qBaseline
1 + 2t/3650)),

(5a)

{
p0 = (1− p4) · logit−1(logit(qBaseline

0 ) + 2 · 1(t ≥ 3650/2)),

p1 = (1− p4 − p0) · logit−1(logit(qBaseline
1 + 2 · 1(t ≥ 3650/2))).

(5b)
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Abstract

Usually, the actuarial problems of predicting the number of claims incurred but
not reported (IBNR) and of modelling claim frequencies are treated successively by
insurance companies. New micro-level methods are proposed that address the two
problems simultaneously. The methods are based on an elaborated occurence process
model that includes both a claims frequency model and a claim development model.
The influence of claim feature variables is modelled by suitable neural networks. Ex-
tensive simulation experiments and a case study on a large real data set from a motor
legal insurance portfolio show accurate predictions at both the aggregate and individ-
ual policy level, as well as appropriate fitted models for claim frequencies. Moreover,
a novel alternative approach combining data from classic triangle-based methods with
a micro-level frequency model is introduced and compared to the full micro-level ap-
proach.
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1 Introduction

Actuarial departments in insurance companies are responsible for many different tasks
related to risk modelling of insurance operations. Two of these tasks are closely inter-
linked: Reserving actuaries need to compute accurate predictions of incurred liabilities
for insurance portfolios. Pricing actuaries use these results to develop risk models, which
allow them to estimate expected losses for a range of policy parameters and thus to deter-
mine the prices at which these policies are sold. While developing models on per-policy
data (subsequently referred to as the micro-level) is common practice for risk modelling,
micro-level methods for reserving are still not widely adopted in the industry.

In the research literature on reserving in general insurance, there are two main ap-
proaches to micro-level reserving. On the one hand, there are methods that operate in
discrete time (such as development years), which have similarities with macro-level reserv-
ing methods like Bornhuetter-Ferguson. Micro-level methods of this kind typically deal
with claim-level information which is only available for reported claims, and therefore
work on the reserve of claims that have been reported but not settled (RBNS). Examples
of this kind are De Felice and Moriconi (2019), Baudry and Robert (2019), Gabrielli and
Wüthrich (2018), Wüthrich and Merz (2015) and Chaoubi et al. (2023), among others.
On the other hand, there are continuous time claim development models which are based
on the assumption that claim development is regarded as a point process (e.g., a position-
dependent marked poisson process); respective model parameters are then estimated from
observed data. This strain of research goes back to Norberg (1993) and Norberg (1999).
More recent papers studying a continuous time claim development model are Badescu et
al. (2016), Antonio, Godecharle et al. (2016), Okine et al. (2022) and Wang et al. (2021),
among others.

The current paper aims to combine the task of predicting IBNR claim counts on a
policy level with the development of a matching micro-level claim frequency model, thus
addressing the two tasks of reserving and risk modelling simultaneously in the hope of
improving accuracy in both disciplines. Two main approaches are proposed to achieve
this goal. Our first approach is based on an explicit micro-level claim occurrence process
model inspired by Norberg (1993). Suitable methods are proposed for estimating all model
parameters, which results in a fully fitted continuous-time process model that includes a
claim frequency model. We thereby extend a related approach in Bücher and Rosenstock
(2022a), where a submodel for reporting delays was studied. Secondly, we propose a new
method that uses classical triangle-level reserving methods as input to the estimation of
a micro-level claim frequency model. This approach allows for micro-level allocation of
IBNR claim counts that is consistent with the triangle. Due to the nature of the underlying
triangle-based reserving methods, the approach only allows discrete time steps.

For each of the two approaches, we discuss the design and estimation of suitable (para-
metric) sub-models involving classical multilayer perceptron neural networks. For the es-
timation, it is taken into account that the observed data is subject to random truncation.
Predictors for the number of IBNR claims on a per-policy level are derived from the esti-
mated models. They are compared with each other as well as with classical Chain Ladder
methods in an extensive simulation study as well as on a real dataset. It is found that the
new predictors provide accurate predictions as well as appropriate fitted models for claim
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frequencies even in simulation scenarios involving non-homogeneous portfolios and in the
real-life example.

For learning the neural networks, we utilize the TensorFlow framework (Abadi et
al. 2015) with custom loss functions that take random truncation into account. The
implementation is written using the R language and its interface binding packages keras
and tensorflow (Allaire et al. 2016; Chollet, Allaire et al. 2017) to utilize TensorFlow.
Core functionality used for estimation and prediction is freely available as an R package
reservr (Rosenstock 2023).

The remaining parts of the paper are organized as follows. In Section 2, we introduce
the micro-level claim process used throughout as well as the observation setting. Modelling
and fitting of the individual components of the claim process are discussed in Section 3.
Based on a completely estimated micro-level model, we derive a corresponding micro-level
predictor for the IBNR claim count in Section 4. Section 5 introduces an alternative micro-
level predictor based on similar ideas, but using a triangle-based global reserving method
and discrete time steps. After defining performance metrics in Section 6, we present results
on a large-scale simulation study in Section 7. An application to a real dataset from a
motor legal insurance portfolio is presented in Section 8. Finally, Section 9 concludes.

2 Preliminaries on insurance portfolio data

The general model for the claim arrivals in a given insurance portfolio is the same as in
Bücher and Rosenstock (2022a), and builds on the notion of (position-dependent) marked
Poisson processes (Norberg 1993). More precisely, we consider an insurance portfolio
containing Npol independent risks. Each risk is described by a coverage period C =
[tstart, tend], and by risk features x̄ ∈ X̄, where X̄ is a feature space containing both discrete
and continuous features; for example, information on the insured product and chosen
options such as deductibles. We write x = (C, x̄) ∈ X = {intervals on [0,∞)} × X̄, and
assume that x is constant over the course of the contract. In practice, risk features do
change over time, but not very often, whence such a contract could be modelled as two
separate risks.

Each risk can potentially incur claims during its coverage period, which will formally be
modelled by a claim arrival process. Each claim in that process occurs at some (calendar)
accident time tacc ∈ [tstart, tend], and will be associated with several claim features y ∈ Y
like the type of the claim or its severity; here, Y denotes some suitable feature space.
Moreover, the claim will not be immediately known to the insurer, but it will rather be
reported at (calendar) reporting time treport ∈ [tacc,∞). Formally, both the claim features
y and the reporting delay dreport := treport − tacc will be assumed to be a mark on the
claim arrival process. Following the notation in Last and Penrose (2018), we arrive at the
following definition of a claim arrival process.

Definition 2.1 (Claim Arrivals and Portfolio). Consider a risk in the portfolio with
risk features x(i) ∈ X among which we find the coverage period C(x(i)). The claim ar-
rival process associated with that risk is a position-dependent marked Poisson process with
N (i) ∼ Poi

(∫
C(x(i)) λ(x

(i), t) dt
)
points

ξ(i) =
N(i)∑

j=1

δ
(T

(i)
acc,j ,Y

(i)
j ,D

(i)
report,j)

on [0,∞)×Y× [0,∞) with:
(i) Intensity λ(x(i), t) · 1(t ∈ C(x(i))), i.e., for all intervals [t0, t1] ⊆ [0,∞), we have

N(i)∑

j=1

1(T
(i)
acc,j ∈ [t0, t1]) =

∫ t1

t0

ξ(i)(dt,Y, [0,∞)) ∼ Poi

(∫ t1

t0

1(t ∈ C(x(i)))λ(x(i), t) dt
)
.
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(ii) Conditional claim feature distribution PY |x(i),t = PY |X=x(i),Tacc=t. Here, Y denotes a
generic Y-valued claim feature variable containing all claim features except for the
reporting delay, while X and Tacc are generic risk feature and accident time variables,
respectively.

(iii) Conditional reporting delay distribution PD|x(i),t,y = PD|X=x(i),Tacc=t,Y=y. Here, D =
Dreport denotes a generic reporting delay variable in [0,∞).

A portfolio consists of Npol risks ξ
(1), . . . , ξ(Npol) that are mutually independent.

In practice, the three building blocks of Definition 2.1, i.e., λ(x, t), PY |x,t and PD|x,t,y,
are unknown and must be estimated based on observational data that is available to the
insurer at some given calendar time τ ≥ 0 of observing the portfolio. More precisely, the
insurer observes data from Observation Scheme 1:

Observation Scheme 1. At given calendar time τ , the available dataset D = Dτ consists
of all risk features x(i), i ∈ {1, . . . , Npol}, and all reported claim data up to calendar time
τ , i.e.

{
(x(i), t

(i)
acc,j , y

(i)
j , d

(i)
report,j)

∣∣ t(i)report,j := d
(i)
report,j + t

(i)
acc,j ≤ τ

}
. (2.1)

Equivalently, we observe, for each i ∈ {1, . . . , Npol}, the risk feature x(i) and the restriction

ξ
(i)
r (·) = ξ(i)( · ∩Rτ ), where Rτ = {(t, y, d) : d+ t ≤ τ} and where the lower index r stands
for ‘reported’.

Clearly, estimating the building blocks of Definition 2.1 can only be feasible if additional
model assumptions are made. Those assumptions, as well as respective fitting procedures,
will be described in the next section.

3 Modelling and Fitting Claim Arrival Processes

Modelling and estimating the intensity λ(x, t), the claim feature distribution PY |x,t and the
reporting delay distribution PD|x,t,y from Definition 2.1 will be done iteratively, starting
with the latter. We discuss each aspect in a separate subsection.

3.1 Modelling and Fitting the Reporting Delay Distribution

Modelling and fitting the reporting delay distribution has recently been considered in the
accompanying paper Bücher and Rosenstock (2022a), subsequently abbreviated as BR22.
A detailed description of all aspects is rather lengthy and not very informative for this
paper, which is why we will be rather brief in our discussion. It is worthwhile to mention
that any other method to obtain an estimate for PD|x,t,y may be employed as well.

BR22 start by discussing stylized facts of reporting delays. The discussion eventually
gave rise to a micro-level model where the conditioning variables x, t, y enter via a suitable
multilayer perceptron (MLP), i.e., a certain fully connected feedforward artificial neural
network, into a flexible parametric mixture model.

Model 1 (Micro-Level Model for Reporting Delays). For some given parameters n,m ∈
N0 and κ, ε > 0, let Bθ denote the Blended Dirac-Erlang-Generalized Pareto distribution
with parameter θ ∈ Θ = Θn,m,κ,ε (see Definition 2 in BR22 for a precise definition of
the distribution and the parameter space). Further, let G denote a set of MLPs g : X ×
[0,∞) × Y → Θ (see Section 3.2 in BR22). We assume that the conditional reporting
delay distribution satisfies, for some g ∈ G,

PD|x,t,y = Bg(x,t,y) ∀x, t, y.

Details on fitting Model 1 to right-truncated observations as in Observation Scheme 1
can be found in Section 3 in Bücher and Rosenstock (2022a). A publicly available imple-
mentation is provided in Rosenstock (2023).
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3.2 Modelling and Fitting the Claim Feature Distribution

Throughout this section, we assume that PD|x,t,y is available, for instance since it has been
estimated as described in the previous section. For modelling and estimating the claim
feature distribution PY |x,t, we assume that Y can be written as a Q-fold cartesian product
Y = Y1 × · · · ×YQ with Yq ⊂ R for each q ∈ {1, . . . , Q}. Note that this assumption is of
no practical concern, since claims data typically consists of a combination of real-valued
and categorical features (if the qth feature is categorical, its categories may be identified
with 1, . . . , nq). As a consequence, we may write a generic claim feature variable Y as
Y = (Y1, . . . , YQ), and by the chain rule for conditional distributions we can decompose
the conditional claim feature distribution as

PY |X,T = PYQ|X,T,Y1,...,YQ−1
· . . . · PY2|X,T,Y1

· PY1|X,T , (3.1)

where T = Tacc. This decomposition will be crucial for defining a flexible model for which
iterative estimation (from left to right) is feasible.

Model 2 (Micro-Level Model for Claim Features). Assume that PY |X,T allows for a decom-

position as in (3.1) with Q ∈ N. For each q ∈ {1, . . . , Q}, let P(q) = {P (q)
θ : θ ∈ Θ(q)} de-

note a parametric distribution family that is dominated by a sigma-finite measure µ(q) and

that has a finite-dimensional parameter space Θ(q); the µ(q)-densities of P
(q)
θ will be written

as f
(q)
θ . Further, let G(q) denote a set of MLPs g(q) : X× [0,∞)×Y1 · · · ×Yq−1 → Θ(q).

We assume that there exists g(q) ∈ G(q) such that

PYq |x,t,y1,...,yq−1
= P

(q)

g(q)(x,t,y1,...,yq−1)
∀x, t, y1, . . . , yq−1.

A natural choice for P(q) in case of a categorical component is the multinomial dis-
tribution, which gives full flexibility. Distributions for continuous components must be
decided case-by-case, bearing in mind that integration with respect to the chosen distri-
bution will need to be performed. Therefor, choosing an overly flexible distribution could
lead to numerical problems in application.

We will now describe how to iteratively estimate the unknown components of Model 2,
taking into account the fact that observations are subject to random truncation. Suppose
we have already fitted PD|x,t,y, PYQ|x,t,y1,...,yQ−1

, . . . , PYq+1|x,t,y1,...,yq , and we are to estimate
PYq |x,t,y1,...,yq−1

next.
For that purpose, we propose to maximize the following weighted conditional likelihood

function over all functions g ∈ G(q):

L̃(g|Dτ ) =
∑

(x,t,y,d)∈Dτ

ℓ̃(x,t,y1,...,yq−1)(g|yq), (3.2)

where

ℓ̃(x,t,y1,...,yq−1)(g|yq) =
log f

(q)
g(x,t,y1,...,yq−1)

(yq)

P (T +D ≤ τ |X = x, T = t, Y1 = y1, . . . , Yq = yq)
. (3.3)

Note that the denominator in the definition of ℓ̃ does not depend on g, but only on objects
that have already been fitted. Indeed, writing y(q) = (y1, . . . , yq), we have

P (T +D ≤ τ |X = x, T = t, Y (q) = y(q))

=

∫

Yq+1

· · ·
∫

YQ

PD|x,t,y([0, τ − t])dPYQ|x,t,y(Q−1)(yQ) . . . dPYq+1|x,t,y(q)(yq+1), (3.4)

which can readily be computed for each observation (x, t, y, d) ∈ Dτ , subject to computa-
tional constraints.
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The estimator for g may be motivated as follows: first of all, standard heuristics
underlying the M-estimation principle suggest that a maximizer of L̃ may be consid-
ered as an estimator for the maximizer of the (conditional) expected value g 7→ L(g) :=
EYq |T+D≤τ,x,t,y(q−1) [L̃(g|Dτ )], where EYq |T+D≤τ,x,t,y(q−1) refers to integration with respect

to the true conditional distribution of Yq given T +D ≤ τ,X = x, T = t, Y (q−1) = y(q−1),
for each observation. More precisely, we have

L(g) =
∑

(x,t,y,d)∈Dτ

E[ℓ̃(x,t,y1,...,yq−1)(g|Yq) | T +D ≤ τ,X = x, T = t, Y (q−1) = y(q−1)].

(3.5)

The following lemma characterizes the maximizers of g 7→ L(g).

Lemma 3.1. Assume that there is a true function g0 = g
(q)
0 ∈ G(q) such that

PYq |x,t,y1,...,yq−1
= P

(q)
g0(x,t,y1,...,yq−1)

∀x, t, y1, . . . , yq−1.

Then, for each fixed value of x, t, y(q−1), the summands of the objective function from (3.5)

g 7→ E[ℓ̃(x,t,y1,...,yq−1)(g|Yq) | T +D ≤ τ,X = x, T = t, Y (q−1) = y(q−1)]

attain their maximal value at g = g0.

Proof. For x ∈ X, t ≥ 0 and y = (y1, . . . , yQ) ∈ Y, write z(q) = (x, t, y1, . . . , yq). Then, in
view of the fact that the conditional density of Yq given D + T ≤ τ and Z(q−1) = z(q−1)

may be written as

fYq |D+T≤τ,Z(q−1)=z(q−1)(yq) =
P (D + T ≤ τ |Z(q) = z(q))

P (D + T ≤ τ |Z(q−1) = z(q−1))
fYq |Z(q−1)=z(q−1)(yq),

we may rewrite each summand in (3.5) as

E[ℓ̃(X,T,Y1,...,Yq−1)(g|Yq) | T +D ≤ τ, Z(q−1) = z(q−1)]

=

∫
log fg(z(q−1))(yq)

P (T +D ≤ τ |Z(q) = z(q))
fYq |D+T≤τ,Z(q−1)=z(q−1)(yq) dµ

(q)(yq)

=
1

P (D + T ≤ τ |Z(q−1) = z(q−1))

∫
log fg(z(q−1))(yq)fYq |Z(q−1)=z(q−1)(yq) dµ

(q)(yq)

=
1

P (D + T ≤ τ |Z(q−1) = z(q−1))
E[log fg(Z(q−1))(Yq) | Z(q−1) = z(q−1)].

Note that the factor in front of the expectation does not depend on g.
Write

M(g) = E
[
log fg(Z(q−1))(Yq)− log fg0(Z(q−1))(Yq) | Z(q−1) = z(q−1)

]
,

and note that M(g0) = 0. Moreover, since log(x) ≤ 2(
√
x− 1) for x ≥ 0, we have, for all

g ∈ G(q),

M(g) ≤ 2 · E
[√

fg(Z(q−1))(Yq)/fg0(Z(q−1))(Yq)− 1 | Z(q−1) = z(q−1)
]

= 2

∫

Yq

(√
fg(z(q−1))(yq)/fg0(z(q−1))(yq)− 1

)
fg0(z(q−1))(yq) dµ

(q)(yq)

= 2

∫

Yq

√
fg(z(q−1))(yq)fg0(z(q−1))(yq) dµ

(q)(yq)− 2

= −
∫

Yq

(√
fg(z(q−1))(yq)−

√
fg0(z(q−1))(yq)

)2
dµ(q) ≤ 0.

Hence, M(g) ≤ 0 =M(g0) for all g ∈ G(q), which implies the assertion.

6

Electronic copy available at: https://ssrn.com/abstract=4564502



During preliminary simulation experiments we found that more reliable estimates with
a smaller variance may be obtained by smoothing the denominator in (3.3). This requires
additional assumptions on top of Definition 2.1, the local homogeneity assumptions.

Assumption 1 (Local homogeneity of claims developement). Let p > 0 be a given period
length measured in days; e.g., p = 365 days. For all intervals Ip(k) = [k · p, (k + 1) · p)
with midpoints tk = k · p+ 1

2 , k ∈ N0, we have:

(i) t 7→ λ(x, t) = λ(x, tk) > 0 is constant on Ip(k) for any x.
(ii) t 7→ PY |x,t = PY |x,tk is constant on Ip(k) for any x.
(iii) t 7→ PD|x,t,y = PD|x,y,tk is constant on Ip(k) for any x, y.

Even if the global claims process is highly inhomogeneous, these assumptions are ap-
proximately met for sufficiently small p. For our final predictors, p can be chosen appro-
priately to balance model bias and variance: a smaller choice for p increases estimation
variance while allowing for a more flexible model and hence less bias. Implicitly assuming
Assumption 1 for some given period length p > 0, we propose to replace the denomina-
tor P (T + D ≤ τ |X = x, T = t, Y1 = y1, . . . , Yq = yq) in (3.3), see also the alternative
expression in (3.4), by

1

Leb(Ip(kt) ∩ C)

∫

Ip(kt)∩C

∫

Yq+1

· · ·
∫

YQ

PD|x,tkt ,y([0, τ − s])

dPYQ|x,tkt ,y(Q−1)(yQ) . . . dPYq+1|x,tkt ,y(q)(yq+1) ds, (3.6)

where kt = ⌊ tp⌋ denotes the number of the period of length p containing t, which in
turn, using the notation from Assumption 1, is Ip(kt) = [kt · p, (kt + 1) · p) with midpoint
tkt = ktp +

p
2 . Moreover, C = C(x) is the coverage period associated with x. Note that

both the denominator and the integral are non-zero for observed values (x, t, y, d) ∈ Dτ .
Overall, we aim at maximizing

L(p)(g|Dτ ) =
∑

(x,t,y,d)∈Dτ

ℓ
(p)
(x,t,y1,...,yq−1)

(g|yq)

instead of (3.2), where

ℓ
(p)
(x,t,y1,...,yq−1)

(g|yq) =
log f

(q)
g(x,t,y1,...,yq−1)

(yq)

denomq−1(x, tkt , y1, . . . , yq−1)

with denomq−1(x, tkt , y1, . . . , yq−1) denoting the expression in (3.6).

3.3 Modelling and Fitting the Claim Intensity

Once a distribution for PY |X,T has been fitted, the only unknown object in the model from
Definition 2.1 is the claim intensity λ = λ(x, t).

Recall that the reported claims process ξ
(i)
r has intensity measure

µ(i)r (S) =

∫

C(x(i))

∫

Y

∫

[0,τ−t]
1S(t, y, d)λ(x

(i), t) dPD|x(i),t,y(d) dPY |x(i),t(y) dt,

where S ⊂ [0,∞)×Y× [0,∞).

Assuming local homogeneity as in Assumption 1 for period length p > 0, and setting
S(k) = Ip(k)×Y× [0,∞) with Ip(k) = [kp, (k+1)p) with midpoint tk = kp+ p

2 , we obtain
that, for each k ∈ N0,

ξ(i)r (S(k)) ∼ Poi
(
λ(x(i), tk)

∫

Y

∫

Ip(x(i),k)
PD|x(i),tk,y

([0, τ − s]) ds dPY |x(i),tk
(y)
)
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where we define

Ip(x, k) := C(x) ∩ Ip(k) = C(x) ∩ [kp, (k + 1)p) (3.7)

with C(x) the coverage period of policy x. Given a set of policies, this allows fitting a
poisson model (e.g., a poisson GLM with log link) to the number of reported claims per
period in the usual way by specifying a fixed offset o for each observation and estimating the
common intensity factor λ(x, t). Compared to a classical claim frequency model without
truncation, where ξ(i)(S(k)) ∼ Poi

(
λ(x(i), tk)Leb(Ip(x

(i), k))
)
with Leb(Ip(x

(i), k)) usually

called the exposure, the offset term o = log(Leb(Ip(x
(i), k))) must be adjusted by the

reporting probability from (3.9). See (Goldburd et al. 2016; Wüthrich and Buser 2019)
for a more detailed introduction to the classical frequency modelling approach and offsets.

Model 3 (Micro-Level Model for Claim Frequency). Let G denote a set of MLPs g : X×
[0,∞)→ R+. We assume that there exists g ∈ G such that λ(x, t) = g

(
x, tkt

)
for all x ∈ X

and all t > 0, i.e., the Claim Frequency λ is given by a piecewise constant extension of
g(x, tk) to the intervals Ip(k) for k = 0, 1, . . ., which is consistent with using Assumption 1
for period length p.

The Claim Frequency λ(x, t) can hence be estimated by maximizing the Poisson like-
lihood

L(g|Dτ ) =

Npol∑

i=1

∞∑

k=0

ξ(i)r (S(k)) · log
(
g(x(i), tk) · ex(x(i), k)

)
− g(xi, tk) · ex(x(i), k), (3.8)

where

ex(x(i), k) :=

∫

Y

∫

Ip(x(i),k)
PD|x(i),tk,y

([0, τ − s)) ds dPY |x(i),tk
(y). (3.9)

If ĝ ∈ G maximizes L(g|Dτ ), we write

λ̂NNet(x, t) = ĝ(x, tkt).

Note that maximization of L(g|Dτ ) is straight-forward once the exposures ex(x(i), k)
have been computed. The latter requires numerical integration over Y, after replacing
PD|x,t,y and PY |x,t by estimated versions thereof. Care must be taken in the choice of
Y during modelling, so this integral remains feasible: Choosing continuous covariates
necessitates computation of possibly challenging (and maybe indefinite) integrals with
respect to PYq |x,t,y1,...,yq−1

, choosing too many discrete covariates results in combinatorial
explosion of the number of summands to be computed when performing integration with
respect to the counting measure.

4 Individual Claims Count Prediction based on Estimated
Claim Arrival Processes

The models and estimators from the previous section can be used in various ways to define
predictors für IBNR claim numbers; see Bücher and Rosenstock (2022a) for an example
that only involves the reporting delay model. Throughout this section, we describe a pre-
dictor that is based on the full (estimated) claim arrival model. Alternative intermediate
predictors will be defined in the simulation study.

More precisely, for each given period Ip(k) = [k · p, (k+1) · p) of length p > 0 and each
claim feature set Y′ ⊂ Y and each reporting interval (τ0, τ1] ⊂ [0,∞], we derive a predictor
for the number of claims policy i has incurred within period Ip(k) with claim features in
Y′ and with a reporting time in (τ0, τ1]. For that purpose, let S

′(k) := Ip(k)×Y′× [0,∞)
and Rτ0:τ1 := {(t, y, d) : τ0 < t+ d ≤ τ1}. For completeness, let Rτ0:τ1 = ∅ if τ0 ≥ τ1.
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Note that the target number of claims can then be written as

N (i)
τ0:τ1(S

′(k)) := ξ(i)(S′(k) ∩Rτ0:τ1),

and that we observe, under Observation Scheme 1, the respective number of reported

claims ξ
(i)
r (S′(k) ∩Rτ0:τ1) = ξ(i)

(
S′(k) ∩Rτ0:min(τ1,τ)

)
, which is zero if τ0 > τ .

Now, if Assumption 1 is met for the given period length p > 0, we obtain that, by the
restriction theorem (Theorem 5.2 in Last and Penrose 2018),

E[ξ(i)(S′(k) ∩Rτ0:τ1) | ξ(i)r (S′(k) ∩Rτ0:τ1)]

= ξ(i)r (S′(k) ∩Rτ0:τ1) + E[ξ(i)nr (S
′(k) ∩Rτ0:τ1)]

= ξ(i)r (S′(k) ∩Rτ0:τ1) + E[ξ(i)(S′(k) ∩Rmax(τ0,τ):τ1)]

= ξ(i)r (S′(k) ∩Rτ0:τ1) + λ(x(i), tk)

∫

Y′

∫

Ip(x(i),k)
PD|x(i),tk,y

(Iτ0:τ1(τ, s)) dsPY |x(i),tk
(dy),

where ξ
(i)
nr = ξ(i) − ξ(i)r denotes the unknown number of unreported claims, where Ip(x, k)

is defined in (3.7) and where Iτ0:τ1(τ, s) := (max(τ, τ0) − s, τ1 − s], with the convention
that the interval is the empty set if max(τ, τ0) > τ1. As is well-known, if λ(x, t), PY |x,t and
PD|x,t,y were known, this would be the best L2-predictor for ξ(i)(S′(k) ∩ Rτ0:τ1) in terms

of ξ
(i)
r (S′(k) ∩ Rτ0:τ1). Replacing the unknown objects on the right-hand side by suitable

estimators as in the previous sections, we arrive at the predictor

N̂ (i)
τ0:τ1(S

′(k)) := ξ̂(i)(S′(k) ∩Rτ0:τ1) (4.1)

:= ξ(i)r (S′(k) ∩Rτ0:τ1)

+ λ̂(x(i), tk)

∫

Y′

∫

Ip(x(i),k)
P̂D|x(i),tk,y

(Iτ0:τ1(τ, s)) ds dP̂Y |x(i),tk
(y).

In contrast to classical factor-based reserving methods, this predictor may yield a non-
zero expected number of claims even for policies without already reported claims. This
allows for the individual-level count predictions to have a meaningful interpretation as the
expected number of unreported claims for that particular policy.

Remark 4.1. The predictor in (4.1) can be adapted to a general S = I ×Y′ × [0,∞) by
summing over the intervals covering I as follows:

N̂ (i)
τ0:τ1(S) = ξr(S ∩Rτ0:τ1)

+

τ/p−1∑

k=0

λ̂(x(i), tk)

∫

Y′

∫

Ip(x(i),k)∩I
P̂D|x(i),tk,y

(Iτ0:τ1(τ, s)) dsdP̂Y |x(i),tk
(y).

5 Individual Claims Count Prediction based on Chain Lad-
der Networks for the Claim Frequency

We propose an alternative estimator for the claim frequency λ, which is similar to the
estimator from Section 3.3. However, instead of being based on preliminary estimators of
the claim feature and reporting delay distributions, the new estimator is based on classical
chain ladder factors. In a second step, the estimator is used to define a new predictor for
IBNR claims, similar to Section 4.

Given a partition Y = Y1∪Y2∪ · · ·∪YM into groups of claim features and a develop-
ment period length p where τ = P ·p, we make the following classical chain ladder assump-
tion: for any group index m ∈ {1, . . . ,M} and any development period j ∈ {1, . . . , P −1},
there exists a factor fCL,Ym

j called chain ladder factor such that, for any policy i and any
accident period k ∈ {0, . . . , P − 1},

E[ξ(i)(Sm(k) ∩R0:(k+j+1)·p)] = fCL,Ym

j E[ξ(i)(Sm(k) ∩R0:(k+j)·p)],
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where Sm(k) := Ip(k) ×Ym × [0,∞) and Rτ0:τ1 := {(t, y, d) : τ0 < t + d ≤ τ1}. Iterating
the equation, we obtain that

E[ξ(i)(Sm(k) ∩R0:(k+P )·p)] = FtUCL,Ym

k · E[ξ(i)(Sm(k) ∩R0:P ·p)], (5.1)

where

FtUCL,Ym

k :=

P−1∏

j=P−k

fCL,Ym

j

is the chain ladder factor-to-ultimate. Under the additional assumption that every claim is
developed within at most P periods, we have that ξ(i)(Sm(k) ∩R0:(k+P )·p) = ξ(i)(Sm(k)).
Hence, if Assumption 1 is met for p > 0 specified above, the left-hand side of (5.1) can be
written as

E[ξ(i)(Sm(k) ∩R0:(k+P )·p)] = E[ξ(i)(Sm(k))]

= PY |x(i),tk
(Ym) · Leb(Ip(x(i), k)) · λ(x(i), tk).

On the other hand, for the expression on the right-hand side of (5.1), we observe that

ξ(i)(Sm(k) ∩ R0:P ·p) = ξ
(i)
r (Sm(k)) is the reported number of claims with accident year k

and claims from Ym. Hence, combining the previous equations with (5.1), we obtain that

E[ξ(i)r (Sm(k))] =
1

FtUCL,Ym

k

PY |x(i),tk
(Ym) · Leb(Ip(x(i), k)) · λ(x(i), tk).

In view of the basic Poisson assumption on ξ(i) (and hence on ξ
(i)
r and ξ

(i)
nr ) from Defini-

tion 2.1, we obtain that

ξ(i)r (Sm(k)) ∼ Poi

(
PY |x(i),tk

(Ym) · Leb(Ip(x(i), k)) · λ(x(i), tk) ·
1

FtUCL,Ym

k

)
,

ξ(i)nr (Sm(k)) ∼ Poi

(
PY |x(i),tk

(Ym) · Leb(Ip(x(i), k)) · λ(x(i), tk) ·
(
1− 1

FtUCL,Ym

k

))
.

This can be used to estimate the unknown claim frequencies on Ym, i.e.,

λYm(x, t) := PY |x,t(Ym)λ(x, t).

Indeed, let G denote a set of MLPs g : X × [0,∞) → [0,∞) as in Model 3. We assume
that the claim frequency on Ym satisfies, for some gYm ∈ G,

λYm(x, t) = gYm(x, tkt) ∀x, t.
Recalling the notation tk = kp+ 1

2 , we arrive at the per-triangle loss

LCL,Ym(gYm |Dτ ) =

Npol∑

i=1

P−1∑

k=0

ξ(i)r (Sm(k)) · log
(
gYm(x(i), tk) · exCL,Ym(x(i), k)

)

− gYm(x(i), tk) · exCL,Ym(x(i), k),

where

exCL,Ym(x(i), k) := Leb(Ip(x
(i), k)) · 1

FtUCL,Ym

k

.

In practice, the chain ladder factors within the loss must be estimated, for which we apply
the well-known estimators

f̂CL,Ym

j :=
#{(x, t, y, d) ∈ Dτ | y ∈ Ym, ⌊t/p⌋ ≤ (P − j − 1), ⌊(t+ d)/p⌋ − ⌊t/p⌋ ≤ j}

#{(x, t, y, d) ∈ Dτ | y ∈ Ym, ⌊t/p⌋ ≤ (P − j − 1), ⌊(t+ d)/p⌋ − ⌊t/p⌋ ≤ j − 1},

F̂tU
CL,Ym

k :=
P−1∏

j=P−k

fCL,Ym

j .
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Note that in contrast to the micro-level approach from the previous sections, there
is no explicit model for the distribution of claim features on Y. If gYm = λ̂CL,Ym(x, t)
are maxima of the per-triangle losses LCL,Ym , the triangle-level intensity estimates can be
aggregated to a common intensity estimator

λ̂CL(x, t) :=
M∑

m=1

λ̂CL,Ym(x, t).

Finally, exploiting E[ξ(i)(S) | ξ(i)r (S)] = ξ
(i)
r (S) + E[ξ(i)nr (S)] similar as in Section 4, we

may define an IBNR-predictor as follows: recalling Sm(k) = Ip(k)×Ym × [0,∞), let

ξ̂(i),CL(Sm(k)) := ξ(i)r (Sm(k)) + λ̂CL,Ym(x(i), tk)Leb(Ip(x
(i), k)) ·

(
1− 1

F̂tU
CL,Ym

k

)
,

ξ̂(i),CL(S(k)) :=

M∑

m=1

ξ̂(i),CL(Sm(k)).

Recalling the notation Rτ0:τ1 := {(t, y, d) : τ0 < t + d ≤ τ1}, similar derivations show
that this predictor can also be extended to a predictor for reporting times τ0 = P0 · p to
τ1 = P1 · p with P0 < P1 ∈ N0 ∪ {+∞}:

N̂ (i),CL
τ0:τ1 (Sm(k)) := ξ(i)r (Sm(k) ∩Rτ0:τ1)

+ λ̂CL,Ym(x(i), tk)Leb(Ip(x
(i), k)) ·

( 1

F̂tU
CL,Ym

k+P−P1

− 1

F̂tU
CL,Ym

k+P−P0

)
(5.2)

Here, we define the empty product as 1, i.e., F̂tU
CL,Ym

j := 1 for all j ≤ 0. Finally, it is
worthwhile to mention that in contrast to the predictor described in Section 4, it is not
possible to use the Chain Ladder Networks to obtain predictions for arbitrary τ0, τ1 that
are not whole multiples of p.

6 Evaluating Individual Claim Count Predictors

The quality of competing predictors may be assessed by suitable error measures. In this
section, we define two such measures: an individual mean squared prediction error, and
an aggregated global mean squared prediction error.

We start by considering the individual error measure. For S = [0, τ) ×Y′ × [0,∞) ⊂
[0,∞) × Y × [0,∞) and 0 ≤ τ1 < τ1 ≤ ∞, let N̂

(i)
τ0:τ1(S) denote individual claim count

predictions for N
(i)
τ0:τ1(S) = ξ(i)(S ∩ Rτ0:τ1), the number of claims in S incurred by policy

x(i) that are reported between τ0 and τ1; recall Rτ0:τ1 = {(t, y, d) : τ0 < t + d ≤ τ1}. Let
q > 0 denote an evaluation period length (for instance, q = 365 corresponding to a year;
note that there should be no confusion with the running index q used in Section 3.2), which
is assumed to be a divisor of the total observation length τ from Observation Scheme 1,
and let Y′ ⊂ Y denote an evaluation set of claim features. We then define

RMSEexpo
τ0:τ1(Y

′, q) :=

(
1

∑τ/q−1
j=0 #P(q, j)

τ/q−1∑

ℓ=0

∑

i∈P(q,ℓ)

{
N̂ (i)

τ0:τ1(S
′
q(ℓ))−N (i)

τ0:τ1(S
′
q(ℓ))

}2
) 1

2

,

(6.1)

where, for ℓ ∈ N0, recalling the notation Iq(x, ℓ) = C(x) ∩ [ℓ · q, (ℓ+ 1) · q),

S′
q(ℓ) := [ℓ · q, (ℓ+ 1) · q)×Y′ × [0,∞), P(q, ℓ) := {i ∈ {1, . . . , Npol} : Iq(x(i), ℓ) ̸= ∅}.
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Note that in practice the measure can only be calculated for τ1 ≤ τ (with τ the most
recent date for which data is available) and on selected tests sets (for instance, in a back-
testing approach). In controlled simulation experiments, see Section 7, we may and will
use τ1 =∞, thereby aiming at predicting the total number of unreported claims for each
policy. Moreover, for using the error measures with the predictors from Section 4 and 5,
the evaluation period q must be a multiple of the homogeneity period length p (unless one
is willing to use the extension discussed in Remark 4.1).

The quality of individual claim count predictors may alternatively be assessed by first
aggregating the individual predictions and then using standard global error measures; the
predictors may then even be compared with classical methods for aggregated data like the
standard Chain Ladder approach. Aggregated predictions are obtained from individual
predictions straightforwardly: for A = X′ × S with X′ ⊂ X and S as above, let

N̂τ0:τ1(A) :=
∑

i∈{1,...,Npol}:
x(i)∈X′

N̂ (i)
τ0:τ1(S),

which is to be considered a predictor for the aggregated claim number

Nτ0:τ1(A) :=
∑

i∈{1,...,Npol}:
x(i)∈X′

ξ(i)(S ∩Rτ0:τ1).

For q and Y′ as in (6.1), we then define

RMSEτ0:τ1(Y
′, q) :=

(
q

τ

τ/q−1∑

ℓ=0

{
N̂τ0:τ1(Aq,ℓ,Y′)−Nτ0:τ1(Aq,ℓ,Y′)

}2
) 1

2

, (6.2)

where Aq,ℓ,Y′ := X× [ℓ · q, (ℓ+ 1) · q)×Y′ × [0,∞). Note that this measure has also been
used in Bücher and Rosenstock (2022a), Formula (20). Its application is limited to the
constraints mentioned above for τ1 and q.

7 Simulation study

In this section, we will study the performance of the new estimators and predictors within
nine different simulation scenarios taken from Bücher and Rosenstock (2022a). We start
by restating a brief, partially verbatim summary of the simulation models taken from the
last-named paper:

The underlying portfolios build upon the car insurance data set described in Ap-
pendix A in Wüthrich and Buser (2019). The latter data set provides claim counts for
500,000 insurance policies, where each policy is associated with the risk features

(age, ac, power, gas, brand, area, dens, ct),

which correspond to age of driver, age of car, power of car, fuel type of car, brand of
car, and area code, respectively; see also (A.1) in Wüthrich and Buser (2019) for further
details. Next to that, the data set also provides the variable truefreq, which corresponds
to the claim intensity λ(x) in our model.

Each portfolio is considered over ten periods of 365 days, that is, the portfolio coverage
period is the interval [0, 3650]. The different scenarios are as follows:

The baseline scenario. The baseline scenario/portfolio is characterized by a homoge-
neous exposure as well as position-independent claim intensity, occurrence process, and
reporting process. It may be considered the vanilla portfolio that practitioners often aim
at by careful selection of considered risks and suitable transformations, e.g., adjustment
for inflation. More precisely:
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• Exposure. New risks arrive according to a homogeneous Poisson process with inten-
sity 50, 000/365 ≈ 137 and contracts run for exactly one year. Moreover, the portfolio
starts with exactly 50, 000 policies with tstart = 0 and with remaining contract duration
that is uniform on [0, 365]. As a consequence, the total exposure is constant in expecta-
tion and we have Npol ∼ 50, 000 + Poi(500, 000). Finally, for each risk in the portfolio
we randomly draw (with replacement) risk features from the aforementioned data set
from Wüthrich and Buser (2019).

• Claim Intensity. The claim frequency λ(t, x) = λ(x) is independent of t and tstart
and given by the variable truefreq that belongs to the risk selected in the previous
paragraph.

• Occurrence Process. The occurrence process is position-independent, i.e., PY |X=x,T=t =
PY |X=x for all t. We choose to work with two claim variables, y = (cc, severity), with
claims code cc ∈ {injury,material}, and claim size severity ∈ R+. The claim feature
distribution of cc is chosen to be a function of the policy features ac, power, and dens

in such a way that material damages are more likely to occur in densely populated areas
and with low-powered and newer cars (see Appendix D in Bücher and Rosenstock 2022b
for details on the precise relationship). The claim severity distribution of severity is
log-normal with σ constant and with µ depending on cc, brand, ac and power in such a
way that injury claims, especially with older high-powered cars, are more severe. More-
over, material damages for certain premium brands are also more severe. Again, details
are provided in Appendix D in Bücher and Rosenstock (2022b).

• Reporting Process. The reporting process is position-independent, i.e, PD|X=x,T=t,Y=y =
PD|X=x,Y=y. We choose to work with PD|X=x,Y=y ∈ BDEGP(n = 1,m = 3, κ = 3·365, ε =
365/2) as a basic family, with fixed erlang shapes α = (1, 3, 6) that do not depend on x and
y. The remaining 7 parameters (i.e., the four mixture weights of δ0,Γ(1, θ),Γ(3, θ),Γ(6, θ),
and GPD(κ, σ, ξ), as well as θ, σ, and ξ) are chosen to depend on age, dens, ac (only if
cc is material), cc, and severity in such a way that more severe claims, material claims
with new cars, and claims with younger drivers in populated areas will be reported sooner,
while low-severity injuries will be reported later; see Appendix D in Bücher and Rosenstock
(2022b) for details.

Eight non-homogeneous scenarios. Eight non-homogeneous scenarios are obtained
by altering a single element of the baseline scenario:

1. Exposure: The distribution of ac changes continuously (drift) or abruptly (shock).
2. Intensity : λ(x, t) decreases continuously (drift) or abruptly (shock).
3. Occurrence: The distribution of cc changes continuously (drift) or abruptly (shock).
4. Reporting delay : The distribution of D is altered by moving probability mass to

shorter reporting delays, continuously (drift) or abruptly (shock).

Figure 1 illustrates the effect of the different scenarios on exposure, claim counts and
reporting delays. The precise functional relationships are documented in Appendix D
in Bücher and Rosenstock (2022b).

The simulation study was conducted with 50 data seeds for each of the 9 scenarios,
i.e., with 450 simulated portfolio datasets in total.

7.1 Training Procedure

In this section, we describe details on the training and model selection procedure for the
various neural networks used in the predictors. All networks were trained for 5, 000 epochs
using the adam optimizer with fixed parameters α = 0.05, β0 = β1 = 0 and an adaptive
learning rate, halving the learning rate on plateaus (patience = 2) down to a minimum
of α = 10−4. In addition to this, the available (truncated) data was randomly split into
75% training data and 25% validation data. The validation data was not used for model
calibration and instead kept aside to assess the generalization error.
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Figure 1: Overview of all scenarios, taken from Bücher and Rosenstock (2022a, Figure 4).
Rows show different scenarios, the left three columns showing the drift variation and the
right three columns showing the shock variation. Within the scenarios, the panels show,
from left to right, the exposure at risk (aggregated and split by ac ≤ 5 shown in red and
ac > 5 shown in blue), the number of claims (aggregated and split by cc with injury
shown in red and material shown in blue; dashed line: reported, solid line: occurred), the
reporting delay distribution (dashed line: mean, solid line: median, ribbon: first and third
quartiles).
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Estimating the Claim Arrival Process. Fitting of the claim arrival process was done
in four steps, each requiring a slightly different neural network architecture. First, P̂D|x,t,y
was estimated as described in Bücher and Rosenstock (2022a), compare Section 3.1. Re-
porting delay networks were trained for 100 starting seeds (for parameter initialization)
using the correct BDEGP specification (with unknown parameters). The top 10 perform-
ing reporting delay networks were chosen by computing RMSEτ−365:τ (Y, 365;Dτ−365) for
the predictor based on P̂D|x,t,y1,y2 (denoted NNet in Section 7.2), i.e., by the back-testing
error for one year in the past.

Next, as described in Section 3.2, for each of the 10 networks from the previous step,
coordinate distributions for P̂Y |x,t were estimated from the decomposition Y = Y1 ×Y2

with Y1 = {injury,material} describing the claims code and Y2 = R+ describing the
severity. First, P̂Y2|x,y,y1 was estimated using an MLP for the two parameters of a log-

normal distribution, i.e., P̂Y2|x,t,y1 = logN (g(2)(x, t, y1)). The network architecture G(2)
for g(2)(x, t, y1) consisted of a (10, 5) MLP with a softplus activation function adapted
to an output in R × (0,∞), matching the two parameters (µ, σ) defining a log-normal
distribution. For each of the 10 reporting delay networks, 10 starting seeds were used for
training the severity feature network g(2)(x, t, y1), resulting in a total of 100 estimates for
the pair (P̂D|x,t,y1,x2

, P̂Y2|x,t,y1). Similar as in the previous step, the ten best estimates were
chosen based on back-testing the error one year in the past, using the predictor based on
P̂D|x,t,y1,x2

and P̂Y2|x,t,y1 (denoted NNetseverity in Section 7.2). It should be noted that this

predictor performed worse than the underlying NNet predictor based solely on P̂D|x,t,y1,y2 .

Nonetheless, using P̂Y2|x,t,y1 is necessary for the subsequent steps.

For each of the ten estimates for (P̂D|x,t,y1,x2
, P̂Y2|x,t,y1) from the previous step, we next

estimated P̂Y1|x,t. The associated network architecture G(1) consisted of a (10, 5) MLP with
a softplus activation function outputting probability masses for a discrete distribution on
{injury,material}. It was trained for 10 different starting seeds, resulting in a total of
100 estimates for (P̂D|x,t,y1,y2 , P̂Y2|x,t,y1 , P̂Y1|x,t) and hence for (P̂D|x,t,y, P̂Y |x,t) using the

definition P̂Y |x,t(dy1,dy2) = P̂Y1|x,t(dy1)P̂Y2|x,t,y1(dy2). Again, the 10 best estimates were
chosen by evaluating the associated predictor (denotes NNetcc in Section 7.2) using the
backtesting error RMSEτ−365:τ (Y, 365;Dτ−365).

Finally, for each of the ten estimates for (P̂D|x,t,y, P̂Y |x,t), ten frequency estimates

λ̂NNet(x, t) were obtained as described in Section 3.3, with ten different starting seeds.
The underlying network architecture consisted of a (10, 5) MLP with a softplus activation
function and a parameter-free skip connection for the offset term as described in Wüthrich
(2019), leading to a single poisson parameter in R+. After training, the bias regularization
method described in Wüthrich (2019) was applied. From the resulting 100 estimates for
(P̂D|x,t,y, P̂Y |x,t, λ̂NNet(x, t)), the final estimate was chosen according to the backtesting
error for its associated predictor, denoted NNetFreqNet in Section 7.2.

Overall, the number of trained networks for each data set is 400, resulting in a total
of 450× 400 = 180, 000 trained networks for the simulation study.

Fitting Chain Ladder Networks. Training a Chain Ladder Network requires fitting
M neural networks, gYm for m = 1, . . . ,M . As described in next section, we use both
M = 1 (predictor CLFreqNet in Section 7.2) and M = 2 (CLFreqNetcc in Section 7.2),
resulting in three networks to be trained for each data set. The MLP architecture was
fixed as (10, 5) with a softplus activation function and a parameter-free skip connection
for the offset term. After training, the bias regularization method described in Wüthrich
(2019) was applied using the training dataset. For each data set, ten starting seeds were
used, resulting in 30 networks for each data set, from which a best predictor was chosen
based on the backtesting error RMSEτ−365:τ (Y, 365;Dτ−365). For the entire simulation
study, 450× 30 = 13, 500 networks were trained.
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7.2 Predictors

We provide a detailed overview of the predictors, tailored to the specific portfolios de-
scribed at the beginning of Section 7. For the macro-level error measure from (6.2), we
will compare a total of eight different predictors, three of which provide reasonable micro-
level predictions as measured by (6.1). All predictors target the number of claims in
A = X′ × Ip(k)×Y′ × [0,∞) with some X′ ⊂ X and Y′ ⊂ Y.

For index m encoding one of the methods specified below, let

N̂ cw
m (A;Dτ ) :=

∑

(x,t,y,d)∈A∩Dτ

ĉm(x, t, y, d), N̂pw
m (A;Dτ ) :=

∑

i∈{1,...,Npol}:
x(i)∈X′

ĉm(i, A),

where the upper index cw and pw stand for claim-wise and policy-wise, respectively, and
where ĉm(x, t, y, d) and ĉm(i, A) are suitable numbers, additionally depending on Dτ , τ0
and τ1, as specified below. For k ∈ N0, t ≥ 0 and x ∈ X, recall the notations tk =
kp + p

2 , kt = ⌊ tp⌋ and Ip(x, k) = C(x) ∩ [kp, (k + 1)p) with C(x) the coverage period of
policy x, see (3.7).

• Predictor NNet. We consider the original method from Bücher and Rosenstock
(2022a) that only relies on modeling and estimating reporting delays, see formula (19)
in that paper. More precisely, we define N̂NNet := N̂ cw

NNet with constants

ĉNNet(x, t, y, d) :=

∫
Ip(x,kt)

P̂D|X=x,T=tkt ,Y=y((τ0 − s, τ1 − s]) ds∫
Ip(x,kt)

P̂D|X=x,T=tkt ,Y=y([0, τ − s]) ds
.

• Predictor NNetseverity. We additionally incorporate the estimated first stage claim
feature model from Section 3.2, based upon the decomposition Y = {injury,material}×
R+ =: Y1×Y2 into claims code and claim severity. More precisely, we define N̂NNetseverity :=

N̂ cw
NNetseverity

with

ĉNNetseverity(x, t, y, d) :=
p̂rep(τ0, τ1, x, kt, y1)

p̂rep(0, τ, x, kt, y1)
.

with p̂rep = p̂rep(τ0, τ1, x, kt, y1) defined as

p̂rep =

∫

Y′
y1

∫

Ip(x,kt)
P̂D|X=x,T=tkt ,Y1=y1,Y2=w((τ0 − s, τ1 − s]) ds dP̂Y2|X=x,T=tkt ,Y1=y1(w),

where Y′
y1 = {w : (y1, w) ∈ Y′}.

• Predictor NNetcc. This predictor is built on the full estimated claim feature model,
see Section 3.2. More precisely, we define N̂NNetcc := N̂ cw

NNetcc

ĉNNetcc(x, t, y, d) :=
p̂rep(τ0, τ1, x, kt)

p̂rep(0, τ, x, kt)

with p̂rep = p̂prep(τ0, τ1, x, kt) defined as

p̂rep :=

∫

Y′

∫

Ip(x,kt)
P̂D|X=x,T=tkt ,Y=y((τ0 − s, τ1 − s]) ds dP̂Y |X=x,T=tkt

(y).

For Y′ = Y, this can be written as

p̂rep =
∑

u∈{injury,material}

∫ ∞

0

∫

Ip(x,kt)
P̂D|X=x,T=tkt ,Y1=u,Y2=w((τ0 − s, τ1 − s]) ds

dP̂Y2|X=x,T=tkt ,Y1=u(w) · P̂Y1|X=x,T=tkt
({u}).
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• Predictor FreqNet. This predictor is the one from Section 4 that builds upon the full
estimated model for the claim arrival process. More precisely, N̂FreqNet = N̂pw

FreqNet with

ĉFreqNet(i, A) := ξ(i)r (Ip(k)×Y′ × [0,∞)) + λ̂NNet(x(i), tk)

·
∫

Y′

∫

Ip(x(i),k)
P̂D|X=x(i),T=tk,Y=y((max(τ, τ0)− s, τ1 − s]) ds dP̂Y |X=x(i),T=tk

(y),

which corresponds to (4.1).
• Predictor CL. This predictor is the basic chain ladder predictor. More precisely,
N̂CL = N̂ cw

CL with

ĉCL(x, t, y, d) = 1(P0 ≤ ⌊(T +D)/p⌋ ≤ P1) + FtUY
kt+P−P0

− FtUY
kt+P−P1

,

where τ = P · p, τ0 = P0 · p and τ1 = P1 · p must be whole multiples of the development
period and FtUY

k := 1 for k < 0.
• Predictor CLFreqNet. This is the basic Chain Ladder Network based predictor, and
is only defined for Y′ = Y. More precisely, N̂CLFreqNet = N̂pw

CLFreqNet with

ĉCLFreqNet(i, A) := ξ(i)r (Ip(k)×Y× [0,∞) ∩Rτ0:τ1)

+ Leb(Ip(x
(i), k)) · λ̂CL,Y(x(i), tk) ·

( 1

FtUY
k+P−P1

− 1

FtUCL,Y
kt+P−P0

)
.

This formula comes from (5.2) with the trivial partition using M = 1 component.
• Predictor CLcc. This predictor is the chain ladder predictor based on splitting by
claims code Y = Ycc

1 ∪ Ycc
2 := {injury} × R+ ∪ {material} × R+. More precisely,

N̂CLcc = N̂ cw
CLcc

with

ĉCLcc(x, t, y, d) = 1(P0 ≤ ⌊(T +D)/p⌋ ≤ P1)

+ (FtU
Ycc

1
kt+P−P0

− FtU
Ycc

1
kt+P−P1

) · 1(y1 = injury)

+ (FtU
Ycc

2
kt+P−P0

− FtU
Ycc

2
kt+P−P1

) · 1(y1 = material).

• Predictor CLFreqNetcc. This is the Chain Ladder Network based predictor for the
partition Y = Ycc

1 ∪ Ycc
2 defined in the description of CLcc. It is only defined for

Y′ ∈ {Ycc
1 ,Y

cc
2 ,Y}. More precisely, N̂CLFreqNetcc = N̂pw

CLFreqNetcc
with

ĉCLFreqNetcc(i, A) := ξ(i)r (Ip(k)×Y′ × [0,∞) ∩Rτ0:τ1)

+ Leb(Ip(x
(i), k)) ·

∑

Y∈{Ycc
1 ,Ycc

2 }
Y⊂Y′

λ̂CL,Y(x(i), tk) ·
( 1

FtUY
k+P−P1

− 1

FtUCL,Y
kt+P−P0

)
.

The formula again stems from applying (5.2), this time with M = 2 and the partition
by claim code.

• Predictor cheating. This is the predictor using the true parameters of the simulated
model for prediction; it is not available in practice and only serves as a benchmark for
evaluating the other predictors. More precisely, N̂cheating = N̂pw

cheating with

ĉcheating(i, A) = ξ(i)r (Ip(k)×Y′ × [0,∞) ∩Rτ0:τ1)

+ λ(x(i), tk) ·
∫

Y′

∫

Ip(x(i),k)
PD|X=x(i),T=tk,Y=y(Iτ0:τ1(τ, s)) ds dPY |X=x(i),T=tk

(y),

corresponding to (4.1) with estimated distributions replaced by true distributions.

17

Electronic copy available at: https://ssrn.com/abstract=4564502



baseline exposure intensity occurrence reporting delay

d
rift

sh
o
ck

0

100

200

300

400

500

0

100

200

300

400

500

R
M
S
E
0
:∞

(Y
,3
6
5
)

NNet

NNetseverity

NNetcc

FreqNet

CL

CLFreqNet

CLcc

CLFreqNetcc

cheating

Figure 2: Boxplots of the overall error measure RMSE0:∞(Y, 365), each based on n = 50
simulated paths. Legend is shown in column major order

7.3 Results

Throughout the simulation study, we use an evaluation period of q = 365 days. Figure 2
shows partly the same results as Bücher and Rosenstock (2022a, Figure 5), extended by
the methods described in this paper and using the same color keys and predictor names,
if applicable. The underlying error measure is the one from (6.2). Regarding the baseline
scenario, we can see that modelling more and more parts of the claim arrival process, i.e.,
going from NNet to NNetcc and then finally to FreqNet, reduces the overall error with
NNetcc seemingly exhibiting slightly larger variance. Only applying a partial model for
the distribution of Y as in NNetseverity increases the prediction error and its variance.
We can also see that the Chain Ladder predictor provides close-to-optimal predictions on
par with those obtained from the true model in this setting where the underlying Chain
Ladder assumptions are exactly met.

For the Chain Ladder based methods, the error of the neural network predictors in
the baseline scenario increases when compared to the pure factor based prediction - at
the advantage of providing individual reserve predictions for each policy in the portfolio.
This behavior can be explained by the training method used: All neural network fitting
procedures with a poisson loss use the GLM skip connection described by Wüthrich (2019),
but only on the 75% of the available data chosen for training. The 25% of the data used
for hold-out validation therefor did not take part in the bias regularization, whereas the
factor based methods had no hold-out data. If bias regularization was done on 100% of the
data, the difference in errors would be smaller but not zero, because the bias regularization
only ensures the total number of claims to remain constant, but not their allocation to
accident years.

The results for the exposure scenario show that predictions can be improved when using
portfolio information (in particular, exposure data); in fact, we see this improvement across
all three approaches, i.e., NNet⇝ FreqNet, CL⇝ CLFreqNet and CLcc ⇝ CLFreqNetcc.
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Heuristically, this can be explained by the fact that the drift in exposure is directly re-
flected by a drift in expected frequencies from the claim frequency models (see Figure 1),
thereby influencing IBNR claim counts. The observed improvement is most prominent for
the unpartitioned Chain Ladder approach, because the other basic methods can at least
partially detect the changes via changes in the distribution of cc, which is also influenced
by the exposure shift.

Changes in the claim intensity pose a challenge to frequency based approaches because
it makes the underlying intensity, λ(x, t), harder to train. Due to this disadvantage, one
might expect to see a deterioration in prediction error for the frequency based approaches.
Surprisingly, this is only found to be the case for the intensity shock scenario, and only so
for the Chain Ladder based CLFreqNet and CLFreqNNetcc. The intensity drift exhibits no
noticeable deterioration in error and FreqNet shows a smaller improvement in error when
confronted with an intensity shock compared to NNet, but an improvement nonetheless.

Regarding drifts and shocks in the occurrence process (i.e. in the distribution of cc),
we do not observe a substantial effect on the prediction errors of the NNet based approach
(i.e., they are similar as in the baseline scenario). Unpartitioned Chain Ladder does not
deal well with these changes to the claims process and the frequency based extension
doesn’t manage to reduce the problem. Substantial improvements are found when moving
from NNet to FreqNet and from CLcc to CLFreqNetcc.

When the reporting delay distribution changes, Chain Ladder based methods start
to perform very badly, even with partitioning. Since the introduced change effectively
reduced the time-to-report, plain Chain Ladder approaches are confronted with higher
claim counts upfront, which amplifies the error due to the multiplicative structure. This
effect is dampened by frequency based extensions, because here the expected number
of IBNR claims is based on the expected (long-term) frequency and not on short-term
observations. Again, FreqNet shows a similar improvement compared to NNet as seen in
other scenarios.

In summary, we can see that FreqNet performs well across all scenarios, improving on
the method developed in Bücher and Rosenstock (2022a). The robustness to changes in
exposure and reporting delays of Chain Ladder based estimates can be improved at little
cost to overall accuracy by employing the CLFreqNet method.

We will now move our attention to the individual level results as measured by RMSEexpo
0:∞

defined in (6.1), which are summarized in Figure 3. Within that figure, we do not display
results for straightforward individual factor based predictions (i.e., multiplying the number
of reported claims on an individual level by a factor-to-ultimate) because of their gener-
ally poor performance: for instance, in the baseline scenario, the mean RMSEexpo

0:∞ (365)
for CL,CLcc and noIBNR is 0.0843, 0.108 and 0.0665, respectively, where noIBNR refers
to simply predicting no IBNR claims at all. However, the results in Figure 3 show
that the Chain Ladder based neural network predictors CLFreqNet and CLFreqNetcc
provide viable solutions for allocating the IBNR claims from a Chain Ladder triangle
to individual policies, albeit without yielding a full distributional model. In general,
CLFreqNet and CLFreqNetcc exhibit very similar errors whereas FreqNet shows slightly
smaller errors than the other two methods. Comparing the mean RMSEexpo

0:∞ (365) for
the methods noIBNR(0.0665),CLFreqNet(0.0656),CLFreqNetcc(0.0656),FreqNet(0.0655)
and cheating(0.0653), we see that the Chain Ladder based methods score 72% of the
performance of cheating when compared to noIBNR and FreqNet even achieves 78% of
the improvement from noIBNR to cheating. It is interesting to note that the results are
quite similar for all five scenarios, with the reporting delay scenario exhibiting the smallest
difference between the noIBNR error and the error of the other three methods.

Of primal importance in insurance pricing is an accurately estimated risk model (which
includes the frequency λ), for instance for reducing or avoiding cross-subsidisation within
a portfolio. In Figure 4 we study the quality of the estimated frequency models obtained
for the methods FreqNet, CLFreqNet and CLFreqNetcc. As a measure for the quality of
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Figure 3: Boxplots of the individual-level error measure RMSEexpo
0:∞ (365), each based on

n = 50 simulated paths. The trivial ”predictor” N̂no IBNR(A) := Nr(A), predicting no
IBNR claims, is also shown. Note that the predictors N̂CL and N̂CLcc are not suitable for
individual level claim count predictions as their RMSEexpo

0:∞ is worse than N̂no IBNR. In the
baseline scenario, RMSEexpo

0:∞ (365) has a median of 8.45 · 10−2 for N̂CL and 10.8 · 10−2 for
N̂CLcc , compared to 6.65 · 10−2 for N̂no IBNR.
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Figure 4: Boxplots of the frequency error measure RMSEλ(365), each based on n = 50
simulated paths. For no IBNR, the estimate λ̂(x, t) ≡ const = N̂0:∞(X × [0, τ) × Y ×
[0,∞))/

∑Npol

i=1 Leb(C(x(i)) ∩ [0, τ ]) was used.
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the estimates, we use, for some evaluation period length q which is divisor of τ (as before,
we fix q = 365 throughout),

RMSEλ(q) :=

(
1

∑τ/q−1
j=0 #P(q, j)

τ/q−1∑

ℓ=0

∑

i∈P(q,ℓ)

(
λ̂(x(i), (ℓ+ 1

2) · q)− λ(x(i), (ℓ+ 1
2) · q)

)2
) 1

2

,

(7.1)

where we have used the notation from Section 6. Note that, when using λ̂(x, t) ≡ const =

N̂0:∞(X × [0, τ) ×Y × [0,∞))/
∑Npol

i=1 Leb(C(x(i)) ∩ [0, τ ]) as an estimate for λ using the

predictors CL and CLcc for N̂0:∞ yields very similar RMSEλ(365) as noIBNR, so they were
left out of the plots in Figure 4 for readability. As an example, the baseline scenario has
a mean RMSEλ(365) of 0.0737 for noIBNR and of 0.0734 for both CL and CLcc whereas
the frequency networks yield values from 0.0578 to 0.0632.

A priori, one would expect that RMSEλ correlates with RMSEexpo
0:∞ , since both are error

measures at the individual policy level. Surprisingly, the results in Figure 4 show that this
correlation breaks down for the Chain Ladder-based frequency models: while RMSEexpo

0:∞
is very similar for CLFreqNet and CLFreqNetcc, RMSEλ is smaller for CLFreqNet than it
is for CLFreqNetcc in all scenarios. Heuristically, a larger variance of CLFreqNetcc may
be explained by the fact that CLFreqNetcc is the only method of the three that uses two
independent networks for the frequency of each claim code, and hence is based on twice
the number of parameters. It is not fully clear however why this would deteriorate model
quality. Another interesting observation is that despite FreqNet having a worse accident
year level error (Figure 2), its underlying frequency model is comparable in quality to that
of CLFreqNet in the baseline scenario.

8 Application to real data

In this section we will apply the different methods to a large real dataset containing motor
legal insurance claims provided by a German insurance company. The dataset is described
in Section 8.1. More detail on the prediction methods and estimation procedure can be
found in Section 8.2. Due to the nature of real world data, observations are only available
for a limited time frame. Therefor, model performance metrics cannot use∞ as the time of
evaluation, but must instead use a finite cutoff date. We examined two artificial truncation
points, τ = 31st December 2017 and τ = 31st December 2018 and evaluate predictions for
one year into the future, i.e. RMSEτ :τ+365(Y, 365) and RMSEexpo

τ :τ+365(Y, 365). Results of
this examination are presented and discussed in Section 8.3.

8.1 The Dataset

The dataset is the same as Bücher and Rosenstock (2022a). It contains a portfolio of about
250,000 motor legal insurance contracts and 65,000 corresponding claims with exposure
and claims information available monthly from 31st December 2014 to 31st December
2020. Due to the extreme shock the COVID-19 pandemic had on the dataset, we chose to
only consider data available up to 31st December 2019 for model evaluation.

Available policy-level data consists of

X = {(tstart, cstart, product, product version, tariff,

installments, dob, dob missing, sex, coverage)}.

Each feature is described in the following table.
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Feature Domain Description

tstart R start date of the contract
cstart R start date of the customer relationship
product {0, . . . , 7} insurance product
product version {0, . . . , 13} version of the insurance product
tariff {0, 1, 2} regular, public service, self-employed
installments {0, . . . , 3} payment installments (annual, semi-annual,

quarterly, monthly)
dob R date of birth (missing values are imputed using

median age at contract start)
dob missing {0, 1} indicates missing date of birth
sex {0, 1, 2} sex of the customer (male, female, missing)
coverage {0, 1} group of covered people (family, single)

Claim-level data consists of accident time, tacc, reporting time treport, and the
features

Y = {(cc, covered, channel, reporter, tacc info)}.
Feature Domain Description

tacc R accident time
treport R reporting time
cc {0, . . . , 4} claim code
covered {0, 1} indicates whether the claim is covered
channel {0, . . . , 3} means of reporting (letter, fax, telephone, other)
reporter {0, 1, 2} who reported the claim (lawyer, policy holder,

other)
tacc info {0, 1, 2} regular, accident before policy start, accident

date imprecise
Note that additional claim information (apart from accident time and reporting time)

is categorical with a total of 5 · 2 · 4 · 3 · 3 = 360 possible combinations.

8.2 Predictors

We provide a detailed overview of the predictors evaluated on the dataset described in
Section 8.1. For the macro-level error measure, RMSEτ :τ+365(Y, 365), we will compare
a total of six predictors, three of which can provide viable micro-level predictors. The
micro-level predictors are compared using RMSEexpo

τ :τ+365(Y, 365). Most of the predictors
are defined analogously to those in Section 7.2 and we will reuse the notation defined
there.

• Predictor NNet. The original method from (Bücher and Rosenstock 2022a), formula
(19).

• Predictor NNetY. This predictor is based on the estimated claim feature model.
Since all claim features are discrete, this modelling step was done using a single discrete
distribution with 360 different possible outcomes. More precisely, recalling the notation
N̂ cw from Section 7.2, we define N̂NNetY := N̂ cw

NNetY

ĉNNetcc(x, t, y, d) :=
p̂rep(τ0, τ1, x, kt)

p̂rep(0, τ, x, kt)

with p̂rep = p̂prep(τ0, τ1, x, kt) defined as

p̂rep :=
∑

y∈Y′

∫

Ip(x,kt)
P̂D|X=x,T=tkt ,Y=y((τ0 − s, τ1 − s]) dsP̂Y |X=x,T=tkt

(y).

• Predictor FreqNNet. The predictor from (4.1).
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• Predictor CL. This predictor is the basic chain ladder predictor.
• Predictor CLcc. This predictor is the chain ladder predictor based on splitting by
claims code Y = Ycc

0 ∪Ycc
1 ∪Ycc

2 ∪Ycc
3 ∪Ycc

4 . More precisely, recalling the notation
N̂ cw from Section 7.2, N̂CLcc = N̂ cw

CLcc
with

ĉCLcc(x, t, y, d) = 1(P0 ≤ ⌊(T +D)/p⌋ ≤ P1)

+ (FtU
Ycc

0
kt+P−P0

− FtU
Ycc

0
kt+P−P1

) · 1(y1 = 0)

+ (FtU
Ycc

1
kt+P−P0

− FtU
Ycc

1
kt+P−P1

) · 1(y1 = 1)

+ (FtU
Ycc

2
kt+P−P0

− FtU
Ycc

2
kt+P−P1

) · 1(y1 = 2)

+ (FtU
Ycc

3
kt+P−P0

− FtU
Ycc

3
kt+P−P1

) · 1(y1 = 3)

+ (FtU
Ycc

4
kt+P−P0

− FtU
Ycc

4
kt+P−P1

) · 1(y1 = 4),

where y1 = cc.
• Predictor CLFreqNNetcc. This is the Chain Ladder Network based predictor for
the partition Y = Ycc

0 ∪Ycc
1 ∪Ycc

2 ∪Ycc
3 ∪Ycc

4 defined in the description of CLcc. The
formula stems from applying (5.2) with M = 5 and the partition by claim code.

8.3 Results

The seven available predictors are evaluated for one year ahead and on an evaluation period
of q = 365. In comparison to the simulation study, the cheating predictor is missing and
the two plain Chain Ladder predictors have no uncertainty due to their deterministic
algorithm. Also, because stepwise estimation of the claim feature distribution was not
necessary, there is only one predictor NNetY based on the full claim feature distribution
instead of the two predictors NNetseverity and NNetcc.

Summarily, despite the fact that the model selection strategy has not been fine-tuned
to the problem at hand and showed a rather unreliable performance overall, FreqNet
shows promising results on a micro-level at an acceptable cost on the macro-level.

Figure 5 shows the accident year level prediction error RMSEτ :τ+365(Y, 365) for one
year ahead across the seven methods for the two artificial truncation points. In contrast
to most simulation results on the ultimate accident year level prediction error, we see an
increase in error of NNetY compared to NNet. This loss could possibly be overcome by
optimizing the claim feature model architecture, which was fixed as a (10, 5) feed-forward
network for simplicity. For τ = 31st December 2017 the distribution of errors for FreqNet
also seems to deteriorate, whereas τ = 31st December 2018 exhibits behavior more consis-
tent with the simulation study, decreasing the error while maintaining a similar variance.
While for τ = 31st December 2017, the selected model has a very low error compared to
all candidates, the model selected for τ = 31st December 2018 exhibits a worse accident
year level error than the Chain Ladder methods, even though the median error among
all candidate models was lower than that of Chain Ladder. Regarding CLFreqNet and
CLFreqNetcc, one can see the impact of the training procedure (holding out 25% of
the data for validation) increasing the overall variance in error compared to their Chain
Ladder counterparts.

In summary, the new methods seem to provide similar accuracy on an accident year
level when compared to the underlying methods NNet, CL or CLcc.

The new methods FreqNet, CLFreqNet and CLFreqNetcc provide exposure-level
IBNR predictions, which can be compared in Figure 6. As with the simulation study,
plain triangle based methods can not be used to obtain viable predictors for micro-level
claim counts, so the trivial noIBNR is used as a basic reference. Unfortunately it is
not possible to also provide a theoretical best prediction on real data, so there is no
cheating benchmark with which the results could be compared. We refer to Figure 3 for
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Figure 5: Boxplot comparison of RMSEτ :τ+365(Y, 365) for the different methods. Final
selected models shown as wide horizontal line.

the corresponding simulation study results which do have this benchmark. The micro-
level results are more comparable across the different truncation times, showing a similar
pattern to that of the simulation study with one exception: There is a larger separation
between the errors of FreqNet and those of CLFreqNet and CLFreqNetcc.

9 Conclusion

Two new methods for joint prediction of micro-level IBNR claim counts and claim frequen-
cies have been developed and applied to real and simulated data. Results show promising
accuracy on an exposure level compared to the theoretical optimum under laboratory con-
ditions. The new methods also permit assigning IBNR claim count predictions on a policy
level such that policies without claims can receive a non-zero IBNR prediction, which is
an advantage for analysis of small portfolios where Chain Ladder estimates - even with
external parameters estimated on a larger dataset - fail to produce accurate estimates.
The presented case studies uncover several opportunities for further research:

1. The distributional assumption of a BDEGP family for reporting delays in Model 1
might not be suitable for all applications. Future work could examine results with other
reporting delay distribution families.

2. The functional relationships in Model 1, Model 2 and Model 3 have all been chosen as
MLPs. All of these relationships could be chosen from a different function family, e.g.,
other families used in machine learning such as regression trees.

3. The architecture of all MLPs was simply chosen and no hyperparameter-optimization
was performed. Strategies for architecture selection or different architectures could be
examined.

4. Different strategies for model selection of a final model among candidate models could
be explored.

5. Definition 2.1 can be extended by a claim settlement process for each claim, such as the
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Figure 6: Comparison of RMSEexpo
τ :τ+365(Y, 365) for the different methods.

one presented in Antonio and Plat (2014) but on a policy level, to allow joint modelling
of IBNR and RBNS payments.
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Abstract

Random truncation, i.e. truncated observations where the point of truncation varies
by observation, and interval censoring arise naturally in various fields, such as insurance,
operations research or medicine. This article presents the R package reservr, which im-
plements distribution parameter estimation and distributional regression for randomly
truncated and interval censored data based on (conditional) maximum likelihood. The
package provides a flexible interface to specify (weighted) randomly truncated and inter-
val censored observations, to specify distribution families to be estimated, and to compute
(conditional) maximum-likelihood based parameter estimates. Distributional regression
is supported via an interface to the R package tensorflow to build neural network models
for distributional regression of censored and randomly truncated outcomes with arbitrary
distribution families. The interface allows for arbitrary network architectures, including
multi-modality and pre-initialization of network weights from a global parameter estimate
to improve stability. Additional utilities for application in a general insurance context, as
well as the usual random sampling, density, probability and quantile functions for distri-
butions are provided.

Keywords: distribution fitting, random truncation, interval censoring, distributional regres-
sion, deep learning, R.

1. Introduction
Statistical analyses are typically concerned with modelling and estimating the distribution of
some measured variable of interest Y , called the outcome, possibly conditional on the value
of one or several endogenous variables X, called predictors. In the absence of endogenous
variables, this process is usually called distribution fitting, and in the presence of endogenous
variables it is called regression. Classical regression, such as via generalized linear models
(GLMs), is concerned with the influence of endogenous variables on the mean of the outcome,
i.e., E(Y |X) = f(X), and often links other parameters of the conditional outcome distribution
to its mean. A gentle introduction to generalized linear models can be found in Dobson and
Barnett (2018). An implementation of GLMs is available in the stats R package, which is
part of R itself (R Core Team 2023). Some models also allow specification of additional
parameters of the conditional outcome distribution, such as Generalized Additive Models for
Location, Scale and Shape (Stasinopoulos and Rigby 2007). More recently, deep distributional
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regression has been proposed, which allows for flexible specification of individual outcome
distribution parameters (Rügamer et al. 2023).
Statistical methods (such as those described and implemented in the previously mentioned
papers) often require complete data, that is full information on all observations (X, Y ) of
interest. In this paper, we describe an R-package that allows for distributional regression
in three common observation schemes that do not provide complete data. First of all, data
with interval censoring applied to the outcome Y refers to the case where only lower and
upper bounds for Y are observed, instead of the actual value. Next, truncated data misses
observations for which the outcome Y falls out of a certain lower and upper truncation bound.
We consider the case of random truncation, where these truncation bounds are also random
variables that may vary for each observation. Finally, we consider a combination of the two,
randomly truncated interval censoring.
The three scenarios can be combined into a single general scheme: instead of observing the
real-valued target variable Y (with µ-density fθ and c.d.f. Fθ, where µ is a sigma-finite
measure on R and θ is a parameter vector in some parameter space Θ), we observe the
vector (M, V, L, U), which satisfies L ≤ M ≤ V ≤ U and L < U . Its coordinates have
the following interpretation: the last two coordinates, which satisfy −∞ ≤ L < U ≤ ∞,
encode truncation: we only happen to observe (M, V, L, U) if L < Y ≤ U ; in particular, a
non-truncated observations means that L = −∞ and U = ∞. The first two coordinates,
which satisfy L ≤ M ≤ V ≤ U and which may be ∓∞, encode censoring: the observation
(M, V ) = (m, v) means that the target variable Y satisfies Y ∈ (m, v] if m < v and Y = m if
m = v; the latter corresponds to an uncensored observation of Y .
It is instructive to focus on the simpler problem of distribution parameter estimation before
proceeding with distributional regression. Suppose we observe an independent sample J =
{(mi, vi, li, ui) : i = 1, . . . , n} of (M, V, L, U). Suggested by standard maximum (conditional)
likelihood approaches for truncated (Dörre and Emura 2019) and censored observations (Sun
2006), we suggest to estimate θ by maximizing the objective function

ℓ(θ) =
∑

(m,v,l,u)∈J

{
log fθ(m)1(m = v) + log Fθ((m, v])1(m < v)

}
− log Fθ((l, u]), (1)

where we use the notation Fθ((l, u]) = Fθ(u) − Fθ(l). A detailed motivation for this approach
under suitable conditions ensuring that the censoring is non-informative is given in Section 1.1
below. For later purposes, it is helpful to attach a weight wi to each observation (mi, vi, li, ui).
Denoting the resulting sample by I = {(mi, vi, li, ui, wi)}, we aim at maximizing the weighted
sum of the (conditional) log-likelihoods

ℓ(θ) =
∑

(m,v,l,u,w)∈I

w ·
[{

log fθ(m)1(m = v) + log Fθ((m, v])1(m < v)
}

− log Fθ((l, u])
]
. (2)

A practical example of random truncation arises when modelling the reporting delay of claims
in general insurance. The target variable Y is the reporting delay of an accident happening
at accident time T0, which is hence reported to the insurer at calendar time Y + T0. The
truncation bounds (L, U) for Y will be equal to (0, τ − T0) with τ the current calendar time.
Combined random truncation with interval censoring can occur when modelling failure times
when only survival data at two (or more) maintenance appointments some time after purchase
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is captured, and only for items that are sold. The target variable Y is the failure time of
an item. Item condition (failed / functional) can be observed at maintenance times M0 and
M1, which may vary for each item. For each maintained item, the production time P0 and
the purchase time P1 is also known. Only items that are functional at purchase time P1 are
observed at the maintenance times. This gives rise to truncation bounds (L, U) = (P1−P0, ∞)
and censoring interval bounds (M, V ) ∈ {(P1−P0, M0−P0), (M0−P0, M1−P0), (M1−P0, ∞)},
depending on the item condition at times M0 and M1.
In the setting of distributional regression, weighted samples I (M, V, L, U, W ) have associated
predictors X ∈ X, resulting in observations of the shape Ireg = {(mi, vi, li, ui, wi, xi) : i =
1, . . . , n}. We are interested in estimating a regression function g : X → Θ given a sample
Ireg, a parameterized family F = {Fθ | θ ∈ Θ} and a family G of functions from X to Θ. It is
assumed that there exists a fuction g ∈ G such that the conditional distribution of Y |X = x
is Fg(x). Distributional regression can be formulated as the maximization problem

ĝ ∈ arg max
g∈G

ℓ(g|Ireg), where

ℓ(g|Ireg) :=
∑

(m,v,l,u,w,x)∈Ireg

w ·
{

log fg(x)(m) − log Fg(x)((l, u]) m = v

log Fg(x)((m, v]) − log Fg(x)((l, u]) m < v
. (3)

Compared to Equation (2), the global parameter θ is replaced by the regression function g
evaluated at the associated predictors x.

1.1. Motivation of Equation (1).
It is instructive to start by considering an untruncated, censored observation where l =
−∞, u = ∞ and m < v. The only information we obtain from the observation (m, v, l, u) is
then that Y ∈ (m, v]. For deriving the relevant likelihood contribution, we may follow the
stochastic approach to interval censored observations described in Groeneboom and Wellner
(1992, Case 2): let (C1, C2) denote a random vector in R2 that is independent of the target
variable Y and which satisfies P(C1 < C2) = 1. Let

D := 1(Y > C1) + 1(Y > C2),

and define new random variables (M, V ) = f(Y, C1, C2) by

(M, V ) :=





(−∞, C1), D = 0,

(C1, C2), D = 1,

(C2, ∞), D = 2.

Note that D can be reconstructed from (M, V ): we have D = 0 if M = −∞, D = 1 if
−∞ < M < V < ∞ and D = 2 if V = ∞.
It is instructive to proceed with the case where (C1, C2) and hence (M, V ) is discrete. Then,
for (m, v) ∈ supp(M, V ) ∩ R2, we have

P(M = m, V = v) = P(M = m, V = v, D = 1)
= P(C1 = m, C2 = v, Y ∈ (m, v])
= Fθ((m, v]) · P(C1 = m, C2 = v).
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Likewise, for (m, v) ∈ supp(M, V ) ∩ ({−∞} × R), we obtain

P(M = −∞, V = v) = P(M = −∞, V = v, D = 0)
= P(C1 = v, Y ≤ v)
= Fθ((−∞, v]) · P(C1 = v)

and finally, for (m, v) ∈ supp(M, V ) ∩ (R × {∞}),

P(M = m, V = ∞) = P(M = m, V = ∞, D = 2)
= P(C2 = m, Y > m)
= Fθ((m, ∞]) · P(C2 = m).

If we assume that the distribution of the censoring variable (C1, C2) is non-informative, i.e.,
its distribution does not depend on θ, the likelihood of observing (M, V ) = (m, v) is equal
to Fθ((m, v]), up to a factor that does not depend on θ. A similar argumentation can be
used in the non-discrete case. Overall, noting that F∞((−∞, ∞]) = 1, we have motivated the
likelihood contribution Fθ((m, v]) · 1(m < v) for a censored, untruncated observation in (1).
Next, consider an uncensored, truncated observation (m, v, l, u) where y = m = v; we may
hence identify such an observation with (y, l, u). We may then proceed as in Bücher and
Rosenstock (2022a) and assume that (L, U) is independent of Y and satisfies L ≤ U , with
L possibly equal to −∞ and U possibly equal to ∞. Further, (L, U) shall have a density
f(L,U) with respect to some dominating sigma-finite measure ν. Truncation means that we
only happen to observe (Y, L, U) if L < Y ≤ U . As a consequence, any observed value with
M = V can be regarded as being drawn from the (µ ⊗ ν)-density

f(Y,L,U)|L<Y ≤U (y, l, u) =
f(L,U)(l, u)fθ(y)
P(L < Y ≤ U) 1(l < y ≤ u). (4)

Subsequently, we write (Y (t), L(t), U (t)) for a random vector following the above density, i.e.,

f(Y (t),L(t),U(t))(y, l, u) = f(Y,L,U)|L<Y ≤U (y, l, u).

Conditioning this density on (L(t), U (t)) = (l, u), we arrive at an expression that does not
involve the nuisance density f(L,U):

fY (t)|L(t)=l,U(t)=u(y) =
f(Y (t),L(t),U(t))(y, l, u)

f(L(t),U(t))(l, u)

=
f(Y,L,U)|L<Y ≤U (y, l, u)∫

(l,u] f(Y,L,U)|L<Y ≤U (z, l, u) dµ(z) = fθ(y)∫
(l,u] fθ(z) dµ(z) .

Overall, we arrive at the (conditional) log-likelihood contribution log fθ(y) − log Fθ((l, u]) for
an uncensored, truncated observation in (1).
Finally, truncation and censoring can occur at the same time, i.e., we have l ≤ m < v ≤ u
with either l ̸= −∞ or u ̸= ∞. In accordance with the previous two cases, we make the
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assumption that Y, (C1, C2) and (L, U) are mutually independent and satisfy C1 < C2 and
L < U . Define

D = 1(Y > C1) + 1(Y > C2)

and

(M, V ) :=





(L, min(U, C1)), D = 0,

(max(L, C1), min(C2, U)), D = 1,

(max(L, C2), U), D = 2.

For simplicity, assume that all random variables are discrete. For any observation (m, v, l, u),
one of the following four cases is met

l < m < v < u, l = m < v < u, l < m < v = u, l = m < v = u.

In case l < m < v < u, we have

P(M = m, V = v|L = l, U = u, L < Y ≤ U) = P(C1 = m, C2 = v, Y ∈ (m, v], L = l, U = u)
P(L = l, U = u, l < Y ≤ u)

= P(C1 = m, C2 = v)Fθ((m, v])
Fθ((l, u])

by the independence assumption. The factor in front does not depend on θ and is irrelevant
for the (conditional) likelihood contribution. Likewise, in case l = m < v < u, we have

P(M = l, V = v|L = l, U = u, L < Y ≤ U) = P(M = l, V = v, L = l, U = u, l < Y ≤ u)
P(L = l, U = u, l < Y ≤ u) .

By definition of (M, V ), the event in the numerator is the disjoint union of the following two
sets:

{D = 0, C1 = v, L = l, U = u, l < Y ≤ u} = {C1 = v, L = l, U = u, Y ∈ (l, v]}
{D = 1, C1 ≤ l, C2 = v, L = l, U = u, l < Y ≤ u} = {C1 ≤ l, C2 = v, L = l, U = u, Y ∈ (l, v]}.

By independence, we obtain that

P(M = l, V = v|L = l, U = u, L < Y ≤ U) = {P(C1 = v) + P(C1 ≤ l, C2 = v)}Fθ((l, v])
Fθ((l, u]) .

Again, the factor in front of the fraction is independent of θ and is irrelevant for the likelihood.
The two cases l < m < v = u and l = m < v = u can be treated similarly; in all cases, the
likelihood contribution is equal to Fθ((m, v])/Fθ((l, u]) times a factor that does not depend
on θ.

1.2. Related packages
For the less general cases of non-informative censoring without random truncation and fixed
truncation, i.e., (L, U) constant for all observations, as well as for estimation of distribution
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parameters in the absence of censoring or random truncation, there are a number of R pack-
ages that can fit distributions, some of them also supporting weights. Among these are MASS
(Venables and Ripley 2002), fitdistrplus (Delignette-Muller and Dutang 2015), survival (Th-
erneau 2023), flexsurv (Jackson 2016). Note that fixed truncation is an operation that can
be baked into the distribution family whose parameters are to be estimated, allowing for
classical maximum likelihood estimation. Many of the packages also support classic regres-
sion of expected values given predictors. Distributional regression packages, such as gamlss
(Stasinopoulos and Rigby 2007) and deepregression (Rügamer et al. 2023) currently do not
support interval censoring or random truncation. See the following table for an overview of
available features for each package.

Package sample weights censoring
random
truncation regression

MASS no no no classic
fitdistrplus only integer supported no no
survival supported supported no classic
flexsurv supported supported no classic
gamlss supported no no distributional
deepregression supported no no distributional
reservr supported supported supported distributional

Another R6-based interface is provided by ROOPSD (Robin 2022).
reservr builds upon the R packages tensorflow (Allaire and Tang 2022) and keras (Chollet,
Allaire et al. 2017) as an interface to the machine learning library TensorFlow (Abadi et al.
2015) to perform distributional regression. This underlying infrastructure is shared with
the distributional regression package deepregression (Rügamer et al. 2023). The latter also
supports distributional regression, but at the time of writing requires complete samples and
does not support truncation or censoring.
The remaining parts of this paper are structured as follows: Section 2 details the core func-
tionality of the corresponding R package reservr. It is split into definition of samples I
(Section 2.1), definition of distribution families (Section 2.2), mathematical definitions of
some available distribution families (Section 2.3), estimation of distribution parameters (Sec-
tion 2.4) and distributional regression using tensorflow (Section 2.5). A conclusion is given
in Section 3.

2. Usage of reservr
The package serves two main goals: fitting distributions to randomly truncated non-informatively
interval censored data and performing (deep) distributional regression with randomly trun-
cated non-informatively interval censored data. Four main components are integrated with
each other to facilitate the analysis goals

1. Methods for representing a randomly truncated non-informatively interval censored
sample I.

2. Methods for specifying a parametrized distribution family F = {Fθ|θ ∈ Θ} to be fitted.
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3. Methods for estimating distribution parameters θ given a sample I.
4. Methods for regression of distribution parameters given a regression sample Ireg, a

parametrized family F and a general tensorflow network G : X → Θ that processes X
to estimate the conditional distribution of Y |X = x by Fg(x) with g ∈ G.

Each of these components is described one by one in the following sections.

2.1. Working with samples
A sample I = {(m, v, l, u, w)i} is represented as a tibble (from package tibble). The core
function to create this tibble is trunc_obs(). A tibble created by trunc_obs() consists of
five columns:

• x: If observed, the exact value of the random variable, referred to as Y in Section 1.
Otherwise NA.

• xmin: Lower interval censoring bound (M in Section 1) for the observation. If the
observation is not censored, xmin is equal to x.

• xmax: Upper interval censoring bound (V in Section 1) for the observation. If the
observation is not censored, xmax is equal to x.

• tmin: Lower truncation bound (L in Section 1). Only observations with x ≥ tmin are
observed. Can be −∞ to indicate no lower truncation.

• tmax: Upper truncation bound (U in Section 1). Only observations with x ≤ tmax are
observed. Can be ∞ to indicate no upper truncation.

• w: The weight associated with the observation. Defaults to 1.

Note that, unlike in Section 1, the lower bounds of intervals in trunc_obs are included, that
is, we allow for x ≥ tmin rather than x > tmin, and that the unknown variable of interest
is called x instead of Y . For continuous random variables, the formulas are equivalent to
the half-open formulation. For discrete random variables, xmin and tmin may have to be
appropriately shifted, e.g., by replacing xmin by xmin − 0.5 for integer valued variables. The
following code defines a sample of size 1 without truncation and censoring, with the realized
value of 1.3.

R> trunc_obs(1.3)

x xmin xmax tmin tmax w
1 1.3 1.3 1.3 -Inf Inf 1

Simulating randomly truncated and interval censored data from a standard normal distribu-
tion with 80% of the observations randomly interval censored and random uniform truncation
L ∼ Unif[−2, 0] and U ∼ Unif[0, 2] can be simulated as follows

R> set.seed(123)
R> N <- 1000L
R> x <- rnorm(N)
R> is_censored <- rbinom(N, size = 1L, prob = 0.8) == 1L
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R>
R> c_lower <- runif(sum(is_censored), min = -2.0, max = 0.0)
R> c_upper <- c_lower + runif(sum(is_censored), min = 0, max = 1.0)
R>
R> x_lower <- x
R> x_upper <- x
R>
R> x_lower[is_censored] <- dplyr::case_when(
+ x[is_censored] <= c_lower ~ -Inf,
+ x[is_censored] <= c_upper ~ c_lower,
+ TRUE ~ c_upper
+ )
R> x_upper[is_censored] <- dplyr::case_when(
+ x[is_censored] <= c_lower ~ c_lower,
+ x[is_censored] <= c_upper ~ c_upper,
+ TRUE ~ Inf
+ )
R>
R> t_lower <- runif(N, min = -2.0, max = 0.0)
R> t_upper <- runif(N, min = 0.0, max = 2.0)
R>
R> is_observed <- t_lower <= x & x <= t_upper
R>
R> obs <- trunc_obs(
+ xmin = pmax(x_lower, t_lower)[is_observed],
+ xmax = pmin(x_upper, t_upper)[is_observed],
+ tmin = t_lower[is_observed],
+ tmax = t_upper[is_observed]
+ )

Observations look like:

R> obs[8L:12L, ]

# A tibble: 5 x 6
x xmin xmax tmin tmax w

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 NA -0.479 1.15 -1.93 1.15 1
2 NA -0.177 1.79 -0.210 1.79 1
3 -0.556 -0.556 -0.556 -0.957 0.791 1
4 NA -0.379 0.616 -0.379 0.616 1
5 NA 0.0575 1.45 -0.437 1.45 1

The total number of observations is smaller than the base population of 1000 due to trunca-
tion:

R> nrow(obs)
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[1] 623

The total number of censored observations is roughly 0.8 · nrow(obs).

R> sum(is.na(obs$x))

[1] 496

In addition to the trunc_obs() constructor function, there are functions as_trunc_obs() for
coercion, truncate_obs() for artificially changing truncation bounds, and repdel_obs() for
computing randomly truncated reporting delay observations from general insurance claims
data containing accident date, reporting delay and evaluation date information. The latter
takes inputs of the form (Tacc, D, τ) where Tacc < τ are accident dates with corresponding
reporting delays D ≥ 0 and τ is the calendar date of observation. It returns the sample
(xmin = xmax = D, tmin = 0, tmax = τ − Tacc, w = 1) suitable for estimating the reporting
delay distribution where a claim is only observed if it has been reported by the evaluation date,
i.e., Tacc + D ≤ τ . Such an analysis was performed using reservr in Bücher and Rosenstock
(2022a, 2023).

2.2. Definition of distribution families
Distribution families are implemented using the R6 class system (Chang 2021). They inherit
from the class Distribution and feature a common interface to

• manage fixed and free parameters of the underlying familiy,
• use basic distribution functions for random number generation and computation of the

density, cumulative distribution, hazard and quantile function,
• use additional functions supporting parameter estimation procedures such as computing

support or presence of a point mass,
• compile performance enhanced functions to speed up basic functions for repeated eval-

uation,
• provide tensorflow-specific implementations to support (deep) distributional regression.

A Distribution object represents a distribution family F supported on a subset of the real
line and parameterized by a fixed finite-dimensional parameter space Θ. The family may be
a singleton, in which case it is rather a distribution than a distribution family.
reservr provides a set of basic distribution families, optionally with some fixed parameters, as
well as transformations of distribution families that take one or more underlying distribution
families. At the time of writing, these are:

Generator function Description
dist_bdegp(n, m, u, epsilon) A Blended Dirac Erlang Generalized Pareto

distribution family, see Section 2.3.4
dist_beta(shape1, shape2,
ncp)

A (non-central) Beta distribution family
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Generator function Description
dist_binomial(size, prob) A Binomial distribution family
dist_dirac(point) A Dirac distribution family with full mass at point
dist_discrete(size, probs) A discrete distribution family with fixed support

{1, . . . , size} and P (X = k) = probsk

dist_erlangmix(shapes, scale,
probs)

An Erlang mixture distribution family, see
Section 2.3.2

dist_exponential(rate) An Exponential distribution family
dist_gamma(shape, rate) A Gamma distribution family
dist_genpareto(u, sigmau, xi) A Generalized Pareto Distribution family
dist_genpareto1(u, sigmau,
xi)

A Generalized Pareto Distribution family with the
tail index ξ constrained to (0, 1)

dist_lognormal(meanlog,
sdlog)

A Log-Normaldistribution family

dist_negbinomial(size, mu) A negative Binomial distribution family
dist_normal(mean, sd) A Normal distribution family
dist_pareto(shape, scale) A Pareto Type I distribution family, i.e., a

Generalized Pareto distribution family with u = 0
dist_poisson(lambda) A Poisson distribution family
dist_uniform(min, max) A uniform distribution family
dist_weibull(shape, scale) A Weibull distribution family

Transformation function Description
dist_blended(dists,
probs, breaks,
bandwidths)

A Blended mixture distribution family, see Section 2.3.3

dist_mixture(dists,
probs)

A general Mixture distribution family, see Section 2.3.1

dist_translate(dist,
offset, multiplier)

The affine transformation family consisting of all
distributions of multiplier · X + offset with
X ∼ F ∈ dist

dist_trunc(dist, min,
max)

The truncated distribution family consisting of all
distributions of X|(min ≤ X ≤ max) with X ∼ F ∈ dist

Parameters
Parameters of distribution families can either be fixed to a constant value, or free. Free
parameters (placeholders) are those that should be estimated from data whereas fixed pa-
rameters are held constant. Most Distribution methods have an argument with_params
to provide values for the free parameters and need fully specified parameters to work. For
example, generating samples from a distribution is only possible if it is fully parameterized
using fixed parameters and the with_params argument of Distribution$sample().

R> dist <- dist_normal(sd = 1.0)
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We have now defined dist to be a normal distribution family with standard deviation
1 and free mean. Since not all parameters required for a normal distribution are fixed,
dist$sample() will error if not provided with a mean parameter.

R> dist$sample(1L)

Error in (function (n, mean = 0, sd = 1) : invalid arguments

The with_params argument can be used both to provide free parameters and to override fixed
parameters, if necessary.

R> set.seed(10L)
R> dist$sample(1L, with_params = list(mean = 0.0))

[1] 0.01874617

R> set.seed(10L)
R> dist$sample(1L, with_params = list(mean = 0.0, sd = 2.0))

[1] 0.03749234

The two observations were drawn from a standard normal and a normal distribution with
mean zero and standard deviation 2, respectively. Since the chosen seed was identical, the
second sample is exactly double the first sample. Whenever the output length is greater
than one, such as when taking more than one sample, with_params can optionally contain
individual parameters for each entry.

R> set.seed(10L)
R> dist$sample(3L, with_params = list(mean = 0.0:2.0, sd = 0.5))

[1] 0.009373085 0.907873729 1.314334725

The three observations were drawn from N (µ = 0, σ = 0.5), N (µ = 1, σ = 0.5) and N (µ =
2, σ = 0.5), respectively.
Distributions have a set of fields and methods related to managing parameters:

• The active binding default_params gets or sets the list of all parameters and their
fixed values, NULL represents a free parameter. Component families are included as
Distribution objects.

• get_params() gets the list of all parameters and their fixed values, traversing component
distribution families.

• get_placeholders() gets the list of free parameters with NULL as values.
• The active binding param_bounds gets or sets the domain of all regular family param-

eters as an Interval object. Setting a bound via the param_bounds active binding
allows restricting the natural parameter space of a family.
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• get_param_bounds() returns the bounds of all free parameters as a list of Intervals,
traversing component distribution families.

• get_param_constraint() returns NULL or a function that evaluates constraints on the
parameter set. The function must return a vector of constraint values (that need to
be equal to 0 for valid parameters) or a list with elements constraints and jacobian.
When returning a list, the jacobian element should contain the jacobian of the con-
straint function. Used in nloptr::slsqp(heq=) for estimation. An example is that
mixture families require the probs parameters to sum to 1 in addition to the box
constraint that each parameter is in [0, 1]. Note that box constraints are handled by
param_bounds and need not be specified as a constraint function.

• get_components() returns a list of component families for transformations or mixtures.
The list is empty for basic families.

Here is an example for a normal family with fixed standard deviation σ = 1 and a mixture
distribution family with two components, one of which is specified as a normal distribution
family:

R> dist <- dist_normal(sd = 1.0)
R> mix <- dist_mixture(dists = list(dist_normal(), NULL))
R>
R> dist$default_params

$mean
NULL

$sd
[1] 1

R> mix$default_params

$dists
$dists[[1]]
A NormalDistribution with 2 dof

$dists[[2]]
NULL

$probs
$probs[[1]]
NULL

$probs[[2]]
NULL

R> str(dist$get_placeholders())
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List of 1
$ mean: NULL

R> str(mix$get_placeholders())

List of 2
$ dists:List of 2
..$ :List of 2
.. ..$ mean: NULL
.. ..$ sd : NULL
..$ : NULL

$ probs:List of 2
..$ : NULL
..$ : NULL

R> str(dist$param_bounds)

List of 2
$ mean:Classes 'Interval', 'R6' (-Inf, Inf)
$ sd :Classes 'Interval', 'R6' (0, Inf)

R> str(mix$param_bounds)

List of 2
$ dists:List of 1
..$ : NULL

$ probs:List of 1
..$ :Classes 'Interval', 'R6' [0, 1]

R> str(dist$get_param_bounds())

List of 1
$ mean:Classes 'Interval', 'R6' (-Inf, Inf)

R> str(mix$get_param_bounds())

List of 2
$ dists:List of 1
..$ :List of 2
.. ..$ mean:Classes 'Interval', 'R6' (-Inf, Inf)
.. ..$ sd :Classes 'Interval', 'R6' (0, Inf)

$ probs:List of 2
..$ :Classes 'Interval', 'R6' [0, 1]
..$ :Classes 'Interval', 'R6' [0, 1]

R> str(dist$get_param_constraints())
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NULL

R> str(mix$get_param_constraints())

function (params)

R> dist$get_components()

list()

R> mix$get_components()

[[1]]
A NormalDistribution with 2 dof

[[2]]
NULL

Basic distribution functions
The basic distribution functions (density, probability, hazard and quantile function, as well
as random number generation) are provided by each distribution family. In general, the
argument with_params can be used to both specify missing parameters (placeholders) and
to override fixed distribution parameters. If the provided parameters are vectors of length
greater than 1, they must conform to the input dimension (e.g. length(x) for density). In
this case, the parameters are “vectorized” in the sense that the ith output element will be
computed using the ith entry from the parameter list.

• density(x, log = FALSE, with_params = list()) computes the (log-)density.
• probability(q, lower.tail = TRUE, log.p = FALSE, with_params = list() com-

putes the (log-)cumulative distribution function or (log-)survival function.
• hazard(x, log = FALSE. with_params = list()) computes the (log-)hazard func-

tion.
• quantile(p, lower.tail = TRUE, log.p = FALSE, with_params = list()) computes

upper or lower quantiles.
• sample(n, with_params = list()) generates a random sample of size n. (with_params

can contain length n vectors in this case).

Additional functions
In addition to the basic functions, there are several supporting functions useful for, e.g.,
estimation of parameters.

• export_functions(name, with_params = list()) exports {d,p,q,r}<name> func-
tions adhering to the common R convention for distribution functions.
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• get_type() returns one of "continuous", "discrete", or "mixed" depending on
whether the distribution family has a density with respect to the Lebesgue measure,
the counting measure, or the sum of the Lebesgue measure with one or many point
measures.

• is_continuous() and is_discrete() testing for the particular type.
• has_capability(caps) gives information on whether a specific implementation pro-

vides some or all of the features described. Possible capabilities are "sample", "density",
"probability", "quantile", "diff_density", "diff_probability", "tf_logdensity",
"tf_logprobability".

• require_capability(caps) errors if the specified capabilities are not implemented for
the family at hand.

• is_discrete_at(x, with_params = list()) returns a logical vector indicating whether
the distribution has a point mass at x.

• is_in_support(x, with_params = list()) returns a logical vector indicating whether
the distribution has any mass at x.

Performance enhancements
When working with larger data or many calls to distribution functions, such as when per-
forming a fit, it can be beneficial to just-in-time compile specialized functions that avoid
overhead for dealing with the generic structure of distributions and their parametrization.
Distributions offer a set of “compiler” functions that return simplified, faster, versions of
the basic distribution functions, or that analytically compute gradients. Those functions are
not necessarily implemented for all Distribution classes, but will be automatically used
by, e.g., fit_dist() if useful. The input structure for param_matrix can be obtained by
flatten_params_matrix(dist$get_placeholders()) where dist is the Distribution ob-
ject in question.

• compile_density() compiles a fast function with signature (x, param_matrix, log
= FALSE) that will compute the density with fixed parameters hard-coded and taking
the free parameters as a matrix with defined layout instead of a nested list.

• compile_probability() compiles a fast replacement for probability with signature
(q, param_matrix, lower.tail = TRUE, log.p = FALSE).

• compile_probability_interval() compiles a fast function with signature (qmin,
qmax, param_matrix, log.p = FALSE) computing P (X ∈ [qmin, qmax]) or its loga-
rithm efficiently. This expression is necessary for computing truncation probabilities.

• compile_sample() compiles a fast replacement for sample with signature (n, param_matrix).
• diff_density(x, log = FALSE, with_params = list()) computes the (log-)gradients

of the density function with respect to free distribution family parameters, useful for
maximum likelihood estimation.

• diff_probability(q, lower.tail = TRUE, log.p = FALSE, with_params = list())
computes the (log-)gradients of the cumulative density function with respect to free
distribution family parameters. This is useful for conditional maximum likelihood esti-
mation in the presence of random truncation or non-informative interval censoring.

R> dist <- dist_normal()
R> flatten_params_matrix(dist$get_placeholders())
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mean sd
[1,] NA NA

R> denscmp <- dist$compile_density()
R>
R> if (requireNamespace("bench", quietly = TRUE)) {
+ bench::mark(
+ dist$density(-2:2, with_params = list(mean = 0.0, sd = 1.0)),
+ denscmp(-2:2, matrix(c(0.0, 1.0), nrow = 5L, ncol = 2L, byrow = TRUE)),
+ dnorm(-2:2, mean = rep(0.0, 5L), sd = rep(1.0, 5L))
+ )
+ }

# A tibble: 3 x 6
expression min median `itr/sec` mem_alloc `gc/sec`
<bch:expr> <bch:t> <bch:t> <dbl> <bch:byt> <dbl>

1 dist$density(-2:2, with_params =~ 18.94us 21.41us 45213. 0B 49.8
2 denscmp(-2:2, matrix(c(0, 1), nr~ 3.16us 3.89us 250359. 0B 50.1
3 dnorm(-2:2, mean = rep(0, 5L), s~ 1.08us 1.33us 698335. 2.58KB 140.

tensorflow interface
Use of distribution families from within tensorflow networks requires specialized implemen-
tations using the tensorflow APIs instead of regular R functions. These are tailored to the
needs of maximizing (conditional) likelihoods of weighted, censored and randomly truncated
data. Details on working with tensorflow can be found in Section 2.5.

• tf_compile_params(input, name_prefix = "") creates keras layers that take an input
layer and transform it into a valid parametrization of the distribution family.

• tf_is_discrete_at() returns a tensorflow-ready version of is_discrete_at().
• tf_logdensity() returns a tensorflow-ready version of compile_density() with im-

plied log = TRUE.
• tf_logprobability() returns a tensorflow-ready version pf compile_probability_interval()

with implied log.p = TRUE.
• tf_make_constants() creates a list of constant tensors for all fixed distribution family

parameters.

2.3. Special families
Some of the distribution families available in reservr have tailored algorithms for parameter
estimation, or are not commonly known. This section contains mathematical definitions of
those function families.

Mixture distribution families
A mixture distribution family is defined by a fixed number k of component families {Fi}k

i=1
via the set of distributions
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Mixture(F1, . . . , Fk) :=
{

F =
k∑

i=1
piFi

∣∣∣ Fi ∈ Fi, pi ∈ [0, 1],
k∑

i=1
pi = 1

}
.

Erlang mixture distribution families
An Erlang mixture distribution family is defined by its number of components k as a mixture
of Erlang distributions (Gamma distributions with integer shape parameter) with common
scale parameter. If Γα,θ denotes a Gamma distribution with shape α and scale θ, the erlang
mixture family with k components can be defined as follows:

ErlangMixture(k) :=
{

F =
k∑

i=1
piΓαi,θ

∣∣∣ αi ∈ N, θ ∈ (0, ∞), pi ∈ [0, 1],
k∑

i=1
pi = 1

}
.

Note that for k → ∞, Erlang mixtures are dense in the space of distributions on (0, ∞)
with respect to weak convergence (Lee and Lin 2012), making them a useful modeling choice
for general positive continuous distributions. However, the tail index of all Erlang mixture
distributions is always zero due to the exponential decay of Gamma densities.

Blended distribution families
A Blended distribution is defined in Bücher and Rosenstock (2022a) as follows: Given two
underlying distributions P, Q on R with cdfs F (·) = P ((−∞, ·]) and G(·) = Q((−∞, ·]),
respectively, and parameters κ ∈ R, ε ∈ (0, ∞), p1, p2 ∈ [0, 1], p1 + p2 = 1 such that F (κ) > 0
and G(κ) < 1, we define the Blended Distribution B = Blended(P, Q; p, κ, ε) of P and Q with
blending interval [κ − ε, κ + ε] and mixture probabilities p via its cdf FB:

pκ,ε(x) =





x , x ∈ (−∞, κ − ε],
1
2(x + κ − ε) + ε

π cos
(

π(x−κ)
2ε

)
, x ∈ (κ − ε, κ + ε],

κ , x ∈ (κ + ε, ∞),

qκ,ε(x) =





κ , x ∈ (−∞, κ − ε],
1
2(x + κ + ε) − ε

π cos
(

π(x−κ)
2ε

)
, x ∈ (κ − ε, κ + ε],

x , x ∈ (κ + ε, ∞),

FB(x) = p1
F (pκ,ε(x))

F (κ) + p2
G(qκ,ε(x)) − G(κ)

1 − G(κ) .

The following illustration shows the components of a Blended(N (µ = −1, σ = 1), Exp(λ =
1); p = (0.5, 0.5), κ = 0, ε = 1) distribution.

R> dist1 <- dist_normal(mean = -1.0, sd = 1.0)
R> dist2 <- dist_exponential(rate = 1.0)
R> distb <- dist_blended(
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+ dists = list(dist1, dist2),
+ breaks = list(0.0),
+ bandwidths = list(1.0),
+ probs = list(0.5, 0.5)
+ )

The transformation of the original component distributions (N and Exp) can be illustrated
by first right- and left-truncating at κ = 0 respectively, and then applying the blending
transformations pκ,ε and qκ,ε. The latter distributions can be obtained in reservr by setting
the probability weights of the blended distribution to p = (1, 0) and p = (0, 1) respectively.
Intermediate truncated distributions are obtained via trunc_dist(), with κ as upper or lower
bound respectively.

R> distt1 <- dist_trunc(dist1, min = -Inf, max = 0.0)
R> distt2 <- dist_trunc(dist2, min = 0.0, max = Inf)
R>
R> distb1 <- distb$clone()
R> distb1$default_params$probs <- list(1.0, 0.0)
R> distb2 <- distb$clone()
R> distb2$default_params$probs <- list(0.0, 1.0)

We show the resulting density at each of the steps, and the final blended density obtained by
weighting the blended component densities.
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The definition of a blended distribution leads to the definition of a blended distribution family
by allowing P, Q, κ and ε to vary:
Given two families F , G of distributions on R, and parameters κ ∈ R, ε ∈ (0, ∞), we define
the Blended Distribution family as the family of Distributions

Blended(F , G; κ, ε) := {Blended(P, Q; p, κ, ε) | P ∈ F , Q ∈ G, p1, p2 ∈ [0, 1], p1 + p2 = 1}.

Blended distribution families can be generalized to a number of components k by letting κ
and ε become vectors of dimension k − 1 such that κi + εi ≤ κi+1 − εi+1 for i = 1, . . . , k − 2.
Compared to piecewise distribution families obtained by mixture of truncated distribution
families with supports (−∞, κ] and [κ, ∞) such as those commonly used for extreme value
modelling, blended distribution families exhibit a continuous density within the blending
region (κ − ε, κ + ε).
reservr provides an implementation via dist_blended(), with limited support for more than
two component families.

The Blended Dirac Erlang Generalized Pareto distribution family

Using the construction of a Blended distribution family, we can define the Blended Dirac
Erlang Generalized Pareto (BDEGP) family as follows, see Bücher and Rosenstock (2022a,
Definition 2).
Given parameters n ∈ N, m ∈ N, κ ∈ R and ε ∈ (0, ∞), we define the Blended Dirac Erlang
Generalized Pareto family as the family of distributions
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BDEGP(n, m, κ, ε) := Mixture(
{δ0}, {δ1}, . . . , {δn−1},

Blended(
ErlangMixture(m),
{GPD(κ, σ, ξ) | σ ∈ (0, ∞), ξ ∈ [0, 1))};
κ, ε

)
),

where δk is the dirac distribution at k and GPD is the generalized Pareto distribution. Note
the constraint on the tail index ξ ∈ [0, 1), guaranteeing finite expectation.
This distribution family has three features making it useful in modelling very general heavy-
tailed distributions on (0, ∞):

1. A maximally flexible lower tail
2. A flexible family of distributions for its body
3. A flexible tail index due to the generalized Pareto component

2.4. Methods of estimating distribution parameters
This section describes the functions for the problem of estimating a parameter θ ∈ Θ given
a sample I and a parameterized family F = {Fθ | θ ∈ Θ}. Sometimes, the conditional log-
likelihood in (2) can be directly maximized, yielding an estimate for θ. This is the default
behavior in reservr if no specialized estimation routine for the provided family Fθ is defined.
Depending on whether there are box constraints, nonlinear constraints or no constraints
on the parameter space Θ, different implementations of nonlinear optimization algorithms
from nloptr (Johnson 2007), in particular truncated Newton (Dembo and Steihaug 1983)
for unconstrained families, L-BFGS (Liu and Nocedal 1989) for box-constrained families and
SLSQP (Kraft 1994) for general constrained families are employed.
In addition to the naive direct optimization approach, some families lend themselves to spe-
cialized estimation algorithms which usually show faster convergence due to making use of
special structures in the parameter space Θ.
Estimating distribution parameters from truncated observations is handled using the generic
fit() method. It delegates to fit_dist(), which is also generic with signature:

• dist: The distribution family to be fit
• obs: The trunc_obs object, or a vector of observed values
• start: Starting parameters, as a list compatible with dist$get_placeholders().

At the time of writing there are specialized algorithms for six types of families:

1. Blended distribution families (Bücher and Rosenstock 2022a, Algorithm 2)
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2. Erlang mixture distribution families (Bücher and Rosenstock 2022b, Algorithm S.2)
3. Generalized pareto distribution families with free lower bound u (estimated by the

minimum of xmin over the sample)
4. Mixture distribution families (Bücher and Rosenstock 2022a, Algorithm 1)
5. Translated distribution families with fixed offset and multiplier (transform the sam-

ple via ·−offset
multiplier and fit the component distribution family to the transformed sample)

6. Uniform distribution families with free lower bound min or upper bound max (estimated
by the minimum of xmin, for min, and the maximum of xmax, for max, over the sample)

If not present, the start parameter is obtained via the fit_dist_start() generic. This
generic implements a family specific method of generating valid starting values for all place-
holder parameters. A notable implementation is fit_dist_start.ErlangMixtureDistribution()
for Erlang mixture distribution families. If the shape parameters are free, there are different
initialization strategies that can be chosen using additional arguments to fit_dist_start():

• init = "shapes" paired with shapes = c(...) manually specifies starting shape pa-
rameters α

• init = "fan" paired with spread = d uses α = (1, 1 + d, . . . , 1 + (k − 1) · d) with a
default of d = 1 resulting in α = (1, . . . , k)

• init = "kmeans" uses 1-dimensional K-means based clustering of the sample observa-
tions such that each cluster corresponds to a unique shape

• init = "cmm" uses the centralized method of moments procedure described in Gui,
Huang, and Lin (2018)

Re-using dist <- dist_normal(sd = 1.0) from above and the generated sample obs, we
can fit the free parameter mean:

R> dist <- dist_normal(sd = 1.0)
R> the_fit <- fit(dist, obs)
R> str(the_fit)

List of 3
$ params:List of 1
..$ mean: num 0.0822

$ opt :List of 5
..$ par : Named num 0.0822
.. ..- attr(*, "names")= chr "mean"
..$ value : num 341
..$ iter : int 7
..$ convergence: int 1
..$ message : chr "NLOPT_SUCCESS: Generic success return value."

$ logLik:Class 'logLik' : -341 (df=1)

Using the function plot_distributions() we can also assess the quality of the fit.

R> plot_distributions(
+ true = dist,
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+ fitted = dist,
+ empirical = dist_empirical(0.5 * (obs$xmin + obs$xmax)),
+ .x = seq(-5, 5, length.out = 201),
+ plots = "density",
+ with_params = list(
+ true = list(mean = 0.0, sd = 1.0),
+ fitted = the_fit$params
+ )
+ )
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Here, the density labelled empirical corresponds to a kernel density estimate with automatic
bandwidth selection.
We follow with an example of fitting an ErlangMixture(3) distribution family using various
initialization strategies. Note that both, "kmeans" and "cmm" use the random number gener-
ator for internal K-means clustering. This necessitates setting a constant seed before running
fit_dist_start() and fit() to ensure the chosen starting parameters are the same for both
calls.

R> dist <- dist_erlangmix(list(NULL, NULL, NULL))
R> params <- list(
+ shapes = list(1L, 4L, 12L),
+ scale = 2.0,
+ probs = list(0.5, 0.3, 0.2)
+ )
R>
R> set.seed(1234)
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R> x <- dist$sample(100L, with_params = params)
R>
R> set.seed(32)
R> init_true <- fit_dist_start(dist, x, init = "shapes",
+ shapes = as.numeric(params$shapes))
R> init_fan <- fit_dist_start(dist, x, init = "fan", spread = 3L)
R> init_kmeans <- fit_dist_start(dist, x, init = "kmeans")
R> init_cmm <- fit_dist_start(dist, x, init = "cmm")
R> rbind(
+ flatten_params(init_true),
+ flatten_params(init_fan),
+ flatten_params(init_kmeans),
+ flatten_params(init_cmm)
+ )

shapes[1] shapes[2] shapes[3] scale probs[1] probs[2] probs[3]
[1,] 1 4 12 1.590800 0.43 0.33 0.24
[2,] 1 4 7 2.688103 0.55 0.32 0.13
[3,] 1 5 13 1.484960 0.43 0.36 0.21
[4,] 2 10 24 1.010531 0.56 0.27 0.17

R> set.seed(32)
R> str(fit(dist, x, init = "shapes", shapes = as.numeric(params$shapes)))

List of 4
$ params :List of 3
..$ probs :List of 3
.. ..$ : num 0.43
.. ..$ : num 0.33
.. ..$ : num 0.24
..$ shapes:List of 3
.. ..$ : num 1
.. ..$ : num 4
.. ..$ : num 13
..$ scale : num 1.59

$ params_hist: list()
$ iter : int 1
$ logLik :Class 'logLik' : -290 (df=6)

R> fit(dist, x, init = "fan", spread = 3L)$logLik

'log Lik.' -292.0026 (df=6)

R> fit(dist, x, init = "kmeans")$logLik

'log Lik.' -289.2834 (df=6)
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R> fit(dist, x, init = "cmm")$logLik

'log Lik.' -293.1273 (df=6)

It should be noted that the different initialization methods had a considerable impact on
the outcome in the example due to the discrete nature of Erlang mixture distribution shape
parameters and thus the combinatorial difficulty of picking optimal shapes α. The fit()
result for Erlang mixture distribution families contains an element named "params_hist".
This can be populated by passing trace = TRUE to fit() and will record parameters after all
ECME steps in the ECME-based estimation algorithms from Bücher and Rosenstock (2022a,
Algorithms 1 and 2) and Bücher and Rosenstock (2022b, Algorithm S.2). The element "iter"
contains the number of full ECME-Iterations that were performed.

2.5. Distributional regression using tensorflow integration
The maximization problem (3) is delegated to tensorflow, which supplies ample stochastic
optimization algorithms. Functions in reservr are necessary to create a suitable output layer
for tensorflow that maps onto Θ and to provide an implementation of the (negative) log-
likelihood in (3) as a loss function. These two tasks are combined in tf_compile_model().
The function returns an object of class reservr_keras_model, which can be used for the
estimation procedure.
Given input layers inputs and an intermediate output layer intermediate_output as well
as a family of distributions dist, the function

• Compiles the loss for dist defined by (3) as l(g) = − 1
#(Ireg)ℓ(g|Ireg), optionally disabling

censoring or truncation for efficiency.
• Creates a list of final output layers mapping intermediate_output onto the parameter

space Θ of dist using Distribution$tf_compile_params(). This step adds additional
degrees of freedom to the overall model, and the approach is described in Bücher and
Rosenstock (2022b, Section A)

• Runs keras::compile() on the underlying keras.engine.training.Model.

The following example defines a linear model with homoskedasticity assumption and fits it
using 100 iterations of the Adam optimization algorithm (Kingma and Ba 2015). First, we
simulate data (Y, X) from the model defined by X ∼ Unif(10, 20) and Y |X = x ∼ N (µ =
2x, σ = 1).

R> set.seed(1431L)
R> tensorflow::set_random_seed(1432L)
R>
R> dataset <- tibble::tibble(
+ x = runif(100, min = 10, max = 20),
+ y = 2 * x + rnorm(100)
+ )

Next, we specify the distribution family F = {N (µ, σ = 1)|µ ∈ R}, incorporating the ho-
moskedasticity assumption.
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R> dist <- dist_normal(sd = 1.0)

Using keras, we define an empty neural network, just taking x as an input and performing
no transformation.

R> nnet_input <- keras::layer_input(shape = 1L, name = "x_input")
R> nnet_output <- nnet_input

Then, tf_compile_model() adapts the input layer to the free parameter space Θ = R. This
introduces two parameters to the function family G and implies the functional relationship
µ = g(x) := θ1 ·x+θ0. Since our sample is fully observed, we disable censoring and truncation,
leading to the simplified loss

l(g) = − 1
100

∑

x,y

log fg(x)(y),

where fµ(y) is the density of N (µ = µ, σ = 1) evaluated at y.

R> nnet <- tf_compile_model(
+ inputs = list(nnet_input),
+ intermediate_output = nnet_output,
+ dist = dist,
+ optimizer = keras::optimizer_adam(learning_rate = 0.1),
+ censoring = FALSE,
+ truncation = FALSE
+ )
R> nnet$dist

A NormalDistribution with 1 dof

R> nnet$model

Model: "model"
________________________________________________________________________________
Layer (type) Output Shape Param #

================================================================================
x_input (InputLayer) [(None, 1)] 0
mean (Dense) (None, 1) 2

================================================================================
Total params: 2 (8.00 Byte)
Trainable params: 2 (8.00 Byte)
Non-trainable params: 0 (0.00 Byte)
________________________________________________________________________________

The fit can now be performed, modifying the parameters (weights) of nnet in-place. Note
that the argument y of fit accepts a trunc_obs object. In our example, the vector y
is silently converted to an untruncated, uncensored trunc_obs object. fit() returns the
keras_training_history of the underlying call to fit() on the keras.engine.training.Model.
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R> nnet_fit <- fit(
+ nnet,
+ x = dataset$x,
+ y = dataset$y,
+ epochs = 100L,
+ batch_size = 100L,
+ shuffle = FALSE,
+ verbose = FALSE
+ )

The training history can be plotted, displaying the loss by epoch (black circles), and a blue
smoothing line.

R> plot(nnet_fit)
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The predict() method of reservr_keras_model takes input tensors and returns the pre-
dicted distribution parameters as a list compatible with dist$get_placeholders(). We can
thus extract the only parameter mean and compare it to an OLS fit for the same dataset:

R> pred_params <- predict(nnet, data = list(keras::k_constant(dataset$x)))
R>
R> lm_fit <- lm(y ~ x, data = dataset)
R>
R> dataset$y_pred <- pred_params$mean
R> dataset$y_lm <- predict(lm_fit, newdata = dataset, type = "response")
R>
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R> library(ggplot2)
R> ggplot(dataset, aes(x = x, y = y)) +
+ geom_point() +
+ geom_line(aes(y = y_pred), color = "blue") +
+ geom_line(aes(y = y_lm), linetype = 2L, color = "green")
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Since a reservr_keras_model includes the underlying keras.engine.training.Model, its
parameters can also be extracted and compared to the OLS coefficients

R> coef_nnet <- rev(as.numeric(nnet$model$get_weights()))
R> coef_lm <- unname(coef(lm_fit))
R>
R> str(coef_nnet)

num [1:2] 4.8 1.61

R> str(coef_lm)

num [1:2] 0.565 1.957

We now discuss a more complex example involving censoring, using the right-censored ovarian
dataset bundled with the survival package (R Core Team 2023). Our goal is to predict the
rate parameter of an exponential survival time distribution in cancer patients given four fea-
tures X = (age, resid.ds, rx, ecog.ps) collected in the study. The variables resid.ds, rx
and ecog.ps are indicator variables coded in {1, 2}. age is a continuous variable with
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values in (38, 75). Due to the different scale of the age variable, it is useful to sepa-
rate it from the other variables in order to perform normalization. Normalization using
keras::layer_normalization() transforms its input variables to zero mean and unit vari-
ance. This step is not necessary for the categorical features.

R> set.seed(1219L)
R> tensorflow::set_random_seed(1219L)
R> keras::k_set_floatx("float32")
R>
R> dist <- dist_exponential()
R> ovarian <- survival::ovarian
R> dat <- list(
+ y = trunc_obs(
+ xmin = ovarian$futime,
+ xmax = ifelse(ovarian$fustat == 1, ovarian$futime, Inf)
+ ),
+ x = list(
+ age = keras::k_constant(ovarian$age, shape = nrow(ovarian)),
+ flags = k_matrix(ovarian[, c("resid.ds", "rx", "ecog.ps")] - 1.0)
+ )
+ )

Next, we define the input layers and shapes, conforming to our input predictor list dat$x.

R> nnet_inputs <- list(
+ keras::layer_input(shape = 1L, name = "age"),
+ keras::layer_input(shape = 3L, name = "flags")
+ )

age will be normalized and then concatenated to the other features, stored in flags, resulting
in a 4-dimensional representation. We then add two hidden ReLU-layers each with 5 neurons
to the network and compile the result, adapting the 5-dimensional hidden output to the
parameter space Θ = (0, ∞) for the rate parameter of an exponential distribution. This is
accomplished using a dense layer with 1 neuron and the softplus activation function.

R> hidden1 <- keras::layer_concatenate(
+ keras::layer_normalization(nnet_inputs[[1L]]),
+ nnet_inputs[[2L]]
+ )
R> hidden2 <- keras::layer_dense(
+ hidden1,
+ units = 5L,
+ activation = keras::activation_relu
+ )
R> nnet_output <- keras::layer_dense(
+ hidden2,
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+ units = 5L,
+ activation = keras::activation_relu
+ )
R>
R> nnet <- tf_compile_model(
+ inputs = nnet_inputs,
+ intermediate_output = nnet_output,
+ dist = dist,
+ optimizer = keras::optimizer_adam(learning_rate = 0.01),
+ censoring = TRUE,
+ truncation = FALSE
+ )
R> nnet$model

Model: "model_1"
________________________________________________________________________________
Layer (type) Output Shape Para Connected to Trainable

m #
================================================================================
age (InputLayer) [(None, 1)] 0 [] Y
normalization (No (None, 1) 3 ['age[0][0]'] Y
rmalization)
flags (InputLayer [(None, 3)] 0 [] Y
)
concatenate (Conc (None, 4) 0 ['normalization[0] Y
atenate) [0]',

'flags[0][0]']
dense (Dense) (None, 5) 25 ['concatenate[0][0 Y

]']
dense_1 (Dense) (None, 5) 30 ['dense[0][0]'] Y
rate (Dense) (None, 1) 6 ['dense_1[0][0]'] Y

================================================================================
Total params: 64 (260.00 Byte)
Trainable params: 61 (244.00 Byte)
Non-trainable params: 3 (16.00 Byte)
________________________________________________________________________________

For stability reasons, the default weight initialization is not optimal. To circumvent this, we
estimate a global exponential distribution fit on the observations and initialize the final layer
weights such that the global fit is the initial prediction of the network.

R> str(predict(nnet, dat$x))

List of 1
$ rate: num [1:26] 2.15e-15 7.91e-16 6.10e-14 1.52e-11 5.70e-11 ...
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R> global_fit <- fit(dist, dat$y)
R> tf_initialise_model(nnet, params = global_fit$params, mode = "zero")
R> str(predict(nnet, dat$x))

List of 1
$ rate: num [1:26] 0.00077 0.00077 0.00077 0.00077 0.00077 ...

Finally, we can train the network and visualize the predictions.

R> nnet_fit <- fit(
+ nnet,
+ x = dat$x,
+ y = dat$y,
+ epochs = 100L,
+ batch_size = nrow(dat$y),
+ shuffle = FALSE,
+ verbose = FALSE
+ )
R> plot(nnet_fit)
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R> ovarian$expected_lifetime <- 1.0 / predict(nnet, dat$x)$rate

A plot of expected lifetime by (age, rx) shows that the network learned longer expected
lifetimes for lower age and for treatment group (rx) 2. The global fit is included as a dashed
blue line.
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We presented reservr, a package that supports distribution parameter estimation and distri-
butional regression using R. Both tasks are supported for samples with or without interval
censoring and with or without random truncation, a more general form of truncation than
what typical packages support. The package includes facilities for (1) description of randomly
truncated non-informatively interval censored samples, (2) definition of distribution families
to consider, (3) global distribution parameter estimation under an i.i.d. assumption on the
sample and (4) distributional regression - employing the tensorflow package for flexibility and
speed.
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3 Outlook

This chapter provides a brief overview of possible future research opportunities.

The present material only considers IBNR claim counts, providing no explicit model for claim
settlement or IBNR loss. An extension in this regard would be useful because it provides
a full micro-level reserving model, which could be compared to macro-level loss reserving
methods. A natural way to tackle both problems at the same time would be to extend the
marking space with a development process for each claim, which would allow the development
of each claim to depend on the policy and claim features as well as the reporting delay. A
prediction of RBNS reserve could then be obtained by computing the conditional expectation
of a claims loss given its already observed features and the state of its development process.
IBNR losses would result from simulation of the development process of IBNR claims with
number, features and reporting delay sampled from the estimated IBNR claim count model,
conditional on the claim being IBNR at the time of evaluation.

Another aspect open for extension would be the introduction of time-dependent features of the
policies, e.g. the age of the policyholder. In the present work, change of features was viewed as
an independent policy with new features. Note that modelling time-dependent features within
a single policy provides no additional generality under the PDMPP assumption because
disjoint restrictions of the claim process, such as before and after change of a policy feature,
are independent. A potentially useful generalization could be obtained by moving away
from the Poisson process assumption, for example to a Cox process with hidden individual
risk parameters associated to each policy, introducing a dependence in the claim occurrence
process across time intervals. In this case, time-dependent features would require modelling
the evolution of these features.

Without extension of the model under study, several aspects of the modelling process could
be researched further. More research into the parametric distributions assumed for distribu-
tional regression in the central PDMPP model is also possible. For example, the distribu-
tional assumption of a BDEGP family for the reporting delay could be substituted by other
survival-type distributions, such as the Weibull distribution used by Antonio and Plat [2].
All functional relationships assumed in the distributional regression tasks were assumed to
be MLPs. These could be replaced by other function families, such as trees or single-layer
perceptrons with a similar structure to generalized linear models. Even withing the class
of MLPs, different hyperparameters could be employed and approaches for hyperparameter
tuning could be explored. Further algorithms from automatic machine learning (AutoML)
could be tested. See [8] for a review of currently available AutoML frameworks. Model se-
lection using backtesting error was performed in the articles 1 and 2. Different approaches
to model selection may lead to improved generalization error of the selected model.

Insurance rating [13] is another important aspect of the actuarial profession, requiring a
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model for the expected loss for each policy, called the technical premium. The PDMPP
framework, when extended with a claim development process, yields such a model. This
implies that estimation of reserves and technical premiums can be done simultaneously and
the uncertainty of individual reserves can be accounted for when computing risk capital
allocations for individual polices. See [7] for an introduction into the subject of risk capital
allocation.
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136

https://ashesitr.github.io/reservr/articles/jss_paper.html
https://ashesitr.github.io/reservr/articles/jss_paper.html


Eidesstattliche Versicherung

Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne unzulässige
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