Dokument: Identification of microbial amino acid producers by biosensor-based high-throughput screenings and comparative genome analyses

Titel:Identification of microbial amino acid producers by biosensor-based high-throughput screenings and comparative genome analyses
Weiterer Titel:Identifizierung mikrobieller Aminosäureproduzenten durch biosensorgestützte Hochdurchsatz-Screenings und vergleichende Genomanalysen
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=64137
URN (NBN):urn:nbn:de:hbz:061-20231117-081751-1
Kollektion:Dissertationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Baumann, Philipp Tobias [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]19,55 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 13.11.2023 / geändert 13.11.2023
Beitragende:Prof. Dr. Bott, Michael [Gutachter]
Prof. Dr. Pietruszka, Jörg [Gutachter]
Stichwörter:Mutagenesis, FACS-Screening, Whole Genome Sequencing, Comparative Genome Analysis, Reverse Engineering, Metabolic Engineering
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie
Beschreibungen:The modern life style of our ever growing world population is mainly based on the consumption of fossil resources. These developments are the cause of environmental damage and uncontrolled release of greenhouse gases as main drivers of climate change. Therefore, the implementation of more sustainable biotechnological production processes at industrial scale is needed. Such (mostly) sugar-based bioprocesses of the industrial biotechnology rely on microorganisms as catalysts, which need to be constantly improved to become more resource-efficient. In fact, most microbial production strains used today, operate below their theoretical maximum in terms of product yield. However, increasing the production performance of already highly engineered industrial production strains poses a challenge, since novel beneficial targets for rational engineering are difficult to identify. With the availability of biosensor-based FACS-screening technologies, classical strain development strategies comprising random mutagenesis and screening for an improved production phenotype are coming back into fashion.
In this thesis, the biosensor-based FACS-screening of randomly mutated cells was combined with comparative genome analyses and reverse engineering to reveal novel targets in the genome of an industrial Corynebacterium glutamicum production strain for the proteinogenic amino acid L histidine. Since the starting strain was already highly engineered, novel beneficial mutations were expected to be difficult to identify as they might not be directly linkable to L histidine biosynthesis. Therefore, 100 independently FACS-isolated improved strain variants were subjected to a comparative genome analyses to look for reoccurring mutations in single genes, certain pathways or modules of the microbial metabolism.
To achieve the independent isolation of 100 improved strain variants, > 600 chemical mutagenesis and > 200 biosensor-based FACS-screenings were performed, which allowed for the isolation of > 50,000 variants with increased fluorescence. The characterization of > 4,500 variants with regard to biomass formation and L-histidine production, yielded 100 improved strain variants, accumulating 10-80 % more L-histidine in comparison to the starting variant. Comparative analyses of their genomes and reconstruction of point mutations/introduction of gene deletions allowed for the identification of six novel targets with a positive impact on L histidine accumulation in cultures of C. glutamicum. In this context, combination of four genome modifications resulted in an improved L histidine production strain, which was characterized by a doubled product titer (29 mM) and a doubled product yield (0.13 mol L histidine mol D glucose 1) in lab-scale batch-mode bioreactor fermentations.
This approach holds the promise to identify novel genomic targets in already highly engineered production strains in a more systematic manner within a very limited time-frame, and might help to push the performance of industrial bioprocesses quickly towards maximum yields.

Die ständig wachsende Weltbevölkerung und ihr Konsumverhalten, das zu einem großen Teil auf fossilen Ressourcen basiert, verursachen Umweltschäden und treiben die Produktion von Treibhausgasen als Hauptverursacher der Klimaveränderung an. Diese Entwicklung erfordert die Implementierung ressourcenschonender und umweltfreundlicher Produktionsverfahren im industriellen Maßstab. Daher müssen auch die (meist) zuckerbasierten Bioprozesse der industriellen Biotechnologie und ihre mikrobiellen Katalysatoren ständig verbessert werden, um ressourceneffizienter zu werden. Tatsächlich arbeiten die meisten der heute verwendeten mikrobiellen Produktionsstämme hinsichtlich der Produktausbeute unterhalb des theoretischen Maximums. Die Steigerung der Produktionsleistung bereits hochentwickelter industrieller Produktionsstämme stellt jedoch eine Herausforderung dar, da neue genomische Ziele für das rationale Engineering schwer zu identifizieren sind. Mit der Verfügbarkeit biosensorbasierter FACS-Screening-Technologien gewinnen die klassischen Stammentwicklungsverfahren mit Zufallsmutagenese und Screening auf einen verbesserten Produktionsphänotyp wieder an Bedeutung.
In dieser Dissertation wurden Zufallsmutagenesen und biosensorbasierte FACS-Screenings in Kombination mit vergleichenden Genomanalysen und genomischen Rekonstruktionen eingesetzt, um leistungssteigernde Modifikationen im Genom eines industriellen Corynebacterium glutamicum Stammes für die Produktion der Aminosäure L Histidin zu identifizieren. Der Ausgangsstamm war bereits stark genetisch modifiziert, sodass die Identifizierung neuer Modifikationen eine Herausforderung darstellte, weil diese nicht rational mit dem L Histidin-Biosyntheseweg zusammenhängen müssen. Aus diesem Grunde wurden 100 unabhängige, jeweils FACS-isolierte, verbesserte Stammvarianten einer vergleichenden Genomanalyse unterzogen, um nach einer Häufung von Mutationen in einzelnen Genen, bestimmten Stoffwechselwegen oder Modulen des mikrobiellen Stoffwechsels zu suchen, die letztendlich für die beobachtete Steigerung der L Histidin-Produktion verantwortlich sind.
Zur unabhängigen Isolierung der 100 Stammvarianten wurden über 600 chemische Mutagenesen und über 200 FACS-Screenings durchgeführt, durch welche über 50.000 Varianten mit erhöhter Fluoreszenz isoliert werden konnten. Im Rahmen einer detaillierten Charakterisierung von über 4.500 Varianten hinsichtlich ihrer Biomasse- und Produktbildung, wurden 100 Varianten mit 10-80 % gesteigerter L Histidin-Produktion identifiziert. Mithilfe vergleichender Genomanalysen und genetischer Rekonstruktionen wurden sechs bisher unbekannte genomische Modifikationen mit positivem Einfluss auf die L Histidin-Produktion entdeckt. Durch Kombination der Modifikationen wurde ein L Histidin-Produktionsstamm generiert, welcher sich in einem Batch-Fermentationsprozess im Labormaßstab durch einen verdoppelten Produkttiter (29 mM L Histidin) und eine verdoppelte Produktausbeute (0,13 mol L Histidine mol D Glukose 1) auszeichnete.
Mit diesem neuen Ansatz können neuartige genetische Modifikationen in bereits hochentwickelten Produktionsstämmen systematischer und im Hochdurchsatzverfahren identifiziert werden. Dies birgt ein hohes Potenzial, um die Entwicklung industrieller Bioprozesse schnell in Richtung einer maximalen Ausbeute voranzutreiben.
Quelle:Albert, T. J., Dailidiene, D., Dailide, G., Norton, J. E., Kalia, A., Richmond, T. A., Molla, M., Singh, J. G., Roland D., Berg, D. E. (2005) ‘Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori’, Nature Methods 2(12), pp. 951–953.
Alderwick, L. J., Radmacher, E., Seidel, M., Gande, R., Hitchen, P. G., Morris, H. R., Dell, A., Sahm, H., Eggeling, L., Besra, G. S. (2005) ‘Deletion of Cg-emb in Corynebacterianeae leads to a novel truncated cell wall arabinogalactan, whereas inactivation of Cg-ubiA results in an arabinan-deficient mutant with a cell wall galactan core’, Journal of Biological Chemistry 280(37), pp. 32362–32371.
Alifano, P., Fani, R., Li, P., Lazcano, A., Bazzicalupo, M., Carlomagno, M., Stella, C., Bruni, B. (1996) ‘Histidine biosynthetic pathway and genes: structure, regulation, and evolution’, Microbiological reviews 60(1), pp. 44–69.
Alper, H., Miyaoku, K. and Stephanopoulos, G. (2005) ‘Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets’, Nature Biotechnology 23(5), pp. 612–616.
An, G. H., Bielich, J., Auerbach, R., Johnson, E. A. (1991) ‘Isolation and characterization of carotenoid hyperproducing mutants of yeast by flow cytometry and cell Sorting’, Bio/Technology 9(1), pp. 70–73.
Araki, K. and Nakayama, K. (1974) ‘Feedback-resistant phosphoribosyl-ATP pyrophosphorylase in L Histidine-producing mutants of Corynebacterium glutarnicum’, Agricultural and Biological Chemistry 38(11), pp. 2209–2218.
Araki, K., Shimojo, S. and Nakayama, K. (1974) ‘Histidine production by Corynebacterium glutamicum mutants, multiresistant to analogs of histidine, tryptophan, purine and pyrimidine’, Agricultural and Biological Chemistry 38(4), pp. 837–846.
Bailey, J. E. (1991) ‘Toward a science of Metabolic Engineering’, Science 252(5013), pp. 1668–1675.
Bailey, J. E., Sburlati, A., Hatzimanikatis, V., Lee, K., Renner, W. A., Tsai, P. S. (1996) ‘Inverse Metabolic Engineering: A strategy for directed genetic engineering of useful phenotypes’, Biotechnology and Bioengineering 52(1), pp. 109–121.
Baumgart, M., Unthan, S., Kloß, R., Radek, A., Polen, T., Tenhaef, N., Müller, M. F., Küberl, A., Siebert, D., Brühl, N., Marin, K., Hans, S., Krämer, R., Bott, M., Kalinowski, J., Wiechert, W., Seibold, G., Frunzke, J., Rückert, C., Wendisch, V. F., Noack, S. (2018) ‘Corynebacterium glutamicum Chassis C1∗: Building and testing a novel platform host for synthetic biology and industrial biotechnology’, ACS Synthetic Biology 7(1), pp. 132–144.
Becker, J. and Wittmann, C. (2012) ‘Bio-based production of chemicals, materials and fuels – Corynebacterium glutamicum as versatile cell factory’, Current Opinion in Biotechnology 23(4), pp. 631–640.
Bellmann, M. Vrljic, M., Patek, M., Sahm, H., Krämer, R., Eggeling, L. (2001) ‘Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum’, Microbiology 147, pp. 1765–1774.
Berens, C. and Suess, B. (2015) ‘Riboswitch engineering — making the all-important second and third steps’, Current Opinion in Biotechnology 31, pp. 10–15.
Bertani, G. (1951) ‘Studies on Lysogenesis I’, Journal of Bacteriology 62(3), pp. 293–300.
Binder, S., Schendzielorz, G., Stäbler, N., Krumbach, K., Hoffmann, K., Bott, M., Eggeling, L. (2012) ‘A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level’, Genome Biology 13(R40), pp. 1–12.
Blombach, B., Schreiner, M. E., Bartek, T., Oldiges, M., Eikmanns, B. J. (2008) ‘Corynebacterium glutamicum tailored for high-yield L valine production’, Applied Microbiology and Biotechnology 79(3), pp. 471–479.
Bott, M. (2015) ‘Need for speed - finding productive mutations using transcription factor-based biosensors, fluorescence-activated cell sorting and recombineering’, Microbial Biotechnology 8(1), pp. 8–10.
Brockmann-Gretza, O. and Kalinowski, J. (2006) ‘Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase’, BMC Genomics 7(1), pp. 1–15.
Brüsseler, C., Radek, A., Tenhaef, N., Krumbach, K., Noack, S., Marienhagen, J. (2018) ‘The myo-inositol/proton symporter IolT1 contributes to D-xylose uptake in Corynebacterium glutamicum’, Bioresource Technology 249, pp. 953–961.
Buchholz, J., Graf, M., Freund, A., Busche, T., Kalinowski, J., Blombach, B., Takors, R. (2014) ‘CO2/HCO3− perturbations of simulated large scale gradients in a scale-down device cause fast transcriptional responses in Corynebacterium glutamicum’, Applied Microbiology and Biotechnology 98(20), pp. 8563–8572.
Bunn, A. and Korpela, M. (2019) ‘An Introduction to dplR’. Dendrochronologia 26(2), pp. 115-124.
Chai, X., Shang, X., Zhang, Y., Liu, S., Liang, Y., Zhang, Y., Wen, T. (2016) ‘A novel pyruvate kinase and its application in lactic acid production under oxygen deprivation in Corynebacterium glutamicum’, BMC Biotechnology 16(1), pp. 1–12.
Chalut, C. (2016) ‘MmpL transporter-mediated export of cell-wall associated lipids and siderophores in mycobacteria’, Tuberculosis 100, pp. 32–45.
Chen, S., Zhou, Y., Chen, Y., Gu, J. (2018) ‘fastp: an ultra-fast all-in-one FASTQ preprocessor’, Bioinformatics 34(17), pp. i884–i890.
Cheng, Q., Ruebling-Jass, K., Zhang, J., Chen, Q., Croker, K. M. (2012) ‘Use FACS sorting in Metabolic Engineering of Escherichia coli for increased peptide production’, Methods in Molecular Biology 834, pp. 177–196.
Cheng, Y., Zhou, Y., Yang, L., Zhang, C., Xu, Q., Xie, X., Chen, N. (2013) ‘Modification of histidine biosynthesis pathway genes and the impact on production of L-histidine in Corynebacterium glutamicum’, Biotechnology Letters 35(5), pp. 735–741.
Choe, D., Cho, S., Kim, Sun C., Cho, B. K. (2016) ‘Minimal genome: Worthwhile or worthless efforts toward being smaller?’, Biotechnology Journal 11(2), pp. 199–211.
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., Zhang, F. (2013) ‘Multiplex genome engineering using CRISPR/Cas systems’, Science 339(6121), pp. 819–823.
Della Corte, D., van Beek, H. L., Syberg, F., Schallmey, M., Tobola, F., Cormann, K. U., Schlicker, C., Baumann, P. T., Krumbach, K., Sokolowsky, S., Morris, C. J., Grünberger, A., Hofmann, E., Schröder, G. F., Marienhagen, J. (2020) ‘Engineering and application of a biosensor with focused ligand specificity’, Nature Communications 11(1), pp. 1–11.
Court, D. L., Sawitzke, J. A. and Thomason, L. C. (2003) ‘Genetic engineering using homologous recombination’, Annual Review of Genetics 36, pp. 361–388.
Cronan, J. E., Zhao, X. and Jiang, Y. (2005) ‘Function, Attachment and Synthesis of Lipoic Acid in Escherichia coli’, Advances in Microbial Physiology 50, pp. 103–146.
Dahl, R. H., Zhang, F., Alonso-Gutierrez, J., Baidoo, E., Batth, T. S., Redding-Johanson, A. M., Petzold, C. J., Mukhopadhyay, A., Lee, T. S., Adams, P. D., Keasling, J. D. (2013) ‘Engineering dynamic pathway regulation using stress-response promoters’, Nature Biotechnology 31(11), pp. 1039–1046.
Demain, A. L., Vandamme, E. J., Collins, J., Buchholz, K. (2016) ‘History of Industrial Biotechnology’, Industrial Biotechnology 2, pp. 1–84.
Dietrich, J. A., Shis, D. L., Alikhani, A., Keasling, J. D. (2013) ‘Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis’, ACS Synthetic Biology 2(1), pp. 47–58.
Doong, S. J., Gupta, A. and Prather, K. L. J. (2018) ‘Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli’, Proceedings of the National Academy of Sciences of the United States of America 115(12), pp. 2964–2969.
Eggeling, L. and Bott, M. (2005) ‘Handbook of Corynebacterium glutamicum’, CRC Press, pp. 1–620.
Eggeling, L. and Bott, M. (2015) ‘A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum’, Applied Microbiology and Biotechnology 99(8), pp. 3387–3394.
Eggeling, L., Bott, M. and Marienhagen, J. (2015) ‘Novel screening methods — biosensors’, Current Opinion in Biotechnology 35, pp. 30–36.
Eggeling, L. and Sahm, H. (2001) ‘The cell wall barrier of Corynebacterium glutamicum and amino acid efflux’, Journal of Bioscience and Bioengineering 92(3), pp. 201–213.
Eggeling, L. and Sahm, H. (2003) ‘New ubiquitous translocators: Amino acid export by Corynebacterium glutamicum and Escherichia coli’, Archives of Microbiology 180(3), pp. 155–160.
Eikmanns, B. J., Thum-Schmitz, N., Eggeling, L., Lüdtke, K., Sahm, H. (1994) ‘Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase’, Microbiology 140(8), pp. 1817–1828.
Erdmann, A., Weil, B. and Krämer, R. (1993) ‘Lysine secretion by wild-type Corynebacterium glutamicum triggered by dipeptide uptake’, Microbiology 139(12), pp. 3115–3122.
Fang, X., Lloyd, C. J. and Palsson, B. O. (2020) ‘Reconstructing organisms in silico: genome-scale models and their emerging applications’, Nature Reviews Microbiology 18(12), pp. 731–743.
Feith, A., Schwentner, A., Teleki, A., Favilli, L., Blombach, B., Takors, R. (2020) ‘Streamlining the Analysis of Dynamic 13C-Labeling Patterns for the Metabolic Engineering of Corynebacterium glutamicum as L-Histidine Production Host’, Metabolites 10(11), p. 458.
Feng, R. N., Niu, Y. C., Sun, X. W., Li, Q., Zhao, C., Wang, C., Guo, F. C., Sun, C. H., Li, Y. (2013) ‘Histidine supplementation improves insulin resistance through suppressed inflammation in obese women with the metabolic syndrome: A randomised controlled trial’, Diabetologia 56(5), pp. 985–994.
Fernandez-López, R., Ruiz, R., de la Cruz, F., Moncalián, G. (2015) ‘Transcription factor-based biosensors enlightened by the analyte’, Frontiers in Microbiology 6, p. 648.
Fior Markets (2020) Global Histidine Market Growth 2019-2024 - Fior Markets. Available at: https://www.fiormarkets.com/report/global-histidine-market-growth-2019-2024-372503.html (Accessed: 4 January 2022).
Flachbart, L. K., Gertzen, C. G. W., Gohlke, H., Marienhagen, J. (2021) ‘Development of a biosensor platform for phenolic compounds using a transition ligand strategy’, ACS Synthetic Biology 10(8), pp. 2002–2014.
Flachbart, L. K., Sokolowsky, S. and Marienhagen, J. (2019) ‘Displaced by deceivers: Prevention of biosensor cross-talk is pivotal for successful biosensor-based high-throughput screening campaigns’, ACS Synthetic Biology 8(8), pp. 1847–1857.
Fondi, M., Emiliani, G., Liò, P., Gribaldo, S., Fani, R. (2009) ‘The evolution of histidine biosynthesis in archaea: Insights into the his genes structure and organization in luca’, Journal of Molecular Evolution 69(5), pp. 512–526.
Foster, P. L. (1991) ‘In vivo mutagenesis’, Methods in Enzymology 204(C), pp. 114–125.
Gande, R., Gibson, K. J.C., Brown, A. K., Krumbach, K., Dover, L. G., Sahm, H., Shioyama, S., Oikawa, T., Besra, G. S., Eggeling, L. (2004) ‘Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis’, Journal of Biological Chemistry 279(43), pp. 44847–44857.
Gebhardt, H., Meniche, X., Tropis, M., Krämer, R., Daffé, M., Morbach, S. (2007) ‘The key role of the mycolic acid content in the functionality of the cell wall permeability barrier in Corynebacterineae’, Microbiology 153(5), pp. 1424–1434.
Gibson, D. G., Young, L., Chuang, R., Venter, J. C., Hutchison, C. A., Smith, H. O. (2009) ‘Enzymatic assembly of DNA molecules up to several hundred kilobases’, Nature Methods 6(5), pp. 343–345.
Goodwin, S., McPherson, J. D. and McCombie, W. R. (2016) ‘Coming of age: ten years of next-generation sequencing technologies’, Nature Reviews Genetics 17(6), pp. 333–351.
Grünberger, A., van Ooyen, J., Paczia, N., Rohe, P., Schiendzielorz, G., Eggeling, L., Wiechert, W., Kohlheyer, D., Noack, S. (2013) ‘Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments’, Biotechnology and Bioengineering 110(1), pp. 220–228.
Haerlin, R., Süssmuth, R. and Lingens, F. (1970) ‘Mechanism of mutagenesis by N-methyl-N′-nitro- N-nitroso-guanidine (MNNG)’, FEBS Letters 9(3), pp. 175–176.
Harms, H., Wells, M. C. and Van Der Meer, J. R. (2006) ‘Whole-cell living biosensors - Are they ready for environmental application?’, Applied Microbiology and Biotechnology 70(3), pp. 273–280.
Hasegawa, S., Ichiyama, T., Sonaka, I., Ohsaki, A., Okada, S., Wakiguchi, H., Kudo, K., Kittaka, S., Hara, M., Furukawa, S. (2012) ‘Cysteine, histidine and glycine exhibit anti-inflammatory effects in human coronary arterial endothelial cells’, Clinical and Experimental Immunology 167(2), pp. 269–274.
Hernandez-Valdes, J. A., aan de Stegge, M., Hermans, J., Teunis, J., van Tatenhove-Pel, R. J., Teusink, B., Bachmann, H., Kuipers, O. P. (2020) ‘Enhancement of amino acid production and secretion by Lactococcus lactis using a droplet-based biosensing and selection system’, Metabolic Engineering Communications 11, p. e00133.
Herring, C. D., Raghunathan, A., Honisch, C., Patel, T., Applebee, M. K., Joyce, A. R., Albert, T. J., Blattner, F. R., Van Den Boom, D., Cantor, C. R., Palsson, B. (2006) ‘Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale’, Nature Genetics 38(12), pp. 1406–1412.
Hewitt, C. J. and Nienow, A. W. (2007) ‘The Scale‐Up of Microbial Batch and Fed‐Batch Fermentation Processes’, Advances in Applied Microbiology 62, pp. 105–135.
Hochreiter, B., Garcia, A. P. and Schmid, J. A. (2015) ‘Fluorescent proteins as genetically encoded FRET biosensors in life sciences’, Sensors 15(10), pp. 26281–26314.
Houssin, C., Sousa d’Auria, C., Constantinesco, F., Dietrich, C., Labarre, C., Bayan, N. (2020) ‘Architecture and biogenesis of the cell envelope of Corynebacterium glutamicum.’ Microbiology Monographs 23, pp. 25–60.
Hwang, H. G., Noh, M. H., Koffas, M. A.G., Jang, S., Jung, G. Y. (2021) ‘Multi-level rebalancing of the naringenin pathway using riboswitch-guided high-throughput screening’, Metabolic Engineering 67, pp. 417–427.
Hwang, H. J., Lee, S. Y. and Lee, P. C. (2018) ‘Engineering and application of synthetic nar promoter for fine-tuning the expression of metabolic pathway genes in Escherichia coli’, Biotechnology for Biofuels 11(1), pp. 1–13.
Ikeda, M., Mitsuhashi, S., Tanaka, K., Hayashi, M. (2009) ‘Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer’, Applied and Environmental Microbiology 75(6), pp. 1635–1641.
Ikeda, M., Nagashima, T., Nakamura, E., Kato, R., Ohshita, M., Hayashi, M., Takeno, S. (2017) ‘In vivo roles of fatty acid biosynthesis enzymes in biosynthesis of biotin and α-lipoic acid in Corynebacterium glutamicum’, Applied and Environmental Microbiology 83(19).
Ikeda, M. and Nakagawa, S. (2003) ‘The Corynebacterium glutamicum genome: Features and impacts on biotechnological processes’, Applied Microbiology and Biotechnology 62(2–3), pp. 99–109.
IMARC Group (2020) White Biotechnology Market Size, Share, | Global Industry Report 2021-2026. Available at: https://www.imarcgroup.com/white-biotechnology-market (Accessed: 30 November 2021).
IMARC Group (2021) Amino Acids Market Size, Share, Trends and Forecast 2022-2027. Available at: https://www.imarcgroup.com/amino-acid-technical-material-market-report (Accessed: 3 January 2022).
IPCC (2018) ‘Global Warming of 1.5°C, Special Report 2018’, Cambridge University Press.
Jankute, M., Alderwick, L. J., Moorey, A. R., Joe, M., Gurcha, S. S., Eggeling, L., Lowary, T. L., Dell, A., Pang, P. C., Yang, T., Haslam, S., Besra, G. S. (2018) ‘The singular Corynebacterium glutamicum Emb arabinofuranosyltransferase polymerises the α(1 → 5) arabinan backbone in the early stages of cell wall arabinan biosynthesis’, The Cell Surface 2, pp. 38–53.
Jorgenson, A. K., Fiske, S., Hubacek, K., Li, J., McGovern, T., Rick, T., Schor, J. B., Solecki, W., York, R., Zycherman, A. (2019) ‘Social science perspectives on drivers of and responses to global climate change’, Wiley Interdisciplinary Reviews: Climate Change 10(1), p. e554.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A.A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P., Hassabis, D. (2021) ‘Highly accurate protein structure prediction with AlphaFold’, Nature 596(7873), pp. 583–589.
Jung, S., Chun, J. Y., Yim, S. H., Lee, S. S., Cheon, C., Song, E., Lee, M. S. (2010) ‘Transcriptional regulation of histidine biosynthesis genes in Corynebacterium glutamicum’, Canadian Journal of Microbiology 56(2), pp. 178–187.
Kaczmarek, J. A. and Prather, K. L. J. (2021) ‘Effective use of biosensors for high-throughput library screening for metabolite production’, Journal of Industrial Microbiology and Biotechnology 48(9-10), p. 49.
Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., Dusch, N., Eggeling, L., Eikmanns, B. J., Gaigalat, L., Goesmann, A., Hartmann, M., Huthmacher, K., Krämer, R., Linke, B., McHardy, A. C., Meyer, F., Möckel, B., Pfefferle, W., Pühler, A., Rey, D. A., Rückert, C., Rupp, O., Sahm, H., Wendisch, V. F., Wiegräbe, I., Tauch, A. (2003) ‘The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins’, Journal of Biotechnology 104(1–3), pp. 5–25.
Käß, F., Hariskos, I., Michel, A., Brandt, H. J., Spann, R., Junne, S., Wiechert, W., Neubauer, P., Oldiges, M. (2014) ‘Assessment of robustness against dissolved oxygen/substrate oscillations for C. glutamicum DM1933 in two-compartment bioreactor’, Bioprocess and Biosystems Engineering. 37(6), pp. 1151–1162.
Keasling, J. D. (2010) ‘Manufacturing molecules through metabolic engineering’, Science 330(6009), pp. 1355–1358.
Keilhauer, C., Eggeling, L. and Sahm, H. (1993) ‘Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon’, Journal of Bacteriology 175(17), pp. 5595–5603.
Kim, G. B., Kim, W. J., Kim, H. U., Lee, S. Y. (2020) ‘Machine learning applications in systems metabolic engineering’, Current Opinion in Biotechnology 64, pp. 1–9.
Kinoshita, S., Udaka, S. and Shimono, M. (1957) ‘Studies on the amino acid fermentation part I. Production of L-glutamic acid by various microorganisms’, The Journal of General and Applied Microbiology 3(3), pp. 193–205.
Kirchner, O. and Tauch, A. (2003) ‘Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum’, Journal of Biotechnology 104(1–3), pp. 287–299.
Kiss, A. A., Grievink, J. and Rito-Palomares, M. (2015) ‘A systems engineering perspective on process integration in industrial biotechnology’, Journal of Chemical Technology & Biotechnology 90(3), pp. 349–355.
Klaffl, S., Brocker, M., Kalinowski, J., Eikmanns, B. J., Bott, M. (2013) ‘Complex regulation of the phosphoenolpyruvate carboxykinase gene pck and characterization of its Gntr-type regulator IolR as a repressor of myo-inositol utilization genes in Corynebacterium glutamicum’, Journal of Bacteriology 195(18), pp. 4283–4296.
Koboldt, D. C., Chen, K., Wylie, T., Larson, D. E., McLellan, M. D., Mardis, E. R., Weinstock, G. M., Wilson, R. K., Ding, L. (2009) ‘VarScan: variant detection in massively parallel sequencing of individual and pooled samples’, Bioinformatics 25(17), pp. 2283–2285.
Koboldt, D. C., Zhang, Q., Larson, D. E., Shen, D., McLellan, M. D., Lin, L., Miller, C. A., Mardis, E. R., Ding, L., Wilson, R. K. (2012) ‘VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing’, Genome Research 22(3), pp. 568–576.
Koch, M., Pandi, A., Borkowski, O., Cardoso Batista, A., Faulon, J. L. (2019) ‘Custom-made transcriptional biosensors for metabolic engineering’, Current Opinion in Biotechnology 59, pp. 78–84.
Kranz, A., Polen, T., Kotulla, C., Arndt, A., Bosco, G., Bussmann, M., Chattopadhyay, A., Cramer, A., Davoudi, C. F., Degner, U., Diesveld, R., Freiherr von Boeselager, R., Gärtner, K., Gätgens, C., Georgi, T., Geraths, C., Haas, S., Heyer, A., Hünnefeld, M., Ishige, T., Kabus, A., Kallscheuer, N., Kever, L., Klaffl, S., Kleine, B., Kočan, M., Koch-Koerfges, A., Kraxner, K. J., Krug, A., Krüger, A., Küberl, A., Labib, M., Lange, C., Mack, C., Maeda, T., Mahr, R., Majda, S., Michel, A., Morosov, X., Müller, O., Nanda, A. M., Nickel, J., Pahlke, J., Pfeifer, E., Platzen, L., Ramp, P., Rittmann, D., Schaffer, S., Scheele, S., Spelberg, S., Schulte, J., Schweitzer, J. E., Sindelar, G., Sorger-Herrmann, U., Spelberg, M., Stansen, C., Tharmasothirajan, A., van Ooyen, J., van Summeren-Wesenhagen, P., Vogt, M., Witthoff, S., Zhu, L., Eikmanns, B. J., Oldiges, M., Schaumann, G., Baumgart, M., Brocker, M., Eggeling, L., Freudl, R., Frunzke, J., Marienhagen, J., Wendisch, V. F., Bott, M. (2022) ‘A manually curated compendium of expression profiles for the microbial cell factory Corynebacterium glutamicum’, Scientific Data 9(1), pp. 1–10.
Krogh, A., Larsson, B., Von Heijne, G., Sonnhammer, E. L.L. (2001) ‘Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes’, Journal of molecular biology 305(3), pp. 567–580.
Kulis-Horn, R. K., Persicke, M. and Kalinowski, J. (2014) ‘Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum’, Microbial Biotechnology 7(1), pp. 5–25.
Kulis-Horn, R. K., Persicke, M. and Kalinowski, J. (2015) ‘Corynebacterium glutamicum ATP-phosphoribosyl transferases suitable for L-histidine production – Strategies for the elimination of feedback inhibition’, Journal of Biotechnology 206, pp. 26–37.
Lanéelle, M.-A., Tropis, M. and Daffé, M. (2013) ‘Current knowledge on mycolic acids in Corynebacterium glutamicum and their relevance for biotechnological processes’, Applied Microbiology and Biotechnology 2013 97:23. Springer, 97(23), pp. 9923–9930.
Lawson, C. E., Martí, J. M., Radivojevic, T., Jonnalagadda, S. V. R., Gentz, R., Hillson, N. J., Peisert, S., Kim, J., Simmons, B. A., Petzold, C. J., Singer, S. W., Mukhopadhyay, A., Tanjore, D., Dunn, J. G., Garcia M. H. (2021) ‘Machine learning for metabolic engineering: A review’, Metabolic Engineering 63, pp. 34–60.
Lee, J. H. and Wendisch, V. F. (2017) ‘Production of amino acids – Genetic and metabolic engineering approaches’, Bioresource Technology 245, pp. 1575–1587.
Lee, S. Y. and Kim, H. U. (2015) ‘Systems strategies for developing industrial microbial strains’, Nature Biotechnology 33(10), pp. 1061–1072.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R. (2009) ‘The Sequence Alignment/Map format and SAMtools’, Bioinformatics 25(16), pp. 2078–2079.
Li, H. and Durbin, R. (2009) ‘Fast and accurate short read alignment with Burrows–Wheeler transform’, Bioinformatics 25(14), pp. 1754–1760.
Li, L., Wei, K., Liu, X., Wu, Y., Zheng, G., Chen, S., Jiang, W., Lu, Y. (2019) ‘aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes’, Metabolic Engineering 52, pp. 153–167.
Liao, S. M., Du, Q. S., Meng, J. Z., Pang, Z. W., Huang, R. B. (2013) ‘The multiple roles of histidine in protein interactions’, Chemistry Central Journal 7(1), pp. 1–12.
Liu, D., Evans, T. and Zhang, F. (2015) ‘Applications and advances of metabolite biosensors for metabolic engineering’, Metabolic Engineering 31, pp. 35–43.
Liu, W. and Jiang, R. (2015) ‘Combinatorial and high-throughput screening approaches for strain engineering’, Applied Microbiology and Biotechnology 99(5), pp. 2093–2104.
Liu, Y., Yuan, H., Ding, D., Dong, H., Wang, Q., Zhang, D. (2021) ‘Establishment of a biosensor-based high-throughput screening platform for tryptophan overproduction’, ACS Synthetic Biology 10(6), pp. 1373–1383.
Long, Q., Liu, X., Yang, Y., Li, L., Harvey, L., McNeil, B., Bai, Z. (2014) ‘The development and application of high throughput cultivation technology in bioprocess development’, Journal of Biotechnology 192, pp. 323–338.
Mahr, R., Gätgens, C., Gätgens, J., Polen, T., Kalinowski, J., Frunzke, J. (2015) ‘Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum’, Metabolic Engineering 32, pp. 184–194.
Malykh, E. A., Butov, I. A., Ravcheeva, A. B., Krylov, A. A., Mashko, S. V., Stoynova, N. V. (2018) ‘Specific features of L-histidine production by Escherichia coli concerned with feedback control of AICAR formation and inorganic phosphate/metal transport’, Microbial Cell Factories 17(1), p. 42.
MarketWatch (2021) Histidine Market Share,Size 2021 – Global Trends, Market Demand, Industry Analysis, Growth, Opportunities and Forecast 2027 - MarketWatch. Available at: https://www.marketwatch.com/press-release/histidine-market-sharesize-2021-global-trends-market-demand-industry-analysis-growth-opportunities-and-forecast-2027-2021-12-09 (Accessed: 4 January 2022).
Marquet, A., Tse Sum Bui, B. and Florentin, D. (2001) ‘Biosynthesis of biotin and lipoic acid’, Vitamins and Hormones 61, pp. 51–101.
Martínez-García, E. and de Lorenzo, V. (2016) ‘The quest for the minimal bacterial genome’, Current Opinion in Biotechnology 42, pp. 216–224.
Michener, J. K. and Smolke, C. D. (2012) ‘Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways’, Metabolic Engineering 14(3), pp. 212–222.
Michener, J. K. and Smolke, C. D. (2012) ‘High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch’, Metabolic Engineering 14(4), pp. 306–316.
Mizukami, T., Hamu, A., Ikeda, M., Oka, T., Katsumata, R. (1994) ‘Cloning of the ATP phosphoribosyl transferase gene of Corynebacterium glutamicum and application of the gene to L histidine production’, Bioscience, Biotechnology, and Biochemistry 58(4), pp. 635–638.
Mohsin, M. and Ahmad, A. (2014) ‘Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells’, Biosensors and Bioelectronics 59, pp. 358–364.
Montaño López, J., Duran, L. and Avalos, J. L. (2021) ‘Physiological limitations and opportunities in microbial metabolic engineering’, Nature Reviews Microbiology 20(35-48), pp. 1–14.
Mordor Intelligence (2020) White Biotech Market | 2021 - 26 | Industry Share, Size, Growth - Mordor Intelligence. Available at: https://www.mordorintelligence.com/industry-reports/white-biotech-market (Accessed: 30 November 2021).
Mustafi, N., Grünberger, A., Mahr, R., Helfrich, S., Nöh, K., Blombach, B., Kohlheyer, D., Frunzke, J. (2014) ‘Application of a genetically encoded biosensor for live cell imaging of L valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains’, PLOS ONE 9(1), p. e85731.
Nielsen, J. (2001) ‘Metabolic engineering’, Applied Microbiology and Biotechnology 55(3), pp. 263–283.
Nielsen, J. and Keasling, J. D. (2016) ‘Engineering Cellular Metabolism’, Cell 164(6), pp. 1185–1197.
Nishio, Y., Nakamura, Y., Kawarabayasi, Y., Usuda, Y., Kimura, E., Sugimoto, S., Matsui, K., Yamagishi, A., Kikuchi, H., Ikeo, K., Gojobori, T. (2003) ‘Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens’, Genome Research 13(7), p. 1572.
OECD (2011) ‘Industrial Biotechnology and Climate Change. Organisation for Economic Co-operation and Development (OECD)’. Available at: www.oecd.org/sti/biotechnology (Accessed: 20 May 2022).
Ohnishi, J., Mitsuhashi, S., Hayashi, M., Ando, S., Yokoi, H., Ochiai, K., Ikeda, M. (2002) ‘A novel methodology employing Corynebacterium glutamicum genome information to generate a new L lysine-producing mutant’, Applied Microbiology and Biotechnology 58(2), pp. 217–223.
Ohnishi, J., Mizoguchi, H., Takeno, S., Ikeda, M. (2008) ‘Characterization of mutations induced by N-methyl-N′-nitro-N-nitrosoguanidine in an industrial Corynebacterium glutamicum strain’, Mutation Research/Genetic Toxicology and Environmental Mutagenesis 649(1–2), pp. 239–244.
Ohta, T., Watanabe-Akanuma, M. and Yamagata, H. (2000) ‘A comparison of mutation spectra detected by the Escherichia coli Lac+ reversion assay and the Salmonella typhimurium His+ reversion assay’, Mutagenesis 15(4), pp. 317–323.
Oku, M., Hoseki, J., Ichiki, Y., Sakai, Y. (2013) ‘A fluorescence resonance energy transfer (FRET)-based redox sensor reveals physiological role of thioredoxin in the yeast Saccharomyces cerevisiae’, FEBS Letters 587(6), pp. 793–798.
Parekh, S., Vinci, V. A. and Strobel, R. J. (2000) ‘Improvement of microbial strains and fermentation processes’, Applied Microbiology and Biotechnology 54(3), pp. 287–301.
Payen, C., Sunshine, A. B., Ong, G. T., Pogachar, J. L., Zhao, W., Dunham, M. J. (2016) ‘High-throughput identification of adaptive mutations in experimentally evolved yeast populations’, PLOS Genetics 12(10), p. e1006339.
Peroza, E. A., Ewald, J. C., Parakkal, G., Skotheim, J. M., Zamboni, N. (2015) ‘A genetically encoded Förster resonance energy transfer sensor for monitoring in vivo trehalose-6-phosphate dynamics’, Analytical Biochemistry 474, pp. 1–7.
Polgár, L. (2005) ‘The catalytic triad of serine peptidases’, Cellular and Molecular Life Sciences 62(19), pp. 2161–2172.
Portevin, D., Sousa-D'Auria, C., Houssin, C., Grimaldi, C., Chami, M., Daffé, M., Guilhot, C. (2004) ‘A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms’, Proceedings of the National Academy of Sciences 101(1), pp. 314–319.
Prăvălie, R., Patriche, C., Borrelli, P., Panagos, P., Roșca, B., Dumitraşcu, M., Nita, I. A., Săvulescu, I., Birsan, M. V., Bandoc, G. (2021) ‘Arable lands under the pressure of multiple land degradation processes. A global perspective’, Environmental Research 194, p. 110697.
Radmacher, E., Alderwick, L. J., Besra, G. S., Brown, A. K., Gibson, K. J. C., Sahm, H., Eggeling, L. (2005) ‘Two functional FAS-I type fatty acid synthases in Corynebacterium glutamicum’, Microbiology 151(7), pp. 2421–2427.
Raper, K. B. (1946) ‘The development of improved penicillin-producing molds’, Annuals of the New York Academy of Sciences, 48(2), pp. 41–56.
Rebek, J. (1990) ‘On the structure of histidine and its role in enzyme active sites’, Structural Chemistry 1(1), pp. 129–131.
Rogers, J. K. and Church, G. M. (2016) ‘Genetically encoded sensors enable real-time observation of metabolite production’, Proceedings of the National Academy of Sciences of the United States of America 113(9), pp. 2388–2393.
Rowlands, R. T. (1984) ‘Industrial strain improvement: mutagenesis and random screening procedures’. Enzyme and microbial technology 6(1), pp. 3–10.
Sahm, H., Eggeling, L., Eikmanns, B., Krämer, R. (1995) ‘Metabolic design in amino acid producing bacterium Corynebacterium glutamicum’, FEMS Microbiology Reviews 16(2–3), pp. 243–252.
Sahm, H., Eggeling, L. and de Graaf, A. A. (2000) ‘Pathway analysis and metabolic engineering in Corynebacterium glutamicum’, Biological Chemistry 381(9–10), pp. 899–910.
Sambrook, J. and Russel, D. W. (2012) ‘Molecular Cloning: A Laboratory Manual, 4th edition. Cold Spring Harbor Laboratory Press, pp. 1-34.
San Martín, A., Ceballo, S., Baeza-Lehnert, F., Lerchundi, R., Valdebenito, R., Contreras-Baeza, Y., Alegría, K., Barros, L. F. (2014) ‘Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate’, PLOS ONE 9(1), p. e85780.
Sang Yup Lee and E. Terry Papoutsakis (1999) Metabolic Engineering. CRC Press, pp. 1-450.
Sanger, F., Nicklen, S. and Coulson, A. R. (1977) ‘DNA sequencing with chain-terminating inhibitors.’, Proceedings of the National Academy of Sciences of the United States of America, 74(12), pp. 5463–5467.
Santos, C. N. S. and Stephanopoulos, G. (2008) ‘Combinatorial engineering of microbes for optimizing cellular phenotype’, Current Opinion in Chemical Biology 12(2), pp. 168–176.
Sawada, K., Zen-in, S., Wada, M., Yokota, A. (2010) ‘Metabolic changes in a pyruvate kinase gene deletion mutant of Corynebacterium glutamicum ATCC 13032’, Metabolic Engineering 12(4), pp. 401–407.
Sawada, K., Wada, M., Hagiwara, T., Zen-in, S., Imai, K., Yokota, A. (2015) ‘Effect of pyruvate kinase gene deletion on the physiology of Corynebacterium glutamicum ATCC13032 under biotin-sufficient non-glutamate-producing conditions: Enhanced biomass production’, Metabolic Engineering Communications 2, pp. 67–75.
Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G., Pühler, A. (1994) ‘Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum’, Gene 145(1), pp. 69–73.
Schallmey, M., Frunzke, J. and Eggeling, L. (2014) ‘Looking for the pick of the bunch: high-throughput screening of producing microorganisms with biosensors’, Current Opinion in Biotechnology 26, pp. 148–154.
Schendzielorz, G., Dippong, M., Grunberger, A., Kohlheyer, D., Yoshida, A., Binder, S., Nishiyama, C., Nishiyama, M., Bott, M., Eggeling, L. (2014) ‘Taking control over control: Use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways’, ACS Synthetic Biology, 3(1), pp. 21–29.
Schultz, C., Niebisch, A., Schwaiger, A., Viets, U., Metzger, S., Bramkamp, M., Bott, M. (2009) ‘Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases’, Molecular Microbiology 74(3), pp. 724–741.
Schwentner, A., Feith, A., Münch, E., Stiefelmaier, J., Lauer, I., Favilli, L., Massner, C., Öhrlein, J., Grund, B., Hüser, A., Takors, R., Blombach, B. (2019) ‘Modular systems metabolic engineering enables balancing of relevant pathways for L-histidine production with Corynebacterium glutamicum’, Biotechnology for Biofuels 12(1), p. 65.
Seidel, M., Alderwick, L. J., Sahm, H., Besra, G. S., Eggeling, L. (2007) ‘Topology and mutational analysis of the single Emb arabinofuranosyltransferase of Corynebacterium glutamicum as a model of Emb proteins of Mycobacterium tuberculosis’, Glycobiology 17(2), pp. 210–219.
Serganov, A. and Nudler, E. (2013) ‘A Decade of Riboswitches’, Cell 152(1–2), pp. 17–24.
Singer, B. and Kusmierek, J. T. (1982) ‘Chemical mutagenesis’, Annual review of Biochemistry 51, pp. 135–158.
Sonntag, C. K., Flachbart, L. K., Maass, C., Vogt, M., Marienhagen, J. (2020) ‘A unified design allows fine-tuning of biosensor parameters and application across bacterial species’, Metabolic Engineering Communications 11, p. e00150.
Stephanopoulos, G., Aristidou, A. A. and Nielsen, J. (1998) 'Metabolic Engineering: Principles and Methodologies.' Elsevier Acadamic Press, pp. 1-752.
Stoltzfus, A. and Norris, R. W. (2016) ‘On the causes of evolutionary transition:transversion bias’, Molecular Biology and Evolution 33(3), p. 595.
Strieker, M., Tanović, A. and Marahiel, M. A. (2010) ‘Nonribosomal peptide synthetases: structures and dynamics’, Current Opinion in Structural Biology 20(2), pp. 234–240.
Taguchi, S., Ooi, T., Mizuno, K., Matsusaki, H. (2015) ‘Advances and needs for endotoxin-free production strains’, Applied Microbiology and Biotechnology 99(22), pp. 9349–9360.
Takeno, S., Murata, N., Kura, M., Takasaki, M., Hayashi, M., Ikeda, M. (2018) ‘The accD3 gene for mycolic acid biosynthesis as a target for improving fatty acid production by fatty acid-producing Corynebacterium glutamicum strains’, Applied Microbiology and Biotechnology 102(24), pp. 10603–10612.
Takors, R., Bathe, B., Rieping, M., Hans, S., Kelle, R., Huthmacher, K. (2007) ‘Systems biology for industrial strains and fermentation processes—Example: Amino acids’, Journal of Biotechnology 129(2), pp. 181–190.
Tang, J. L., Li, C. Y., Li, Y. F., Zou, C. X. (2014) ‘A ratiometric fluorescent probe with unexpected high selectivity for ATP and its application in cell imaging’, Chemical Communications 50(97), pp. 15411–15414.
Tatsumi, N. and Massyuki, I. (2012) Corynebacterium glutamicum: Biology and Biotechnology. Springer Business and Science Media, pp. 1-416.
Teleki, A. and Takors, R. (2019) ‘Quantitative profiling of endogenous metabolites using hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC-MS/MS)’, Methods in Molecular Biology 1859, pp. 185–207.
Tenhaef, N., Stella, R., Frunzke, J., Noack, S. (2021) ‘Automated rational strain construction based on high-throughput conjugation’, ACS Synthetic Biology 10(3), pp. 589–599.
Toya, Y. and Shimizu, H. (2013) ‘Flux analysis and metabolomics for systematic metabolic engineering of microorganisms’, Biotechnology Advances 31(6), pp. 818–826.
Toyoda, K. and Inui, M. (2018) ‘Extracytoplasmic function sigma factor σD confers resistance to environmental stress by enhancing mycolate synthesis and modifying peptidoglycan structures in Corynebacterium glutamicum’, Molecular Microbiology 107(3), pp. 312–329.
Unthan, S., Radek, A., Wiechert, W., Oldiges, M., Noack, S. (2015) ‘Bioprocess automation on a Mini Pilot Plant enables fast quantitative microbial phenotyping’, Microbial Cell Factories 14(1), pp. 1–11.
Vinkenborg, J. L., Nicolson, T. J., Bellomo, E. A., Koay, M. S., Rutter, G. A., Merkx, M. (2009) ‘Imaging of intracellular free Zn2+ in real time using genetically-encoded FRET sensors’, Nature methods 6(10), p. 737.
Waagboø, R., Tröße, C., Koppe, W.,. Fontanillas, R., Breck, O. (2010) ‘Dietary histidine supplementation prevents cataract development in adult Atlantic salmon, Salmo salar L., in seawater’, British Journal of Nutrition 104(10), pp. 1460–1470.
Wade, A. M. and Tucker, H. N. (1998) ‘Antioxidant characteristics of L-histidine’, The Journal of Nutritional Biochemistry 9(6), pp. 308–315.
Wagner, J. M., Liu, L., Yuan, S. F., Venkataraman, M. V., Abate, A. R., Alper, H. S. (2018) ‘A comparative analysis of single cell and droplet-based FACS for improving production phenotypes: Riboflavin overproduction in Yarrowia lipolytica’, Metabolic Engineering 47, pp. 346–356.
Wang, H. H.,Isaacs, F. J., Carr, P. A., Sun, Z. Z., Xu, G., Forest, C. R., Church, G. M. (2009) ‘Programming cells by multiplex genome engineering and accelerated evolution’, Nature 460(7257), pp. 894–898.
Warner, J. R., Patnaik, R. and Gill, R. T. (2009) ‘Genomics enabled approaches in strain engineering’, Current Opinion in Microbiology 12(3), pp. 223–230.
Wiechert, W. (2001) ‘13C Metabolic Flux Analysis’, Metabolic Engineering 3(3), pp. 195–206.
Wiechert, W. (2002) ‘Modeling and simulation: tools for metabolic engineering’, Journal of Biotechnology 94(1), pp. 37–63.
Wu, H., Tian, D., Fan, X., Fan, W., Zhang, Y., Jiang, S., Wen, C., Ma, Q., Chen, N., Xie, X. (2020) ‘Highly efficient production of L-histidine from glucose by metabolically engineered Escherichia coli’, ACS Synthetic Biology 9(7), pp. 1813–1822.
Xu, L., Liu, P., Dai, Z., Fan, F., Zhang, X. (2021) ‘Fine-tuning the expression of pathway gene in yeast using a regulatory library formed by fusing a synthetic minimal promoter with different Kozak variants’, Microbial Cell Factories 20(1), pp. 1–11.
Yoshida, T., Nakajima, H., Takahashi, S., Kakizuka, A., Imamura, H. (2019) ‘OLIVe: A genetically encoded fluorescent biosensor for quantitative imaging of branched-chain amino acid levels inside single living cells’, ACS Sensors 4(12), pp. 3333–3342.
Zhang, F., Carothers, J. M. and Keasling, J. D. (2012) ‘Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids’, Nature Biotechnology 30(4), pp. 354–359.
Zhang, J., Jensen, M. K. and Keasling, J. D. (2015) ‘Development of biosensors and their application in metabolic engineering’, Current Opinion in Chemical Biology 28, pp. 1–8.
Zhang, X., Zhang, X., Xu, G., Zhang, X., Shi, J., Xu, Z. (2018) ‘Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum’, Applied Microbiology and Biotechnology 102(14), pp. 5939–5951.
Zhang, Y., Shang, X., Deng, A., Chai, X., Lai, S., Zhang, G., Wen, T. (2012) ‘Genetic and biochemical characterization of Corynebacterium glutamicum ATP phosphoribosyltransferase and its three mutants resistant to feedback inhibition by histidine’, Biochimie 94(3), pp. 829–838.
Rechtliche Vermerke:Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne unzulässige fremde Hilfe unter Beachtung der „Grundsätze zur Sicherung guter wissenschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf“ erstellt worden ist. Die Dissertation wurde in der vorgelegten oder ähnlichen Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche unternommen.

Jülich, den 30.03.2023

Philipp Tobias Baumann
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Bezug:The laboratory work conducted for this thesis in hand has been performed at the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, from April 2018 until March 2022 under the supervision of Prof. Dr. Michael Bott and Prof. Dr. Jan Marienhagen.
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät
Dokument erstellt am:17.11.2023
Dateien geändert am:17.11.2023
Promotionsantrag am:20.04.2023
Datum der Promotion:10.10.2023
english
Benutzer
Status: Gast
Aktionen