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Abstract 

The modern life style of our ever growing world population is mainly based on the consumption of 

fossil resources. These developments are the cause of environmental damage and uncontrolled 

release of greenhouse gases as main drivers of climate change. Therefore, the implementation of 

more sustainable biotechnological production processes at industrial scale is needed. Such 

(mostly) sugar-based bioprocesses of the industrial biotechnology rely on microorganisms as 

catalysts, which need to be constantly improved to become more resource-efficient. In fact, most 

microbial production strains used today, operate below their theoretical maximum in terms of 

product yield. However, increasing the production performance of already highly engineered 

industrial production strains poses a challenge, since novel beneficial targets for rational 

engineering are difficult to identify. With the availability of biosensor-based FACS-screening 

technologies, classical strain development strategies comprising random mutagenesis and 

screening for an improved production phenotype are coming back into fashion.  

In this thesis, the biosensor-based FACS-screening of randomly mutated cells was combined with 

comparative genome analyses and reverse engineering to reveal novel targets in the genome of 

an industrial Corynebacterium glutamicum production strain for the proteinogenic amino acid 

L-histidine. Since the starting strain was already highly engineered, novel beneficial mutations 

were expected to be difficult to identify as they might not be directly linkable to L-histidine 

biosynthesis. Therefore, 100 independently FACS-isolated improved strain variants were 

subjected to a comparative genome analyses to look for reoccurring mutations in single genes, 

certain pathways or modules of the microbial metabolism.  

To achieve the independent isolation of 100 improved strain variants, > 600 chemical 

mutagenesis and > 200 biosensor-based FACS-screenings were performed, which allowed for 

the isolation of > 50,000 variants with increased fluorescence. The characterization of > 4,500 

variants with regard to biomass formation and L-histidine production, yielded 100 improved strain 

variants, accumulating 10-80 % more L-histidine in comparison to the starting variant. 

Comparative analyses of their genomes and reconstruction of point mutations/introduction of 

gene deletions allowed for the identification of six novel targets with a positive impact on 

L-histidine accumulation in cultures of C. glutamicum. In this context, combination of four genome 

modifications resulted in an improved L-histidine production strain, which was characterized by a 

doubled product titer (29 mM) and a doubled product yield (0.13 mol L-histidine mol D-glucose-1) 

in lab-scale batch-mode bioreactor fermentations.  

This approach holds the promise to identify novel genomic targets in already highly engineered 

production strains in a more systematic manner within a very limited time-frame, and might help 

to push the performance of industrial bioprocesses quickly towards maximum yields.  
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Zusammenfassung 

Die ständig wachsende Weltbevölkerung und ihr Konsumverhalten, das zu einem großen Teil auf fossilen 

Ressourcen basiert, verursachen Umweltschäden und treiben die Produktion von Treibhausgasen als 

Hauptverursacher der Klimaveränderung an. Diese Entwicklung erfordert die Implementierung 

ressourcenschonender und umweltfreundlicher Produktionsverfahren im industriellen Maßstab. Daher 

müssen auch die (meist) zuckerbasierten Bioprozesse der industriellen Biotechnologie und ihre mikrobiellen 

Katalysatoren ständig verbessert werden, um ressourceneffizienter zu werden. Tatsächlich arbeiten die 

meisten der heute verwendeten mikrobiellen Produktionsstämme hinsichtlich der Produktausbeute 

unterhalb des theoretischen Maximums. Die Steigerung der Produktionsleistung bereits hochentwickelter 

industrieller Produktionsstämme stellt jedoch eine Herausforderung dar, da neue genomische Ziele für das 

rationale Engineering schwer zu identifizieren sind. Mit der Verfügbarkeit biosensorbasierter FACS-

Screening-Technologien gewinnen die klassischen Stammentwicklungsverfahren mit Zufallsmutagenese 

und Screening auf einen verbesserten Produktionsphänotyp wieder an Bedeutung.  

In dieser Dissertation wurden Zufallsmutagenesen und biosensorbasierte FACS-Screenings in Kombination 

mit vergleichenden Genomanalysen und genomischen Rekonstruktionen eingesetzt, um 

leistungssteigernde Modifikationen im Genom eines industriellen Corynebacterium glutamicum Stammes für 

die Produktion der Aminosäure L-Histidin zu identifizieren. Der Ausgangsstamm war bereits stark genetisch 

modifiziert, sodass die Identifizierung neuer Modifikationen eine Herausforderung darstellte, weil diese nicht 

rational mit dem L-Histidin-Biosyntheseweg zusammenhängen müssen. Aus diesem Grunde wurden 100 

unabhängige, jeweils FACS-isolierte, verbesserte Stammvarianten einer vergleichenden Genomanalyse 

unterzogen, um nach einer Häufung von Mutationen in einzelnen Genen, bestimmten Stoffwechselwegen 

oder Modulen des mikrobiellen Stoffwechsels zu suchen, die letztendlich für die beobachtete Steigerung 

der L-Histidin-Produktion verantwortlich sind.  

Zur unabhängigen Isolierung der 100 Stammvarianten wurden über 600 chemische Mutagenesen und über 

200 FACS-Screenings durchgeführt, durch welche über 50.000 Varianten mit erhöhter Fluoreszenz isoliert 

werden konnten. Im Rahmen einer detaillierten Charakterisierung von über 4.500 Varianten hinsichtlich 

ihrer Biomasse- und Produktbildung, wurden 100 Varianten mit 10-80 % gesteigerter L-Histidin-Produktion 

identifiziert. Mithilfe vergleichender Genomanalysen und genetischer Rekonstruktionen wurden sechs 

bisher unbekannte genomische Modifikationen mit positivem Einfluss auf die L-Histidin-Produktion entdeckt. 

Durch Kombination der Modifikationen wurde ein L-Histidin-Produktionsstamm generiert, welcher sich in 

einem Batch-Fermentationsprozess im Labormaßstab durch einen verdoppelten Produkttiter 

(29 mM L-Histidin) und eine verdoppelte Produktausbeute (0,13 mol L-Histidine mol D-Glukose-1) 

auszeichnete.   

Mit diesem neuen Ansatz können neuartige genetische Modifikationen in bereits hochentwickelten 

Produktionsstämmen systematischer und im Hochdurchsatzverfahren identifiziert werden. Dies birgt ein 

hohes Potenzial, um die Entwicklung industrieller Bioprozesse schnell in Richtung einer maximalen 

Ausbeute voranzutreiben.  
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1 Introduction 

The global society is facing increasing challenges caused by effects of a growing world 

population, increased consumption, and growing industrialization of emerging countries 

(IPCC, 2018). Hence, increasing demand for fossil resources for energy generation and 

production of petroleum-derived commodities is causing environmental damage and 

increased greenhouse gas emissions, which are driving global climate change (Jorgenson et 

al., 2019). In addition, the availability of arable land for production of food, feed and other 

agricultural feedstocks becomes limited and could become even more scarce due to global 

warming and land degradation (OECD, 2011; Prăvălie et al., 2021). Recent geopolitical and 

pandemic crises exacerbate the global situation with reduced supplies of oil, gas and coal as 

well as agricultural products and impaired supply chains on the world market. Therefore, the 

global society needs to develop and implement new strategies to reduce greenhouse gas 

emissions, environmental damage and to limit global climate change, whereas at the same 

time global production efficiencies of required commodities need to be increased in a 

sustainable way.  

In this context, Industrial Biotechnology can play a central role (OECD, 2011). With the aim 

of “transitioning from a petroleum-based economy to a new bio-based economy, renewable 

biological resources, waste streams and even CO2 shall be converted by engineered 

microorganisms into the energy, chemicals, materials, food and medicines that drive the 

world economy” (Montaño López, Duran and Avalos, 2021). This is often considered as one 

of the most promising approaches for pollution prevention, resource conservation, cost 

reduction and more sustainable production processes (Kiss, Grievink and Rito-Palomares, 

2015). Its scope of application includes chemical, food and feed, pharmaceutical, detergent, 

textile, bioplastics and bioenergy industries. From the economic perspective, the global 

market of biotechnological products is expected to further increase by 10-15 % annually 

(IMARC Group, 2020; Mordor Intelligence, 2020). 

Microorganisms, however, are very economic with their resources and possess tight 

regulation on genetic and metabolic levels to ensure maximum growth and avoid waste of 

carbon or energy amidst ever-changing environmental conditions (Parekh, Vinci and Strobel, 

2000; Nielsen and Keasling, 2016). Hence, most biotechnologically desired products are not 

overproduced by microorganisms naturally, or are not synthesized at industrially relevant 

levels. As a consequence, microbial production strains have to be genetically engineered to 

push their metabolism towards overproduction of a certain chemical compound of interest 

(Bailey, 1991). However, this process is very time-consuming and in light of the high demand 

for environmentally-friendly biotechnological production processes, more high-throughput 
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engineering approaches are needed to obtain microbial high-performance production strains 

faster (Nielsen and Keasling, 2016).  

1.1 Microbial strain engineering for industrial use 

The first application of microorganisms in winemaking and beer brewing goes back to 7,000 

BC – long before their discovery (Demain et al., 2016). In 1857, Louis Pasteur, for the first 

time postulated fermentation to be a living process of yeast. After a series of other 

discoveries in the interim, the discovery of penicillin in 1927 by Alexander Fleming led to 

rapid expansion of the new industrial biotechnology to produce antibiotics as the first 

chemotherapeutic drugs for use in World War II. In the 1940s, significant advancements 

were made in fermentation technology for penicillin production, which led to the first industrial 

fed-batch fermentation process (Demain et al., 2016). Meanwhile, the newly developed 

“strain improvement” technology made extensive use of random X-ray and UV-radiation 

mutagenesis (Raper, 1946). Despite huge efforts in clone selection, this technology enabled 

the isolation of improved variants, even though cellular metabolism and its complex 

regulation were neither measurable nor controllable and thus, yet poorly understood. Later, 

chemical mutagens such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) were found highly 

effective as well (Haerlin, Süssmuth and Lingens, 1970). Hence, combined random 

mutagenesis, selection and screening procedures were thoroughly applied to improve 

industrial strains (Rowlands, 1984). Referred to as classical microbial strain engineering, this 

technology shares a long history of engineering success (Parekh, Vinci and Strobel, 2000). 

In the 1970s, DNA sequencing and thus the identification of induced mutations became 

attainable (Sanger, Nicklen and Coulson, 1977). The identification of the individual beneficial 

mutations, however, remained an unsolved challenge due to the very many mutations 

induced and yet mostly unknown genotype-phenotype relationships.  

The advent of recombinant DNA technology led to the development of targeted metabolic 

engineering techniques in the 1990s (Bailey, 1991; Stephanopoulos, Aristidou and Nielsen, 

1998; Nielsen, 2001). This targeted manipulation of cellular metabolism enabled new insights 

and the investigation of single engineering targets without the high background of neutral or 

detrimental mutations acquired from random mutagenesis. For production purposes, besides 

the introduction of heterologous genes or pathways, metabolic engineering focused on the 

attenuation of flux-limiting steps by overexpression of respective genes and deregulation of 

feedback inhibitions in order to redirect carbon flux towards the desired metabolite (Bailey, 

1991; Sahm et al., 1995; Bailey et al., 1996; Sahm, Eggeling and de Graaf, 2000). Bailey et 

al. referred to this way of posing the engineering problem as constructive metabolic 

engineering (Bailey et al., 1996). With the broadening of substrate spectrum, elimination of 
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by-product formation and increase of export activity also other metabolic modules soon 

became central engineering goals (Sang Yup Lee and E. Terry Papoutsakis, 1999; Nielsen, 

2001; Keasling, 2010). For the targeted implementation of genetic alterations in microbial 

hosts, homologous recombination was (and still is) used as one of the most important 

methods (Court, Sawitzke and Thomason, 2003; Kirchner and Tauch, 2003). For the 

identification of promising engineering targets, Metabolic Flux Analysis as well as genome-

scale mathematic models for quantification and perturbation of intracellular fluxes were 

developed and expanded the knowledge on cellular metabolism (Wiechert, 2001, 2002; Toya 

and Shimizu, 2013). Today, highly data-driven metabolomics and automated machine 

learning approaches are becoming essential tools in metabolic engineering (Teleki and 

Takors, 2019; Kim et al., 2020; Lawson et al., 2021). Despite recent advancements and 

significant academic successes in the field, constructive metabolic engineering faces some 

inherent challenges (Lee and Kim, 2015; Nielsen and Keasling, 2016). Due to the complex 

interconnections of metabolic, regulatory and signaling networks, in vivo effects of rational 

genetic alterations are still difficult to predict (Kaczmarek and Prather, 2021). Aiding genome-

scale mathematical models are improving but may still work inaccurately due to the limited 

input of global regulatory circuits (Lee and Kim, 2015; Fang, Lloyd and Palsson, 2020). In 

this context, targeted metabolomics can help to provide quantitative data on metabolite pools 

but such studies are typically laborious and cost-intensive (Teleki and Takors, 2019; Feith et 

al., 2020). With increasing degree of engineering, fine-tuning of pathway expression is 

becoming a predominant issue (Santos and Stephanopoulos, 2008; Hwang, Lee and Lee, 

2018; Xu et al., 2021). To test a large number of experimental combinations, several 

multiplexed genetic engineering techniques were developed (Wang et al., 2009; Cong et al., 

2013; Li et al., 2019). Robot-aided automated strain construction platforms, however, are still 

in early development stages (Tenhaef et al., 2021). Hence, with the methods applied in 

constructive metabolic engineering, only genetic targets with rational connection to the 

product metabolite or ones included in a genome-scale metabolic model can be considered 

for perturbation predictions and subsequent strain engineering.  

In contrast to rational metabolic engineering, mainly concerned with the precise introduction 

of a limited number of genetic modifications, classical strain engineering typically yields a 

large number of unknown neutral or detrimental mutations acquired in the random 

mutagenesis step. As a result, improved production strains obtained after screening also 

carry these undesired mutations, potentially affecting growth and robustness (Ohnishi et al., 

2002; Ikeda et al., 2009; Warner, Patnaik and Gill, 2009). Thus, to alleviate the drawbacks of 

each strategy, combined approaches of classical and rational engineering were investigated 

already in the 1990s (Bailey et al., 1996). At that time, constructive metabolic engineering 
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was hampered by limited knowledge on metabolic pathways and moreover regulatory 

systems along with infinite genetic perturbation possibilities, such that metabolic 

consequences differed substantially to desired outcomes in many cases (Bailey, 1991). 

Therefore, an alternative approach termed inverse metabolic engineering was proposed 

(Bailey et al., 1996). Here, a desired phenotype is identified first (by classical methods), then 

the causative genetic basis is determined in the second step, and finally the phenotype-

conferring genetic modification is transferred to an industrial organism by targeted genome 

engineering (Bailey et al., 1996; Warner, Patnaik and Gill, 2009). This laid the foundation to 

later reverse engineering, which promised more efficient industrial production strains with 

faster growth, greater robustness and hence better reproducibility (Ohnishi et al., 2002; Ikeda 

et al., 2009; Warner, Patnaik and Gill, 2009).  

Many of today’s industrially used production strains are still product of random approaches, 

or a combination of classical and rational strain engineering, with often still unknown 

genotype-phenotype relationships (Ohnishi et al., 2002; Becker and Wittmann, 2012; Kulis-

Horn, Persicke and Kalinowski, 2014; Eggeling and Bott, 2015). More importantly, many of 

these industrial strains still operate far from theoretical maximum yields (Takors et al., 2007; 

Blombach et al., 2008; Eggeling and Bott, 2015; Schwentner et al., 2019). Hence, the 

identification of beneficial mutations for reverse engineering is key to drive industrial strains 

towards their maximum yields. Comparative genome analysis can aid the identification 

process by revealing clusters of mutations that are likely to contribute to improved 

phenotypes. However, this was only applied to a small number of isolated variants, by which 

beneficial mutations were identified in known key pathways, such as L-lysine, L-arginine and 

L-citrulline production, or glycerol degradation (Ohnishi et al., 2002; Herring et al., 2006; 

Ikeda et al., 2009). Recent advancements in high-throughput cultivation systems as well as 

Next Generation Sequencing have improved speed, throughput and overall quality of the 

resulting sequence while reducing the overall costs for genetic analyses (Long et al., 2014; 

Goodwin, McPherson and McCombie, 2016). With this technology, comparative genome 

analyses of a significantly larger numbers of variants can now be performed. In such a large 

set of genome sequences, beneficial mutations could be identified with higher accuracy and, 

more importantly, potentially at unknown genomic locations. Thus, with the combined power 

of classical approaches, inducing random beneficial mutations, and targeted approaches, 

transferring beneficial mutations to producer strains, superior industrial production strains 

could be generated. 
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1.2 Using biosensors for high-throughput screenings 

“Cells are filled with biosensors, molecular systems that measure the state of the cell and 

respond by regulating host processes. In much the same way that an engineer would monitor 

a chemical reactor, the cell uses these sensors to monitor changing intracellular 

environments and produce consistent behavior despite the variable environment” (Michener 

et al., 2012). 

The number of enzyme or strain variants that can be generated using recent targeted or 

random genetic engineering methods greatly exceeds the throughput of standard cultivation 

and analysis methods, typically requiring chromatographic or mass spectrometric analysis 

(Bott, 2015). These labor-intensive and repetitive procedures usually limit the screening 

process of large genetically diverse mutant libraries for improved variants, if the desired 

product has no intrinsic properties, such as formation of color, fluorescence or conferring of a 

resistance, all of which can be readily measured (Parekh, Vinci and Strobel, 2000; 

Schallmey, Frunzke and Eggeling, 2014; Eggeling, Bott and Marienhagen, 2015). To tackle 

the limitations in screening-throughput, genetically-encoded natural sensing units are used to 

build biosensors, which translate intracellular signals or product concentrations into a graded, 

measurable output signal, enabling in vivo monitoring of cellular metabolism (Michener et al., 

2012; Zhang, Jensen and Keasling, 2015). Their applicability in research or industrial 

screening setups is mainly determined by the operational range (range of detectable inducer 

concentrations) and dynamic range (fluorescence intensity between ON and OFF state). In 

general, three types of genetically encoded biosensors have been developed.  

Förster resonance energy transfer (FRET)-based biosensors typically consist of two 

fluorescent proteins with overlapping emission and excitation spectra of the FRET donor and 

acceptor, respectively, fused to a ligand-binding peptide via linker sequences. Upon ligand 

binding, the peptide undergoes a conformational change such that FRET occurs when donor 

and acceptor fluorophores get in close proximity below 10 nm distance (Zhang, Jensen and 

Keasling, 2015). Besides conformational change, other modes of action such as cleavage 

are employed as well (Hochreiter, Garcia and Schmid, 2015). The alterations between donor 

and acceptor emission can be measured as FRET biosensor signal and allow for time-

resolved monitoring of respective metabolite concentrations or other cellular processes. 

Although characterized by high temporal resolution and orthogonality, FRET-based 

biosensors are not used for high-throughput screenings due to their low dynamic range and 

only nanomolar to micromolar operational range (Schallmey, Frunzke and Eggeling, 2014; 

Zhang, Jensen and Keasling, 2015). Instead, they are applied for measuring intracellular 

dynamics of carboxylic acids, amino acids, sugar phosphates, nucleotides as well as ions 
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and redox status (Vinkenborg et al., 2009; Oku et al., 2013; Mohsin and Ahmad, 2014; San 

Martín et al., 2014; Tang et al., 2014; Peroza et al., 2015; Yoshida et al., 2019).  

RNA-aptamer- or riboswitch-based biosensors use (m)RNA motifs, which undergo structural 

change upon ligand binding, thereby altering the expression of their downstream reporter 

gene (Michener et al., 2012; Schallmey, Frunzke and Eggeling, 2014). In addition to 

regulation of gene transcription or translation, alterations of RNA stability or ribozyme activity 

can be employed as modes of action as well (Serganov and Nudler, 2013). Thus, riboswitch 

biosensors can be used to dynamically regulate genes or operons and monitor metabolite 

concentrations and have been used for high-throughput screenings (Michener and Smolke, 

2012; Hwang et al., 2021; Liu et al., 2021). Riboswitches not only provide fast response 

times, but can also be engineered towards synthetic or de novo affinities in a more targeted 

manner (Zhang, Jensen and Keasling, 2015). Many of those synthetic designs, however, 

perform poorly in vivo (Schallmey, Frunzke and Eggeling, 2014; Berens and Suess, 2015).  

Transcriptional biosensors exploit the natural diversity of native regulatory circuits using 

metabolite-responsive transcription factors and their activating or repressing function on 

gene transcription (Liu, Evans and Zhang, 2015). Genetically encoded, they typically 

comprise the transcription factor gene in inverse orientation to the target gene promotor of 

the transcription factor, which controls the expression of a fluorescent reporter gene 

(Sonntag et al., 2020). Thereby the respective intracellular metabolite concentration is 

translated into a graded fluorescence output. Due to the modular design, transcriptional 

biosensors are straightforward in construction, however, low orthogonality limits their 

application in other microbial hosts (Zhang, Jensen and Keasling, 2015; Sonntag et al., 

2020). Besides metabolite-responsive transcription factors, two component systems and 

stress-response mechanisms were employed to construct transcriptional biosensors as well 

(Liu, Evans and Zhang, 2015).  

Prior to their application in microbial strain engineering, transcription-based whole-cell 

biosensors were built for detection of environmental chemicals (Harms, Wells and Van Der 

Meer, 2006; Fernandez-López et al., 2015). Today, transcriptional biosensors are not only 

widely used for screening purposes, but also for dynamic modulation of metabolic pathways, 

identification of optimal production conditions, fine-tuning of pathway expression and 

investigations of single-cell heterogeneity (Zhang, Carothers and Keasling, 2012; Dahl et al., 

2013; Dietrich et al., 2013; Mustafi et al., 2014; Eggeling, Bott and Marienhagen, 2015; 

Rogers and Church, 2016; Doong, Gupta and Prather, 2018; Koch et al., 2019; Kaczmarek 

and Prather, 2021).  
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The pSenLys biosensor was used for FACS-based high-throughput screenings of randomly 

mutated C. glutamicum wild type cultures. A majority of isolated single cells with increased 

fluorescence produced L-lysine (69 %), whereas the C. glutamicum wild type excreted no 

L-lysine. Some variants additionally secreted L-arginine, however, no L-histidine producer 

was identified in this screening campaign. It was speculated that this was due to the length 

and tight regulation of the L-histidine biosynthesis pathway (Binder et al., 2012). Targeted 

sequencing resulted in identification of potential beneficial mutations in known key enzymes 

of L-lysine biosynthesis. From whole genome sequencing of one isolated strain variant and a 

subsequent comparative analysis with the wild-type sequence identified an hitherto unknown 

beneficial mutation in murE, coding for UDP-N-acetylmuramoylalanyl-D-glutamate-2,6-

diaminopimelate ligase – a gene with a rational link to L-lysine biosynthesis.  

The application of transcriptional biosensors to improve metabolite production to industrially 

relevant levels can cause some biosensor-, host-, or screening-specific challenges. 

Regarding the screening host, biosensor crosstalk can lead to isolation of false positives, if 

non-producing cells import the respective metabolite and hence can adopt the fluorescent 

phenotype of overproducing cells (Kaczmarek and Prather, 2021). This was recently 

addressed by optimization of expression and cultivation conditions (Flachbart, Sokolowsky 

and Marienhagen, 2019). Since transcriptional regulatory circuits have evolved naturally for 

physiological metabolite concentrations, their application as biosensors may result in 

operational ranges not suitable for the production capacity of industrial metabolite producers. 

In this case, modifications of biosensor units, such as the expression level of the 

transcriptional regulator, might become essential (Sonntag et al., 2020). In addition, the 

ligand specificity of transcriptional regulators can limit their application in biosensor-based 

screenings. In such cases, respective regulators can be engineered towards new specificities 

or more focused ligand spectra (Della Corte et al., 2020; Flachbart et al., 2021).  

The use of randomly mutated (C. glutamicum) wild type cultures for high-throughput 

screenings carries the risk to reveal mainly known beneficial mutations (Binder et al., 2012). 

To reveal novel beneficial mutations many studies, however, still focused on the analysis of 

the respective synthesis pathways or connected pathways of the desired metabolites, 

thereby omitting the potential of a more systematic genome-wide evaluation of the induced 

mutations (Ohnishi et al., 2002; Ikeda et al., 2009; Binder et al., 2012; Mahr et al., 2015; 

Zhang et al., 2018; Liu et al., 2021). Working with industrial production strains instead could 

leverage their genomic modifications to identify unknown genome-wide beneficial mutations 

that contribute to a further improvement of production performance – beyond rational 

engineering targets and towards theoretical maximum yields. One of the most industrially 
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used production hosts in microbial biotechnology, especially for amino acid production, is 

Corynebacterium glutamicum.  

1.3 Corynebacterium glutamicum as amino acid production host 

C. glutamicum was isolated 1956 as part of a screening campaign for naturally L-glutamate-

producing microorganisms and was soon used for large-scale fermentative production of this 

flavor enhancing amino acid (Kinoshita, Udaka and Shimono, 1957). C. glutamicum was 

characterized as a Gram-positive, facultative anaerobic, non-motile, biotin-auxotrophic and 

non-pathogenic actinobacterium (Eggeling and Bott, 2005; Tatsumi and Massyuki, 2012). 

Since then, the  cellular biology and metabolism of this bacterium have been studied in 

detail, and numerous techniques have been developed for its genetic manipulation and its 

cultivation from laboratory to industrial-scale (Eggeling and Bott, 2005; Tatsumi and 

Massyuki, 2012). The publication of its genome sequence in 2003 further boosted strain 

engineering and underlined importance of C. glutamicum for industrial biotechnology (Ikeda 

and Nakagawa, 2003; Kalinowski et al., 2003).  

As a member of the Corynebacterianeae, C. glutamicum possesses a characteristic cell wall 

structure. In addition to the cytoplasmic membrane, lipomannan, lipoarabinomannan, 

peptidoglycan, arabinogalactan, and mycolic acid layers form the outer cell wall (Eggeling 

and Sahm, 2001; Houssin et al., 2020). Mycolic acids derived from fatty acid synthase 

pathway are important for the efflux properties of the cell, since alterations in mycolic acid 

content have been shown to influence secretion of amino acids such as L-glutamate or 

L-lysine (Eggeling and Sahm, 2001; Gebhardt et al., 2007a).  

C. glutamicum offers unique advantages over other industrial production hosts such as its 

comparatively fast growth to high cell densities and its remarkable robustness against 

physical forces and oxygen and substrate supply oscillations in large-scale fermentations 

(Tatsumi and Massyuki, 2012; Grünberger et al., 2013; Buchholz et al., 2014; Käß et al., 

2014). In addition, products derived from C. glutamicum are generally recognized as safe 

(GRAS), since no endotoxins are produced by this organism (Taguchi et al., 2015). Existing 

export systems and lack of degradation pathways for some proteinogenic amino acids render 

C. glutamicum a valuable host for microbial strain engineering and application in industrial 

amino acid production (Eggeling and Sahm, 2003; Tatsumi and Massyuki, 2012; Kulis-Horn, 

Persicke and Kalinowski, 2014; Eggeling and Bott, 2015).  

L-glutamate and L-lysine represent main examples of industrial amino acid production, which 

accounted for 6 million tons produced in 2015 – almost exclusively by C. glutamicum 

(Eggeling and Bott, 2015; Lee and Wendisch, 2017). In 2021, the global amino acid market 
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furthermore regulated by competitive inhibition by adenosine mono- and diphosphates (AMP, 

ADP) as well as their structural analog 1-(5′-phosphoribosyl)-5-amino-4-

imidazolecarboxamide (AICAR) (Malykh et al., 2018). AICAR is formed as by-product in the 

fifth step of the metabolic pathway and directed into the purine biosynthesis pathway to 

replenish nucleotides such as the ATP precursor. For conversion of AICAR, C1 donors 

(mTHF, fTHF) are provided by the endogenous hydroxymethyltransferase (SHMT) reaction 

from L-serine (Schwentner et al., 2019).  

In C. glutamicum ATCC 13032, nine enzymes catalyze ten enzymatic reactions of the 

L-histidine pathway with HisD (histidinol dehydrogenase) serving as bifunctional enzyme (for 

oxidation of both L-histidinol to L-histidinal and finally L-histidine). The transcriptional 

organization is composed of four operons hisD–hisC–hisB–cg2302– cg2301, hisH–hisA–

impA–hisF–hisI–cg2294, cg0911–hisN, and hisE–hisG (Kulis-Horn, Persicke and Kalinowski, 

2014).  

Due to the high ATP demand of 9.4 molATP molHis
-1, L-histidine biosynthesis is strictly 

regulated (Kulis-Horn, Persicke and Kalinowski, 2014). In addition to feedback regulation at 

the enzymatic level, a T-box mediated attenuation mechanism has been proposed for 

transcriptional regulation of the hisDCB–cg2302–cg2301 (-hisHA–impA–hisFI–cg2294) 

operon and a riboswitch mechanism has been discussed for translational control of hisD 

expression (Jung et al., 2010; Kulis-Horn, Persicke and Kalinowski, 2014). Furthermore, the 

expression of the biosynthetic L-histidine genes is positively regulated by stringent response 

(Brockmann-Gretza and Kalinowski, 2006).  

L-histidine import systems of C. glutamicum have been postulated but not identified yet, even 

though L-histidine uptake could be measured in histidine-auxotrophic mutants (Kulis-Horn, 

Persicke and Kalinowski, 2014). L-histidine-containing dipeptides are known to be readily 

taken up and have been shown to increase intracellular L-histidine concentrations (Erdmann, 

Weil and Krämer, 1993; Bellmann et al., 2001). Since L-histidine degradation systems are 

absent in C. glutamicum, its export is crucial for intracellular amino acid homeostasis 

(Eggeling and Sahm, 2003; Kulis-Horn, Persicke and Kalinowski, 2014). LysE, however, 

exporting L-lysine and L-arginine, represents no active L-histidine export system in 

C. glutamicum, even though L-histidine acts as a co-inducer of lysE expression (Bellmann et 

al., 2001). Hence, no such system has been identified for L-histidine export so far (Kulis-

Horn, Persicke and Kalinowski, 2014).  

In the development of L-histidine-producing C. glutamicum strains, initial attempts focused on 

deregulation of feedback inhibition of HisG using L-histidine analogs (Araki and Nakayama, 

1974; Araki, Shimojo and Nakayama, 1974). Later, feedback deregulation of HisG was 
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pursued by site-directed mutagenesis and found the C-terminal domain involved (Zhang et 

al., 2012). Site-directed mutagenesis combined with FACS-screening of obtained mutant 

libraries also revealed several hisG mutations inducing L-histidine production (Schendzielorz, 

Dippong, Grünberger, et al., 2014).  

Rational engineering studies focused on deregulation of expression control of the hisD 

promotor and overexpression of hisE and hisG (Cheng et al., 2013a). Deletion of the C-

terminal HisG domain and implementation of the S143F substitution in the catalytic HisG 

domain combined with hisEG overexpression also resulted in significant L-histidine 

production (Kulis-Horn, Persicke and Kalinowski, 2015). Schwentner et al (2019) identified 

unphysiologically high ATP regeneration from AICAR as necessary for improved L-histidine 

production and therefore overexpressed purA, purB and a heterologous glycine cleavage 

system for sufficient C1-supply of the PurH-catalyzed reaction (Schwentner et al., 2019). In 

addition, the start codon of the pgi-gene for the glucose-6-phosphate isomerase was 

attenuated to increase pentose phosphate pathway flux, which finally resulted in a L-histidine 

producer accumulating 0.093 mol L-histidine per mol D-glucose (Schwentner et al., 2019). A 

pool influx kinetics approach using 13C labeling dynamics supported the necessity of purA-, 

purB- and purH- overexpression as well as formyl recycling for a significantly improved 

L-histidine production (Feith et al., 2020).  

In E. coli, studies on L-histidine production also demonstrated the necessity of AICAR 

conversion towards ATP by overexpression of purA and purH (Malykh et al., 2018). Wu and 

co-workers additionally expressed a gene for a heterologous NADH-dependent glutamate 

dehydrogenase from Bacillus subtilis (Wu et al., 2020b). Their final E. coli strain produced 

66.5 g L-histidine L-1 in a fed-batch process from D-glucose with a productivity of 1.5 g L-1 h-1 

and a product yield of 0.23 g L-histidine g substrate-1, representing the best published 

L-histidine production strain to date. In comparison, the apparently most efficient L-histidine 

production strain of C. glutamicum to date, however, is based on a feedback deregulated 

HisG variant and was published in 1994. Mizukami and Co-workers achieved an L-histidine 

titer of 23 g L-1 (148 mM L-histidine) in a fed-batch process with a volumetric productivity of 

0.2 g L-1 h-1 and an estimated product yield of 0.15-0.20 g g substrate-1 (Mizukami et al., 

1994). Schwentner et al (2019) calculated the maximum theoretical L-histidine yield for 

C. glutamicum to be 0.44 g L-histidine g D-glucose-1 at a maximum growth rate (µmax) of 0.1 

(Schwentner et al., 2019). This indicates room for improvement beyond the rationally 

engineered variants. With random genome mutagenesis, existing genetic alterations of 

L-histidine production strains could be leveraged for the identification of unknown beneficial 

mutations in non-intuitive off-site targets within the C. glutamicum genome.  
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3 Material & Methods 
 

3.1 Bacterial strains 
Bacterial strain Relevant characteristics Source/ 

Reference 
E. coli strains   

DH5α F– Φ80lacZΔM15 Δ(lacZYA-argF)U169  
recA1 endA1 hsdR17 (rK–, mK+) phoA  
supE44 λ– thi-1 gyrA96 relA1 

Invitrogen 
(Karlsruhe, 
Germany) 

   

C. glutamicum strains   

wild type  C. glutamicum ATCC 13032 wild type strain, biotin-
auxotroph 

 

ΔlysEG C. glutamicum ATCC 13032 ΔlysEG Binder et al., 
2012 

CgHis1 
(starting strain) 

C. glutamicum ATCC 13032 derivative  
∆iolR Ptrc-hisEG(S143F/ΔC) Ptrc-hisDCB Ptuf-hisHAFI 
PH36-hisN Ptuf-fbp pHisOP1 

Senseup 
GmbH (Jülich, 
Germany) 

CgHis2 
(screening and 
reference strain) 

C. glutamicum CgHis1 ΔlysEG pSenHis[hisEG] 
 
 
 
 

this study 

   

CgHis2 derivatives Isolates from FACS-screening: 
strain nomenclature X1-X2-X3-X4 according to X1, # 
mutagenesis; X2, MNNG condition (i.e. 50 = 5.0 mg mL-1); 
X3, column number in mutagenesis plate; X4, clone 
number after single cell sorting 

 

1-50-81-2 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

1-50-44-2 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

1-50-39-12 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

1-50-38-2 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

1-50-1-8 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

1-50-15-6 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

6-50-398-14 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-60-9-11 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-60-6-4 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-60-5-9 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-60-12-1 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-60-11-2 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-60-10-21 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 



Material & Methods  

 

 

16 

 

7-55-8-5 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-55-11-16 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-55-9-22 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-55-5-16 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-55-4-6 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-55-10-21 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-50-8-15 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-50-6-18 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-50-4-15 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-50-11-21 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-50-10-8 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-45-7-14 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-45-6-2 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-45-5-5 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-45-4-16 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-45-11-24 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-45-10-9 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-40-9-14 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-40-8-23 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-40-7-8 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-40-6-4 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-40-5-24 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-40-4-11 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-40-12-7 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-40-11-5 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-40-10-2 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-35-9-3 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-35-7-14 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-35-6-8 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 



Material & Methods 

 

 

17 

 

7-35-5-20 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-35-4-1 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-35-12-20 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-35-11-20 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-30-9-20 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-30-8-11 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-30-7-3 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-30-6-15 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-30-5-7 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-30-10-1 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-25-9-18 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-25-6-10 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-25-5-21 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

7-25-4-3 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

10-30-9-12 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

10-30-12-9 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

10-30-11-11 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

10-20-7-24 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

10-20-5-16 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

10-20-4-20 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

10-20-10-20 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

10-10-6-13 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

10-10-4-2 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

11-25-5-6 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

11-15-9-18 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

11-15-4-6 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

11-10-7-14 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

11-10-6-22 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

11-10-5-2 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 
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11-10-11-7 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-20-7-18 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-20-4-16 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-20-15-17 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-20-14-11 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-20-12-3 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-15-9-18 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-15-8-5 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-15-7-9 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-15-6-10 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-15-5-4 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-15-4-15 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-15-21-16 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-15-20-1 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-15-19-24 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-15-18-8 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-15-16-9 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-15-15-6 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-15-12-5 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-15-10-7 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-10-9-5 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-10-8-6 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-10-7-2 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-10-6-23 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-10-5-6 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-10-4-1 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-10-12-5 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-10-11-11 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 

12-10-10-16 mutagenized C. glutamicum CgHis2 derivative, isolated in 
pSenHis-based FACS-screening 

this study 
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CgHis2 derivatives reverse engineered C. glutamicum CgHis2 strains 
harboring point mutations in specific hotspot genes 

 

cps-G987D C. glutamicum CgHis2 derivative harboring point mutation 
in cps leading to amino acid substitution G987D 

this study 

emb -G477E C. glutamicum CgHis2 derivative harboring point mutation 
in emb leading to amino acid substitution G477E 

this study 

emb-T529I/T539I C. glutamicum CgHis2 derivative harboring point mutation 
in emb leading to amino acid substitutions T529I/T539I 

this study 

fasA-A2702T C. glutamicum CgHis2 derivative harboring point mutation 
in fasA leading to amino acid substitution A2702T 

this study 

fasA-P783S C. glutamicum CgHis2 derivative harboring point mutation 
in fasA leading to amino acid substitution P783S 

this study 

fasB-G1921E C. glutamicum CgHis2 derivative harboring point mutation 
in fasB leading to amino acid substitution G1921E 

this study 

fasB-G2762D C. glutamicum CgHis2 derivative harboring point mutation 
in fasB leading to amino acid substitution G2762D 

this study 

gltB-G1106D C. glutamicum CgHis2 derivative harboring point mutation 
in gltB leading to amino acid substitution G1106D 

this study 

gltB-P988S C. glutamicum CgHis2 derivative harboring point mutation 
in gltB leading to amino acid substitution P988S 

this study 

iolD-S481F C. glutamicum CgHis2 derivative harboring point mutation 
in iolD leading to amino acid substitution S481F 

this study 

mrpA-L42F C. glutamicum CgHis2 derivative harboring point mutation 
in mrpA leading to amino acid substitution L42F 

this study 

NCgl0552-G432D C. glutamicum CgHis2 derivative harboring point mutation 
in NCgl0552 leading to amino acid substitution G432D 

this study 

NCgl0552-P823S C. glutamicum CgHis2 derivative harboring point mutation 
in NCgl0552 leading to amino acid substitution P823S 

this study 

NCgl0705-S1847N C. glutamicum CgHis2 derivative harboring point mutation 
in NCgl0705 leading to amino acid substitution S1847N 

this study 

NCgl2789-S265N C. glutamicum CgHis2 derivative harboring point mutation 
in NCgl2789 leading to amino acid substitution S265N 

this study 

NCgl2859-S372F C. glutamicum CgHis2 derivative harboring point mutation 
in NCgl2859 leading to amino acid substitution S372F 

this study 

NCgl2959-D1453N C. glutamicum CgHis2 derivative harboring point mutation 
in NCgl2959 leading to amino acid substitution D1453N 

this study 

NCgl2959-G870D C. glutamicum CgHis2 derivative harboring point mutation 
in NCgl2959 leading to amino acid substitution G870D 

this study 

NCgl2964-E512K C. glutamicum CgHis2 derivative harboring point mutation 
in NCgl2964 leading to amino acid substitution E512K 

this study 

NCgl2964-P863S C. glutamicum CgHis2 derivative harboring point mutation 
in NCgl2964 leading to amino acid substitution P863S 

this study 

NCgl2981-D735G C. glutamicum CgHis2 derivative harboring point mutation 
in NCgl2981 leading to amino acid substitution D735G 

this study 

pks-A1525V C. glutamicum CgHis2 derivative harboring point mutation 
in pks leading to amino acid substitution A1525V 

this study 

pks-D1186N C. glutamicum CgHis2 derivative harboring point mutation 
in pks leading to amino acid substitution D1186N 

this study 

putA-P217S C. glutamicum CgHis2 derivative harboring point mutation 
in putA leading to amino acid substitution P217S 

this study 

pyc-A764V C. glutamicum CgHis2 derivative harboring point mutation 
in pyc leading to amino acid substitution A764V 

this study 

pyk-T357I C. glutamicum CgHis2 derivative harboring point mutation 
in pyk leading to amino acid substitution T357I 

this study 

ulaA-V219I C. glutamicum CgHis2 derivative harboring point mutation 
in ulaA leading to amino acid substitution V219I 

this study 

xylB-G55R C. glutamicum CgHis2 derivative harboring point mutation 
in xylB leading to amino acid substitution G55R 

this study 
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CgHis2 derivatives C. glutamicum CgHis2 strains harboring in-frame 
deletions in specific hotspot genes 

 

Δcps C. glutamicum CgHis2 derivative harboring respective in-
frame deletion 

this study 

Δemb C. glutamicum CgHis2 derivative harboring respective in-
frame deletion 

this study 

ΔfasB C. glutamicum CgHis2 derivative harboring respective in-
frame deletion 

this study 

ΔggtB C. glutamicum CgHis2 derivative harboring respective in-
frame deletion 

this study 

ΔgltB C. glutamicum CgHis2 derivative harboring respective in-
frame deletion 

this study 

ΔNCgl0552 C. glutamicum CgHis2 derivative harboring respective in-
frame deletion 

this study 

ΔNCgl0705 C. glutamicum CgHis2 derivative harboring respective in-
frame deletion 

this study 

ΔNCgl1737 C. glutamicum CgHis2 derivative harboring respective in-
frame deletion 

this study 

ΔNCgl2959 C. glutamicum CgHis2 derivative harboring respective in-
frame deletion 

this study 

ΔNCgl2964 C. glutamicum CgHis2 derivative harboring respective in-
frame deletion 

this study 

ΔNCgl2981 C. glutamicum CgHis2 derivative harboring respective in-
frame deletion 

this study 

ΔpknB C. glutamicum CgHis2 derivative harboring respective in-
frame deletion 

this study 

Δpks C. glutamicum CgHis2 derivative harboring respective in-
frame deletion 

this study 

ΔputA C. glutamicum CgHis2 derivative harboring respective in-
frame deletion 

this study 

Δpyk1 C. glutamicum CgHis2 derivative harboring respective in-
frame deletion 

this study 

Δpyk2 C. glutamicum CgHis2 derivative harboring respective in-
frame deletion 

this study 

CgHis2 derivatives Combinatorial C. glutamicum CgHis2 strains  

NCgl0705-S1847N 
cps-G987D 

C. glutamicum CgHis2 derivative harboring NCgl0705-
S1847N cps-G987D 

this study 

NCgl2981-D735G 
mrpA-L42F 

C. glutamicum CgHis2 derivative harboring NCgl2981-
D735G mrpA-L42F 

this study 

Δcps NCgl2981-D735G C. glutamicum CgHis2 derivative harboring Δcps 
NCgl2981-D735G 

this study 

Δcps pks-D1186N C. glutamicum CgHis2 derivative harboring Δcps pks-
D1186N 

this study 

Δcps Δpyk1 C. glutamicum CgHis2 derivative harboring Δcps Δpyk1 this study 

Δcps Δpyk1 NCgl2981-
D735G 

C. glutamicum CgHis2 derivative harboring Δcps Δpyk1 
NCgl2981-D735G 

this study 

ΔfasB NCgl2981-
D735G 

C. glutamicum CgHis2 derivative harboring ΔfasB 
NCgl2981-D735G 

this study 

ΔfasB pks-D1186N C. glutamicum CgHis2 derivative harboring ΔfasB pks-
D1186N 

this study 

ΔfasB Δcps C. glutamicum CgHis2 derivative harboring ΔfasB Δcps this study 

ΔfasB Δcps NCgl2981-
D735G 

C. glutamicum CgHis2 derivative harboring ΔfasB Δcps 
NCgl2981-D735G 

this study 

ΔfasB Δcps pks-
D1186N 

C. glutamicum CgHis2 derivative harboring ΔfasB Δcps 
pks-D1186N 

this study 

ΔfasB Δcps Δpyk1 C. glutamicum CgHis2 derivative harboring ΔfasB Δcps 
Δpyk1 

this study 
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ΔfasB Δcps Δpyk1 
NCgl2981-D735G 

C. glutamicum CgHis2 derivative harboring ΔfasB Δcps 
Δpyk1 NCgl2981-D735G 

this study 

ΔfasB Δcps Δpyk1 pks-
D1186N 

C. glutamicum CgHis2 derivative harboring ΔfasB Δcps 
Δpyk1 pks-D1186N 

this study 

ΔfasB Δcps Δpyk1 pks-
D1186N NCgl2981-
D735G 

C. glutamicum CgHis2 derivative harboring ΔfasB Δcps 
Δpyk1 pks-D1186N NCgl2981-D735G 

this study 

ΔfasB Δpyk1 C. glutamicum CgHis2 derivative harboring ΔfasB Δpyk1 this study 

ΔfasB Δpyk1 
NCgl2981-D735G 

C. glutamicum CgHis2 derivative harboring ΔfasB Δpyk1 
NCgl2981-D735G 

this study 

ΔfasB Δpyk1 
NCgl2981-D735G pks-
D1186N 

C. glutamicum CgHis2 derivative harboring ΔfasB Δpyk1 
NCgl2981-D735G pks-D1186N 

this study 

ΔfasB Δpyk1 pks-
D1186N 

C. glutamicum CgHis2 derivative harboring ΔfasB Δpyk1 
pks-D1186N 

this study 

Δpyk1 NCgl2981-
D735G 

C. glutamicum CgHis2 derivative harboring Δpyk1 
NCgl2981-D735G 

this study 

Δpyk1 pks-D1186N C. glutamicum CgHis2 derivative harboring Δpyk1 pks-
D1186N 

this study 

Δpyk1Δpyk2 C. glutamicum CgHis2 derivative harboring Δpyk1Δpyk2 this study 

 

3.2 Plasmids 
Plasmid Relevant characteristics Source/ 

Reference 
pHisOP1 pJC1-based hisEG-overexpression plasmid with 

feedback-resistant hisG(ΔC/S143F) variant, kanamycin 
resistance 

SenseUp 
GmbH 

pSenHis pJC1-based biosensor plasmid, kanamycin resistance, 
LysG-A219L based biosensor module, eYFP as 
fluorescence reporter gene 

Della Corte et 
al., 2020 

pSenHis[hisEG] pSenHis biosensor module subcloned onto pJC1-based 
hisEG-overexpression plasmid pHisOP1 

this study 

pk19mobsacB mobilizable suizide vector for double homologous 
recombination in C. glutamicum, kanamycin resistance, 
levansucrase gene sacB 

Schäfer et al., 
1994 

pk19mobsacB 
derivatives 

  

pk19-cps-G987D pk19mobsacB derivative for introduction of cps-G987D this study 

pk19-emb-G477E pk19mobsacB derivative for introduction of emb -G477E this study 

pk19-emb-T529I/T539I pk19mobsacB derivative for introduction of emb-
T529I/T539I 

this study 

pk19-fasA-A2702T pk19mobsacB derivative for introduction of fasA-A2702T this study 

pk19-fasA-P783S pk19mobsacB derivative for introduction of fasA-P783S this study 

pk19-fasB-G1921E pk19mobsacB derivative for introduction of fasB-G1921E this study 

pk19-fasB-G2762D pk19mobsacB derivative for introduction of fasB-G2762D this study 

pk19-gltB-G1106D pk19mobsacB derivative for introduction of gltB-G1106D this study 

pk19-gltB-P988S pk19mobsacB derivative for introduction of gltB-P988S this study 

pk19-iolD-S481F pk19mobsacB derivative for introduction of iolD-S481F this study 

pk19-mrpA-L42F pk19mobsacB derivative for introduction of mrpA-L42F this study 

pk19-NCgl0552-G432D pk19mobsacB derivative for introduction of NCgl0552-
G432D 

this study 

pk19-NCgl0552-P823S pk19mobsacB derivative for introduction of NCgl0552-
P823S 

this study 
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pk19-NCgl0705-
S1847N 

pk19mobsacB derivative for introduction of NCgl0705-
S1847N 

this study 

pk19-NCgl2789-S265N pk19mobsacB derivative for introduction of NCgl2789-
S265N 

this study 

pk19-NCgl2859-S372F pk19mobsacB derivative for introduction of NCgl2859-
S372F 

this study 

pk19-NCgl2959-
D1453N 

pk19mobsacB derivative for introduction of NCgl2959-
D1453N 

this study 

pk19-NCgl2959-G870D pk19mobsacB derivative for introduction of NCgl2959-
G870D 

this study 

pk19-NCgl2964-E512K pk19mobsacB derivative for introduction of NCgl2964-
E512K 

this study 

pk19-NCgl2964-P863S pk19mobsacB derivative for introduction of NCgl2964-
P863S 

this study 

pk19-NCgl2981-D735G pk19mobsacB derivative for introduction of NCgl2981-
D735G 

this study 

pk19-pks-A1525V pk19mobsacB derivative for introduction of pks-A1525V this study 

pk19-pks-D1186N pk19mobsacB derivative for introduction of pks-D1186N this study 

pk19-putA-P217S pk19mobsacB derivative for introduction of putA-P217S this study 

pk19-pyc-A764V pk19mobsacB derivative for introduction of pyc-A764V this study 

pk19-pyk-T357I pk19mobsacB derivative for introduction of pyk-T357I this study 

pk19-ulaA-V219I pk19mobsacB derivative for introduction of ulaA-V219I this study 

pk19-xylB-G55R pk19mobsacB derivative for introduction of xylB-G55R this study 

pk19-ΔlysEG pk19mobsacB derivative for in-frame deletion of lysEG (Binder et al., 
2012) 

pk19-Δcps pk19mobsacB derivative for in-frame deletion of cps this study 

pk19-Δemb pk19mobsacB derivative for in-frame deletion of emb this study 

pk19-ΔfasB pk19mobsacB derivative for in-frame deletion of fasB (Radmacher et 
al., 2005)  

pk19-ΔggtB pk19mobsacB derivative for in-frame deletion of ggtB this study 

pk19-ΔgltB pk19mobsacB derivative for in-frame deletion of gltB this study 

pk19-ΔNCgl0552 pk19mobsacB derivative for in-frame deletion of 
NCgl0552 

this study 

pk19-ΔNCgl0705 pk19mobsacB derivative for in-frame deletion of 
NCgl0705 

this study 

pk19-ΔNCgl1737 pk19mobsacB derivative for in-frame deletion of 
NCgl1737 

this study 

pk19-ΔNCgl2959 pk19mobsacB derivative for in-frame deletion of 
NCgl2959 

this study 

pk19-ΔNCgl2964 pk19mobsacB derivative for in-frame deletion of 
NCgl2964 

this study 

pk19-ΔNCgl2981 pk19mobsacB derivative for in-frame deletion of 
NCgl2981 

this study 

pk19-ΔpknB pk19mobsacB derivative for in-frame deletion of pknB this study 

pk19-Δpks pk19mobsacB derivative for in-frame deletion of pks this study 

pk19-ΔputA pk19mobsacB derivative for in-frame deletion of putA this study 

pk19-Δpyk1 pk19mobsacB derivative for in-frame deletion of pyk1 this study 

pk19-Δpyk2 pk19mobsacB derivative for in-frame deletion of pyk2 this study 
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3.3 Construction of plasmids and strains 

Recombinant DNA work was performed in E. coli DH5α, which was grown in LB medium 

(Bertani, 1951) at 37 °C, supplemented with 50 µg mL-1 kanamycin if appropriate. Plasmids 

were constructed following standard protocols of molecular cloning such as PCR, DNA 

restriction and ligation and Gibson cloning (Gibson et al., 2009; Sambrook and Russel, 

2012). Transformation of C. glutamicum was performed following the standard 

electroporation protocol (Eggeling and Bott, 2005). Double homologous recombination was 

employed for introduction of point mutations and in-frame deletions using the pK19mobsacB 

vector (Schäfer et al., 1994). Oligonucleotide synthesis and Sanger sequencing was 

performed at Eurofins SE (Ebersberg, Germany). Oligonucleotides used in this study are 

listed in the Appendix (Chapter 8.8).  

3.4 Cultivation of C. glutamicum strains 

In general, all cultivations of C. glutamicum were performed at 30 °C in undefined Brain-

Heart-Infusion (BHI) medium (Difco Laboratories, Detroit, MI, USA) or in defined CGXII 

medium supplemented with 2 % (w/v) D-glucose as source of carbon and energy (Keilhauer, 

Eggeling and Sahm, 1993). Where appropriate, 15 µg mL-1 kanamycin was added. Biomass 

formation was measured by the optical density at 600 nm (OD600).  

Initially, cultivations were performed using the BioLector system (m2p-labs GmbH, 

Baesweiler, Germany). 48-well microtiter plates (Flowerplates, m2p-labs GmbH, Baesweiler, 

Germany) were applied as cultivation vessels. Formation of biomass and culture 

fluorescence was monitored over a 48 h time course (30 °C, 900 rpm, 75 % humidity and 3 

mm throw). Biomass formation was thereby determined as backscatter light at 620 nm. For 

measurement of culture fluorescence, EYFP emission was determined at 532 nm upon 

excitation at 510 nm. The inoculation of the main culture (800 µL CGXII, 2 % D-glucose) was 

followed by a seedtrain consisting of a stationary first pre-culture (650 µL BHI) and a second 

stationary pre-culture (600 µL CGXII, 2 % D-glucose) as described above. Dipeptides for 

supplementation were purchased from Bachem (Bubendorf, Switzerland).   

High-throughput characterization of isolated C. glutamicum CgHis2 variants was performed 

following a two-step cultivation workflow. Both steps were performed in 48-well microtiter 

plates (Flowerplates, m2p-labs GmbH, Baesweiler, Germany) in a Multitron Pro HT Incubator 

(InforsAG, Bottmingen, Switzerland) at 30 °C, 900 rpm, 75 % humidity and 3 mm throw over 

a cultivation time course of 48 h. For sample preparation of main cultures, a Hamilton robotic 

liquid handling platform (Hamilton, Reno, NV, USA) was employed to achieve high-

throughput and high accuracy. Biomass formation was measured as the final OD600 in a 
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Synergy Mx microplate reader (BioTek, Winooski, VT, USA). The first cultivation step was 

designed to pre-characterize isolated C. glutamicum CgHis2 variants in high-throughput. 

Therefore, main cultures (800 µL CGXII, 2 % D-glucose) were inoculated to an OD600 of 1.0 

from a pre-culture (650 µL BHI), which had been grown for 22 h. Where appropriate, 15 µg 

mL-1 kanamycin was added. For high-throughput, the second pre-culture was omitted and no 

technical replicates were cultivated. L-histidine titers of C. glutamicum CgHis2 variants, as 

determined by HPLC (see 3.5), which exceeded the 90 % confidence interval of the control 

strains (as determined by four biological and three technical replicates each) were 

considered for re-cultivation if they exceeded an additional threshold of 1 mM increase in 

L-histidine titer.  

Re-cultivation in the second cultivation step included technical triplicates of selected variants 

and a second pre-culture (600 µL CGXII, 2 % D-glucose) in the applied seedtrain to achieve 

high accuracy for characterization with regard to biomass and product formation. To be 

considered for Next Generation Sequencing, L-histidine titers of C. glutamicum CgHis2 

variants had to exceed the 90 % confidence interval of control strains (as before) plus a 

threshold of at least 10 % increase in L-histidine titer.  

Standard cultivation conditions for characterization of reverse engineered C. glutamicum 

CgHis2 strains were accordingly defined: A first pre-culture (650 µL BHI) was grown for 22 h 

before used to inoculate the second pre-culture (600 µL CGXII, 2 % D-glucose). The second 

pre-culture was also grown for 22 h before used for inoculation of the main culture (800 µL 

CGXII, 2 % D-glucose) to an OD600 of 1.0, using the Hamilton robotic platform (Hamilton, 

Reno, NV, USA). Where appropriate, 15 µg mL-1 kanamycin was added. All cultivation steps 

were performed in 48-well microtiter plates (Flowerplates, m2p-labs GmbH, Baesweiler, 

Germany) in a Multitron Pro HT Incubator (InforsAG, Bottmingen, Switzerland) at 30 °C, 900 

rpm, 75 % humidity and 3 mm throw. The main culture was cultivated for 48 h before harvest.  

3.5 Amino acid quantification 

First, culture supernatants were diluted 1:100 using a Hamilton robotic liquid handling 

platform (Hamilton, Reno, NV, USA). Then, High-performance liquid chromatography (HPLC) 

was performed on an uHPLC 1290 Infinity system (Agilent Technologies, Santa Clara, CA, 

USA), which was equipped with a Zorbax Eclipse AAA C18 3.5 micron 4.6 x 75 mm and a 

fluorescence detector. As mobile phase, a gradient of 0.01 M Na-borate buffer pH 8.2 with 

increasing concentrations of methanol was applied. Quantification of amino acids was 

achieved by their o-phthaldialdehyde derivatives via pre-column-derivatization. Fluorescence 

detection of the derivatives was performed at an excitation wavelength of 230 nm and an 

emission wavelength of 450 nm. 
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3.6 Whole genome mutagenesis 

MNNG is a highly effective chemical mutagen, methylating nucleobases at their oxygen-

residues, thereby inducing base mispairing and hence introduction of random point mutations 

with strong mutational bias towards GC→AT transitions (Ohta, Watanabe-Akanuma and 

Yamagata, 2000; B Singer and Kusmierek, 2003; Ohnishi et al., 2008). A MNNG 

mutagenesis protocol was modified for application of multiplexed mutagenesis using 96-well 

plates. To achieve a desired culture mortality of 50-90 %, a MNNG dilution series was 

applied as follows:  

A C. glutamicum CgHis2 pre-culture (50 mL BHI, 91 g L-1 Sorbitol, 1 % D-glucose and 15 μg 

mL-1 kanamycin in 500 mL baffled shake flask) was grown over night. From this pre-culture, 

the main culture (50 mL BHI, 91 g L-1 Sorbitol, 1 % D-glucose and 15 μg mL-1 kanamycin in 

500 mL baffled shake flask) was inoculated to an OD600 of 1.5. Over 2-3 h the culture was 

grown in a rotary shaker (Infors, Bottmingen, Switzerland) at 30 °C and 120 rpm until an 

OD600 of 4.4 was reached. Then, the culture was immediately distributed to a 96-well plate (2 

mL vessels, Eppendorf, Hamburg, Germany) in 400 µL aliquots. For mutagenesis, a MNNG 

dilution series (6.0; 5.5; 5.0; 4.5; 4.0; 3.0; 2.0; 1.0 mg mL-1 MNNG in DMSO) was prepared. 

20 µL solution were applied to each well with decreasing MNNG concentration from row A to 

H. As controls, Columns 1-3 were treated with DMSO only. Mutagenesis was performed by 

incubation for 15 minutes in a rotary shaker (Infors, Bottmingen, Switzerland) at 30 °C and 

120 rpm, including transportation time. Mutagenesis was stopped by centrifugation for 

7 minutes at 20 °C and 4000 rpm (Heraeus Multifuge X3R Centrifuge, ThermoFisher 

Scientific Inc., Waltham, MA, USA) and subsequent discarding of the supernatant. Then, 

cultures were washed twice using NaCl (0.9 %, 1.6 mL per well) and re-cultivated for 3 h 

(400 µL BHI, 91 g L-1 Sorbitol, 1 % D-glucose and 15 μg mL-1 kanamycin per well). For 

evaluation of culture mortality, representative cultures of respective MNNG conditions were 

applied to single cell sorting of the main population using FACS. Before FACS-screening for 

improved C. glutamicum CgHis2 variants, glycerol was added to the mutagenized cultures 

(80 %, 400 µL per well) upon which they were stored at -80 °C.  

3.7 pSenHis-based FACS-screening 

Prior to FACS-screening, the biomass from 400 µL of mutagenized C. glutamicum CgHis2 

cultures was used to inoculate the respective cultures considered for FACS-screening 

(800 µL CGXII, 2 % D-glucose, 15 µg mL-1 kanamycin). Controls were processed 

accordingly. The culture was grown for 5-7 h in 48-well microtiter plates (Flowerplates, m2p-

labs GmbH, Baesweiler, Germany) in a Multitron Pro HT Incubator (Infors AG, Bottmingen, 

Switzerland), at 30 °C, 900 rpm, 75 % humidity and 3 mm throw.  
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FACS-screening was performed using a BD FACSAria Fusion Flow Cytometer (BD 

Biosciences, Franklin Lakes, NJ, USA). Therefore, cultures were diluted (CGXII base) in 

order to reach 10,000 events s-1 at a flow rate of 1.0, when using a 70 µm nozzle at a sheath 

pressure of 70 psi. For excitation of EYFP, a blue solid laser (488 nm) was employed. Single 

cell parameters were recorded as forward scatter (FSC, as small angle scatter), side scatter 

(SSC, as orthogonal scatter) and fluorescence from the 488 nm laser. Therefore, the system 

was equipped with a 502 nm long-pass and 530/30 band-pass filter combination. Electronic 

noise and cell debris were reduced by electronic gating of FSC-H against SSC-H. 

Subsequent gating of SSC-H against SSC-W and FSC-H against FSC-W ensured doublet 

discrimination. Based on this gating scheme, fluorescence and FSC characteristics were 

analyzed. An electronic gate comprising the top 5 % of fluorescent cells (with respect to the 

FSC distribution) was used for single cell sorting. From each mutagenized C. glutamicum 

CgHis2 culture, 240 events were sorted on agar plates (BHI, 91 g L-1 Sorbitol, 15 μg mL-1 

kanamycin). Control cultures were analyzed and sorted accordingly, when appropriate.  

After incubation on agar plates at 30 °C for two days, 22 randomly picked C. glutamicum 

CgHis2 strain variants were transferred to liquid medium (600 µL BHI, 91 g L-1 Sorbitol, 1 % 

D-glucose, 15 μg mL-1 kanamycin) from each mutagenized culture. Cultivation was performed 

for 24 h in a Multitron Pro HT Incubator (Infors AG, Bottmingen, Switzerland) at 30 °C, 900 

rpm, 75 % humidity and 3 mm throw in 96-well microtiter plates. After addition of glycerol 

(85 %, 400 µL per well), cultures were stored at -80 °C until strain characterization, as 

described above.  

3.8 Whole genome sequencing 

First, chromosomal DNA was isolated from C. glutamicum according to established protocols 

(Eikmanns et al., 1994). Then, whole genome sequencing was performed at Eurofins 

Genomics Germany GmbH (Ebersberg, Germany) on an Illumina High-Seq in paired-end 

mode using 150 bp read length.  

3.9 Automated comparative genome analysis 

For automated comparative genome analysis of the high number of sequenced 

C. glutamicum CgHis2 strain variants, Dr. Michael Dal Molin developed a software tool called 

Fast Automated Analysis of Multiple Sequences (FAAMS). Included in the automated 

workflow was the download of reference data for C. glutamicum ATCC 13032 from NCBI 

genome download tool (https://github.com/kblin/ncbi-genome-download). At first, pre-

processing of the sequence data (fastq files) including trimming and filtering of bad reads 

was performed with fastp (Chen et al., 2018). Subsequently the alignment of the sequence 
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data to the C. glutamicum ATCC 13032 wild type reference was performed by the Burrows-

Wheeler Aligner using the BWA-MEM algorithm (Li and Durbin, 2009). The Picard Toolkit 

(Broad Institute, 2019) and Samtools were applied to determine statistical data for quality 

control (Li et al., 2009). Samtools was also applied for pileup of the sequence data before 

identification of mutational variants (Single nucleotide polymorphisms, deletions and 

insertions) by VarScan (Koboldt et al., 2009, 2012; Li et al., 2009). The sequences of the 

C. glutamicum CgHis2 strain variants were compared to the C. glutamicum CgHis2 

reference. Differences were annotated on gene level by resulting codon change and induced 

amino acid substitution, whereas mutations in a hypothetical 200 bp upstream area of a gene 

were labeled as potential promoter mutations. Statistical analysis of sequence reads and 

alignments was performed by the R software. Finally, visualization of the data output was 

performed by a customized shiny dashboard in R (Bunn and Korpela, 2019).  

3.10 Combinatorial sequence analysis 

FAAMS delivered hotspot genes ranked by the number of mutations, which clustered in 

specific C. glutamicum genes. Hence, genes with high numbers of mutations (single 

nucleotide polymorphisms) were transferred into a spreadsheet. All C. glutamicum CgHis2 

strain variants were listed with their specific L-histidine titers and final OD600, which were 

revealed from strain characterizations and the total number of acquired mutations from 

random genome mutagenesis. Then, nonsynonymous mutations of the C. glutamicum 

CgHis2 strain variants, which applied to the hotspot genes, were transferred to a 

spreadsheet. The number of strain variants, which harbored nonsynonymous mutations in a 

specific gene, was called hotspot significance and used to compare the relevance of a gene 

for its potential contribution to improved L-histidine production. In the end, a threshold of 

10 % was set for a gene to be considered a significant hotspot gene, which thereby qualified 

for reverse engineering. To select specific mutations in hotspot genes for reverse 

engineering, three more criteria were defined: Hotspot abundance, variant performance and 

network effects (Chapter 4.9).  

3.11 Bioreactor fermentations 

All bioreactor fermentations were conducted by Moritz-Fabian Müller from AG Noack, 

Forschungszentrum Jülich GmbH. The seedtrain comprised two pre-cultures before 

inoculation of the bioreactor. The first pre-culture (10 mL BHI in 100 mL shaking flask with 

baffles) was inoculated from a fresh agar plate. The culture was incubated for 18-38 h at 

30 °C and 250 rpm on a rotary shaker (Infors, Bottmingen, Switzerland). 5 mL of the first pre-

culture were used to inoculate the second pre-culture (100 mL CGXII, 2 % D-glucose in a 1 L 

shake flask), which was cultivated in accordance to the first pre-culture for 18-28 h. The 
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stationary cultures were centrifuged and washed using 0.9 % NaCl to a final volume of 5 mL. 

An appropriately diluted aliquot was transferred to the bioreactor to inoculate the main culture 

(988 mL CGXII, 2 % D-glucose, 2 mL antifoam, 10 mL inoculum) to an OD600 of 0.5. 

Kanamycin was added to all cultivations appropriately.  

The bioreactor fermentation was performed on a dasgip system (Eppendorf SE, Hamburg 

Germany) with four simultaneously operated reactors. Regulation of pH was performed both-

sided with 5 M H2PO4 and 25 % NH4OH. Dissolved oxygen was fixed via a cascade to a 

minimum of 30 % by increasing agitation from 400 to 1200 rpm. Hence, the airflow increase 

from 6 to 40 standard liter h-1 when needed. The fermentation was stopped when the optical 

density had surpassed its peak and agitation had returned to 400 rpm, which meant the 

carbon source was depleted. During the fermentation, a series of 6 mL samples were taken 

from the cultures for determination of D-glucose and L-histidine concentrations as well as 

OD600 and cell dry weight.  

Glucose measurements were performed on an Agilent 1260 Infinity II HPLC System (Santa 

Clara, CA, USA) equipped with a 300x8mm Organic Acid Column (Chromatographie Service 

GmbH, Langerwehe, Germany) with a up to four-fold dilution. Cell dry weight was determined 

from 1.8 mL samples, washed in 0.9 % NaCl and dried at 80 °C for at least one day with 

subsequent incubation in a desiccator for one day. The weight was determined according to 

pre-weighed tubes on a precision scale.  
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4 Results 

Prior to this work, no L-histidine-producing variants could be isolated in any of the conducted 

pSenLys-based FACS-screenings, even though L-histidine acts as inducer of transcriptional 

regulator LysG, which is the key component of pSenLys (Bellmann et al., 2001; Binder et al., 

2012). To achieve the isolation of L-histidine-producing variants, LysG was engineered 

towards insensitivity against L-lysine by semi-rational protein engineering using FACS. As a 

result of this directed evolution campaign, the LysG-A219L variant could be isolated, which 

did not accept L-lysine as ligand anymore. As a consequence, the resulting LysG-A219L-

based biosensor (pSenHis) showed an unaltered fluorescence response to L-histidine-

containing dipeptides, whereas the supplementation of L-lysine-containing dipeptides did not 

result in a significant biosensor response. Cultivations of pSenHis carrying cells in 

microfluidic chips as well as isothermal titration calorimetry performed with LysG-A219L and 

molecular dynamics simulations of the engineered regulator confirmed these results. 

However, the applicability of the pSenHis biosensor for the isolation of L-histidine-producing 

variants in real FACS-based screening campaigns had not been demonstrated.  

4.1 Biosensor-based FACS-screening of a C. glutamicum wild type culture for 
L-histidine production 

The functionality of pSenHis in biosensor-based FACS-screenings for the isolation of 

L-histidine producing strain variants was demonstrated using mutated C. glutamicum wild 

type cells. For this purpose, pSenHis-harboring C. glutamicum ATTC13032 wild type cultures 

were randomly mutagenized by incubation with N-methyl-N′-nitro-N-nitrosoguanidine 

(MNNG). MNNG is a highly effective chemical mutagen, methylating nucleobases at their 

oxygen-residues, thereby inducing base mispairing and hence introduction of random point 

mutations with strong mutational bias towards GC→AT transitions (Ohta, Watanabe-

Akanuma and Yamagata, 2000; B Singer and Kusmierek, 2003; Ohnishi et al., 2008). The 

resulting mutant library was subjected to pSenHis-based high-throughput screening in order 

to isolate L-histidine-producing strain variants using FACS. From 450 isolated and 

characterized variants, 217 were identified with L-histidine titers > 0.1 mM. Of these variants, 

the best 25 accumulated L-histidine in the supernatant at concentrations ranging from 0.4 – 

0.7 mM. C. glutamicum wild type cultures served as control where no L-histidine could be 

detected in the supernatant. None of the variants produced significant amounts of L-lysine or 

L-arginine, thus the applicability of pSenHis for the identification of L-histidine-producing 

variants could be successfully verified.  
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4.2 Analysis of induced mutations in L-histidine biosynthetic pathway genes 

The L-histidine biosynthetic pathway genes represent intuitive engineering targets for 

L-histidine production (Mizukami et al., 1994; Zhang et al., 2012; Schendzielorz, Dippong, 

Grunberger, et al., 2014; Kulis-Horn, Persicke and Kalinowski, 2015; Schwentner et al., 

2019; Wu et al., 2020). Hence, it was speculated, that the strain variants isolated in pSenHis-

based FACS-screening, which were evolved from the C. glutamicum wild type, most likely 

acquired beneficial mutations for L-histidine production in the L-histidine biosynthetic pathway 

genes.  

To confirm this hypothesis, targeted DNA sequencing was performed to investigate the 

biosynthetic genes of the L-histidine pathway (hisA, hisB, hisC, hisD, hisE, hisF, hisG, hisH, 

hisI, and hisN) for acquired mutations in the 25 best producers. All strain variants were found 

to carry mutations in hisG, which encodes for the ATP phosphoribosyltransferase. This 

enzyme catalyzes the first committed step of L-histidine biosynthesis and is subject to non-

competitive feedback inhibition by the pathway end-product L-histidine (Kulis-Horn, Persicke 

and Kalinowski, 2014). Notably, most of the identified hisG mutations of isolated strain 

variants were already known from previous studies (Table 1) (Zhang et al., 2012; 

Schendzielorz, Dippong, Grunberger, et al., 2014; Kulis-Horn, Persicke and Kalinowski, 

2015). Only few mutations were found in other L-histidine biosynthetic genes, which caused 

amino acid substitutions in HisB (A105T), HisD (T107A) and HisH (G76A, S12F, R16H). 

Thus, the major relevance of feedback regulated HisG (catalyzing the dedicated first step of 

L-histidine biosynthesis) for the overproduction of this amino acid could be confirmed.  

Table 1: Amino acid substitutions in HisG of strain variants isolated from pSenHis-based 
FACS-screening of a mutagenized C. glutamicum wild type culture and L-histidine titer 
produced by respective strain variant.  

Amino acid substitutions in HisG L-histidine titer of respective variant [mM] 

Wild type 0 

S143F 0.67 ± 0.21 

S143F + G233D 0.43 ± 0.1 

D213N 0.68 ± 0.19 

G230S 0.57 ± 0.09 

G230D 0.57 ± 0.23 

S232P 0.46 ± 0.08 

G233D 0.62 ± 0.14 

T235M 0.47 ± 0.17 

 

Mutations acquired elsewhere in the C. glutamicum genome may have contributed to the 

increased L-histidine production as well, but were not analyzed in the context of these 
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experiments, which were conducted to demonstrate the suitability of pSenHis for the isolation 

of L-histidine-producing strain variants. However, when the pSenHis-based FACS screening 

strategy is supposed to be used to identify novel genetic targets contributing to L-histidine 

production, a C. glutamicum strain, which already harbors beneficial mutations in hisG or 

other L-histidine pathway genes, should be used as starting variant.  

4.3 Engineering an industrial L-histidine production strain for pSenHis-based 
FACS-screening 

FACS-based high-throughput screening can be used as an effective enrichment strategy, by 

which the effort of chromatographic analyses can be significantly reduced (Kaczmarek and 

Prather, 2021). Before applying production strains as screening hosts, however, they may 

have to be modified and tested with the respective biosensor for proper mutual function. 

For this screening campaign, an industrial C. glutamicum ATCC 13032 L-histidine production 

strain was provided from the industry partner SenseUP GmbH. C. glutamicum CgHis1 

harbored substitutions of the four operon promoters of the L-histidine biosynthesis pathway 

with strong constitutive promoters: Ptrc-hisEG, Ptrc-hisDCB, Ptuf-hisHAFI and PH36-hisN (Kulis-

Horn, Persicke and Kalinowski, 2014). Furthermore, the hisEG operon was substituted with a 

feedback-deregulated variant of hisG, comprising the S143F substitution and C-terminal 

truncation (Kulis-Horn, Persicke and Kalinowski, 2015). Since hisEG overexpression is key in 

L-histidine production (Cheng et al., 2013b; Kulis-Horn, Persicke and Kalinowski, 2015; 

Schwentner et al., 2019; Wu et al., 2020a), the feedback-deregulated operon was 

additionally overexpressed from a medium copy number plasmid (pHisOP1). To increase 

pentose phosphate pathway flux towards L-histidine biosynthesis, this strain harbored a 

promoter exchange of fructose biphosphatase (Ptuf-fbp), a gluconeogenetic enzyme. Uptake 

of D-glucose was increased by in-frame deletion of iolR. This regulator of myo-inositol 

utilization genes in C. glutamicum represses the expression of D-xylose and D-glucose 

transporter IolT1 (Klaffl et al., 2013; Brüsseler et al., 2018). In micro-scale cultivations, 

C. glutamicum CgHis1 pHisOP1 produced 11 mM L-histidine from 2 % D-glucose as sole 

source of carbon and energy (referred to as standard cultivation conditions, Materials & 

Methods Chapter 3.4). The growth rate of C. glutamicum CgHis1 (0.31 h-1) was significantly 

reduced in comparison to the C. glutamicum wild type (0.41 h-1), however, the cell 

morphology was found wild-type-like (Appendix Chapter 8.1). 

Since the pSenHis biosensor is based on the transcriptional regulator LysG, the endogenous 

lysG copy was removed in C. glutamicum CgHis1 by in-frame deletion of lysEG to avoid the 

isolation of false-positives (Binder et al., 2012). Hence, interaction of native LysG with 

L-lysine was prevented in C. glutamicum CgHis1. Despite LysE exporting basic amino acids 
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such as L-lysine and L-arginine (but not L-histidine), L-histidine itself still acts as a co-inducer 

of LysG-mediated native lysE expression. With the deletion of lysEG, potential effects of 

overexpressed LysE from high intracellular L-histidine concentrations were prevented as well 

(Bellmann et al., 2001). Then, the LysG-A291L-based pSenHis biosensor module was 

subcloned onto the hisEG overexpression plasmid (pHisOP1), with which the otherwise 

plasmid-free C. glutamicum CgHis1 strain was subsequently transformed. Both plasmids, 

pSenHis and pHisOP1, share the pJC1-backbone, such that no difference in biosensor 

functionality was expected. The generated screening strain CgHis1 ΔlysEG pSenHis[hisEG], 

designated as C. glutamicum CgHis2 (or simply reference strain), accumulated up to 11.5 

mM L-histidine from 2 % D-glucose in the supernatant during micro-scale cultivations and 

grew to a final OD600 of 19. These results were comparable to the C. glutamicum CgHis1 

pHisOP1 starting strain, showing that the biosensor-carrying plasmid does not represent a 

larger burden for the L-histidine production strain (Appendix Chapter 8.1).  

Hitherto, the pSenHis biosensor enabled the isolation of L-histidine-producing variants from a 

mutagenized C. glutamicum wild type culture, which produced up to 0.7 mM L-histidine. In 

pSenHis-based screening of mutagenized C. glutamicum CgHis2 cultures already producing 

high amounts of L-histidine, the basal fluorescence of the biosensor (pSenHis[hisEG]) is 

already on a significantly higher level. Hence, it had to be demonstrated that the operational 

range of pSenHis is still broad enough to translate any increased productivity of mutated 

C. glutamicum CgHis2 strain variants into an increased fluorescence in comparison to the 

C. glutamicum CgHis2 starting variant and allow for a successful isolation of improved 

variants. Therefore, the applicability of pSenHis[hisEG] in C. glutamicum CgHis2 screenings 

was investigated by simulating an increased intracellular L-histidine productivity with 

supplementation of L-His-L-Ala-dipeptides to C. glutamicum CgHis2 cultures. As a result, 

specific fluorescence of C. glutamicum CgHis2 cultures increased in correlation to the 

supplemented L-His-containing dipeptides up to 15 mM L-His-L-Ala (Figure 5), indicating 

increased biosensor induction and hence increased fluorescence response to be possible. 

However, the intracellular accumulation of L-histidine of C. glutamicum CgHis2 exerted a 

significantly higher effect on the overall fluorescence compared to the dipeptide 

supplementation. This became obvious when comparing the fluorescence response of the 

L-histidine-producing C. glutamicum CgHis2 variant and the more wild-type-like 

C. glutamicum pSenHis[hisEG] variant (Figure 5), which was not followed further.  
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4.5 Multiplexed random genome mutagenesis of C. glutamicum CgHis2  

To achieve the isolation of 100 independently evolved C. glutamicum CgHis2 strain variants 

with increased product formation, 100 independent random mutagenesis experiments, 

pSenHis-based FACS-screenings and strain characterizations were conducted. The isolation 

of variants from independent mutagenesis batches was considered necessary since growth 

periods between mutagenesis and FACS-screening can lead to isolation of genetically 

identical sister clones from the same batch, as it was observed in earlier studies (Binder et 

al., 2012). One hundred strain variants, on the other hand, were estimated to yield good 

statistical significance of genetic hotspots, which were expected from subsequent 

comparative genome analyses. Genetic hotspots were defined as genes, in which randomly 

induced mutations from a significant number of improved strain variants are clustering.  

Therefore, the random mutagenesis protocol using MNNG was modified in order to generate 

independently mutagenized C. glutamicum CgHis2 batches in a multiplexed manner. Since 

MNNG induces high mortality in treated cultures, which was found to exhibit high variance 

between separate multiplex runs, a MNNG dilution series was applied to generate 

mutagenized batches of differing culture mortality. The mortality of treated cultures was 

subsequently determined by isolating 100 single cells of the whole population randomly using 

FACS. Prior to this work, a culture mortality of 90 % was considered most beneficial for 

efficient FACS-based isolation of improved variants (Binder et al., 2012). Along the screening 

process, improved C. glutamicum CgHis2 variants were isolated from independently 

mutagenized cultures with mortalities ranging 41-99 % with no significant optimum (Appendix 

Chapter 8.3). In subsequent mutagenesis experiments, the induced culture mortality shifted 

for no apparent reason, such that lower MNNG concentrations were sufficient to yield 

appropriately mutagenized cultures. In the end, more than 600 C. glutamicum CgHis2 

cultures were independently mutagenized, but only 212 cultures were screened at the single 

cell level due to the high variance of mortality in treated cultures. Before this could be 

achieved, however, a FACS workflow suitable for the required throughput had to be 

identified.  

4.6 Development of a high-throughput FACS workflow 

In order to find most suitable conditions for high-throughput isolation of improved 

C. glutamicum CgHis2 strain variants, multiple variables of a potential FACS workflow were 

investigated. First, suitable parameters for prior-to-FACS cultivations were determined. Both, 

cultivation and screening in defined CGXII medium turned out most reliable since resulting 

FACS phenotypes showed less variance compared to cultivation and screening in undefined 

BHI medium (not shown). In addition, isolation from equal cultivation conditions as later 
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production conditions appeared most reasonable, too. Several seedtrain variations such as 

direct inoculation (from glycerol stocks) or using several precultures for inoculation of the 

main culture before screening were investigated as well (Appendix Chapter 8.4). As a result, 

inoculation of the screening culture directly from glycerol stock not only turned out to be the 

most straight-forward approach, but also ensured minimized dilution of each C. glutamicum 

CgHis2 mutant library due to reduced growth periods between mutagenesis and screening.  

Initially, a cultivation of a C. glutamicum CgHis2 mutant library was monitored regarding 

EYFP maturation-dependent formation of fluorescence in the exponential (and stationary) 

growth phase using hourly FACS samples to determine a suitable screening time window. As 

a result, cell sorting was considered most beneficial in mid-exponential growth phase when 

glucose uptake, growth-coupled L-histidine production and (hence) eyfp expression are at 

high rates. At this point in time, differences in genotype-dependent productivity should be 

reflected in differences in the specific fluorescence at the single cell level. In fact, C. 

glutamicum CgHis2 mutant libraries were typically characterized by an increased 

fluorescence heterogeneity, such that a ratio could be determined by electronic gating of 

highly fluorescent cells in FACS analysis and comparison to non-mutated C. glutamicum 

CgHis2 cells as control. This ratio was termed separation efficiency (Figure 8). A high 

separation efficiency was initially thought to reduce the probability of isolating false-positives 

since only a minority of cells of the control population fell in that gate. This was found most 

beneficial in exponential growth phase after 5-7 hours of cultivation time, when the culture 

was inoculated directly from glycerol stock (Figure 8).  

 

Figure 8: Investigation of the separation efficiency of C. glutamicum CgHis2 cells in FACS 
analysis. Depicted are three seedtrain variants of the cultivation prior to FACS analysis: inoculated 
from glycerol stock (grey), inoculated from agar plate (red) and inoculated following the standard 
seedtrain including undefined and defined medium precultures (blue). Based on an electronic gate 
comprising the top 2 % of highly fluorescent cells (of the MNNG-treated batch) in FACS analysis, the 
ratio of events of the MNNG-treated batch (MNNG+) to its control (MMNG-) in that gate was 
determined.  
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This time window was hence used for the screening process. Along this process however, 

cells with highest fluorescence usually turned not out to be the best L-histidine producers. 

Mutations acquired on the biosensor module were hypothesized to cause this false-positive 

phenotype, but not investigated in more detail as this has been already found earlier (Binder 

et al., 2012). 

In addition, the impact of the gating window dimensions on the isolation of significantly 

improved strain variants was investigated as well. In the end, isolation of the top 5 % of 

fluorescent cells in the determined time window of 5-7 hours after inoculation proved most 

reliable as tradeoff for minimizing false-positives, when the separation efficiency was high, 

and ideally, when the fluorescent outliers (cells with highest fluorescence) were excluded 

during FACS.  

Considering the FACS-screening workflow itself, FACS-based enrichment strategies using 

repetitive cell sorting were useful in earlier studies for reducing the isolation of false-positives 

(Cheng et al., 2012; Wagner et al., 2018; Flachbart, Sokolowsky and Marienhagen, 2019). 

Therefore, a two-step FACS-based enrichment strategy was intended to further eliminate 

false-positives in screening of C. glutamicum CgHis2 cultures. Several workflow variations 

were investigated concerning combinations of gating strategy, number of cells to be sorted in 

each FACS step and the type of medium used for re-cultivation and re-screening. Despite 

many tested conditions, sorting into liquid medium was unsuccessful with regard to the 

growth characteristics of C. glutamicum CgHis2 and the intended throughput since most 

sorted cultures exhibited multiday-long lag phases or no growth at all. Solving the growth 

issue by increasing the number of sorted cells from 20,000 to 100,000 was also not 

successful. Sorting an even higher number, however, was found unfeasible considering the 

demand of time per FACS screening.   

Finally, the second FACS-screening step (considered as enrichment step) was abandoned in 

favor of a cultivation-based rescreening step, which, due to the FACS-rescreening issues, 

was less time consuming and easier to perform. Therefore, cell sorting of the top 5 % of 

highly fluorescent cells was performed by FACS onto solid agar plates such that 240 clones 

were isolated from each of the 212 screened C. glutamicum CgHis2 libraries, accounting for 

more than 50,000 strain variants in total (Figure 9). Isolated strain variants, which were able 

to grow on solid undefined medium were randomly picked and subsequently applied to a 

two-step cultivation workflow for rescreening and characterization of improved 

C. glutamicum CgHis2 variants.  
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proposed 100 independently evolved variants with improved production phenotype could be 

reliably isolated and characterized (Figure 10 and Appendix Chapter 8.5).  

 

Figure 10: 100 independently evolved C. glutamicum CgHis2 strain variants with significantly 
improved L-histidine production. Every of the 100 C. glutamicum CgHis2 strain variants was 
isolated from an independently mutagenized C. glutamicum CgHis2 culture using pSenHis-based 
FACS-screening and characterized by improved L-histidine production of at least 10 % in comparison 
the C. glutamicum CgHis2 reference strain. Results are collected from multiple characterization runs 
with technical variance of humidity parameters, such that the relative improvement of L-histidine titers 
[%] to the respective control is used to compare all isolated variants. All absolute L-histidine titers and 
corresponding final optical density values, each from at least three independent technical replicates, 
are attached in the Appendix (Chapter 8.5).  

For good statistical significance, only variants with at least 10 % improvement in L-histidine 

production were considered for whole genome sequencing. In addition, a threshold for 

biomass formation was set at a maximum decrease of 35 % in optical density (end point 

determination).  

4.8 Genome sequencing and comparative genome analysis 

Whole genome sequencing of the 100 improved C. glutamicum CgHis2 variants was 

outsourced to Eurofins SE. For comparative genome analysis and identification of hotspot 

genes, Dr. Michael Dal Molin as bioinformatician of the group, developed the Fast Automated 

Analysis of Multiple Sequences (FAAMS) software tool. This tool processed all sequences 

simultaneously and mapped them to the C. glutamicum ATCC 13032 wild type sequence. All 

C. glutamicum CgHis2 single nucleotide polymorphisms (SNPs) of the 100 strain variants 

were summarized and attributed to the respective coding sequence (gene) or artificial 200 bp 

promoter region upstream of respective genes, if applicable. Rationally engineered mutations 

of the C. glutamicum CgHis2 reference strain were removed from the data sets such that 

only newly acquired mutations were displayed. On average, strain variants acquired 180 
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mutations by random genome mutagenesis with a high variance of 47-470 mutations. The 

total number of mutations per gene was plotted to illustrate the emerging hotspot genes 

(Figure 11). Genes with high mutation rates could be linked to the improved production 

phenotypes of isolated C. glutamicum CgHis2 strain variants.  

 

Figure 11: Total number of mutations per gene according to the position in the C. glutamicum 
genome. Synonymous and non-synonymous mutations (SNPs, single nucleotide polymorphisms) 
from all 100 isolated C. glutamicum CgHis2 strain variants with increased L-histidine production 
phenotype are depicted by needle height of each C. glutamicum gene. Genes with high mutation rates 
may be linked to the improved L-histidine production phenotypes. 

4.9 Combinatorial genome analysis: Evaluation of hotspot genes 

Having the mutational hotspots identified by comparative genome analysis, the aim of the 

combinatorial analysis was the identification of mutations in hotspot genes with a high 

probability of contribution to the observed improved production of L-histidine. Most significant 

mutations were supposed to be introduced in the C. glutamicum CgHis2 reference strain to 

investigate their individual effects on the overall L-histidine production performance (reverse 

engineering).  

At first, due to the high number of mutations, synonymous mutations were filtered out from 

the comparative genome analysis data set such that only nonsynonymous mutations, leading 

to amino acid substitutions, were analyzed. In addition, nonsynonymous mutations with a 

frequency below 50 % (percentage of sequencing reads exhibiting the mutation) were also 

excluded. To evaluate the significance of specific hotspot genes, the number of 

C. glutamicum CgHis2 strain variants, which harbor nonsynonymous mutations in the 

respective gene, was determined and termed hotspot significance (Table 2).  
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Table 1: Most significant hotspot genes in C. glutamicum CgHis2 according to the number of 
variants harboring nonsynonymous mutations in the particular gene (hotspot significance).  

# Locus tag Gene Enzyme Hotspot significance 

1 NCgl2409 fasB fatty acid synthase 24 

2 NCgl2964   DEAD/DEAH box helicase 23 

3 NCgl0802 fasA fatty acid synthase 22 

4 NCgl2773 pks type 1 polyketide synthase 21 

5 NCgl0184 emb arabinosyl transferase C 20 

6 NCgl0181 gltB alpha subunit of glutamate synthase 19 

7 NCgl0552   DNA segregation ATPase 19 

8 NCgl2618 cps non-ribosomal peptide synthase 18 

9 NCgl0040 pknB serine/threonine protein kinase 17 

10 NCgl2959   phosphoesterase 17 

11 NCgl1737   hypothetical membrane protein 17 

12 NCgl2433 dinG probable ATP-dependent DNA helicase-related 
protein 

15 

13 NCgl2981   hypothetical protein 15 

14 NCgl0916 ggtB gamma-glutamyltranspeptidase 14 

15 NCgl0705   probable ATP-dependent helicase 13 

The manual identification process of significant hotspot genes was verified by a subsequent 

computational processing and analysis of the FAAMS data set by Dr. Stephan Noack 

(Appendix Chapter 8.6). With the hotspot significance number, thresholds for combinatorial 

analysis were defined. Due to the consecutive nature of the screening and genome 

sequencing process, the comparative genome analysis data set grew over time and hence 

thresholds were modified along the process. This led to the final threshold of 10 % of strain 

variants with nonsynonymous mutations in a specific gene required, so that this particular 

gene can be considered a significant hotspot. In the end, more hotspot genes than could 

ultimately analyzed in detail within this study have reached this threshold (Appendix Chapter 

8.6). Interestingly, promoter mutations were found very rarely and, in addition, deletions or 

insertions could not be identified at all.  

All mutations of hotspot genes differed in their specific genetic position and amino acid 

substitution they induced, meaning that no mutation was found more than once. In addition to 

the hotspot significance, three additional criteria were defined to finally select specific 

mutations for reverse engineering of the C. glutamicum CgHis2 starting strain.  

i) Hotspot abundance: The number of mutations in other hotspot genes than the 

one selected in the respective strain variant must be low, such that the probability 

of contribution of the respective mutation to the increased production performance 

can be regarded as higher.  
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ii) Variant performance: L-histidine production of the C. glutamicum CgHis2 strain 

variant, from which the selected mutation is deduced, must be high, whereas 

biomass formation should be comparable to the C. glutamicum CgHis2 reference 

strain.  

iii) Network effects: Potential effects of the resulting amino acid substitution on the 

protein-, cellular- and metabolic level were considered if information of the protein 

in question was available. 

Based on these criteria, 30 point mutations from 20 hotspot genes were initially selected for 

individual reverse engineering of the C. glutamicum CgHis2 reference strain (Table 3). Two 

originally considered mutations in NCgl1815 and NCgl1774 were eventually neglected, since 

these prophage genes were found sequence-identical and shared several identical mutations 

over many isolated C. glutamicum CgHis2 variants. These mutations could not be verified by 

targeted sequencing and were hence regarded as technical error. As a control, in-frame 

deletion of the whole prophage area including NCgl1815 and NCgl1774 was performed, 

which resulted in L-histidine titers and biomass formation unchanged to the C. glutamicum 

CgHis2 reference.  

Table 3: Single nucleotide polymorphisms from C. glutamicum CgHis2 hotspot genes selected 
for reverse engineering, ordered by hotspot significance. From hotspot genes with high hotspot 
significance (>17), a second mutation was selected for individual reverse engineering, if the first re-
engineered mutation had no beneficial impact on L-histidine production.  

# Locus tag Gene Enzyme Hotspot 
significance 

His increase 
of resp. 
FACS-

isolated 
variant [%] 

Amino acid 
substitution 

1 NCgl2409 fasB fatty acid synthase B 24 36% G2762D 

2 NCgl2409 fasB fatty acid synthase B 24 24% G1921E 

3 NCgl2964  DEAD/DEAH box helicase 23 21% E512K 

4 NCgl2964  DEAD/DEAH box helicase 23 26% P863S 

5 NCgl0802 fasA fatty acid synthase A 22 38% A2702T 

6 NCgl0802 fasA fatty acid synthase A 22 36% P783S 

7 NCgl2773 pks type 1 polyketide synthase 21 18% A1525V 

8 NCgl2773 pks type 1 polyketide synthase 21 31% D1186N 

9 NCgl0184 emb arabinosyl transferase C 20 32% T529I 
T539I 

10 NCgl0184 emb arabinosyl transferase C 20 47% G477E 

11 NCgl0181 gltB alpha subunit of glutamate 
synthase 

19 68% P988S 

12 NCgl0181 gltB alpha subunit of glutamate 
synthase 

19 19% G1106D 

13 NCgl0552  type VII secretion protein eccC 
/ DNA segregation ATPase 

19 11% P823S 

14 NCgl0552  type VII secretion protein eccC 
/ DNA segregation ATPase 

19 29% G432D 

15 NCgl2618 cps non-ribosomal peptide 
synthase 

18 34% G987D 
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Table 3 continued: Single nucleotide polymorphisms from C. glutamicum CgHis2 hotspot 
genes selected for reverse engineering, ordered by hotspot significance. From hotspot genes 
with high hotspot significance (>17), a second mutation was selected for individual reverse 
engineering, if the first re-engineered mutation had no beneficial impact on L-histidine production.  

# Locus tag Gene Enzyme Hotspot 
significance 

His increase 
of resp. 
FACS-

isolated 
variant [%] 

Amino acid 
substitution 

16 NCgl2959  phosphoesterase 17 43% D1453N 

17 NCgl2959  phosphoesterase 17 43% G870D 

18 NCgl2981  hypothetical protein 15 45% D735G 

19 NCgl0705  probable ATP-dependent 
helicase 

13 34% S1847N 

20 NCgl0098 putA proline dehydrogenase/delta-
1-pyrroline-5-carboxylate 
dehydrogenase 

13 15% P217S 

21 NCgl2633 mrpA NADH ubiquinone 
oxidoreductase subunit 5 
(chain L)/multisubunit Na+/H+ 
antiporter, A subunit 

12 45% L42F 

22 NCgl0159 iolD putative acetolactate synthase 
protein 

12 31% S481F 

23 NCgl2859  probable cation-transporting 
ATPase transmembrane 
protein 

12 16% S372F 

24 NCgl2809 pyk2 pyruvate kinase 2 11 21% T357I 

25 NCgl2789  hypothetical protein 10 18% S265N 

26 NCgl0111 xylB xylulose kinase  10 16% G55R 

27 NCgl0659 pyc pyruvate carboxylase 10 35% A764V 

28 NCgl2933 ulaA ascorbate-specific PTS system 
enzyme IIC 

10 28% V219I 

 

4.10 Reverse engineering of C. glutamicum CgHis2 

Twenty-eight point mutations were introduced individually in the C. glutamicum CgHis2 

reference strain (Table 3). Among these, three point mutations, one in the non-ribosomal 

peptide synthetase encoding gene cps, one in mycolic acid synthesis encoding gene pks and 

one in the unknown NCgl2981 gene, were found to increase L-histidine production in 

C. glutamicum CgHis2 (Figure 12). 

A key enzyme of mycolic acid synthesis in C. glutamicum is a polyketide synthase encoded 

by pks (Takeno et al., 2018; Toyoda and Inui, 2018). The reverse engineered D1186N 

substitution in Pks increased L-histidine production in C. glutamicum CgHis2 by 8 % with 

p=0.06, according to a student’s t-test. Hence, independent repetitions of the cultivation were 

performed, which led to increased L-histidine titers by 6 % and 9 % with p=0.01 and p=0.02, 

respectively.  

Non-ribosomal peptide synthetases are known to synthesize secondary metabolites such as 

antibiotics (Strieker, Tanović and Marahiel, 2010). In mycobacteria, however, these enzyme 

complexes are involved in synthesis of cell wall components (Chalut, 2016). In 



Results 

 

 

44 

 

C. glutamicum

of this organism with so far unknown cellular function. The G987D substitution in Cps 

increased 

according to 

Figure 12
CgHis2 
the respective 
D735G increased 

NCgl2981

cellular function in 

any other information on this gene. The reverse engineered D735G substitution increased 

L-histidine production in 

student’s t

outside loop of the protein

Figure 13
calculated with 

 

glutamicum, the 

of this organism with so far unknown cellular function. The G987D substitution in Cps 

increased L-histidine production in 

according to a student’s t

12: L-histidine accumulation in the supernatant
 variants. The 

respective C. glutami
D735G increased L-histidine production in 

NCgl2981 presumably encodes a hypothetical membrane glycoprotein. Its structure or 

cellular function in 

any other information on this gene. The reverse engineered D735G substitution increased 

histidine production in 

student’s t-test (Figure 12). 

outside loop of the protein

Figure 13: Structure prediction of the NCgl2981 protein and its D735 substitution. 
calculated with AlfaFold 

 

the cps gene (

of this organism with so far unknown cellular function. The G987D substitution in Cps 

histidine production in 

a student’s t-test (Figure 12). 

histidine accumulation in the supernatant
The introduced 
glutamicum proteins. The substitutions 

histidine production in 

presumably encodes a hypothetical membrane glycoprotein. Its structure or 

cellular function in C. glutamicum

any other information on this gene. The reverse engineered D735G substitution increased 

histidine production in C. glutamicum

test (Figure 12). 

outside loop of the protein by AlphaFold

: Structure prediction of the NCgl2981 protein and its D735 substitution. 
AlfaFold (Jumper 

 

ne (NCgl2618) encodes the only non

of this organism with so far unknown cellular function. The G987D substitution in Cps 

histidine production in C. glutamicum

test (Figure 12). 

histidine accumulation in the supernatant
introduced point mutations 

proteins. The substitutions 
histidine production in C. glutamicum

presumably encodes a hypothetical membrane glycoprotein. Its structure or 

glutamicum is unresolved yet. Accessible databases could not reveal 

any other information on this gene. The reverse engineered D735G substitution increased 

glutamicum

test (Figure 12). Interestingly

by AlphaFold (Figure 13)

: Structure prediction of the NCgl2981 protein and its D735 substitution. 
(Jumper et al., 2021)

  

) encodes the only non

of this organism with so far unknown cellular function. The G987D substitution in Cps 

glutamicum CgHis2 significantly by 12

test (Figure 12).  

histidine accumulation in the supernatant
point mutations resulted 

proteins. The substitutions 
C. glutamicum 

presumably encodes a hypothetical membrane glycoprotein. Its structure or 

esolved yet. Accessible databases could not reveal 

any other information on this gene. The reverse engineered D735G substitution increased 

 CgHis2 by 26

terestingly, this substitution 

(Figure 13) 

: Structure prediction of the NCgl2981 protein and its D735 substitution. 
, 2021).  

) encodes the only non

of this organism with so far unknown cellular function. The G987D substitution in Cps 

CgHis2 significantly by 12

histidine accumulation in the supernatant of 28 reverse engineered 
resulted in the depicted amino acid substitutions in 

proteins. The substitutions pks-D1186N, 
 CgHis2.  

presumably encodes a hypothetical membrane glycoprotein. Its structure or 

esolved yet. Accessible databases could not reveal 

any other information on this gene. The reverse engineered D735G substitution increased 

CgHis2 by 26 % with p<0.0001, according to a 

, this substitution position 

 (Jumper et al.

: Structure prediction of the NCgl2981 protein and its D735 substitution. 

) encodes the only non-ribosomal peptide synthetase 

of this organism with so far unknown cellular function. The G987D substitution in Cps 

CgHis2 significantly by 12

28 reverse engineered 
the depicted amino acid substitutions in 

D1186N, cps-G987D and 

presumably encodes a hypothetical membrane glycoprotein. Its structure or 

esolved yet. Accessible databases could not reveal 

any other information on this gene. The reverse engineered D735G substitution increased 

% with p<0.0001, according to a 

position was 

et al., 2021). 

 
: Structure prediction of the NCgl2981 protein and its D735 substitution. 

ribosomal peptide synthetase 

of this organism with so far unknown cellular function. The G987D substitution in Cps 

CgHis2 significantly by 12 % with p=0.009, 

28 reverse engineered C. glutamicum
the depicted amino acid substitutions in 

G987D and NCgl2981

presumably encodes a hypothetical membrane glycoprotein. Its structure or 

esolved yet. Accessible databases could not reveal 

any other information on this gene. The reverse engineered D735G substitution increased 

% with p<0.0001, according to a 

was predicted

.  

: Structure prediction of the NCgl2981 protein and its D735 substitution. Structure 

ribosomal peptide synthetase 

of this organism with so far unknown cellular function. The G987D substitution in Cps 

% with p=0.009, 

 

C. glutamicum 
the depicted amino acid substitutions in 

NCgl2981-

presumably encodes a hypothetical membrane glycoprotein. Its structure or 

esolved yet. Accessible databases could not reveal 

any other information on this gene. The reverse engineered D735G substitution increased 

% with p<0.0001, according to a 

predicted on an 

Structure 



Results 

 

 

45 

 

4.11 In-frame deletion of selected hotspot genes 

Random mutagenesis is expected to cause detrimental effects on gene function with higher 

probability than gain-of-function effects (Foster, 1991). In case of MNNG, a strong mutational 

bias towards GC→AT transitions has been described (Ohta, Watanabe-Akanuma and 

Yamagata, 2000; B Singer and Kusmierek, 2003; Ohnishi et al., 2008). Transitions are often 

regarded as more conservative mutations as they either induce no amino acid substitution 

(silent mutations) or only substitutions to similar amino acids (Stoltzfus and Norris, 2016). 

Besides the many silent mutations (synonymous SNPs) removed from the dataset, many 

conservative amino acid substitutions such as L-alanine  L-valine were found (Figure 14).  

 

Figure 14: Total number and type of amino acid substitutions from all nonsynonymous 
mutations of 100 isolated C. glutamicum CgHis2 strain variants with improved L-histidine 
production. Random MNNG mutagenesis induced mutations leading to the depicted amino acid 
substitution distribution. Besides conservative amino acid substitutions such as L-alanine  L-valine 
(AV), many substitutions with significant steric, polar or conductive change such as L-glycine  
L-aspartate (GD), L-proline  L-serine (PS), L-serine  L-phenylalanine (SF) or L-glutamate  L-lysine 
(EK) were identified. 

Interestingly, also a high number of more drastic amino acid substitutions such as 

L-glycine  L-aspartate, L-proline  L-serine, L-serine  L-phenylalanine or L-glutamate  

L-lysine could be deduced from the 100 C. glutamicum CgHis2 genome dataset (Figure 14). 

Consequently, in-frame deletions of significant hotspot genes were performed to investigate 

the individual maximum loss-of-function effect on the L-histidine production performance in 

C. glutamicum CgHis2. From 18 in-frame deletions desired, 13 C. glutamicum CgHis2 

deletion strains could be generated (Table 4).  
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Table 4: C. glutamicum CgHis2 strains with respective in-frame deletions and accumulated 
L-histidine titer in microtiter plate cultivations.  

# C. glutamicum 
strain 

Locus tag Enzyme His-Titer 
[mM] 

His-Titer 
[%] 

1 CgHis2 reference    11,5 ± 0.6 - 

2 CgHis2 ΔfasB NCgl2409 fatty acid synthase 14.3 ± 0.4 +24 

3 CgHis2 ΔNCgl2964 NCgl2964 DEAD/DEAH box helicase 10.6 ± 0.3 -8 

4 CgHis2 ΔfasA NCgl0802 fatty acid synthase no deletion possible 

5 CgHis2 Δpks NCgl2773 type 1 polyketide synthase no deletion achieved 

6 CgHis2 Δemb NCgl0184 arabinosyl transferase C no pSenHis[hisEG] 
transformation achieved 

7 CgHis2 ΔgltB NCgl0181 alpha subunit of glutamate 
synthase 

11.6 ± 0.2 0 

8 CgHis2 ΔNCgl0552 NCgl0552 DNA segregation ATPase 11.1 ± 0.6 -4 

9 CgHis2 Δcps NCgl2618 non-ribosomal peptide synthase 13.6 ± 0.2 +18 

10 CgHis2 ΔpknB NCgl0040 eukaryotic-type serine/threonine 
kinase 

no deletion achieved 

11 CgHis2 ΔNCgl2959 NCgl2959 phosphoesterase 10.9 ± 0.2 -6 

12 CgHis2 ΔNCgl1737 NCgl1737 hypothetical membrane protein 10.8 ± 0.3 -8 

13 CgHis2 ΔNCgl2981 NCgl2981 hypothetical protein no deletion achieved 

14 CgHis2 ΔggtB NCgl0916 probable gamma-
glutamyltranspeptidase precursor 
PR 

10.3 ± 0.4 -12 

15 CgHis2 ΔNCgl0705 NCgl0705 probable ATP-dependent helicase 11.8 ± 0.5 +2 

16 CgHis2 ΔputA NCgl0098 proline dehydrogenase/delta-1-
pyrroline-5-carboxylate 
dehydrogenase 

9.7 ± 0.4 -17 

17 CgHis2 Δpyk2 NCgl2809 pyruvate kinase 10.6 ± 0.3 -8 

18 CgHis2 Δpyk1 NCgl2008 pyruvate kinase 12.1 ± 0.4 +5 

 

Fatty acid synthase gene fasA is known to be essential in C. glutamicum and hence an in-

frame deletion was not attempted because the resulting need for an oleic acid- 

supplementation for cell growth (and L-histidine production) was considered unfeasible for 

any future amino acid production process (Radmacher et al., 2005). In-frame deletion of 

mycolic acid synthesis key player pks and kinase gene pknB could not be achieved in 

C. glutamicum CgHis2, even though a successful deletion was reported for other 

C. glutamicum strains (Gande et al., 2004; Schultz et al., 2009). Interestingly, NCgl2981-

D735G could be reverse engineered whereas deletion of NCgl2981 was not successful in 

C. glutamicum CgHis2. Furthermore, deletion of emb, key player of arabinogalactan 

synthesis in C. glutamicum, was successful in C. glutamicum CgHis2, but plasmid-based 

hisEG overexpression lead to significant growth defects such that no characterization of this 

strain could be performed (Alderwick et al., 2005).  

Pyruvate kinase is known as key enzyme in C. glutamicum for regulation of glycolytic flux 

and phosphoenolpyruvate (PEP) metabolism in response to the energy state of a cell 

(Sawada et al., 2010, 2015). Besides pyk1 (NCgl2008), another pyruvate kinase gene, pyk2 

(NCgl2809), was more recently discovered in C. glutamicum and found highly expressed 
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Instead, C. glutamicum CgHis2 ΔfasB Δpyk1 turned out to be the best-performing 

C. glutamicum CgHis2 strain after introducing NCgl2981-D735G and pks-D1186N. 

Interestingly, only the combinatorial effect of these point mutations resulted in significantly 

improved production of 69 % in L-histidine titer. Biomass formation of C. glutamicum 

CgHis2 ΔfasB Δpyk1 NCgl2981-D735G pks-D1186N, on the other hand, was reduced by 

21 % (Figure 17).  

Based on the other double mutant C. glutamicum CgHis2 Δpyk1 NCgl2981-D735G, in-frame 

deletion of cps generated the best-performing triple mutant C. glutamicum CgHis2 

Δcps Δpyk1 NCgl2981-D735G, which was characterized by a 51 % increase in L-histidine 

titer and 23 % decrease in biomass (Figure 17). Since this strain lineage took more time for 

construction, the final introduction of pks-D1186N could not be achieved in time. The 

respective quadruple strain C. glutamicum CgHis2 Δcps Δpyk1 NCgl2981-D735G pks-

D1186N, however, would have been an interesting comparison to the best-performing 

variant, C. glutamicum CgHis2 ΔfasB Δpyk1 NCgl2981-D735G pks-D1186N. 

Apparently, simultaneous in-frame deletion of fasB and cps is detrimental for L-histidine 

production in C. glutamicum CgHis2. The combinatorial effect of ΔfasB, Δcps and pks-

D1186N induced significant growth defects, such that only strain lineages harboring either 

ΔfasB or Δcps led to superior C. glutamicum CgHis2 production strains.  

4.13 Lab-scale bioreactor fermentations  

To investigate the suitability of isolated and engineered C. glutamicum CgHis2 variants for 

L-histidine production in a bioreactor setup, batch fermentations in a 0.5 L laboratory-scale 

format were performed. Hereby, the best reverse engineered quadruple variant 

C. glutamicum CgHis2 ΔfasB Δpyk1 NCgl2981-D735G pks-D1186N was cultivated and 

characterized in comparison to the C. glutamicum CgHis2 reference strain (Figure 18). In 

addition, the C. glutamicum CgHis2 12-10-5-6 strain variant, as best isolate among the 100 

randomly mutagenized and FACS-screened C. glutamicum CgHis2 variants (Figure 10) was 

cultivated and characterized as well. This variant acquired 120 SNPs during MNNG 

mutagenesis.  From these experiments, growth rates, D-glucose uptake rates and L-histidine 

production rates were determined via bioprocess modelling (Table 5).  
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Table 5: Key Performance Indicators derived from lab-scale batch fermentations and 
bioprocess modelling for the C. glutamicum CgHis2 reference strain, the C. glutamicum CgHis2 
12-10-5-6 variant and the C. glutamicum CgHis2 ΔfasB Δpyk1 NCgl2981-D735G pks-D1186N 
variant. For bioprocess modelling, a parametric bootstrapping approach was used to estimate 
asymmetric confidence bounds. Results of the individual bioreactor cultivations are depicted in 
brackets. 

C. glutamicum strain CgHis2 
reference 

CgHis2 variant 
12-10-5-6 

CgHis2 ΔfasB Δpyk1 
NCgl2981-D735G pks-

D1186N 
OD600 [-] 30.4 30.6 41.5 

CDW [g L-1] 8.3 8.8 11.3 

L-histidine titer [mM] 14.8 28.6 29.1 

L-histidine yield [C-mol C-mol-1] 0.07 0.13 0.13 

Growth rate [h-1] 0.15 

[0.155, 0.160] 

0.06 

[0.056, 0.058] 

0.05 

[0.049, 0.052] 

D-glucose uptake rate  

[mmol gCDW
-1 h-1] 

1.96 

[1.960, 2.139] 

1.28 

[1.277, 1.383] 

1.07 

[1.078, 1.137] 

L-histidine production rate 

[mmol gCDW
-1 h-1] 

0.13 

[0.131, 0.142] 

0.14 

[0.140, 0.154] 

0.17 

[0.175, 0.188] 

 

Surprisingly, the isolated strain C. glutamicum CgHis2 12-10-5-6 and the reverse engineered 

strain C. glutamicum CgHis2 ΔfasB Δpyk1 NCgl2981-D735G pks-D1186N produced similar 

amounts of L-histidine from 4 % D-glucose as sole source of carbon and energy (28.6 mM 

and 29.1 mM, respectively). This represented an almost doubled product titer compared to 

the already highly engineered C. glutamicum CgHis2 reference strain, which accumulated up 

to 14.8 mM L-histidine (Figure 18). Both variants grew with significantly reduced growth rates 

and glucose uptake rates (Table 5). Interestingly, C. glutamicum CgHis2 ΔfasB Δpyk1 

NCgl2981-D735G pks-D1186N formed significantly more biomass (11.3 g L-1) than 

C. glutamicum CgHis2 12-10-5-6 (8.8 g L-1), which grew to cell densities comparable to the 

C. glutamicum CgHis2 reference strain (8.3 g L-1). Due to the slow growth of both variants, 

the L-histidine production rates were only slightly improved, but L-histidine was produced 

over a longer period such that significantly more glucose was converted to L-histidine. This 

resulted in an almost doubled L-histidine yield of 0.13 C-mol C-mol-1 for both variants, even 

though C. glutamicum CgHis2 ΔfasB Δpyk1 NCgl2981-D735G pks-D1186N also produced 

28 % more biomass than C. glutamicum CgHis2 12-10-5-6. Hence, the beneficial 

combinations of identified beneficial point mutations and gene deletions in C. glutamicum 

CgHis2 even lead to an increased performance in the lab-scale bioreactor setup compared to 

the microtiter plate format.  
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5 Discussion 
 

The challenges of targeted or rational metabolic engineering campaigns are often based on 

the limited knowledge of the complex interactions of global metabolic, regulatory and 

signaling networks, or yet unknown gene functions in microbial metabolism (Lee and Kim, 

2015). Especially in already highly engineered industrial strains, the identification of novel 

beneficial engineering targets represents a major bottleneck to push industrial strains 

towards maximum product yields. Here, directed evolution offers big potential for improving 

these industrial strains, since a large number of modifications with a potential benefit can be 

induced by random genome mutagenesis. Since the probability of beneficial mutations is 

very low, the identification of only a few improved variants in vast randomly mutated libraries 

represents the major challenge. However, the immense genetic space of microbial genomes 

can be explored by a combination of random genome mutagenesis, FACS-based high-

throughput screening, comparative genome analysis and reverse engineering.  

In this thesis, microbial L-histidine production was selected as exemplary strain engineering 

goal, since industrial L-histidine production strains are already highly engineered but 

inefficient in production since engineering of the highly intertwined L-histidine biosynthesis 

pathway network represents a major challenge (Cheng et al., 2013b; Kulis-Horn, Persicke 

and Kalinowski, 2014, 2015; Schwentner et al., 2019; Feith et al., 2020; Wu et al., 2020b). 

The L-histidine production strain used as starting variant was already engineered, taking 

advantage of known metabolic engineering targets. The strain was able to convert D-glucose 

to L-histidine with a product yield of 0.07 C-mol C-mol-1 (or 0.06 g g-1) in lab-scale batch 

fermentations. Hence, high improvement capacity was considered with regard to the 

theoretical maximum product yield of 0.44 g L-histidine g D-glucose-1 (Schwentner et al., 

2019). 

In preceding studies on L-histidine production, much attention has been paid to the feedback-

inhibited and thus rate-limiting key enzyme of the L-histidine biosynthesis pathway, HisG. 

With the proof of the applicability of pSenHis for isolation of L-histidine-producing strain 

variants in the first part of this thesis, known beneficial mutations in hisG were identified. 

Targeted amino acid positions such as S143, D213, G230, S232, G233 and T235 were in 

accordance to a preceding biosensor-based screening study as well as other hisG-targeting 

approaches (Zhang et al., 2012; Schendzielorz, Dippong, Grünberger, et al., 2014; Kulis-

Horn, Persicke and Kalinowski, 2015). Hence, the subsequently used industrial production 

strain C. glutamicum CgHis2 (as screening host), has been equipped with the gene for a 

feedback-resistant HisG variant (bearing substitution S143F and a deletion of the 
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C-terminus) that was additionally overexpressed. Interestingly, additional hisG mutations 

were found by comparative genome analyses (FAAMS) in 9 % of the isolated 100 

C. glutamicum CgHis2 strain variants. Besides T228, other amino acid positions were 

identified such as A20, L61, A152, E171, T190, D221, A223 and M250, indicating that further 

improvements of HisG function for L-histidine production could have been attained. However, 

considering the number of other apparently novel hotspot genes and the many HisG-related 

studies already performed, those hisG mutations were not of interest for this study.  

With the overexpression of all L-histidine biosynthesis genes in C. glutamicum CgHis2, only 

few nonsynonymous mutations were found in these genes of the 100 isolated C. glutamicum 

CgHis2 strain variants, such as hisD and hisN in 4 %, hisC and hisA in 3 % and HisH, hisF 

and hisE in 1 % of variants. This indicated, that the potential for additional beneficial 

modifications within the L-histidine pathway was majorly exhausted in C. glutamicum CgHis2 

(Schwentner et al., 2019; Wu et al., 2020a). Mutation frequency in other known engineering 

targets for L-histidine production such as purine biosynthesis was also found low with purA in 

2 % and purB and purH in 5 % of the isolated C. glutamicum CgHis2 strain variants (Malykh 

et al., 2018; Schwentner et al., 2019; Feith et al., 2020; Wu et al., 2020a). Since no 

heterologous glycine-cleavage system was expressed in C. glutamicum CgHis2, one might 

expect an increased mutation frequency in glyA, encoding serine hydroxymethyltransferase. 

This gene is essential for providing C1-compunds (mTHF, fTHF) needed for conversion of 

L-histidine pathway intermediate AICAR towards purine and hence ATP biosynthesis as 

L-histidine precursor (Kulis-Horn, Persicke and Kalinowski, 2014; Malykh et al., 2018; 

Schwentner et al., 2019). However, nonsynonymous glyA mutations were found in only 3 % 

of C. glutamicum CgHis2 strain variants. Hence, the approach of leveraging the rationally 

modified C. glutamicum CgHis2 strain for the identification of additional beneficial off-site 

mutations within this study can be regarded as successful.  

Overall, 18,000 randomly induced mutations in the 100 isolated C. glutamicum CgHis2 strain 

variants were identified and processed by automated-comparative and combinatorial 

genome analysis. The mutations were judged with regard to their individual hotspot 

significance, hotspot abundance, variant performance and hypothesized network effects. 

Due to the consecutive nature of the screening process and the high number of 71 identified 

hotspot genes, not every target could be analyzed in detail. Wherever possible, in-frame 

deletions of hotspot genes were performed and compared to reverse engineered point 

mutations in order to investigate the respective maximum loss-of-function effect on L-histidine 

production.  
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Only cps-G987D could be reliably identified as loss-of-function mutation, since Δcps 

exhibited a higher contributive effect to improved L-histidine production in 

C. glutamicum CgHis2. In C. glutamicum, cps represents the only gene encoding a non-

ribosomal peptide synthetase (NRPS) and was not mentioned in connection to any strain 

engineering efforts, yet. In general, NRPSs are known to synthesize peptides considered as 

secondary metabolites such as antibiotics, pigments or siderophores (Strieker, Tanović and 

Marahiel, 2010). In closely related mycobacteria, however, NRPS are involved in the 

synthesis of cell wall components and respective genes are located in direct proximity to 

other cell wall-related genes (Chalut, 2016). Using the compendium of expression profiles, 

no significant conditions for regulation of cps and its MarR-type regulator in C. glutamicum 

could be identified (Kranz et al., 2022). Both genes, however, are highly conserved in many 

Corynebacterium species (Appendix Chapter 8.7). For C. glutamicum CgHis2, a reduced 

ATP consumption by mutated or deleted cps could also contribute to the improved 

production phenotype, since the first step of NRPS catalysis involves ATP for activation of 

amino acids via adenylation (Strieker, Tanović and Marahiel, 2010). A high ATP regeneration 

capacity was previously identified by Flux Balance Analysis to be necessary for efficient 

L-histidine production, which might account for prevention of ATP hydrolysis as well 

(Schwentner et al., 2019). Interestingly, a series of other ATP-dependent enzymes such as 

helicases (NCgl2964, NCgl0302, NCgl0705, NCgl2433), ATPase components (NCgl0552, 

NCgl2859, NCgl1085) and a protease (clpC) were identified as significant hotspot genes as 

well. 

NCgl2981 encodes a hypothetical membrane protein of yet unknown function or structure 

and yet unexplored potential for strain engineering. Its potential involvement in cell wall 

processes is supported by at least one transmembrane helix predicted by TMHMM 2.0 

(Krogh et al., 2001). In addition, a gene encoding N-acetylmuramoyl-L-alanine amidase 

involved in cell wall synthesis could be identified in close proximity (Appendix Chapter 8.7). 

The beneficial NCgl2981-D735G mutation thereby was located close to the C-terminal 

transmembrane helix and, according to the AlphaFold structure prediction, on an outside 

loop of the protein (Jumper et al., 2021). NCgl2981 was found highly conserved among 

Corynebacterium and Mycobacterium species (Appendix Chapter 8.7). However, no 

significant data for any regulation of gene expression could be obtained when referring to the 

compendium of expression profiles of C. glutamicum (Kranz et al., 2022). Since the deletion 

of NCgl2981 in C. glutamicum CgHis2 failed, effects of the identified D735G mutation on 

protein function and the link to L-histidine metabolism could not be evaluated, but might 

indicate an essential function of this gene.  
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As indicated, cell wall synthesis represented a metabolic module of C. glutamicum, in which 

a series of significant C. glutamicum CgHis2 hotspot genes were identified. The polyketide 

synthase encoded by pks is essential for the condensation reaction of mycolic acid 

synthesis, which represent major constituents of the C. glutamicum cell wall (Takeno et al., 

2018; Toyoda and Inui, 2018). Hence, C. glutamicum Δpks strains were reported deficient of 

mycolic acids and exhibited an altered cell envelope (Portevin et al., 2004). This may have 

reduced carbon sinks and improved L-histidine synthesis in C. glutamicum CgHis2. 

Moreover, an efflux of L-histidine may have been facilitated as well, as it was reported for 

L-lysine or L-glutamate production with C. glutamicum (Gebhardt et al., 2007b; Lanéelle, 

Tropis and Daffé, 2013). Hence, pks-D1186N might represent a loss-of-function mutation, 

even though a C. glutamicum CgHis2 Δpks strain could not be constructed.  

Similar to pks, emb was identified with high hotspot significance in cell wall synthesis as well. 

This non-essential gene encodes arabinosyl transferase C, which is involved in arabinan 

synthesis (Jankute et al., 2018). C. glutamicum Δemb strains were reported viable before, 

but characterized by a highly truncated arabinogalactan and reduced growth (Alderwick et 

al., 2005). In C. glutamicum CgHis2, deletion of emb was successful but plasmid-based 

overexpression of hisEG led to significant growth defects such that no experiments for strain 

characterization could be performed. Interestingly, growth of C. glutamicum CgHis2 strains 

harboring emb-T529I/T539I or emb-G477E substitutions was not reduced, indicating them 

not to be directly crucial for the overall functionality of the enzyme. However, there is a high 

probability that other emb mutations may lead to similar effects as discussed for pks (Seidel 

et al., 2007).  

Both fatty acid synthase genes, fasA and fasB, were identified as highly significant hotspot 

genes, which supply C18 oleic acid and C16 palmitic acid for cell wall synthesis in 

C. glutamicum, respectively (Radmacher et al., 2005; Takeno et al., 2018). Even though the 

reverse engineered fasA mutations did not result in increased L-histidine titers, other 

identified fasA mutations might significantly affect L-histidine production since fasA is much 

higher expressed than fasB in C. glutamicum (Radmacher et al., 2005).  

In contrast to essential fatty acid synthase FasA, FasB is dispensable for growth. Already 

constructed C. glutamicum ΔfasB mutants were characterized by an altered mycolic acid as 

well as phospholipid profile before (Radmacher et al., 2005). In improved C. glutamicum 

CgHis2 strain variants isolated in this study, stop codon-inducing mutations were found in 

fasB, which indicated beneficial effects of a fasB deletion. In addition, comparative genome 

analysis characterized fasB with the highest hotspot significance of 24 %. In fact, fasB 

deletion significantly improved L-histidine production in C. glutamicum CgHis2 and turned out 
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as key engineering target for further C. glutamicum CgHis2 strain engineering as part of this 

study. Besides the reduced carbon sink hypothesis, an altered cell membrane and cell wall 

structure may have benefited L-histidine production by facilitating L-histidine efflux as well. 

Moreover, fasB was reported to be linked to C1-metabolism via cofactor lipoic acid (Marquet, 

Tse Sum Bui and Florentin, 2001; Cronan, Zhao and Jiang, 2005; Ikeda et al., 2017). 

Interestingly, fasB deletion contributed significantly to L-glutamate excretion in a 

C. glutamicum ΔfasAB double mutant (Radmacher et al., 2005). In the comparative analysis 

performed, 41 % of C. glutamicum CgHis2 strain variants harboring nonsynonymous 

mutations in fasA were found to also harbor nonsynonymous fasB mutations. One of them, 

the best-performing isolated C. glutamicum CgHis2 strain variant 12-10-5-6, was 

characterized by a 93 % increase in L-histidine titer in later batch fermentations. Concerning 

hotspot abundance, 12-10-5-6 was characterized by only one more nonsynonymous 

mutation in investigated hotspot genes, which was the phosphatase-encoding gene 

NCgl2959. Thus, its production phenotype may be majorly attributed to its acquired fasAB 

mutations. Reverse engineering of several fasAB double mutants, however, was not 

successful in C. glutamicum CgHis2.   

The recently discovered pyk2, encoding an alternative pyruvate kinase, was found as hotspot 

gene in the comparative genome analysis of C. glutamicum CgHis2 strain variants, which is 

mostly expressed under oxygen deprivation conditions (Chai et al., 2016). However, reverse 

engineered pyk2-T357I or pyk2 deletion exhibited no contributive effect on L-histidine 

production. Gene deletion of pyruvate kinase gene pyk1, expressed under C. glutamicum 

CgHis2 production conditions instead, was reported to result in an increased glucose uptake, 

increased metabolite pools of the pentose phosphate pathway and increased L-glutamate 

production in C. glutamicum (Sawada et al., 2010, 2015). The contributive effect of Δpyk1 in 

C. glutamicum CgHis2 should be linked to a perturbation of glycolytic flux due to the key role 

of pyk1 in glycolysis regulation (Sawada et al., 2010, 2015).  

Interestingly, reverse engineering of C. glutamicum CgHis2 revealed in-frame deletions of 

very large genes to contribute significantly to improved L-histidine production in 

C. glutamicum CgHis2, such as cps (encoding for a protein of 1295 amino acids) and fasB 

(encoding for protein of 2996 amino acids). Regarding recent genome reduction approaches, 

one could argue their beneficial effect to be simply attributed to their gene size. Genome 

reduction aims at removing non-essential enzymatic machinery not necessary for applied 

purposes in order to reduce an investment of carbon and energy in unnecessary 

proteins/enzymes and reactions (Choe et al., 2016; Martínez-García and de Lorenzo, 2016; 

Baumgart et al., 2018). Especially for L-histidine production, the reduction of ATP sinks (as 

L-histidine precursor) could be highly beneficial. In L-lysine biosynthesis, however, production 
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titers could not be increased by deletion of large non-essential gene clusters (Unthan et al., 

2015). In addition, in isolated C. glutamicum CgHis2 strain variants large genes such as 

fasA, fasB, cps and pks were found mutated frequently but no significant regulatory 

mutations (as in promoter areas) or recombination-induced deletions were found, which 

would decrease carbon and energy sinks as well. Hence, the significantly improved 

L-histidine production in strains such as C. glutamicum CgHis2 12-10-5-6, was a result of 

combinatorial effects of beneficial mutations without indications for genome reduction. 

Nevertheless, gene deletions may contribute to a higher degree to L-histidine production in 

comparison to beneficial loss-of-function mutations.  

Furthermore, the number of large genes identified as hotspot genes (such as fasA, fasB, cps 

and pks) could have also been simply the result of the mutation frequency, which should be 

the same across the genome. Hence, the probability of finding mutations in longer genes is 

simply higher. Therefore, when mutation numbers are normalized by gene length, 

overrepresented genes could indicate promising strain engineering targets. By this 

alternative approach, respective genes could have been found more frequently mutated than 

randomly expected such as cps (1.7-fold), pks (1.6-fold) and fasB (1.1-fold).  

In addition, the strong mutational bias of MNNG towards GC→AT transitions has to be 

considered (Ohta, Watanabe-Akanuma and Yamagata, 2000; B Singer and Kusmierek, 

2003; Ohnishi et al., 2008). GC-rich genes could exhibit an increased mutation frequency 

due to the GC content and not only sequence length. Indeed, respective genes exhibit an 

increased GC content (cps, 58 %; pks, 56 %; fasB, 58 %) in comparison to the 

C. glutamicum average of 53.8 % (Nishio et al., 2003). Hence, bias from above-average GC-

content or long gene sequences could have been factors for overrepresentation of respective 

genes in the dataset of this study (such as fasB, cps and pks), but do not sufficiently explain 

their high hotspot significance, since the introduced modifications lead to significant 

improvements in L-histidine production.  

When the identified beneficial modifications were combined in C. glutamicum CgHis2, 

additive effects on L-histidine production were observed for C. glutamicum CgHis2 

ΔfasB Δpyk1, C. glutamicum CgHis2 ΔfasB Δcps and C. glutamicum CgHis2 ΔfasB pks-

D1186N, but not C. glutamicum CgHis2 ΔfasB NCgl2981-D735G. Conversely, C. glutamicum 

CgHis2 Δpyk1 NCgl2981-D735G was characterized by a more synergistic effect than 

additively expected. Interestingly, C. glutamicum CgHis2 Δpyk1 NCgl2981-D735G could be 

further improved by in-frame deletion of cps, even though C. glutamicum CgHis2 Δcps Δpyk1 

or C. glutamicum CgHis2 Δcps NCgl2981-D735G performed worse than the respective 

single mutations in C. glutamicum CgHis2. Hence, the synergistic effect of Δpyk1 and 
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NCgl2981-D735G is necessary for Δcps to exhibit its contributive effect on L-histidine 

production. On the contrary, the synergistic effect of Δpyk1 and NCgl2981-D735G was 

significantly lower in combination with ΔfasB, which indicates significant differences in the 

cellular effects of fasB and cps deletions. Here, the synergistic effect of Δpyk1, NCgl2981-

D735G and pks-D1186N (in combination with ΔfasB) led to the superior C. glutamicum 

CgHis2 ΔfasB Δpyk1 NCgl2981-D735G pks-D1186N quadruple mutant, such that 

C. glutamicum CgHis2 Δcps Δpyk1 NCgl2981-D735G pks-D1186N could have resulted in 

even higher L-histidine production.  

In the end, only strain lineages harboring either ΔfasB or Δcps led to superior L-histidine 

production strains. Especially the combinatorial effects of ΔfasB, Δcps and pks-D1186N 

resulted in severe growth defects, which might indicate cps to be involved in cell wall 

processes or cell wall synthesis of C. glutamicum CgHis2 as well. This would be consistent 

to mycobacterial species, in which cell wall lipids are synthesized by polyketide synthases as 

well as non-ribosomal peptide synthetases (Chalut, 2016).  

In batch-mode bioreactor fermentations, the quadruple mutant C. glutamicum CgHis2 ΔfasB 

Δpyk1 NCgl2981-D735G pks-D1186N was characterized by a doubled L-histidine titer 

(29 mM or 4.5 g L-1) and doubled L-histidine yield from glucose (0.13 mol mol-1 or 0.11 g g -1). 

Hence, the integration of the novel beneficial modifications described also represents a 

further improvement in production performance compared to earlier C. glutamicum strains, 

but not E. coli strains, which also were highly engineered in known central engineering 

targets for L-histidine production (Schwentner et al., 2019; Wu et al., 2020b). Contrary to the 

latter strains, however, no fed-batch fermentation was performed in this thesis, with which 

even higher product titer and yields could have been achieved by a subsequent glucose-fed 

phase with growth-restricted cells. Nevertheless, there is still more room for improvement of 

these strains when considering the theoretical product yield of 0.44 g L-histidine g glucose-1 

(Schwentner et al., 2019). Here, more reconstruction attempts of identified C. glutamicum 

CgHis2 SNPs in hotspot genes such as fasA or emb could result in additional improvements 

on the road towards maximum L-histidine yields.  

Interestingly, the isolated C. glutamicum CgHis2 12-10-5-6 variant performed similar in the 

batch-mode fermentations with regard to L-histidine titer and yield but without the laborious 

reconstruction performed for C. glutamicum CgHis2 ΔfasB Δpyk1 NCgl2981-D735G pks-

D1186N. However, the C. glutamicum CgHis2 quadruple mutant is most likely more suitable 

for an industrial setting, since more robustness can be expected for reverse engineered 

strains when random mutations are omitted (Ikeda et al., 2009). Moreover, the C. glutamicum 

CgHis2 quadruple mutant forms significantly more biomass than C. glutamicum CgHis2 12-
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10-5-6, which makes it more efficient and suitable for a fed-batch bioprocess or scale-up of 

bioprocesses in general (Hewitt and Nienow, 2007).  

As demonstrated in this thesis, the identification of novel beneficial modifications especially 

in already highly engineered industrial strains remains challenging, but is key to maximizing 

the performance of production strains. Sequencing of known pathway genes (as performed 

in the first part of this thesis) is apparently straightforward if strains were evolved from 

microbial wild types (Binder et al., 2012; Schendzielorz, Dippong, Grünberger, et al., 2014). 

In several other studies, which used biosensor-based FACS-screening of genetically diverse 

strain libraries, links of identified mutations to the amino acid production purpose were only 

hypothesized, omitting reverse engineering and hence verification (Mahr et al., 2015; Zhang 

et al., 2018; Hernandez-Valdes et al., 2020; Liu et al., 2021). Ikeda and co-workers instead, 

verified beneficial mutations for L-arginine production by reverse engineering, which, 

however, were identified by sequencing of the key arg operons of classically derived 

L-arginine producers (Ikeda et al., 2009).   

Identifying beneficial mutations without physiological or reasonable connection to the product 

metabolite is more challenging and mostly unexplored. Random gene knockout and gene 

overexpression libraries represented other approaches, which yielded improved strains. 

Here, the identification of beneficial genes was performed by PCR procedures or microarray-

based methods (Alper, Miyaoku and Stephanopoulos, 2005; Santos and Stephanopoulos, 

2008; Warner, Patnaik and Gill, 2009). The disadvantage of these libraries, however, is the 

limited number of mutations, which can be assessed (Liu and Jiang, 2015). A more 

combinatorial solution space for improved variants can be achieved by engineering global 

transcription or translation processes. Therefore, artificial transcription factors, global 

transcription machinery engineering (gTME), ribosome engineering or whole genome 

shuffling was tried and discussed before (Santos and Stephanopoulos, 2008; Warner, 

Patnaik and Gill, 2009; Liu and Jiang, 2015). Despite the success of these combinatorial 

methods, their aim was not the identification of beneficial genetic modifications, from which 

unnecessary or even detrimental modifications can be omitted by reverse engineering. As 

one solution, Payen and co-workers investigated a prediction-based approach for attractive 

genetic targets in experimentally evolved point mutations by analyzing related knockout and 

overexpression libraries with barcode sequencing in advance (Payen et al., 2016).  

On the bigger picture, random genome mutagenesis offers an immense genetic solution 

space to obtain improved microbial production strains from. Not only loss-of-function or gain-

of-function effects, but also effects on gene expression levels could be acquired for 

improvement of industrial production strains. Comparative genome analysis represents a 
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valuable tool to realize a more systematic approach for the identification of beneficial 

mutations (Ohnishi et al., 2002; Albert et al., 2005; Herring et al., 2006). Here, high-

throughput can be achieved by automation using FAAMS, by which significantly higher 

numbers of FACS-isolated strain variants could be analyzed in the future. That way, also 

unknown genes or genes with unknown contribution (such as cps, NCgl2981 or fasB, pks 

and pyk1 for L-histidine production) can be identified. In addition, due to their assumed 

product unspecific nature, discovered beneficial modifications in this study might not only be 

useful for L-histidine synthesis, but also for engineering C. glutamicum towards the synthesis 

of other valuable small molecules.   

6 Conclusion & Outlook 
 

The identification of novel genomic targets for improvement of production strains still 

represents a major challenge in microbial strain engineering. The combinatorial application of 

high-throughput methods presented in this thesis may serve as a blueprint to reveal 

beneficial genetic modifications quicker and in a more systematic manner. Thus, especially 

highly engineered industrial production strains could benefit from this approach since novel 

targets without any rational physiological connection to the product of interest can be 

discovered. In addition, more robustness is achieved when randomly acquired mutations with 

detrimental effects are omitted by reverse engineering. For high-throughput screening, 

suitable biosensors need to be available or can be engineered towards the desired 

specificities. Then, the advantages of classical and rational strain engineering can be 

combined with high-throughput FACS and automated comparative genome analyses to push 

industrial production strains quickly towards maximum yields. In the near future, self-

improving machine learning algorithms will speed up the identification process with more 

precise predictions of mutational effects and, more importantly, will help to find suitable 

combinations of individual beneficial mutations.  
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8  Appendix 

8.1 Appendix to Chapter 4.3 – Engineering an industrial L-histidine production 
strain for pSenHis-based FACS-screening 

A             B 

 

Figure 19: Growth of C. glutamicum wild type and C. glutamicum CgHis1 harboring no plasmid 
(A) or transformed with pSenHis[hisEG] (B). Depicted are C. glutamicum wild type (grey) and 
C. glutamicum CgHis1 (red). Error bars represent biological triplicates. Growth rates (µmax) were 
determined as follows: C. glutamicum wild type, 0.41 h-1; C. glutamicum CgHis1, 0.31 h-1; 
C. glutamicum WT pSenHis[hisEG], 0.30 h-1; C. glutamicum CgHis1 pSenHis[hisEG], 0.19 h-1. 
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Figure 20
CgHis2 as screening host with results from microtiter cultivations regarding 
(bars) and biomass formation (dots, OD

 

20: Comparison of 
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CgHis1 pHisOP1 as starting strain and C. gluta
CgHis2 as screening host with results from microtiter cultivations regarding L-histidine titer 

Error bars represent biological triplicates.  
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8.2 Appendix to Chapter 4.4 

Figure 21
wild type pSenHis
as producer strain
both strains were derived from FACS analysis of 100,000 events. The upper and lower gates were 
used to monitor the populations’ fluorescence median, respectively, over a cultivation time of seven 
hours. (D): 
control (blue, from lower gate in B); 
upper gate in C); 
C).Other mixing ratios (1:10; 10:1) were analyzed equally (not shown). 
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21: Biosensor crosstalk 
type pSenHis 
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8.3 Appendix to Chapter 4.5 - Multiplexed random genome mutagenesis of 
C. glutamicum CgHis2  

 

Figure 22: Impact of MNNG-dependent mortality of treated cultures and number of 
independently isolated C. glutamicum CgHis2 strain variants with improved L-histidine 
production. All isolated C. glutamicum CgHis2 variants (red bars) were isolated from independent 
C. glutamicum CgHis2 culture, respectively, which were mutated by multiplexed MNNG mutagenesis. 
Depending on the MNNG concentration applied (concentration shown as stock concentration of 
MNNG dilution series, black squares), the culture mortality varied. In later mutagenesis rounds, the 
MNNG-induced mortality shifted, such that lower MNNG concentrations were sufficient to yield 
appropriately mutagenized cultures for FACS-screening.  
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8.4 Appendix to Chapter 4.6 
workflow

Figure 23
inoculation of the main culture (CGXII, 2
from glycerol culture (grey), from (BHI, 15
seedtrain (blue) which includes agar plate as well as undefined medium (BHI, 15
and defined medium (CGXII, 2
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8.5 Appendix to Chapter 4.7 - Rescreening and characterization of isolated 
C. glutamicum CgHis2 strain variants  

 

Figure 24:  L-histidine titer and biomass (as final optical density, OD600) of the 100 improved 
C. glutamicum CgHis2 strain variants after 48 h cultivation in the second characterization step. 
Error bars represent three independent technical replicates. The C. glutamicum CgHis2 reference 
strain (grey) is displayed as mean over ten independent cultivation rounds. Notably, due to technical 
variation of humidity parameters during the cultivation, strain variants were evaluated only in 
comparison to the respective triplicate of controls on the same microtiter plate. 
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8.6 Appendix to Chapter 4.9 - Combinatorial genome analysis: Evaluation of 
hotspot genes 

Table 7: List of identified hotspot genes using computational analysis and the 10 % threshold 
level of hotspot significance. These results of the computational processing of the FAAMS dataset 
by Dr. Stephan Noack show the number of nonsynonymous SNPs per gene of the 100 C. glutamicum 
CgHis2 strain variants (numSNP) and the number of strain variants harboring nonsynonymous SNPs 
in the particular gene (numCLO, hotspot significance).  

# annotation locus tag gene numSNP numCLO 

1 CGL_RS12390 NCgl2409 fasB 37 24 

2 CGL_RS15265 NCgl2964  28 23 

3 CGL_RS04205 NCgl0802 fasA 26 22 

4 CGL_RS14305 NCgl2773 pks 27 21 

5 CGL_RS00975 NCgl0184 emb 27 20 

6 gltB NCgl0181 gltB 22 19 

7 CGL_RS02900 NCgl0552  21 19 

8 CGL_RS13520 NCgl2618 cps 23 18 

9 pknB NCgl0040 pknB 20 17 

10 CGL_RS15240 NCgl2959  19 17 

11 CGL_RS09035 NCgl1737  18 17 

12 CGL_RS12520 NCgl2433 dinG 16 15 

13 CGL_RS15355 NCgl2981  16 15 

14 ggt NCgl0916 ggtB 15 14 

15 CGL_RS03670 NCgl0705  18 13 

16 CGL_RS11935 NCgl2324 benR 15 13 

17 CGL_RS00545 NCgl0098 putA 14 13 

18 CGL_RS00870 NCgl0163  14 13 

19 CGL_RS12940 NCgl2503 nuc 14 13 

20 CGL_RS13350 NCgl2585 clpC 14 13 

21 CGL_RS14755 NCgl2859  17 12 

22 CGL_RS02505 NCgl0472 rpoC 16 12 

23 CGL_RS13580 NCgl2628  15 12 

24 CGL_RS13605 NCgl2633 mrpA 14 12 

25 CGL_RS05640 NCgl1085  13 12 

26 iolD NCgl0159 iolD 13 12 

27 CGL_RS08860 NCgl1702  14 11 

28 CGL_RS02075 NCgl0394  13 11 

29 CGL_RS04840 NCgl0927  13 11 

30 CGL_RS05800 NCgl1117  13 11 

31 CGL_RS13165 NCgl2548a  13 11 

32 CGL_RS03135 NCgl0599  12 11 

33 CGL_RS03195 NCgl0611 dnaE2 12 11 

34 CGL_RS04255 NCgl0812  12 11 

35 CGL_RS07785 NCgl1494a  12 11 

36 CGL_RS13380 NCgl2591  12 11 
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37 CGL_RS14975 NCgl2903  12 11 

38 glpK NCgl2790 glpK 12 11 

39 prpB NCgl0629 prpB 12 11 

40 CGL_RS00515 NCgl0092  11 11 

41 CGL_RS10665 NCgl2068 ileS 11 11 

42 CGL_RS14485 NCgl2809 pyk2 11 11 

43 pepN NCgl2340 pepN 11 11 

44 CGL_RS14385 NCgl2789 psp5 18 10 

45 CGL_RS02500 NCgl0471 rpoB 15 10 

46 CGL_RS07320 NCgl1407 thiD1 15 10 

47 CGL_RS04190 NCgl0799 mctC 13 10 

48 CGL_RS03440 NCgl0659 pyc 13 10 

49 CGL_RS03060 NCgl0584  12 10 

50 mfd NCgl0924 mfd 12 10 

51 CGL_RS02370 NCgl0450 menD 11 10 

52 CGL_RS05435 NCgl1044  11 10 

53 CGL_RS08810 NCgl1692  11 10 

54 CGL_RS11220 NCgl2185 phoD 11 10 

55 CGL_RS12955 NCgl2507 ptrB 11 10 

56 CGL_RS14895 NCgl2887  11 10 

57 CGL_RS14915 NCgl2891  11 10 

58 gabT NCgl0462 gabT 11 10 

59 hrpB NCgl0139 hrpB 11 10 

60 topA NCgl0304 topA 11 10 

61 CGL_RS00340 NCgl0060  10 10 

62 CGL_RS01805 NCgl0340 capD 10 10 

63 CGL_RS03515 NCgl0674 wbpC 10 10 

64 CGL_RS09170 NCgl1767  10 10 

65 CGL_RS12690 NCgl2464  10 10 

66 CGL_RS14285 NCgl2769 mmpL1 10 10 

67 CGL_RS14880 NCgl2884 mrcB 10 10 

68 CGL_RS14925 NCgl2893  10 10 

69 fusA NCgl0478 fusA 10 10 

70 CGL_RS15125 NCgl2933 ulaA 10 10 

71 xylB NCgl0111 xylB 10 10 
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Figure 25: Computational processing of the FAAMS dataset for identification of hotspot genes 
in C. glutamicum CgHis2 by Dr. Stephan Noack.  
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8.8 Appendix – Oligonucleotides 

Name Type Sequence 

Rsp_pK19 Check 
Primer1 

Sequencing Primer CACAGGAAACAGCTATGACCATG 

Univ_pK19 Check 
Primer 2 

Sequencing Primer CGCCAGGGTTTTCCCAGTCACGAC 

1_FasA 893775 G-A 
(A-T) up 
fragment_fwd  

Gibson Primer ATCCCCGGGTACCGAGCTCGTCGACGCCTTCCTGTCCTC 

1_Fas A 893775 G-A 
(A-T) up 
fragment_rev  

Gibson Primer GATGCACGTGTCAGGAGGACGGTACCGCC 

 1_FasA 893775 G-A 
(A-T) down_fwd  

Gibson Primer GTCCTCCTGACACGTGCATCCGTTGCTG 

 1_FasA 893775 G-A 
(A-T) down_rev  

Gibson Primer TTGTAAAACGACGGCCAGTGAATGGAGCCTGCGCCGAG 

1_FasA 893775 
Check fwd 

Sequencing Primer GACTTCGACCCTGCCAAGTG 

1_FasA 893775 
Check rev 

Sequencing Primer TGCGCATTGCCTGCTCGAAG 

2_gltB 198201 up 
fragment_fwd 

Gibson Primer ATCCCCGGGTACCGAGCTCGGTTCTGGCAGCTACGAGATTTT
C 

2_gltB 198201 up 
fragment_rev  

Gibson Primer GTGGTGGAGAGGAAATCAGACCAACGCC 

2_gltB 198201 down 
fragment_fwd 

Gibson Primer TCTGATTTCCTCTCCACCACACCACGATATTTAC 

2_gltB 198201 down 
fragment_rev 

Gibson Primer TTGTAAAACGACGGCCAGTGGTGTTCAGCCTTGCCGGTG 

2_gltB 198201 
Check fwd 

Sequencing Primer ATACAAGTGGCGCCGCGAAG 

2_gltB 198201 
Check rev 

Sequencing Primer GCACCTGGGCTTGTCCGACG 

3_pyk 3111252 up 
fragment_fwd 

Gibson Primer ATCCCCGGGTACCGAGCTCGAGCCGAGTTCGACGGCGA 

3_pyk 3111252 up 
fragment_rev  

Gibson Primer CCGGCCGCATACCACGCATCAGCTGCAC 

3_pyk 3111252 
down fragment_fwd  

Gibson Primer GATGCGTGGTATGCGGCCGGATCCGAGGG 

3_pyk 3111252 
down fragment _rev  

Gibson Primer TTGTAAAACGACGGCCAGTGCCGGGAAATCCGCGTCAGC 

3_pyk 3111252 
Check fwd 

Sequencing Primer GGACTTGGGTGGCCAAGATG 

3_pyk 3111252 
Check rev 

Sequencing Primer AAGCGGCATGAATCTAGCTC 

4_iolD_174806_up_f
wd 

Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCCACCACCGCATCTCGCA
C 

4_iolD_174806_up_r
ev 

Gibson Primer CATGAGGTAGAACCCATCACCAACCATGATCAC 

4_iolD_174806_dow
n_fwd 

Gibson Primer GTGATGGGTTCTACCTCATGCTCAACAC 

4_iolD_174806_dow
n_rev 

Gibson Primer TTGTAAAACGACGGCCAGTGAATTCTAAATACGTTTTGGTTTA
GCC 

4_iolD_Check_fwd Sequencing Primer TTGCGGGTGATGCTGATGTG 

4_iolD_Check_rev Sequencing Primer CAGCCACAGATGAAGCTTTG 

5_ulaA_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCACCCGTGGCATTACCGT
AAAC 

5_ulaA_up_rev Gibson Primer GATATGAAGATTCCGGAAGGCTTGCGCT 

5_ulaA_down_fwd Gibson Primer CCTTCCGGAATCTTCATATCCTCAGTGGAAGGG 

5_ulaA_down_rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCTGCTCATTGGTGCGGGT
G 

5_ulaA_Check_fwd Sequencing Primer CAGAAGACCGTTGGCAAAGG 



Appendix 

 

 

91 

 

5_ulaA_Check_rev Sequencing Primer ATCGGTGGAGCAATCAAAGC 

6_fasB_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCACAAGATCTGCCTTTGG
TGCCTTCG 

6_fasB_up_rev Gibson Primer CAGGCCTCGATGCCCTTGGTGCTGCTCG 

6_fasB_down_fwd Gibson Primer ACCAAGGGCATCGAGGCCTGGGGCTGGGA 

6_fasB_down_rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCCGGTGGCTACGGACAGA
TGATCC 

6_fasB_Check_fwd Sequencing Primer ATCGCAACCAGAGCGGAGAC 

6_fasB_Check_rev Sequencing Primer CAACGACGTTCTGCAGGAAG 

7_pks_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCACACCGTCAGAGTAAGG
C 

7_pks_up_rev Gibson Primer GCATCCTGGTTAAACTTAATTTTGCAGACTGGG 

7_pks_down_fwd Gibson Primer ATTAAGTTTAACCAGGATGCGGTTGTCCAC 

7_pks_down_rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCTTCTTCCGTGGTCTACCA
ACC 

7_pks_Check_fwd Sequencing Primer ATGGGCGTAGATGGCCACTG 

7_pks_Check_rev Sequencing Primer AGCCTGCAGTGTTCATGTTC 

8_emb_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCTTTTCACATCGTGGACA
AAG 

8_emb_up_rev Gibson Primer TCTGGTACCACGAATATGTGCGCTACCAAATCGTCATGGAAC
AAACCGTTG 

8_emb_down_fwd Gibson Primer ATTTGGTAGCGCACATATTCGTGGTACCAGATCAGTGCCGGG
CCCTTCG 

8_emb_down_rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCCGTGATCACCAGAGAGG
TCATGC 

8_emb_Check_fwd Sequencing Primer GTTCGCCCATGGAGTGATTG 

8_emb_Check_rev Sequencing Primer TTCGTCTACCCGCATTGCTC 

9_NRPS_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCTGCAAAGCACCGCTTCC
C 

9_NRPS_up_rev Gibson Primer CTCATAGCCATCGATGAGGGTGTCATCGG 

9_NRPS_down_fwd Gibson Primer CCCTCATCGATGGCTATGAGCTGGGTAATGG 

9_NRPS_down_rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCAGCGGCTGAAGAGAGG
GTG 

9_NRPS_Check_fwd Sequencing Primer GACCATCAAGCCTGGTTCTC 

9_NRPS_Check_rev Sequencing Primer GATTCCACGAACGCATCTTG 

10_DNSSeg_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCGTCGCCATCACCTCGCA
C 

10_DNSSeg_up_rev Gibson Primer ACTTTCTCTGAATCTTTGCGTCCTGCCAC 

10_DNSSeg_down_f
wd 

Gibson Primer CGCAAAGATTCAGAGAAAGTCCGCCGAG 

10_DNSSeg_down_r
ev 

Gibson Primer TTGTAAAACGACGGCCAGTGAATTCCCGTGCAATCGGGATGC
C 

10_DNSSeg_Check
_fwd 

Sequencing Primer CCGCTTCCAAGCAAGTTATG 

10_DNSSeg_Check
_rev 

Sequencing Primer TCCCACGTCAGCGTGGATAG 

13_helicase Check 
rev 

Gibson Primer CTGAGCCCTTTGATCTTGTC 

13_helicase Check 
fwd 

Gibson Primer ATCGCTTCTTGCCACTGTTC 

13_helicase up fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCTTCAGCACTGTCATAGG
G 

13_helicase up rev Gibson Primer ACTGAGCTTAAGGTTAAAAACGATGACG 

13_helicase down 
fwd 

Sequencing Primer TTTTTAACCTTAAGCTCAGTCGTATAAGCATTG 

13_helicase down 
rev 

Sequencing Primer TTGTAAAACGACGGCCAGTGAATTCCCACAGGCATCACCTTG
G 
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14_hypo up fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCAGACGGCACCTGGTCA
CAG 

14_hypo up rev Gibson Primer GCAGCGCAGATTTTCGTCCGCACCCCAAC 

14 hypo_down fwd Gibson Primer CGGACGAAAATCTGCGCTGCTCAAACCC 

14_hypo down rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCCAGCATCGCCAGGACAT
G 

14_hypo Check fwd Sequencing Primer TCCAGCGTGACCAGCAATTC 

14_hypo Check rev Sequencing Primer TAGTCGTGCCACCTGTGTTG 

15_phosphatase up 
fwd 

Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCACTTTGATAACCAAGGC
CAAAAG 

15_phosphatase up 
rev 

Gibson Primer GTCACATAGTTCCAAATTCCGGGGACAAATG 

15_phosphatase 
down fwd 

Gibson Primer GGAATTTGGAACTATGTGACCAACGCATTC 

15_phosphatase 
down rev 

Gibson Primer TTGTAAAACGACGGCCAGTGAATTCGTGCTGACTGGAGTGGT
G 

15_phosphatase 
Check fwd 

Sequencing Primer TTCGATTACCAAGGCCTACC 

15_phosphatase 
Check rev 

Sequencing Primer GCGTTTGCGCTTGGATCTTC 

16_emb up fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCACGCACCGATGGAAATG
G 

16_emb up rev Gibson Primer GCGTCGAGGGAGGCGTCGAAAAGCAAAGTC 

16_emb down fwd Gibson Primer TTCGACGCCTCCCTCGACGCCCCAATAAG 

16_emb down rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCCGCGGATTATATGGCCA
AC 

16_emb Check fwd Sequencing Primer GCTTCGATGCCCTTGATCTG 

16_emb Check rev Sequencing Primer CAAGCTGAAGCCACTTGATG 

17_DNA seg up fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCGTGGCTGAAATGGGTAC
CG 

17_DNA seg up rev Gibson Primer TCCCATTCCGTCGTGCGCCGATTCCTTCAG 

17_DNA seg down 
fwd 

Gibson Primer CGGCGCACGACGGAATGGGACCACATGG 

17_DNA seg down 
rev 

Gibson Primer TTGTAAAACGACGGCCAGTGAATTCGGGAATCCAATCCGCGC
AAC 

17_DNA seg Check 
fwd 

Sequencing Primer CGCTGGTTGTGCAGTTGTTG 

17_DNS seg Check 
rev 

Sequencing Primer CCGGGTTGGCTGGGTAATTG 

18_fasB up fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCGATCCTTGTAGAACTCC
AGG 

18_fasB up rev Gibson Primer AGGTCACCGAACACGATGGTGTGCTTGC 

18_fasB down fwd Gibson Primer ACCATCGTGTTCGGTGACCTGCTCTGCAAAC 

18_fasB down rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCCTCTCGCCGTAACCAGC
TC 

18_fasB Check fwd Sequencing Primer ATCCGACCCAGTTGATGATG 

18_fasB down rev Sequencing Primer CAGCTTCACTCCTTCTGATG 

19_pyc up fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCTTCGCGGCCGCAACAC
CG 

19_pyc up rev Gibson Primer CCGTCAACAACATCTGCACCAGCTTGAGCTGC 

19_pyc down fwd Gibson Primer GGTGCAGATGTTGTTGACGGTGCTTCCGC 

19_pyc down rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCATGACAGAGTCTGGGAT
GTCG 

19_pyc Check fwd Sequencing Primer ACGATGTGGCGATGCGTTTC 

19_pyc Check rev Sequencing Primer GGCTATTGCGACGTTCCTTG 

20_pks_up fwd_new Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCAGTGGTTCGAGGGTTTC
TG 
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20_pks_up rev_new Gibson Primer CATCGAAAATAACTTCCAGATCCCACCAC 

20_pks_down 
fwd_new 

Gibson Primer TCTGGAAGTTATTTTCGATGCGGTTTTTGATGC 

20_pks_down 
rev_new 

Gibson Primer TTGTAAAACGACGGCCAGTGAATTCCGACATGCTGCCACCAA
G 

20_pks_Check_fwd Sequencing Primer AGACGACGCATTAGTGGTTG 

20_pks_Check_rev Sequencing Primer TCCGCGTGAATCTGCCAAAC 

21_fasA up fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCCTGGCGGCTGGGTTGG
CC 

21_fasA up rev Gibson Primer GAACCCAAGACATAGGCTTGTGGTGCTTGCGG 

21_fasA down fwd Gibson Primer CAAGCCTATGTCTTGGGTTCCAGCAATCG 

21_fasA down rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCCTCACGGGAAACAACTG
G 

21_fasA Check fwd Sequencing Primer AAGCAGGCACTGGTCGACAC 

21_fasA Check rev Sequencing Primer GCGGAAACAGATCCAACACC 

22_mrpA_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCGCAATAACATTCATTCC
C 

22_mrpA_up_rev Gibson Primer ACTCCGAAAACACCCAGAAAAAACCAATG 

22_mrpA_down_fwd Gibson Primer TTTCTGGGTGTTTTCGGAGTTCATCAAAGGCAC 

22_mrpA_down_rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCCCCAGGAGCTTGAGTAG
G 

22_mrpA_Check_fw
d 

Sequencing Primer ACAACGTTTCCCGCACCTGG 

22_mrpA_Check_rev Sequencing Primer CACATCTGCCCAGGAGCTTG 

23_helicase_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCAACCTTAGCCCACTTCA
TC 

23_helicase_up_rev Gibson Primer AAATCTACTTTCAGATCTTGCTATGTGGG 

23_helicase_down_f
wd 

Gibson Primer CAAGATCTGAAAGTAGATTTGTTGCAAGG 

23_helicase_down_r
ev 

Gibson Primer TTGTAAAACGACGGCCAGTGAATTCATAAGAAAAACAAATCTG
CATTAAAG 

23_heicase_Check_f
wd 

Sequencing Primer GCGATGGCAGAACGTGAACC 

23_helicase_Check_
rev 

Sequencing Primer TGCCGTTGCCACAATTGAGG 

24_phosphatase_up
_fwd 

Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCTTTCTTCGATGCCACCT
TC 

24_phosphatase_up
_rev 

Gibson Primer ACAGTATCGTCACTTGGATCACTTGCTC 

24_phosphatase_do
wn_fwd 

Gibson Primer GATCCAAGTGACGATACTGTCAAGATGACGTTCCTGGAAG 

24_phosphatase_do
wn_rev 

Gibson Primer TTGTAAAACGACGGCCAGTGAATTCGGTGCGCTGCGGTCACG
T 

24_phosphatase_Ch
eck fwd 

Sequencing Primer CGACTAATTCTGCCTGATGG 

24_phosphatase_Ch
eck rev 

Sequencing Primer GCACGTAGTCATGGATGTTG 

25_gltB_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCCCACTACTTGAACAACT
GC 

25_gltB_up_rev Gibson Primer TTCTTCGGCATCGAGAAGAGCTGCGATAAC 

25_gltB_down_fwd Gibson Primer CTCTTCTCGATGCCGAAGAATTCGGTTTTG 

25_gltB_down_rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCCAACTGAACGGTTGACG
TTG 

25_gltB_check_fwd Sequencing Primer CTGGGCGGTATGTCCAACTC 

25_gltB_check_rev Sequencing Primer TGGGATGAACGCGCCAAAGG 

26_hypo_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCCTCCGCCCGACCTTTTT
C 

26_hypo_up_rev Gibson Primer ATGTGCGCACCCTGATTTCCGGAATACAAAATCTG 
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26_hpyo_down_fwd Gibson Primer GGAAATCAGGGTGCGCACATCAATACTCCG 

26_hypo_down_rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCATCACCATCCGTGCGTG
C 

26_hypo_Check_fwd Sequencing Primer GGTGGACAACGGCGATGAAG 

26_hypo_Check_rev Sequencing Primer AGTCGAGCGCACCACATCAG 

27_putA_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCGTTTGGAATTCACGGTT
GGTTTCGTGGATCG 

27_putA_up_rev Gibson Primer TGCCTTTCGACGCCCGCGCGGCCTCTAT 

27_putA_down_fwd Gibson Primer CGCGCGGGCGTCGAAAGGCACGAAGTTCATCAACCTGGAC 

27_putA_down_rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCGGCGCGCGCCTGATCG
GA 

27_putA_Check_fwd Sequencing Primer CTGACCAGGCTGTGGACAAG 

27_putA_Check_rev Sequencing Primer GGCGCACGAGGTAAGAAATG 

28_Cu-
ATPase_up_fwd 

Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCATTCGGGGCGGATTTTG
TCCTCCAC 

28_Cu-
ATPase_up_rev 

Gibson Primer TCGCGATCTTCTCCGAGCGCGCCGCGAA 

28_Cu-
ATPase_down_fwd 

Gibson Primer GCGCTCGGAGAAGATCGCGATGACCAGCG 

28_Cu-
ATPase_down_rev 

Gibson Primer TTGTAAAACGACGGCCAGTGAATTCGGCCGAGAAGGTCGTCG
AC 

28_Cu-ATPase 
Check fwd 

Sequencing Primer GGCGAAGACCTCATCGATCC 

28_Cu-
ATPase_Check_rev 

Sequencing Primer ATCATGCTGTTGGGCCACTG 

29_helicase_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCCCAAGATGGGAGCCCA
CAATTC 

29_helicase_up_rev Gibson Primer ACCGCTTTAATAATCCCGCTGCACAAGG 

29_helicase_down_f
wd 

Gibson Primer AGCGGGATTATTAAAGCGGTCGAGGTCTAAG 

29_helicase_down_r
ev 

Gibson Primer TTGTAAAACGACGGCCAGTGAATTCCACGCTCCTCCAGACTT
C 

29_helicase_Check_
fwd 

Sequencing Primer AACCAGGGCATGTTCCTTAG 

29_helicase_Check_
rev 

Sequencing Primer TGCCGATCCTACAAAGGTTC 

30_xylB_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCGAATGAGCTGTCGGCG
GATATTTC 

30_xylB_up_rev Gibson Primer CTAACAACCTCTCGGTAGCTTGATCCAGC 

30_xylB_down_fwd Gibson Primer AGCTACCGAGAGGTTGTTAGAACGCGCGG 

30_xylB_down_rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCATCTCCCGTGCCTGCAG
C 

30_xylB_Check_fwd Sequencing Primer AAGACAATGGCGGATCATCG 

30_xylB_Check_rev Sequencing Primer GATGGATCGTGGACGCTATG 

del fasB_Check fwd Sequencing Primer GGAGGATACATCCACGGTCATTG 

del fasB_Check rev Sequencing Primer CGCTATGAGTTCAGGATGTTGATCG 

del2964_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCAGGACAATGGGGAAGA
GAC 
 

del2964_up_rev Gibson Primer GATTACTGATGCCGTTGAGACCATGAGAATTG 
 

del2964_down_fwd Gibson Primer TCTCAACGGCATCAGTAATCGTGGACATGCATTCC 
 

del2964_down_rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCAACCCAGCGATGGCCGT
T 

del2964_Check_fwd Sequencing Primer CCGCATCCCTGATATTTCGAACTG 
 

del2964_Check_rev Sequencing Primer GTACACGTACTTGTACCACTGC 
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del pks_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCACGCGCGATCTCTGAGT
AC 
 

del pks_up_rev Gibson Primer GAGCCAATCGAGTCGCCGCATTGATGAG 
 

del pks_down_fwd Gibson Primer TGCGGCGACTCGATTGGCTCTGTTCCATATTG 
 

del pks_down_rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCTGACATTGAAAAGCTCAT
CATC 

del pks_Check_fwd Sequencing Primer CTGAGTACATCGCCAAGGAG 
 

del pks_Check_rev Sequencing Primer TGGCACTGCACACGGTGTTG 

del emb_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCCATATGCTTATCCACGA
GGTTG 
 

del emb_up_rev Gibson Primer AGTCGGTGGTCTCTGGAATCCAGGGCATATG 
 

del emb_down_fed Gibson Primer GATTCCAGAGACCACCGACTTGGCGCATAG 
 

del emb_down_rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCACGCGCAAGATCTGCCG
C 

del emb_Check_fwd Sequencing Primer ATCTCCGACTGGTACTCATC 
 

del emb_Check_rev Sequencing Primer CCGGAGCTGCACGTTATTAC 

del gltB_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCCTCATCCCAATTGGCGG
TG 
 

del gltB_up_rev Gibson Primer TTGCTGGGTCGAGTCCTTGTGGTTTCATGC 
 

del gltB_down_fed Gibson Primer ACAAGGACTCGACCCAGCAATCAAGATCATGGAGGCAGTG 
 

del gltB_down_rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCGCCAGCGGGGCCGGAA
CC 

del gltB_Check_fwd Sequencing Primer AAGCTGCAACGCCTTCGATTTTTCC 

del gltB_Check_rev Sequencing Primer GCCGTAGCGCATGAGGCCGCCGAGG 

del 
NCgl0552_up_fwd 

Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCAAAGTCATCAATTCCAC
G 
 

del 
NCgl0552_up_rev 

Gibson Primer TCTGTGCAACCTCCACTGATGTTGTCATTTTC 
 

del 
NCgl0552_down_fw
d 

Gibson Primer ATCAGTGGAGGTTGCACAGATGGCACGC 
 

del 
NCgl0552_down_rev 

Gibson Primer TTGTAAAACGACGGCCAGTGAATTCCTGCGTTGAAATCTCCG
C 

del 
NCgl0552_Check_fw
d 

Sequencing Primer GTGTTTCTGCAAGCGGAATC 
 

del 
NCgl0552_Check_re
v 

Sequencing Primer GAAATCTCCGCCACCTTATC 

del 
NCgl1737_up_fwd 

Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCTGAACATTTGCTGCACG
AATTTC 
 

del 
NCgl1737_up_rev 

Gibson Primer GACAGTTTTAGGCGTAACCGAGAAGGGTG 
 

del 
NCgl1737_down_fw
d 

Gibson Primer CGGTTACGCCTAAAACTGTCGCAGTCAC 
 

del 
NCgl1737_down_rev 

Gibson Primer TTGTAAAACGACGGCCAGTGAATTCAGGTAAGGGCTTTGATA
AAG 

del 
NCgl1737_Check_fw 

Sequencing Primer TCGACGAACCTCGACTTCAG 
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del 
NCgl1737_Check_re
v 

Sequencing Primer TGACGAGGTGCGTAGTGATG 

del 
NCgl2959_up_fwd 

Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCGCTGTGGCTGCGGCGA
TT 
 

del 
NCgl2959_up_rev 

Gibson Primer AGTCCCAAATGAGCTTTGAGATGTTCATAATTTTTCCTAGATC
CAATG 
 

del 
NCgl2959_down_fw
d 

Gibson Primer CTCAAAGCTCATTTGGGACTATGTGACCAAC 
 

del 
NCgl2959_down_rev 

Gibson Primer TTGTAAAACGACGGCCAGTGAATTCCTGGAGTGGTGGGTGAA
ATC 

del 
NCgl2959_Check_fw
d 

Sequencing Primer TTTACGCTCCCACCAAATCC 
 

del 
NCgl2959_Check_re
v 

Sequencing Primer TGCTTCGGTGGTGCTGACTG 

del NRPS 
cps_Check fwd 

Sequencing Primer GCAAACATAGTTCTAGATCAG 

del NRPS 
cps_Check rev 

Sequencing Primer TGGATCGGGTGAGCACCTTTG 

del pknB_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCCTGGATCCGCCCGCAC
AA 
 

del pknB_up_rev Gibson Primer CGTGATCGCTCTCTTCGAATTCGATCTCGCTGC 
 

del pknB_down_fwd Gibson Primer ATTCGAAGAGAGCGATCACGAAGGTCAC 

del pknB_down_rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCGCTAGCTGTTTCTGCTGT
G 

del pknB_Check_fwd Sequencing Primer AACAACTGCCGCAGCACAAC 
 

del pknB_Check_rev Sequencing Primer GAAACGCGGTTCCGGCATTG 

del putA_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCTGGCCACTGGTGGTGA
CATC 
 

del putA_up_rev Gibson Primer CGTGGAAGGCCAGATTCATCGACGTCATGGTG 
 

del putA_down_fwd Gibson Primer GATGAATCTGGCCTTCCACGAGTTGGCG 
 

del putA_down_rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCTTACTGCCCCGAGCATA
GG 

del putA_Check_fwd Sequencing Primer ATGTCGAATACCGGATCGTC 
 

del putA_Check_rev Sequencing Primer GTCACGCCGTGCTCCATTTC 

del ggtB_up_fwd Gibson Primer CCTGCAGGTCGACTCTAGAGGATCCACTGCTTCCGAGGATCT
G 
 

del ggtB_up_rev Gibson Primer GACCCAAAGCGATCCACGTAGAGAAGGC 
 

del ggtB_down_fwd Gibson Primer TACGTGGATCGCTTTGGGTCACTTTCATC 
 

del ggtB_down_rev Gibson Primer TTGTAAAACGACGGCCAGTGAATTCCTGCGAATAAATAGGAAT
AGTTAAAAAC 

del ggtB_Check_fwd Sequencing Primer GATGGTCAGCCAAGAAATCC 
 

del ggtB_Check_rev Sequencing Primer TTGCGGAATCGGTTGATTCG 

del 
NCGL2981_Check2
_fwd 

Sequencing Primer CAGCAGTCCCGTTTGGTTAC 

del Sequencing Primer ACCGCACCCAACACGATTTC 
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NCGL2981_Check2
_rev 
delCGP3_D20_Chec
k fwd 

Sequencing Primer CTACCGTTACAGCAGCTCAG 

delCGP3_D20_Chec
k rev 

Sequencing Primer CCGCACTGGAATTAGCTTTG 

del pyk1_up_fwd Gibson Primer CGACGCGAAGGCTAACTGCATCCATG 

del pyk1_up_rev Gibson Primer AGACGGCATGGATTCACGTCCACCTTCTTG 

del pyk1_down_fwd Gibson Primer ACGTGAATCCATGCCGTCTTCTACCAAAC 

del pyk1_down_rev Gibson Primer GGCATCCGAATCAACACCATC 

del pyk1_Check fwd Sequencing Primer CCATTGGTTCAACGCTAAGG 

del pyk1_Check rev Sequencing Primer AGGGCATTGATGGAGAAACG 

del pyk2 up fwd Gibson Primer CAGGTCGACTCTAGAGGATCCTTAGCCGAATGCTGGACAAAG 

del pyk2 up rev Gibson Primer GGGTAGGTGATTTGAATTTGTCTGGTCAAACTCATTCATTTGA
GCTCC           

del pyk2 down fwd Gibson Primer ACAAATTCAAATCACCTACCCCTGCTGCTGCGCAAGGTGAAG 

del pyk2 down rev Gibson Primer AAAACGACGGCCAGTGAATTCAATCCTTGAAGATCCAAATGTT
G 

del pyk2 Check fwd Sequencing Primer CAGACAGGGAGGACAAGAATC 

del pyk2 Check rev Sequencing Primer ACACGGCGACACTGAACTTCC 
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