Dokument: Entwicklung einer zirkulären RNA Detektionspipeline und dessen Applikation in Medulloblastoma

Titel:Entwicklung einer zirkulären RNA Detektionspipeline und dessen Applikation in Medulloblastoma
Weiterer Titel:Development of a circular RNA detection pipeline and its application in medulloblastoma
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=62929
URN (NBN):urn:nbn:de:hbz:061-20230627-130042-0
Kollektion:Dissertationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Rickert, Daniel [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]11,48 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 21.06.2023 / geändert 21.06.2023
Beitragende:Prof. Dr. Klau, Gunnar [Gutachter]
Prof. Dr. Reifenberger, Guido [Gutachter]
Stichwörter:circular RNA, RNA, circRNA, medulloblastoma, cancer, biomarker
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie
Beschreibungen:Zusammenfassung
Die großen Fortschritte in der Next-Generation-Sequenzierung führten zu umfangreichen RNA-
Sequenzierungsdaten (RNA-Seq) von unterschiedlichen Krebsarten beim Menschen und
unterstützen damit die Omics-basierte Krebsforschung und die Entdeckung von neuen
molekularen Biomarkern. Die Instabilität der linearen mRNA schränkt jedoch die Verwendung von
mRNA-basierten Signaturen für den robusten Biomarker-Nachweis im diagnostischen Alltag ein.
Die vorliegende Dissertationsarbeit beschäftigt sich daher mit dem diesbezüglichen Potenzial einer
stabileren RNA-Spezies, nämlich der zirkulären RNA (circRNA), die je nach Entwicklungsstadium
und Differenzierung von Zellen und Geweben sehr spezifische Expressionsmuster zeigt. Zirkuläre
RNA stellt eine geschlossene Schleife aus einzelsträngiger RNA dar und macht insgesamt nur
etwa 1 % der in einem Zell- oder Gewebe-basierten Extrakt nachweisbaren Gesamt-RNA aus.
Aktuell sind mehrere circRNA-Quantifizierungsmethoden öffentlich verfügbar. Um die circRNA-
basierte Forschung weiter zu beschleunigen und bestehende Limitationen bei Verwendung einer
einzelnen der verfügbaren Analysepipelines zu überwinden, wurde in dieser Dissertationsarbeit
eine neuartige Multi-Pipeline-Detektionsmethode für circRNA namens „circ“ entwickelt. Diese
Pipeline ist hochempfindlich für den circRNA-Nachweis und erreicht eine geringere Falsch-Positiv-
Rate im Vergleich zu den bislang vorhandenen circRNA-Nachweispipelines. In dieser Arbeit wurde
'circ' erfolgreich auf veröffentlichte sowie unveröffentlichte RNA-Seq-Daten angewendet und
ermöglichte die Quantifizierung der circRNA-Expression in RNAseq-Datensätzen aus zwei
unabhängigen Kohorten von Medulloblastomen (MB), der häufigsten Art von bösartigen
Hirntumoren im Kindesalter. Diese Kohorten bestanden aus RNAseq-Datensätzen von 38 und 35
MB Patientenproben, die jeweils Proben der vier großen MB-Gruppen in unterschiedlichen Anteilen
enthielten. Diese MB-Gruppen werden Wingless (WNT), Sonic Hedgehog (SHH), Gruppe 3 und
Gruppe 4 genannt. Sie zeichnen sich durch gruppenspezifische genomische Veränderungen aus,
die zu einer aberranten Aktivierung unterschiedlicher Signalwege und einem unterschiedlichen
klinischen Verhalten hinsichtlich der Wahrscheinlichkeit einer Metastasenbildung und der Prognose
für die Patienten führen.
8
Die in dieser Dissertationsschrift zusammengefassten Arbeiten zeigen, dass die circRNA-Expressi-
on in MB-Gewebeproben verwendet werden kann, um die Tumoren sehr präzise in die einzelnen
MB-Gruppen einzuordnen. Tatsächlich war die Zuordnung der MB-Gruppen basierend auf circR-
NA-Expressionsprofilen genauso präzise wie die Zuordnung basierend auf der Similarity Network
Fusion (SNF) Analyse, die mehrere Omics-Datensätze für die molekulare Tumorklassifizierung in-
tegriert. Insgesamt unterschieden sich die circRNA-Expressionsprofile signifikant zwischen den
MB-Gruppen, was in den beiden unabhängigen Patientenkohorten validiert wurde. Die validierten
circRNA-Profile ermöglichten nicht nur eine zuverlässige Unterscheidung der Gruppen sondern
identifizierten auch einzelne circRNA-Spezies mit selektiver Expression in den einzelnen MB-Grup-
pen. Dabei erwies sich circRMST in beiden Kohorten als stabil und stark exprimierter Biomarker für
Medulloblastome der WNT-Gruppe. Im Gegensatz dazu war circISPD der wichtigste Biomarker für
Medulloblastome der SHH-Gruppe, während circEXOC6B in den Gruppe 4 Medulloblastomen spe-
zifisch hochreguliert war. Durch die Analyse zusätzlicher Tumordatenbanken konnten diese circR-
NA-Biomarker in weiteren öffentlich verfügbaren Datensätzen bestätigt werden. Darüber hinaus
wurde die Spezifität der circRMST-Hochregulation in WNT-Medulloblastomen anhand von circR-
NA-Expressionsprofilen in >2000 Gewebeproben einschließlich diverser Krebsentitäten und Kon-
trollgewebe belegt.
Um weitere circRNA-Biomarkerkandidaten weiter zu validieren, wurde das Protokoll „circleseq“ mit
isogenen MYC-überexprimierenden MB-Zelllinien verwendet. Diese Ergebnisse bestätigten nicht
nur viele circRNAs, die in menschlichen MB-Gewebeproben mit „circs“ nachgewiesen wurden,
sondern validierten auch einen zuvor beobachteten Trend, dass eine MYC-Überpression einen In-
dikator für eine generell verminderte circRNA-Expression in darstellt. Die hier entwickelte Pipeline
„circs“ ist frei verfügbar und öffentlich zugänglich, sodass andere Forscher*innen ihre RNA-Seq-
Daten erneut analysieren können, um eine weitere Omics-Datenschicht mit viel versprechendem
Biomarkerpotenzial untersuchen zu können.

Recent advances in next generation sequencing have provided a rich resource of large-
scale RNA sequencing (RNA-Seq) data from various types of human cancer, thereby
fostering omics-based cancer research and biomarker discovery. However, the instability
of linear mRNA limits its use for robust biomarker detection in routine diagnostic
applications. This thesis therefore evaluates the potential of a more stable RNA species,
namely circular RNA (circRNA), which shows specific expression patterns according to
developmental stage and differentiation of cells and tissues. Circular RNA is a closed loop
of single-stranded RNA and amounts to ~1% of total RNA detectable in a given sample.
Currently, there are several circRNA quantification methods publicly available. To
accelerate circRNA research and overcome certain single-pipeline-based limitations, a
novel multi-pipeline circRNA detection method called 'circs' was developed. This method
allows highly sensitive circRNA detection and achieves a lower false-positive rate
compared to previous circRNA-detection pipelines. In this work, 'circ' was successfully
applied to both published and unpublished RNA-Seq data and allowed to quantify circRNA
expression in RNAseq data sets from two independent cohorts of medulloblastoma (MB),
the most common type of malignant brain tumor in children. These cohorts consisted of
RNAseq data sets of 38 and 35 MB patient samples, and included various proportions of
the four major MB groups: wingless (WNT), sonic hedgehog (SHH), group 3 and group 4.
They are characterized by group-specific recurrent genomic alterations leading to aberrant
activation of distinct signaling pathways and divergent clinical behavior concerning
likelihood of metastasis formation and patient outcome.
The work summarized in this thesis shows that circRNA expression in MB tissue samples
can be used to precisely classify tumors into these distinct MB groups without any
additional data. In fact, MB group assignment based on circRNA expression profiles
proved as precise as assignment based on Similarity Network Fusion (SNF), which
integrates multiple omics layers for molecular tumor classification. CircRNA expression
profiles differed significantly between the MB groups and were validated in the two
6
independent patient cohorts. The validated MB-group-specific circRNA profiles not only
allowed reliable distinction between groups, but also identified individual circRNA species
with selective expression in single MB groups. For example, circRMST was found to be a
remarkably stable and highly expressed biomarker for WNT MB in both cohorts, circISPD
was the top biomarker for SHH MB, and circEXOC6B was specifically upregulated in
Group 4 MB. Employing additional online tumor databases, it was possible to confirm
these circRNA biomarkers in further published datasets. Additionally, the specificity of
circRMST upregulation for WNT MB was substantiated using circRNA expression profiles
of >2000 tissue samples, including various other cancer entities and control tissues.
To further validate several circRNA biomarker candidates, the ‘circleseq’ protocol was used
with isogenic MYC-overexpressing MB cell lines. In addition to identifying many circRNAs
detected in human MB tissue samples, these results also confirmed a previously observed
trend of MYC overexpression being an indicator of globally decreased circRNA abundance
in MB. The ‘circs’ pipeline developed in this thesis is freely available for public use, thus
enabling other researchers to re-analyze their RNA-Seq data to uncover another omics
data layer with highly promising biomarker potential.
Quelle:1. Hallmarks of Cancer: The Next Generation | Elsevier Enhanced Reader.
doi:10.1016/j.cell.2011.02.013
2. Pollack IF, Agnihotri S, Broniscer A. Childhood brain tumors: current management,
biological insights, and future directions: JNSPG 75th Anniversary Invited Review
Article. J Neurosurg Pediatr. 2019;23(3):261-273. doi:10.3171/2018.10.PEDS18377
3. Barnholtz-Sloan JS, Ostrom QT, Cote D. Epidemiology of Brain Tumors. Neurol Clin.
2018;36(3):395-419. doi:10.1016/j.ncl.2018.04.001
4. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization
Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol
(Berl). 2016;131(6):803-820. doi:10.1007/s00401-016-1545-1
5. Arvanitis CD, Ferraro GB, Jain RK. The blood–brain barrier and blood–tumour barrier
in brain tumours and metastases. Nat Rev Cancer. 2020;20(1):26-41.
doi:10.1038/s41568-019-0205-x
6. Haumann R, Videira JC, Kaspers GJL, van Vuurden DG, Hulleman E. Overview of
Current Drug Delivery Methods Across the Blood–Brain Barrier for the Treatment of
Primary Brain Tumors. CNS Drugs. 2020;34(11):1121-1131. doi:10.1007/s40263-020-
00766-w
7. Mulhern RK, Merchant TE, Gajjar A, Reddick WE, Kun LE. Late neurocognitive
sequelae in survivors of brain tumours in childhood. Lancet Oncol. 2004;5(7):399-408.
doi:10.1016/S1470-2045(04)01507-4
8. Olesen J, Gustavsson A, Svensson M, et al. The economic cost of brain disorders in
Europe: Economic cost of brain disorders in Europe. Eur J Neurol. 2012;19(1):155-
162. doi:10.1111/j.1468-1331.2011.03590.x
9. Northcott PA, Robinson GW, Kratz CP, et al. Medulloblastoma. Nat Rev Dis Primer.
2019;5(1). doi:10.1038/s41572-019-0063-6
10.
Guerreiro Stucklin AS, Ramaswamy V, Daniels C, Taylor MD. Review of molecular
classification and treatment implications of pediatric brain tumors: Curr Opin Pediatr.
2018;30(1):3-9. doi:10.1097/MOP.0000000000000562
11. Othman RT, Kimishi I, Bradshaw TD, et al. Overcoming multiple drug resistance
mechanisms in medulloblastoma. Acta Neuropathol Commun. 2014;2(1):57.
doi:10.1186/2051-5960-2-57
12.
Kralik SF, Ho CY, Finke W, Buchsbaum JC, Haskins CP, Shih C-S. Radiation
Necrosis in Pediatric Patients with Brain Tumors Treated with Proton Radiotherapy. Am
J Neuroradiol. 2015;36(8):1572-1578. doi:10.3174/ajnr.A4333
13.
Chapter 8 - Cerebellum: Development and Medulloblastoma | Elsevier Enhanced
Reader. doi:10.1016/B978-0-12-380916-2.00008-5
14.
Kool M, Koster J, Bunt J, et al. Integrated Genomics Identifies Five
Medulloblastoma Subtypes with Distinct Genetic Profiles, Pathway Signatures and
Clinicopathological Features. Hide W, ed. PLoS ONE. 2008;3(8):e3088.
doi:10.1371/journal.pone.0003088
96
15.
Remke M, Hielscher T, Northcott PA, et al. Adult Medulloblastoma Comprises Three
Major Molecular Variants. J Clin Oncol. 2011;29(19):2717-2723.
doi:10.1200/JCO.2011.34.9373
16.
Remke M, Ramaswamy V, Taylor MD. Medulloblastoma molecular dissection: the
way toward targeted therapy. Curr Opin Oncol. 2013;25(6):674-681.
doi:10.1097/CCO.0000000000000008
17.
Archer TC, Ehrenberger T, Mundt F, et al. Proteomics, Post-translational
Modifications, and Integrative Analyses Reveal Molecular Heterogeneity within
Medulloblastoma Subgroups. Cancer Cell. 2018;34(3):396-410.e8.
doi:10.1016/j.ccell.2018.08.004
18.
Cavalli FMG, Remke M, Rampasek L, et al. Intertumoral Heterogeneity within
Medulloblastoma Subgroups. Cancer Cell. 2017;31(6):737-754.e6.
doi:10.1016/j.ccell.2017.05.005
19.
Remke M, Ramaswamy V. Infant medulloblastoma — learning new lessons from old
strata. Nat Rev Clin Oncol. 2018;15(11):659-660. doi:10.1038/s41571-018-0071-6
20.
Ellison DW, Kocak M, Dalton J, et al. Definition of Disease-Risk Stratification
Groups in Childhood Medulloblastoma Using Combined Clinical, Pathologic, and
Molecular Variables. J Clin Oncol. 2011;29(11):1400-1407.
doi:10.1200/JCO.2010.30.2810
21.
Mulhern RK, Palmer SL, Merchant TE, et al. Neurocognitive Consequences of Risk-
Adapted Therapy for Childhood Medulloblastoma. J Clin Oncol. 2005;23(24):5511-
5519. doi:10.1200/JCO.2005.00.703
22.
Manoranjan B, Venugopal C, Bakhshinyan D, et al. Wnt activation as a therapeutic
strategy in medulloblastoma. Nat Commun. 2020;11(1):4323. doi:10.1038/s41467-020-
17953-4
23.
Juraschka K, Taylor MD. Medulloblastoma in the age of molecular subgroups: a
review. J Neurosurg Pediatr. 2019;24(4):353-363. doi:10.3171/2019.5.PEDS18381
24.
Hovestadt V, Smith KS, Bihannic L, et al. Resolving medulloblastoma cellular
architecture by single-cell genomics. Nature. 2019;572(7767):74-79.
doi:10.1038/s41586-019-1434-6
25.
Taylor MD, Northcott PA, Korshunov A, et al. Molecular subgroups of
medulloblastoma: the current consensus. Acta Neuropathol (Berl). 2012;123(4):465-
472. doi:10.1007/s00401-011-0922-z
26.
Rathi KS, Arif S, Koptyra M, et al. A transcriptome-based classifier to determine
molecular subtypes in medulloblastoma. PLOS Comput Biol.:15.
27.
Gendoo DMA, Smirnov P, Lupien M, Haibe-Kains B. Personalized diagnosis of
medulloblastoma subtypes across patients and model systems. Genomics. 2015
Aug;106(2):96-106. doi: 10.1016/j.ygeno.2015.05.002.
28.
Schwalbe EC. Novel molecular subgroups for clinical classification and outcome
prediction in childhood medulloblastoma: a cohort study. Lancet Oncol. 2017
Jul;18(7):958-971. doi: 10.1016/S1470-2045(17)30243-7. 2017;18:14.
29.
Remke M, Hielscher T, Korshunov A, et al. FSTL5 Is a Marker of Poor Prognosis in
Non-WNT/Non-SHH Medulloblastoma. J Clin Oncol. 2011;29(29):3852-3861.
doi:10.1200/JCO.2011.36.2798
97
30.
Massimino M, Biassoni V, Gandola L. Childhood medulloblastoma. Crit Rev Oncol
Hematol. 2016 ;105:35-51. doi: 10.1016/j.critrevonc.2016.05.012.
31.
Zhukova N, Ramaswamy V, Remke M, et al. Subgroup-Specific Prognostic
Implications of TP53 Mutation in Medulloblastoma. J Clin Oncol. 2013;31(23):2927-
2935. doi:10.1200/JCO.2012.48.5052
32.
Khanna V, Achey RL, Ostrom QT, et al. Incidence and survival trends for
medulloblastomas in the United States from 2001 to 2013. J Neurooncol.
2017;135(3):433-441. doi:10.1007/s11060-017-2594-6
33.
Forget A, Martignetti L, Puget S, et al. Aberrant ERBB4-SRC Signaling as a
Hallmark of Group 4 Medulloblastoma Revealed by Integrative Phosphoproteomic
Profiling. Cancer Cell. 2018;34(3):379-395.e7. doi:10.1016/j.ccell.2018.08.002
34.
Hovestadt V, Remke M, Kool M, et al. Robust molecular subgrouping and copy-
number profiling of medulloblastoma from small amounts of archival tumour material
using high-density DNA methylation arrays. Acta Neuropathol (Berl). 2013;125(6):913-
916. doi:10.1007/s00401-013-1126-5
35.
Ramaswamy V, Samuel N, Remke M. Can miRNA-based real-time PCR be used to
classify medulloblastomas? CNS Oncol. 2014;3(3):173-175. doi:10.2217/cns.14.14
36.
Capper D, Jones DTW, Sill M, et al. DNA methylation-based classification of central
nervous system tumours. Nature. 2018;555(7697):469-474. doi:10.1038/nature26000
37.
Ramaswamy V, Remke M, Bouffet E, et al. Risk stratification of childhood
medulloblastoma in the molecular era: the current consensus. Acta Neuropathol (Berl).
2016;131(6):821-831. doi:10.1007/s00401-016-1569-6
38.
Eberhart CG, Tihan T, Burger PC. Nuclear localization and mutation of beta-catenin
in medulloblastomas. J Neuropathol Exp Neurol. 2000 ;59(4):333-7. doi:
10.1093/jnen/59.4.333.
39.
Orr BA, Clay MR, Pinto EM, Kesserwan C. An update on the central nervous
system manifestations of Li–Fraumeni syndrome. Acta Neuropathol (Berl).
2020;139(4):669-687. doi:10.1007/s00401-019-02055-3
40.
Polkinghorn WR, Tarbell NJ. Medulloblastoma: tumorigenesis, current clinical
paradigm, and efforts to improve risk stratification. Nat Clin Pract Oncol.
2007;4(5):295-304. doi:10.1038/ncponc0794
41.
Northcott PA, Shih DJH, Peacock J, et al. Subgroup-specific structural variation
across 1,000 medulloblastoma genomes. Nature. 2012;488(7409):49-56.
doi:10.1038/nature11327
42.
Kumari A, Folk W, Sakamuro D. The Dual Roles of MYC in Genomic Instability and
Cancer Chemoresistance. Genes. 2017;8(6):158. doi:10.3390/genes8060158
43.
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics.
Nat Rev Genet. 2009;10(1):57-63. doi:10.1038/nrg2484
44.
Yang H-P. Reference Based RNA-Seq Data Analysis. Available at
https://bioinformatics.uconn.edu/reference-based-rna-seq-data-analysis/, 21. April
2021 :66.
45.
Scholes AN, Lewis JA. Comparison of RNA isolation methods on RNA-Seq:
implications for differential expression and meta-analyses. BMC Genomics.
98
2020;21(1):249. doi:10.1186/s12864-020-6673-2
46.
HiSeq 2500 System Guide. Available at
https://support.illumina.com/content/dam/illumina-support/documents/documentation/
system_documentation/hiseq2500/hiseq-2500-system-guide-15035786-03.pdf, 21.
April 2021:96.
47.
Baruzzo G, Hayer KE, Kim EJ, Di Camillo B, FitzGerald GA, Grant GR. Simulation-
based comprehensive benchmarking of RNA-seq aligners. Nat Methods.
2017;14(2):135-139. doi:10.1038/nmeth.4106
48.
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner.
Bioinformatics. 2013;29(1):15-21. doi:10.1093/bioinformatics/bts635
49.
Szabo L, Salzman J. Detecting circular RNAs: bioinformatic and experimental
challenges. Nat Rev Genet. 2016;17(11):679-692. doi:10.1038/nrg.2016.114
50.
Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods for
normalization and differential expression in mRNA-Seq experiments. BMC
Bioinformatics. 2010;11(1):94. doi:10.1186/1471-2105-11-94
51.
Garber M, Grabherr MG, Guttman M, Trapnell C. Computational methods for
transcriptome annotation and quantification using RNA-seq. Nat Methods.
2011;8(6):469-477. doi:10.1038/nmeth.1613
52.
Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-Type Specific Features
of Circular RNA Expression. Moran JV, ed. PLoS Genet. 2013;9(9):e1003777.
doi:10.1371/journal.pgen.1003777
53.
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal
RNAs with regulatory potency. Nature. 2013;495(7441):333-338.
doi:10.1038/nature11928
54.
Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs Are the
Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell
Types. Preiss T, ed. PLoS ONE. 2012;7(2):e30733. doi:10.1371/journal.pone.0030733
55.
Wilusz JE. Circular RNAs: Unexpected outputs of many protein-coding genes. RNA
Biol. 2017;14(8):1007-1017. doi:10.1080/15476286.2016.1227905
56.
Jakobi T, Dieterich C. Computational approaches for circular RNA analysis. Wiley
Interdiscip Rev RNA. 2019;10(3):e1528. doi:10.1002/wrna.1528
57.
Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the Mammalian
Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol Cell.
2015;58(5):870-885. doi:10.1016/j.molcel.2015.03.027
58.
Dube U, Del-Aguila JL, Li Z, et al. An atlas of cortical circular RNA expression in
Alzheimer disease brains demonstrates clinical and pathological associations. Nat
Neurosci. 2019;22(11):1903-1912. doi:10.1038/s41593-019-0501-5
59.
Gokool A, Anwar F, Voineagu I. The Landscape of Circular RNA Expression in the
Human Brain. Biol Psychiatry. 2020;87(3):294-304.
doi:10.1016/j.biopsych.2019.07.029
60.
Hanan M, Soreq H, Kadener S. CircRNAs in the brain. RNA Biol. 2017;14(8):1028-
1034. doi:10.1080/15476286.2016.1255398
99
61.
Venø MT, Hansen TB, Venø ST, et al. Spatio-temporal regulation of circular RNA
expression during porcine embryonic brain development. Genome Biol. 2015;16(1).
doi:10.1186/s13059-015-0801-3
62.
Wang PL, Bao Y, Yee M-C, et al. Circular RNA Is Expressed across the Eukaryotic
Tree of Life. Preiss T, ed. PLoS ONE. 2014;9(3):e90859.
doi:10.1371/journal.pone.0090859
63.
Demongeot J, Seligmann H. Spontaneous evolution of circular codes in theoretical
minimal RNA rings. Gene. 2019;705:95-102. doi:10.1016/j.gene.2019.03.069
64.
Hassanin, A. (2020). The SARS-CoV-2-like virus found in captive pangolins from
Guangdong should be better sequenced. BioRxiv 2021.
65.
Toptan T, Abere B, Nalesnik MA, et al. Circular DNA tumor viruses make circular
RNAs. Proc Natl Acad Sci. 2018;115(37):E8737-E8745. doi:10.1073/pnas.1811728115
66.
Ungerleider NA, Jain V, Wang Y, et al. Comparative Analysis of Gammaherpesvirus
Circular RNA Repertoires: Conserved and Unique Viral Circular RNAs. Longnecker
RM, ed. J Virol. 2018;93(6):e01952-18, /jvi/93/6/JVI.01952-18.atom.
doi:10.1128/JVI.01952-18
67.
Huang JT, Chen JN, Gong LP, et al. Identification of virus-encoded circular RNA.
Virology. 2019;529:144-151. doi:10.1016/j.virol.2019.01.014
68.
Salzman J. Circular RNA Expression: Its Potential Regulation and Function. Trends
Genet. 2016;32(5):309-316. doi:10.1016/j.tig.2016.03.002
69.
Robic A, Demars J, Kühn C. In-Depth Analysis Reveals Production of Circular
RNAs from Non-Coding Sequences. Cells. 2020;9(8):1806. doi:10.3390/cells9081806
70.
Panda AC, De S, Grammatikakis I, et al. High-purity circular RNA isolation method
(RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res.
2017;45(12):e116-e116. doi:10.1093/nar/gkx297
71.
Stagsted LV, Nielsen KM, Daugaard I, Hansen TB. Noncoding AUG circRNAs
constitute an abundant and conserved subclass of circles. Life Sci Alliance.
2019;2(3):e201900398. doi:10.26508/lsa.201900398
72.
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved,
and associated with ALU repeats. RNA. 2013;19(2):141-157.
doi:10.1261/rna.035667.112
73.
Kristensen LS, Hansen TB, Venø MT, Kjems J. Circular RNAs in cancer:
opportunities and challenges in the field. Oncogene. 2018;37(5):555-565.
doi:10.1038/onc.2017.361
74.
Stagsted LVW. Title: The RNA-binding protein SFPQ preserves long-intron splicing
and regulates circRNA biogenesis. :33.
75.
Conn SJ, Pillman KA, Toubia J, et al. The RNA Binding Protein Quaking Regulates
Formation of circRNAs. Cell. 2015;160(6):1125-1134. doi:10.1016/j.cell.2015.02.014
76.
Knupp D, Cooper DA, Saito Y, Darnell RB, Miura P. NOVA2 regulates neural
circRNA biogenesis. bioRxiv 2021:2021.05.02.442201. doi:10.1101/2021.05.02.442201
77.
Starke S, Jost I, Rossbach O, et al. Exon Circularization Requires Canonical Splice
Signals. Cell Rep. 2015;10(1):103-111. doi:10.1016/j.celrep.2014.12.002
100
78.
Wilusz JE. A 360° view of circular RNAs: From biogenesis to functions. Wiley
Interdiscip Rev RNA. 2018;9(4):e1478. doi:10.1002/wrna.1478
79.
Zhang X-O, Dong R, Zhang Y, et al. Diverse alternative back-splicing and
alternative splicing landscape of circular RNAs. Genome Res. 2016;26(9):1277-1287.
doi:10.1101/gr.202895.115
80.
Liang D, Tatomer DC, Luo Z, et al. The Output of Protein-Coding Genes Shifts to
Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting. Mol Cell.
2017;68(5):940-954.e3. doi:10.1016/j.molcel.2017.10.034
81.
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient
microRNA sponges. Nature. 2013;495(7441):384-388. doi:10.1038/nature11993
82.
Hao Z, Hu S, Liu Z, Song W, Zhao Y, Li M. Circular RNAs: Functions and Prospects
in Glioma. J Mol Neurosci. 2019;67(1):72-81. doi:10.1007/s12031-018-1211-2
83.
Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNAs. Mol Cell.
2017;66(1):9-21.e7. doi:10.1016/j.molcel.2017.02.021
84.
Chekulaeva M, Rajewsky N. Roles of Long Noncoding RNAs and Circular RNAs in
Translation. Cold Spring Harb Perspect Biol. 2019;11(6):a032680.
doi:10.1101/cshperspect.a032680
85.
Li HM, Ma XL, Li HG. Intriguing circles: Conflicts and controversies in circular RNA
research. Wiley Interdiscip Rev RNA. 2019;10(5):e1538. doi:10.1002/wrna.1538
86.
Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D, Lawrie CH. CircRNAs and
cancer: Biomarkers and master regulators. Semin Cancer Biol. 2019;58:90-99.
doi:10.1016/j.semcancer.2018.12.002
87.
Brown JR, Chinnaiyan AM. The Potential of Circular RNAs as Cancer Biomarkers.
Cancer Epidemiol Biomarkers Prev. 2020;29(12):2541-2555. doi:10.1158/1055-
9965.EPI-20-0796
88.
Vo JN, Cieslik M, Zhang Y, et al. The Landscape of Circular RNA in Cancer. Cell.
2019;176(4):869-881.e13. doi:10.1016/j.cell.2018.12.021
89.
Bonizzato A, Gaffo E, te Kronnie G, Bortoluzzi S. CircRNAs in hematopoiesis and
hematological malignancies. Blood Cancer J. 2016;6(10):e483-e483.
doi:10.1038/bcj.2016.81
90.
Lv T, Miao Y-F, Jin K, et al. Dysregulated circular RNAs in medulloblastoma regulate
proliferation and growth of tumor cells via host genes. Cancer Med. 2018;7(12):6147-
6157. doi:10.1002/cam4.1613
91.
Okholm TLH, Nielsen MM, Hamilton MP, et al. Circular RNA expression is abundant
and correlated to aggressiveness in early-stage bladder cancer. Npj Genomic Med.
2017;2(1). doi:10.1038/s41525-017-0038-z
92.
Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a
promising biomarker for cancer diagnosis. Cell Res. 2015;25(8):981-984.
doi:10.1038/cr.2015.82
93.
Wang Y, Liu J, Ma J, et al. Exosomal circRNAs: biogenesis, effect and application in
human diseases. Mol Cancer. 2019;18(1). doi:10.1186/s12943-019-1041-z
94.
Seimiya T, Otsuka M, Iwata T, et al. Emerging Roles of Exosomal Circular RNAs in
101
Cancer. Front Cell Dev Biol. 2020;8:568366. doi:10.3389/fcell.2020.568366
95.
Hulstaert E, Morlion A, Avila Cobos F, et al. Charting Extracellular Transcriptomes in
The Human Biofluid RNA Atlas. Cell Rep. 2020;33(13):108552.
doi:10.1016/j.celrep.2020.108552
96.
Chen L, Wang C, Sun H, et al. The bioinformatics toolbox for circRNA discovery and
analysis. Brief Bioinform. 2021;22(2):1706-1728. doi:10.1093/bib/bbaa001
97.
Dahl M, Daugaard I, Andersen MS, et al. Enzyme-free digital counting of
endogenous circular RNA molecules in B-cell malignancies. Lab Invest.
2018;98(12):1657-1669. doi:10.1038/s41374-018-0108-6
98.
Ma XK, Wang MR, Liu CX, et al. CIRCexplorer3: A CLEAR Pipeline for Direct
Comparison of Circular and Linear RNA Expression. Genomics Proteomics
Bioinformatics. 2019;17(5):511-521. doi:10.1016/j.gpb.2019.11.004
99.
Zhang X-O, Wang H-B, Zhang Y, Lu X, Chen L-L, Yang L. Complementary
Sequence-Mediated Exon Circularization. Cell. 2014;159(1):134-147.
doi:10.1016/j.cell.2014.09.001
100. Hansen TB, Venø MT, Damgaard CK, Kjems J. Comparison of circular RNA
prediction tools. Nucleic Acids Res. 2016;44(6):e58-e58. doi:10.1093/nar/gkv1458
101. Barrett SP, Salzman J. Circular RNAs: analysis, expression and potential functions.
Development. 2016;143(11):1838-1847. doi:10.1242/dev.128074
102. Hansen TB. Improved circRNA Identification by Combining Prediction Algorithms.
Front Cell Dev Biol. 2018;6. doi:10.3389/fcell.2018.00020
103. Gaffo E, Bonizzato A, Kronnie G, Bortoluzzi S. CirComPara: A Multi‐Method
Comparative Bioinformatics Pipeline to Detect and Study circRNAs from RNA‐seq
Data. Non-Coding RNA. 2017;3(1):8. doi:10.3390/ncrna3010008
104. Ahmadov U, Bendikas MM, Ebbesen KK, et al. Distinct circular RNA expression
profiles in pediatric ependymomas. Brain Pathol. 2021;31(2):387-392.
doi:10.1111/bpa.12922
105. Jakobi T, Uvarovskii A, Dieterich C. circtools-a one-stop software solution for
circular RNA research. Bioinformatics. 2019;35(13):2326-2328.
doi:10.1093/bioinformatics/bty948
106. Boss M, Arenz C. A Fast and Easy Method for Specific Detection of Circular RNA by
Rolling‐Circle Amplification. ChemBioChem. 2020;21(6):793-796.
doi:10.1002/cbic.201900514
107. Zhu J, Ye J, Zhang L, et al. Differential Expression of Circular RNAs in Glioblastoma
Multiforme and Its Correlation with Prognosis. Transl Oncol. 2017;10(2):271-279.
doi:10.1016/j.tranon.2016.12.006
108. Liu M, Wang Q, Shen J, Yang BB, Ding X. Circbank: a comprehensive database for
circRNA with standard nomenclature. RNA Biol. 2019;16(7):899-905.
doi:10.1080/15476286.2019.1600395
109. Vromman M, Vandesompele J, Volders PJ. Closing the circle: current state and
perspectives of circular RNA databases. Brief Bioinform. 2021;22(1):288-297.
doi:10.1093/bib/bbz175
102
110. Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs.
RNA. 2014;20(11):1666-1670. doi:10.1261/rna.043687.113
111. Lyu Y, Caudron-Herger M, Diederichs S. circ2GO: A Database Linking Circular
RNAs to Gene Function. Cancers. 2020;12(10):2975. doi:10.3390/cancers12102975
112. Metge F, Czaja-Hasse LF, Reinhardt R, Dieterich C. FUCHS—towards full circular
RNA characterization using RNAseq. PeerJ. 2017;5:e2934. doi:10.7717/peerj.2934
113. Chen L, Wang F, Bruggeman EC, Li C, Yao B. circMeta: a unified computational
framework for genomic feature annotation and differential expression analysis of
circular RNAs. Bioinformatics. 2020;36(2):539-545. doi:10.1093/bioinformatics/btz606
114. Aufiero S, Reckman YJ, Tijsen AJ, Pinto YM, Creemers EE. circRNAprofiler: an R-
based computational framework for the downstream analysis of circular RNAs. BMC
Bioinformatics. 2020;21(1):164. doi:10.1186/s12859-020-3500-3
115. Ghosal S, Das S, Sen R, Basak P, Chakrabarti J. Circ2Traits: a comprehensive
database for circular RNA potentially associated with disease and traits. Front Genet.
2013;4:283. Published 2013 Dec 10. doi:10.3389/fgene.2013.00283
116. Ungerleider N, Flemington E. SpliceV: analysis and publication quality printing of
linear and circular RNA splicing, expression and regulation. BMC Bioinformatics.
2019;20(1). doi:10.1186/s12859-019-2865-7
117. Feng J, Xiang Y, Xia S, et al. CircView: a visualization and exploration tool for
circular RNAs. Brief Bioinform. 2019;20(3):745-751. doi:10.1093/bib/bbx070
118. Ferrero G, Licheri N, Coscujuela Tarrero L, et al. Docker4Circ: A Framework for the
Reproducible Characterization of circRNAs from RNA-Seq Data. Int J Mol Sci.
2019;21(1):293. doi:10.3390/ijms21010293
119. Cheng J, Metge F, Dieterich C. Specific identification and quantification of circular
RNAs from sequencing data. Bioinformatics. 2016;32(7):1094-1096.
doi:10.1093/bioinformatics/btv656
120. Akers NK, Schadt EE, Losic B. STAR Chimeric Post for rapid detection of circular
RNA and fusion transcripts. Valencia A, ed. Bioinformatics. 2018;34(14):2364-2370.
doi:10.1093/bioinformatics/bty091
121. Chaabane M, Williams RM, Stephens AT, Park JW. circDeep: deep learning
approach for circular RNA classification from other long non-coding RNA.
Bioinformatics. 2020;36(1):73-80. doi:10.1093/bioinformatics/btz537
122. Song X, Zhang N, Han P, et al. Circular RNA profile in gliomas revealed by
identification tool UROBORUS. Nucleic Acids Res. 2016;44(9):e87-e87.
doi:10.1093/nar/gkw075
123. Wang J, Wang L. Deep learning of the back-splicing code for circular RNA
formation. Bioinformatics. 2019;35(24):5235-5242. doi:10.1093/bioinformatics/btz382
124. Yoshimoto R, Rahimi K, Hansen TB, Kjems J, Mayeda A. Biosynthesis of Circular
RNA ciRS-7/CDR1as Is Mediated by Mammalian-wide Interspersed Repeats. iScience.
2020;23(7):101345. doi:10.1016/j.isci.2020.101345
125. Mölder F, Jablonski KP, Letcher B, et al. Sustainable data analysis with Snakemake.
F1000Research. 2021;10:33. doi:10.12688/f1000research.29032.1
103
126. Wang B, Mezlini AM, Demir F, et al. Similarity network fusion for aggregating data
types on a genomic scale. Nat Methods. 2014;11(3):333-337. doi:10.1038/nmeth.2810
127. Ng S-Y, Bogu GK, Soh BS, Stanton LW. The Long Noncoding RNA RMST Interacts
with SOX2 to Regulate Neurogenesis. Mol Cell. 2013;51(3):349-359.
doi:10.1016/j.molcel.2013.07.017
128. Pajtler KW, Witt H, Sill M, et al. Molecular Classification of Ependymal Tumors
across All CNS Compartments, Histopathological Grades, and Age Groups. Cancer
Cell. 2015;27(5):728-743. doi:10.1016/j.ccell.2015.04.002
129. Wang L, Liu D, Wu X, et al. Long non-coding RNA (LncRNA) RMST in triple-
negative breast cancer (TNBC): Expression analysis and biological roles research. J
Cell Physiol. 2018;233(10):6603-6612. doi:https://doi.org/10.1002/jcp.26311
130. Uhde CW, Vives J, Jaeger I, Li M. Rmst Is a Novel Marker for the Mouse Ventral
Mesencephalic Floor Plate and the Anterior Dorsal Midline Cells. Riley B, ed. PLoS
ONE. 2010;5(1):e8641. doi:10.1371/journal.pone.0008641
131. Izuogu OG, Alhasan AA, Mellough C, et al. Analysis of human ES cell differentiation
establishes that the dominant isoforms of the lncRNAs RMST and FIRRE are circular.
BMC Genomics. 2018;19(1). doi:10.1186/s12864-018-4660-7
132. Yu C-Y, Kuo H-C. The Trans-Spliced Long Noncoding RNA tsRMST Impedes
Human Embryonic Stem Cell Differentiation Through WNT5A-Mediated Inhibition of the
Epithelial-to-Mesenchymal Transition. Stem Cells Dayt Ohio. 2016;34(8):2052-2062.
doi:10.1002/stem.2386
133. Cirak S, Foley AR, Herrmann R, et al. ISPD gene mutations are a common cause of
congenital and limb-girdle muscular dystrophies. Brain. 2013;136(1):269-281.
doi:10.1093/brain/aws312
134. Magri F, Colombo I, Del Bo R, et al. ISPD mutations account for a small proportion
of Italian Limb Girdle Muscular Dystrophy cases. BMC Neurol. 2015;15(1):172.
doi:10.1186/s12883-015-0428-8
135. Mahmoudi E, Kiltschewskij D, Fitzsimmons C, Cairns MJ. Depolarization-
Associated CircRNA Regulate Neural Gene Expression and in Some Cases May
Function as Templates for Translation. Cells. 2019;9(1):25. doi:10.3390/cells9010025
136. Evers C, Maas B, Koch KA, et al. Mosaic deletion of EXOC6B: Further evidence for
an important role of the exocyst complex in the pathogenesis of intellectual disability.
Am J Med Genet A. 2014;164(12):3088-3094. doi:https://doi.org/10.1002/ajmg.a.36770
137. Girisha KM, Kortüm F, Shah H, et al. A novel multiple joint dislocation syndrome
associated with a homozygous nonsense variant in the EXOC6B gene. Eur J Hum
Genet. 2016;24(8):1206-1210. doi:10.1038/ejhg.2015.261
138. Frühmesser A, Blake J, Haberlandt E, et al. Disruption of EXOC6B in a patient with
developmental delay, epilepsy, and a de novo balanced t(2;8) translocation. Eur J Hum
Genet. 2013;21(10):1177-1180. doi:10.1038/ejhg.2013.18
139. Strimbu K, Tavel JA. What are biomarkers?. Curr Opin HIV AIDS. 2010;5(6):463-
466. doi:10.1097/COH.0b013e32833ed177
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Informatik » Bioinformatik
Dokument erstellt am:27.06.2023
Dateien geändert am:27.06.2023
Promotionsantrag am:22.12.2022
Datum der Promotion:15.06.2023
english
Benutzer
Status: Gast
Aktionen