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Summary

Recent advances in next generation sequencing have provided a rich resource of large-
scale  RNA sequencing  (RNA-Seq)  data  from various  types  of  human cancer,  thereby 
fostering omics-based cancer research and biomarker discovery. However, the instability 
of  linear  mRNA  limits  its  use  for  robust  biomarker  detection  in  routine  diagnostic 
applications. This thesis therefore evaluates the potential of a more stable RNA species, 
namely circular RNA (circRNA), which shows specific expression patterns according to 
developmental stage and differentiation of cells and tissues. Circular RNA is a closed loop 
of single-stranded RNA and amounts to ~1% of total RNA detectable in a given sample.  
Currently,  there  are  several  circRNA  quantification  methods  publicly  available.  To 
accelerate  circRNA research  and  overcome certain  single-pipeline-based  limitations,  a 
novel multi-pipeline circRNA detection method called 'circs' was developed. This method 
allows  highly  sensitive  circRNA  detection  and  achieves  a  lower  false-positive  rate 
compared to  previous circRNA-detection pipelines.  In this  work, 'circ'  was successfully 
applied to both published and unpublished RNA-Seq data and allowed to quantify circRNA 
expression in RNAseq data sets from two independent cohorts of medulloblastoma (MB), 
the most common type of malignant brain tumor in children. These cohorts consisted of 
RNAseq data sets of 38 and 35 MB patient samples, and included various proportions of 
the four major MB groups: wingless (WNT), sonic hedgehog (SHH), group 3 and group 4.  
They are characterized by group-specific recurrent genomic alterations leading to aberrant  
activation  of  distinct  signaling  pathways  and  divergent  clinical  behavior  concerning 
likelihood of metastasis formation and patient outcome. 

The work summarized in this thesis shows that circRNA expression in MB tissue samples 
can  be  used  to  precisely  classify  tumors  into  these  distinct  MB  groups  without  any 
additional  data.  In  fact,  MB  group  assignment  based  on  circRNA expression  profiles 
proved  as  precise  as  assignment  based  on  Similarity  Network  Fusion  (SNF),  which 
integrates multiple omics layers for molecular tumor classification.  CircRNA expression 
profiles  differed  significantly  between  the  MB  groups  and  were  validated  in  the  two 
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independent patient cohorts.  The validated MB-group-specific circRNA profiles not only 
allowed reliable distinction between groups, but also identified individual circRNA species 
with selective expression in single MB groups. For example, circRMST was found to be a 
remarkably stable and highly expressed biomarker for WNT MB in both cohorts, circISPD 
was the  top  biomarker  for  SHH MB,  and circEXOC6B  was specifically  upregulated in 
Group 4 MB. Employing additional  online tumor databases,  it  was possible  to confirm 
these  circRNA biomarkers  in  further  published  datasets.  Additionally,  the  specificity  of 
circRMST upregulation for WNT MB was substantiated using circRNA expression profiles 
of >2000 tissue samples, including various other cancer entities and control tissues. 

To further validate several circRNA biomarker candidates, the ‘circleseq’ protocol was used 
with isogenic MYC-overexpressing MB cell lines. In addition to identifying many circRNAs 
detected in human MB tissue samples, these results also confirmed a previously observed 
trend of MYC overexpression being an indicator of globally decreased circRNA abundance 
in MB. The ‘circs’ pipeline developed in this thesis is freely available for public use, thus 
enabling other researchers to re-analyze their RNA-Seq data to uncover another omics 
data layer with highly promising biomarker potential.
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Zusammenfassung

Die großen Fortschritte in der Next-Generation-Sequenzierung führten zu umfangreichen RNA-

Sequenzierungsdaten  (RNA-Seq)  von  unterschiedlichen  Krebsarten  beim  Menschen  und 

unterstützen  damit  die  Omics-basierte  Krebsforschung  und  die  Entdeckung  von  neuen 

molekularen Biomarkern. Die Instabilität der linearen mRNA schränkt jedoch die Verwendung von 

mRNA-basierten Signaturen für den robusten Biomarker-Nachweis im diagnostischen Alltag ein. 

Die vorliegende Dissertationsarbeit beschäftigt sich daher mit dem diesbezüglichen Potenzial einer 

stabileren RNA-Spezies, nämlich der zirkulären RNA (circRNA), die je nach Entwicklungsstadium 

und Differenzierung von Zellen und Geweben sehr spezifische Expressionsmuster zeigt. Zirkuläre 

RNA stellt  eine geschlossene Schleife aus einzelsträngiger RNA dar und macht insgesamt nur 

etwa 1 % der in einem Zell-  oder Gewebe-basierten Extrakt nachweisbaren Gesamt-RNA aus. 

Aktuell  sind  mehrere  circRNA-Quantifizierungsmethoden  öffentlich  verfügbar.  Um die  circRNA-

basierte Forschung weiter zu beschleunigen und bestehende Limitationen bei Verwendung einer 

einzelnen der verfügbaren Analysepipelines zu überwinden, wurde in dieser Dissertationsarbeit 

eine  neuartige  Multi-Pipeline-Detektionsmethode  für  circRNA namens  „circ“  entwickelt.  Diese 

Pipeline ist hochempfindlich für den circRNA-Nachweis und erreicht eine geringere Falsch-Positiv-

Rate im Vergleich zu den bislang vorhandenen circRNA-Nachweispipelines. In dieser Arbeit wurde 

'circ'  erfolgreich  auf  veröffentlichte  sowie  unveröffentlichte  RNA-Seq-Daten  angewendet  und 

ermöglichte  die  Quantifizierung  der  circRNA-Expression  in  RNAseq-Datensätzen  aus  zwei 

unabhängigen  Kohorten  von  Medulloblastomen  (MB),  der  häufigsten  Art  von  bösartigen 

Hirntumoren im Kindesalter. Diese Kohorten bestanden aus RNAseq-Datensätzen von 38 und 35 

MB Patientenproben, die jeweils Proben der vier großen MB-Gruppen in unterschiedlichen Anteilen 

enthielten. Diese MB-Gruppen werden Wingless (WNT), Sonic Hedgehog (SHH), Gruppe 3 und 

Gruppe 4 genannt. Sie zeichnen sich durch gruppenspezifische genomische Veränderungen aus, 

die  zu  einer  aberranten Aktivierung unterschiedlicher  Signalwege und einem unterschiedlichen 

klinischen Verhalten hinsichtlich der Wahrscheinlichkeit einer Metastasenbildung und der Prognose 

für die Patienten führen.
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Die in dieser Dissertationsschrift zusammengefassten Arbeiten zeigen, dass die circRNA-Expressi-

on in MB-Gewebeproben verwendet werden kann, um die Tumoren sehr präzise in die einzelnen 

MB-Gruppen einzuordnen. Tatsächlich war die Zuordnung der MB-Gruppen basierend auf circR-

NA-Expressionsprofilen genauso präzise wie die Zuordnung basierend auf der Similarity Network 

Fusion (SNF) Analyse, die mehrere Omics-Datensätze für die molekulare Tumorklassifizierung in-

tegriert.  Insgesamt unterschieden sich die  circRNA-Expressionsprofile  signifikant  zwischen den 

MB-Gruppen, was in den beiden unabhängigen Patientenkohorten validiert wurde. Die validierten 

circRNA-Profile  ermöglichten nicht  nur eine zuverlässige Unterscheidung der Gruppen sondern 

identifizierten auch einzelne circRNA-Spezies mit selektiver Expression in den einzelnen MB-Grup-

pen. Dabei erwies sich circRMST in beiden Kohorten als stabil und stark exprimierter Biomarker für 

Medulloblastome der WNT-Gruppe. Im Gegensatz dazu war circISPD der wichtigste Biomarker für 

Medulloblastome der SHH-Gruppe, während circEXOC6B in den Gruppe 4 Medulloblastomen spe-

zifisch hochreguliert war. Durch die Analyse zusätzlicher Tumordatenbanken konnten diese circR-

NA-Biomarker in weiteren öffentlich verfügbaren Datensätzen bestätigt  werden. Darüber hinaus 

wurde die Spezifität der circRMST-Hochregulation in WNT-Medulloblastomen anhand von circR-

NA-Expressionsprofilen in >2000 Gewebeproben einschließlich diverser Krebsentitäten und Kon-

trollgewebe belegt.

Um weitere circRNA-Biomarkerkandidaten weiter zu validieren, wurde das Protokoll „circleseq“ mit 

isogenen MYC-überexprimierenden MB-Zelllinien verwendet. Diese Ergebnisse bestätigten nicht 

nur  viele  circRNAs,  die in  menschlichen  MB-Gewebeproben mit  „circs“  nachgewiesen  wurden, 

sondern validierten auch einen zuvor beobachteten Trend, dass eine MYC-Überpression einen In-

dikator für eine generell verminderte circRNA-Expression in darstellt. Die hier entwickelte Pipeline 

„circs“ ist frei verfügbar und öffentlich zugänglich, sodass andere Forscher*innen ihre RNA-Seq-

Daten erneut analysieren können, um eine weitere Omics-Datenschicht mit viel versprechendem 

Biomarkerpotenzial untersuchen zu können.
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1 Introduction 

1.1 Pediatric malignancies

Cancer is a devastating disease that is typically not caused by one single genetic event, 
but  rather  arises  through  an  accumulation  of  alterations  in  the  affected  cells.  The 
“hallmarks of cancer” summarize these features1: Development of any somatic cell  into 
cancer  requires,  among other  characteristics,  abnormal  and sustained cell  growth that 
might be caused by mutations in pro-proliferative signaling pathways. This usually is kept 
under control by growth suppressors that the developing cancer must evade in order to 
survive.  Cell  death  needs to  be  avoided by  mechanisms that  render  the  cancer  cells  
immortal, making indefinite proliferation possible. The immune system can also destroy 
cells proliferating in an uncontrolled manner — another housekeeping mechanism to which 
the growing cancer must adapt. Any living cell needs nutrients, and thus after a certain  
degree of tumor growth, angiogenesis must be induced to ensure the delivery of blood to  
the tumor tissue. For solid tumors, a deregulation of the energy metabolism in malignant 
cells deep inside the tumor can render them more resistant to stressful conditions, such as 
nutrient  deprivation,  if  angiogenesis  is  insufficient.  Tumors  also  can  spread  and  form 
metastases in distant tissues, the last hallmark of cancer1. Each of these steps may be 
achieved  due  to  pre-existing  germline  mutations  and/or  acquired  somatic  mutations, 
changes in gene expression, epigenetic alterations, or other mechanisms.

Besides leukemias and a number of solid cancers originating outside the central nervous 
system (CNS), there are several types of malignant brain tumors threatening the lives of 
children2–4.  Even  state-of-the  art  medicine  does  not  guarantee  survival  nor  complete 
recovery  in  these malignant  neoplasms.  In  general,  brain  cancers are  difficult  to  treat 
because the blood-brain barrier complicates drug delivery5,6, the position of the malignancy 
often prohibits complete tumor resection due to proximity to vital parts of the CNS and 
sequelae of treatment are manifold, often resulting in impaired neuro-cognitive abilities in  
brain cancer survivors7,8. If survival of the initial malignancy is achieved, metastasis can 
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eventually threaten the patients life yet again. Immediate or long-term treatment related 
side-effects from radiotherapy, chemotherapy and/or tumor resection can emerge2,9–12. One 
form  of  pediatric  brain  cancer,  medulloblastoma  (MB),  is  the  most  common  primary 
malignant CNS tumor in children, diagnosed ~1000 times per year globally13(p8). 

1.2 Medulloblastoma

1.2.0 Overview

Medulloblastoma (MB) is the most common malignant brain tumor in children9. The sub-
categorization of MB into different groups14,15 in order to improve therapy16 resulted in four 
core MB groups: WNT (wingless), SHH (sonic hedgehog), Group 3 and Group 417,18 - each 
with biological  distinct  and clinically relevant features19,20.  5-year survival  is the best  in 
WNT MBs, while the prognosis for Group 3 MB is the worst. Group 4 and SHH are both 
considered  intermediate  risk.  However,  this  can  be  assessed  more  precisely  when 
considering subtypes (see Figure 1). Recommendations have been made to de-escalate  
therapy for WNT MB patients since the current standard-of-care leads to significant side-
effects and suboptimal  development of  treated children7,21,20,22.  However,  recent  studies 
tried to divide the current four MB groups into more subtypes18 based on multiple tumor 
tissue characteristics, leading to a more accurate disease classification and enabling a 
more targeted approach. 
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1.2.1 History

Medulloblastoma was first described in 192623 as a malignancy thought to originate from a 
neuronal progenitor cell type called medulloblasts that - as known today - does not exist13. 
The exact cell type of origin is still a focus of research24. In the years that followed, it was 
reported that radiation improved the patients’ survival, as did chemotherapy23. Thereafter, 
recurrent mutations were identified in SHH and WNT pathway genes, paving the way for 
MB group definitions that reached a consensus of four MB groups in 201225. Subsequently, 
subtypes were also defined, and continue to be fine-tuned today3,6,7,21,22,24,25,26(p5). 

1.2.2 Clinical features

Clinical features of MB include unspecific symptoms, such as headache and vomiting, as 
well as more specific ones, such as ataxia, motor or vision problems that can worsen over 
time9. If a child already has spinal metastasis, the symptoms may also include back pain,  
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gait difficulties and sensory deficits. Medulloblastoma is also able to spread outside the 
CNS, but rarely does so9. However, these symptoms are not sufficient to diagnose MB. In 
the vast majority of cases MB is considered an important differential diagnosis after initial  
radiological  imaging.  Thereby,  the  space-occupying  lesion  in  the  posterior  fossa  is 
identified and then removed surgically. Following tumor resection or biopsy, the removed 
tumor tissue is used to establish an MB diagnosis9,30. MB is not clearly distinguishable from 
Pilocytic  Astrocytoma  (PA),  Ependymoma  (EPN)  and  other  pediatric  brain  tumors  in 
radiography  pictures  of  the  patient,  hence  tissue-based  histological  classification  is 
required and often complemented by molecular diagnostics. In the clinic, MB is diagnosed 
by neuropathological exclusion of other cancer types, such as atypical teratoid/rhabdoid 
tumor (AT/RT), glioblastoma, ependymoma and others9.
Risk stratification for MB patients is not only based on the neuropathological diagnosis, but 
also relies on metastatic status and age of the patient30.  Today,  MB groups are being 
distinguished  by  molecular  analyses,  facilitating  clinical  risk  stratification10,23,31.  The 
common  treatment  approach  for  MB  involves  surgical  removal  of  the  tumor23,  risk 
stratification of the patient, followed by radiotherapy and chemotherapy adapted to risk and 
patient  age30.  The  overall  5-year  survival  of  MB patients  is  around  70%,  however,  a 
significant proportion of these patients experience long-term side-effects due to surgery, 
radiotherapy  and  chemotherapy7,30,32.  Group assignment  is  commonly  conducted  using 
histopathological assessment, immunohistochemistry, DNA methylation profiling, or RNA-
sequencing (RNA-Seq)18,26,33–36. Distinction between WNT MBs and SHH MBs is straight 
forward, however, several studies demonstrated a significant variability in the diagnostic  
distinction between Group 3 and Group 4 MB17,33. Currently, DNA methylation profiling is 
considered the gold standard for MB group classification9. 

1.2.3 Epidemiology

Medulloblastoma is the most common malignant brain tumor in children, with an estimated 
annual incidence of approximately five newly diagnosed patients per 1 million children and 
adolescents9. Medulloblastoma is most commonly diagnosed in young children (incidence 
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peaking at ~6 years of the patients age), but also occurs in adults (~1% of MB cases).  
Medulloblastoma is found 1.8 times more often in males than in females, but this also 
depends on the MB group9,32. Ethnicity does not play a significant role in survival32. 

1.2.4 WNT medulloblastoma

WNT MB is  the molecular  group with  the best  overall  survival  for  patients,  yet it  only 
comprises ~10% of all MB cases18,25,26,32,37. Recurrent genomic alterations in WNT MB are 
found in CTNNB1 and SMARCA4, among others23, and a monosomy of chromosome 618,23 

is a hallmark feature. The CTNNB1 mutations that typically occur in WNT MBs result in a 
constitutively active beta-catenin that is part of the WNT signaling pathway38, making this 
pathway permanently active and thereby promoting tumor growth.  TP53 mutations can 
also be detected in WNT MBs, but this does not indicate better or worse prognosis for 
these patients31. WNT MB presents with the lowest frequency of metastatic disease at time 
of diagnosis when compared to the other MB groups. The histology of these tumors is  
mostly  classic.  Since  the  outcome  of  WNT MB  patients  is  -  if  treated  accordingly  - 
favorable,  clinical  studies  aim  to  de-escalate  therapy  in  order  to  minimize  treatment 
sequelae while still trying to achieve long-term survival. The subtypes of WNT MBs are 
alpha and beta,  with  alpha tumors being more common in  younger  patients and beta 
tumors showing less frequently chromosome 6 monosomy. The typical location of WNT 
MBs is in the brainstem, and the sex ratio of WNT MB patients is 1:1 23. Germline  WNT 
pathway mutations may lead to Turcot syndrome25. The 5-year survival for patients with 
WNT alpha and beta MBs is 97% and 100%, respectively. Primarily, WNT MB mortality  
can be attributed to complications of the therapy or secondary neoplasms9. The proposed 
cellular origin of WNT MBs are progenitor cells in the lower rhombic limp23.

1.2.5  SHH medulloblastoma

Sonic Hedgehog (SHH) MBs comprise ~ 30% of all  MB diagnoses. Common genomic 
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alterations are found in SHH pathway genes, such as PTCH1, SMO, GLI1/2, MYCN, and 
SUFU, but also genes that correspond to syndromes of genome instability such as TP53, 
which  is  linked to  Li-Fraumeni-Syndrome39.  With  generally  lower  survival  compared to 
WNT MBs, SHH MBs are divided into four distinct  subtypes: alpha, beta, gamma and 
delta18.  Beta and gamma SHH MBs are more common in infants and frequently show 
desmoplastic  or  MB  with  extensive  nodularity  (MBEN)  histology.  Beta  SHH  MBs  are 
associated with the worst 5-year survival rate of all SHH subtypes with ~ 67%, and often 
carry a  PTEN gene loss. Beta SHH MB patients also face a three-fold increase in the 
chance of having metastatic dissemination at diagnosis compared patients with gamma 
SHH MB (33% in beta compared to 9.4% in gamma SHH MBs), whereas SHH MB gamma 
survival rates are more favorable at 88%, and these tumors typically show a balanced 
genome. The other two SHH MB subtypes, alpha and delta, are more common in older 
children. Alpha SHH MBs show typical SHH pathway alterations, such as amplifications of 
GLI2 and  MYCN, in addition to  TP53  mutations. Unlike WNT MBs,  TP53 mutations do 
have an impact on survival, reducing the patient survival rates by 50%31. Additionally, SHH 
MB alpha is characterized by a loss of chromosome arms 9q, 10q and/or 17p. Notably, the 
delta SHH MBs comprise the SHH subtype with the highest 5-year survival, at 88.5%, and 
this subtype frequently harbors TERT promoter mutations18. The typical anatomic location 
for SHH MB is the cerebellar hemisphere and the cell type of origin likely is the granule cell  
precursor cell23.

1.2.6 Group 3 medulloblastoma

The overall prognosis for Group 3 MB remains poor. Group 3 MB patients comprise 25 % 
of  diagnosed  MB  patients,  and  metastasis  are  more  common  among  these  patients 
compared to all other MB groups. Dependent on the molecular subtype, metastesis are 
seen in 43.4% (alpha), 20%(beta) and 39% (gamma) of patients18.  MYC amplification is 
most  commonly  detected  in  Group  3  gamma,  and  this  subtype  is  associated  with  a 
particularly poor survival rate compared to all other MB subtypes. Group 3 beta MBs show 
overall  genetic  instability  characterized  by  broad  genomic  losses  and  gains  of  whole 
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chromosome regions such as chromosome 7 and/or 18 gain23, isochromosome 17q and 
common losses of chromosomes 8, 11, 10q and 16q. OTX2 amplification and DDX31 loss 
are  enriched  in  this  subtype  that  is  also  frequently  associated  with  high  GFI1/1B 
expression. Metastatic dissemination at diagnosis is most commonly detected in Group 3 
alpha MBs. However, this subtype is associated with a relatively favorable 5-year survival 
rate (66.2%) compared to other Group 3 subtypes. Overall Group 3 MBs are commonly 
characterized  by  classic  or  anaplastic/  large-cell  histology  and  a  2:1  male:female  sex 
ratio25,37. Neural stem cells located at the fourth ventricle are currently considered as the 
likely cellular origin23.

1.2.7 Group 4 medulloblastoma

Group  4  MB  is  generally  less  aggressive  as  compared  to  Group  3  MB,  but  is  still 
associated  with  an  intermediate  prognosis.  Group  4  MB  comprise  ~  35%  of  all  MB 
diagnoses, and this type is more frequently observed in males than in females, at a ratio of 
3:1.  Group  4  MBs  are  subdivided  into  three  subtypes:  alpha,  beta  and  gamma. 
Isochromosome 17q constitutes the most common alteration in Group 4 MBs. Alterations 
with  subtype-specific  enrichment  include  MYCN/CDK6 amplification  in  Group  4  alpha, 
SNCAIP duplication in Group 4 beta, and CDK6 amplification in Group 4 gamma samples. 
Metastases are seen in approximately 40% of patients across these three subtypes. The 
5-year survival rates differ significantly across these Group 4 subtypes with 66.8%, 75.4%, 
and 82.5%, in alpha, beta, and gamma subtypes, respectively. Unipolar brush cells  are 
considered the likely cell type of origin18,23 .

Notably, Group 3 and Group 4 MB show a distinct protein/RNA imbalance33(p4), regarding 
the predominant level of oncogenic pathway dysregulation. Specifically, this enrichment is  
observed  at  the  transcriptional  or  proteomic  levels  in  Group  3  and  Group  4  MBs,  
respectively.  This discrepancy is not detected in WNT or SHH MB, and a mechanistic  
explanation is still missing33(p4). 
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1.2.8 Medulloblastoma risk stratification

Risk stratification for MB patients is based on several clinical and biological properties of 
the tumor20,37,40. Despite steadily increasing survival rates, there is still a pressing clinical 
need for biomarkers that are fast,  cheap, easy and reliable to classify MB groups and 
improve risk stratification. The overall goal here is to make the therapeutic intervention as 
effective  as  possible,  while  side  effects  and  neurocognitive  sequelae  should  be 
minimized33,34,41. Examples for important MB biomarkers include WNT and SHH groups. 
WNT  MB  can  be  identified  by  immunohistochemistry20,  but  also  recurrent  genetic 
alterations,  such  as  monosomy  6.  For  MB  as  in  many  cancer  types,  MYC gene 
amplification  is  a  biomarker  for  poor  prognosis20,42.  The  distinction  between  Group  4 
(intermediate  prognosis)  and  Group  3  (worse  prognosis,  MYC amplification)  MBs  is 
sometimes  not  precise,  and  thus  there  are  still  efforts  required  to  define  reliable 
biomarkers  for  diagnostic  distinction  of  the  two  groups33.  Furthermore,  MB  group 
identification  is  important  to  select  targeted  therapies  for  molecularly  defined  patient  
cohorts  including  SMO inhibitors  in  SHH  MB16.These  examples  provide  compelling 
rationale why accurate molecular classification is urgently required to improve outcome of  
MB patients. Integration of subtype classification comprises the next step in this even more 
specific treatment optimization – ultimately aiming for personalized medicine approaches, 
where each patient has a therapy tailored based on diagnosis and omics data27.

1.3 RNA sequencing 

To  this  date,  several  RNA quantification  methods  have  evolved  enabling  the  precise 
detection  and  quantification  of  several  RNA  types  including  long  non-coding  RNA 
(lncRNA),  microRNA and  mRNA43,44.  The  general  RNA-Seq  workflow  includes  a  first 
isolation of RNA from the sample to be investigated. Trizol-based RNA isolation was the 
default method for several years, while alternative approaches for RNA extraction are now 
increasingly  used,  including  new,  modern  approaches45.  The  RNA molecule  is  rather 
instable. Therefore, the isolated RNA needs to be converted to its complementary DNA 
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(cDNA)  that  is  a  more  stable  molecule  currently  used for  next-generation  sequencing 
approaches. The cDNA is fragmented in a next step, an adenosine overhang is added to 
each cDNA fragment on which the library adapters are ligated to in a subsequent step. In a 
currently available Illumina sequencing machine such as the HiSeq2500, these libraries 
are  then added to  the sequencing flow cell  and amplified to  form a cluster  of  single-
stranded cDNA copies originating from the same original cDNA molecule. The sequencing 
by synthesis  is  generally  a  repetition of  3  steps executed 100-250 (depending on the 
machine and the chosen workflow) times: extending the DNA by one base that includes a  
fluorescent label that differs for each of the four DNA bases, reading the optical signal  
indicating which base was incorporated and deblocking of the next synthesis step. This 
happens on the complementary strand, resulting in a paired DNA molecule in the end. For 
paired end sequencing, the synthesis is made from both directions, for single-end reads 
this is only the case for one side46. The sequencing machine itself puts out base calls, or 
rather a record of what colors were detected where on the flow cell at what cycle. These 
base call (bcl) files are then used for subsequent computational analysis. 
During the demultiplexing step, each read is sorted into sample-specific files. These files 
are in the .fastq format, including the sequences of RNA-Seq reads, quality parameters of  
the  read,  and  other  meta-data  such  as  information  about  the  utilized  flowcell  and 
sequencing machine as well as the time of the run. 



The resulting RNA-Seq reads are filtered based on the quality and the length of the read 
(Figure 2) including adapter contamination (Figure 3). These parameters can be assessed 
and visualized with multiple tools. Figure 2 shows a MultiQC example output graph with 
multiple  RNA-Seq  samples  as  input.  Two  samples  with  inferior  RNA-Seq  quality  are 
identified (yellow lines). The filtered RNA-Seq reads can then be aligned to a reference 
genome  utilizing  gap-aware  mappers  such  as  STAR44,47,48.  The  following  RNA-Seq 
quantifications need to be normalized and can subsequently be used to quantify RNA 

expression , search for single nucleotide variants (SNVs), and to detect circRNAs49–51.

1.4 Circular RNA

1.4.0 Overview

Circular RNA is a closed loop of single-stranded mostly non-coding RNA without poly(A) 
tail and cap structure52–54. In contrast to linear RNAs, this kind of non-coding transcript is 
RNAseR resistant49 and characterized by a longer  half  life time55.  Historically,  circRNA 

19



transcripts have been discarded54 as junk but due to recent improvements in RNA-Seq 
data quality and quantity it is possible now to quantify circular RNAs reliably using different  
methodologies56. The expression of circRNAs has been shown to be developmental stage, 
tissue-  and  time-specific57.  Furthermore,  circRNA  expression  is  enriched  in  human 
neuronal tissue57–61. Some circRNAs show a high degree of conservation, and seem to be 
present in the whole eukaryotic tree of life62 leading to a circRNA-based theory of the 
origins of first functional biomolecules63. Another focus of circRNA research is based on 
viruses, where virus-encoded circRNAs have been detected64–67.  An  in vivo process for 
linearization of circRNA - its breakage of the ring structure to form a linear transcript - has 
not yet been described.

1.4.1 Classification of circular RNAs

Based on their genomic content, circRNAs are classified into exclusively exonic circRNAs 
(EcircRNAs),  intronic and exonic circRNAs (EIcircRNAs)68 and intronic lariats  escaping 
degradation,  becoming  intronic  circRNAs  (IcircRNA)69,70.  Exonic  circRNAs  include  a 
subclass of annotated start-codon including AUGcircRNAs, which are more evolutionary 
conserved and are synthesized in a mostly ALU-independent manner71. 

1.4.2 Synthesis of circular RNAs

In eukaryotes, circRNAs are synthesized from pre-mRNA in vivo  by back-splicing. Back-
splicing involves a splicing donor and a acceptor site that are ligated together, forming a 
closed ring of RNA56. This process can be aided by reverse complementary sequences in 
close genomic proximity to the two splice sites of the circRNA (ALU72,73, a primate-specific 
genomic  element74)  or  an  enzymatic  binding  site  facilitating  the  back-splicing  (e.g  by 
QKI75), while ADAR1 binding sites antagonize circularization in proximity. Tissue-specific 
circRNA  synthesis  regulators  have  been  found  as  well  for  neuronal  tissue 76.  Most 
circRNAs are synthesized by joining two canonical splice sites77,  namely AG-GU78,  but 
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there  are  exceptions  especially  for  IcircRNAs70.  Another  circRNA-forming  mechanism 
includes exon-containing lariat precursors that originated in exon-skipping events during 
splicing73.  The  RNA-interacting  protein  SFPQ  can  also  have  effects  on  circRNA 
biogenesis74. While being synthesized, circRNAs themselves can be alternatively spliced, 
pointing towards a diverse circRNOME in each cell79. If the function of the spliceosomal 
machinery is  limited,  the output  of  coding genes can be shifted to  increased circRNA 
formation80,  especially in genes where the circRNA transcript  is in competition with the 
linear transcript.

1.4.3 Functions of circular RNAs
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The  most  prominent  putative  function  of  circRNAs  is  their  ability  to  sponge 
microRNAs81,81,82.  Other  functions  that  have  been  described  are  the  sponging  of  RNA 
binding  proteins  (RBPs)49.  Most  circRNAs  are  non-coding,  although  some  circRNAs 
include  an  internal  ribosomal  entry  site  (IRES)  and  have  been  shown  to  be  actively 
translated into proteins83,84. There is another putative function of circRNAs that has been 
discovered: formation of protein scaffolds85. Exonic intronic circRNAs are most commonly 
linked to this function. Overall, the function of most circRNAs is unknown to this date and 
still needs to be elucidated.

1.4.4 Circular RNAs as disease-specific biomarker 

Circular  RNAs have  multiple  properties  that  make  them ideally  suited  for  the  use  as 
biomarkers. They are remarkably specific regarding species-, age-, developmental-stage- 
and tissue-dependent  expression,  suggesting  a  high  degree of  differentially  expressed 
circRNAs that  could  correlate  to  various  properties  of  the  disease86.  Multiple  in  silico 
detection  methods are  available  for  different  raw data  inputs  and RNA-Seq protocols. 
Once  candidate  biomarkers  are  identified,  polymerase  chain  reaction  (PCR)  based 
approaches, such as quantitative real-time PCR (qRT-PCR), can be used to detect these 
in a fast and an inexpensive manner.

Cancer  has been one  of  the  most  investigated  research fields  for  circRNA biomarker 
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studies73,86–89,  including  hematological  maligancies89.  Since  circRNAs  are  especially 
enriched in neuronal tissue57, more stable than linear RNAs and detectable by qRT-PCR of 
selected back-splice  junctions49,59–61,  circRNAs have been investigated in  several  brain 
cancer  entities  for  their  potential  as  biomarker82,87,90.  Different  circRNAs  and  their 
respective  deregulation  have  been  associated  with  several  hallmarks  of  cancer, 
suggesting a role in tumorgenesis73. Furthermore, circRNAs hold great potential for liquid 
biopsies including detection in cerebro-spinal fluid (CSF), which might allow for clinical 
applications in brain tumor patients including disease monitoring.

Other ways of using circRNA as biomarker for cancer is exemplified by Okholm et. al.(91), 
who utilized the overall  abundance of circRNA as an indicator and not single circRNA 
transcripts. Furthermore, circular RNAs have been shown to also exist in exosomes 92–94 

and are even enriched in some biofluids compared to their tissues of origin in the human 
body95.  Hence, circRNA detection in biofluids holds great promise as a convenient and 
non-invasive direction for biomarker development. 

1.5 Detection of circular RNAs

1.5.0 Overview

Electron microscopy96 was first used to identify circRNAs, but since then several other 
identification  techniques  have  evolved.  CircRNA can  be  detected  by  many  different 
methods, in silico and in vitro. The circRNA detection in silico relies on analysis of RNA-
Seq data96. In vitro assays such as nanoString, Northern blot, droplet digital PCR (ddPCR) 
or qRT-PCR with primers detecting the back-splice junction of the circular transcript are 
relatively  low-throughput  in  comparison25.  Another  approach is  the  circleseq protocol72. 
Here, the sample is treated with RNAseR before sequencing, exploiting circRNAs stability  
toward this enzyme and thus enriching for circular RNAs while depleting linear transcripts. 
This method can also be used to confirm circRNAs found in other datasets, although some 
circRNAs have been shown to be RNAseR sensitive49.
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 1.5.1 Detection of circular RNAs in silico based on RNA sequencing 
data

Multiple  in silico circRNA detection methods have been developed to analyze RNA-Seq 
data and identify circular transcripts53,96,98–100, all relying on back-splice junction detection. 
The linearly spliced parts of any circRNA can originate from linear or circular transcripts, so 
reads  with  back-splice  junctions  are  the  only  circRNA-specific  signal  in  this  context.  
However,  back-splice  junction  reads are  no guarantee of  definitive  circRNA detection, 
since several genomic parts get “mixed” in a process called exon scrambling101, during 
which back-splice junctions are formed as well,  but do not result in circRNA formation. 
Since these in silico methods alone have a high false-positive rate49, it was proposed to 
use multiple detection pipelines simultaneously, and to accept only repeatedly detected 
circRNA transcripts  as  true  positives102.  This  approach  has  been  applied  by  several 
research teams103,104. 
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1.5.2 Detection of circular RNAs in vitro / in vivo

CircRNAs can be detected by PCR of the back-splice junction, but this is a comparatively  
low throughput  method,  as the detection assay needs to  be designed individually  and 
measurements are done for each single circRNA and each sample separately. The primers 
designed for each circRNA need to be placed in close proximity to the back-splice junction 
in order for it to be covered by the PCR product. Circtools includes circtools primer (see 
Figure 7), a tool for designing primers for this application105. 

Rolling circle amplification106 is another method to detect circRNAs,  especially when the 
circular-to-linear ratio is expected to be low (giving a high amount of noise). Microarray 
techniques for circRNA are available since 201496, making circRNA detection even more 
accessible. CircRNAs can also be detected by the circSCREEN method, utilizing live-cell 
imaging  and  specifically  engineered  circRNAs  that  express  GFP  proteins  upon 
circularization75.

1.6 Circular RNA and medulloblastoma

The circRNA landscape of MB was previously not comprehensively studied in sufficiently 
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sized primary  tumor  cohorts.  The discovery  of  circRNA-based  biomarkers  holds  great 
promise due to the molecular heterogeneity of the disease and highly distinct outcomes to 
current treatment approaches of MB patients. Previous circRNA studies in MB90 did not 
aim to resolve the whole MB group circRNA landscape. Other brain cancers have been a 
target  of  exploratory  circRNA biomarker  studies  before82,104,107 with  several  candidate 
circRNA biomarkers that were discovered. As MB is usually treated by removing the tumor 
mass surgically, tissue becomes available not only for pathological but also biological and 
bioinformatic  analysis.  The CSF could  be  an additional  source  for  circRNA biomarker 
discovery as described above.

1.7 Other tools for circular RNA research 

In the years following the first publication of circRNA detection72 algorithms several in silico 
circRNA tools emerged96,49,53,56,98–100,102,103,118–123.  This landscape of circRNA tools includes 
databases  of  circRNAs88,95,108–110,110,111,  circRNA  interaction  and  sequence  analysis 
tools105,108,112–115, statistical analysis of circRNA data105 as well as tools for visual circRNA 
representation116,117. A plethora of circRNA detection algorithms was also developed.

1.8 Snakemake

Bioinformatic workflows often combine a multitude of programming languages, software 
modules and tools utilized. This poses a risk: when a bioinformatic workflow or parts of it  
are updated, final results may change. This is a problem to the reproducibility of  such 
pipelines.  One  update  of  any  small  software  component  may  result  in  different  final 
findings. 

Snakemake125 is a framework for reproducible data analysis not only delivering the ability  
to deliver stable software environments for each separate step of a data analysis pipeline 
via  conda  (https://docs.conda.io/en/latest/),  but  also  the  possilility  to  orchestrate  many 
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small substeps of complex pipelines on computing clusters with many nodes and one local 
machine. Snakemake is a rule-based bioinformatic workflow management tool that can be 
used to execute commands based on rules. These rules usually include an input file or a 
list of input files, an output file or a list of output files, a software environment in which the  
commands included in the rule are executed, and one or multiple commands that convert  
the input files into output files. There are several options to add parameters to each rule, 
such as the number of CPU threads that can be used. Rules are connected by files: output 
files of one rule are input files for the next rule, resulting in the here called rule “all” that  
collects all final output files of the workflow.

Each shell command can be wrapped into a rule with independent software environments. 
Snakemake  offers  rich  documentation,  several  tutorials  and  a  “snakemake  workflow 
catalog”  at  https://snakemake.github.io/snakemake-workflow-catalog/,  where  several 
snakemake-based pipelines are listed.
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2 Aim of this thesis

Medulloblastoma is the most common malignant brain tumor in childhood. The disease-
related morbidity is high and side-effects of its multimodal therapies may result in major 
burdens for survivors of the disease. Refined risk stratification and classification of the 
disease are urgently needed to tailor therapy intensity to the individual risk profile of the 
patient. The identification of the biological subgroups, WNT, SHH, Group 3 and Group 4, 
has led to the recognition of significant intertumoral heterogeneity with important biological, 
clinical  and  prognostic  associations.  Hence,  reliable  biomarkers  for  refined  biological 
classification of the disease are urgently needed. The value of mining non-coding RNA for  
biomarker  discovery  in  MB  research  still  remains  unclear.  In  particular,  the  circRNA 
landscapes  of  the  distinct  MB  groups  have  not  yet  been  explored  comprehensively. 
Notably, circRNA profiling has shown a remarkable potential for biomarker development, 
and  thus  constitutes  a  promising  tool  for  therapy  and  risk  stratification  in  several 
malignancies. 

The aim of this study was to evaluate circRNA profiles and define reliable circRNA-based 
biomarkers  for  MB groups  in  order  to  refine  existing  classification  approaches  to  the 
disease.

To  determine  the  biomarker  potential  of  circRNAs  in  MB,  the  first  goal  was  the 
establishment of a multi-pipeline workflow that was reliable and precise, leveraging the full 
potential of this layer of information. Next, a discovery dataset was evaluated for circRNA 
expression  profiles  to  identify  sets  of  biomarkers  that,  in  the  best  case,  show  highly 
differential  expression patterns correlating to clinical features, metastatic dissemination, 
prognosis, or other features such as molecular MB subgroups. Candidate biomarkers were 
then  validated  in  a  non-overlapping,  independent  validation  cohort  and  biomarker 
specificity  was  determined  in  comparison  to  normal  and  other  cancer  tissues.  Once 
reliable and specific circRNA MB biomarkers were defined, the candidates were verified 
using  targeted,  orthogonal  experimental  approaches.  With  a  novel,  accurate  circRNA-
detection pipeline, and utilizing unparalleled amounts of circRNA MB data, we aimed to 
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identify  biomarkers  that  will  lead  the  way  to  fast,  inexpensive  and  robust  MB  group 
classification in order to improve patient stratification of children and adolescents with this  
highly aggressive disease in the future. 
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3 Materials and methods

3.1 Wet lab experiments

3.1.1 Patient samples 

All MB samples were collected following written informed consent. Approval for the study 
was given by the internal review board at the Necker Hospital for Sick Children (Paris,  
France,  IRB  approved  protocol  number  DC-2009-955  for  tumor  banking)  and  by  the 
internal review board of the Medical Faculty at Heinrich Heine University Düsseldorf (study 
numbers  3005  and  2018-45-FmB).  All  analyzed  samples  were  collected  from  newly 
diagnosed  MB.  RNA-Seq  data  from  healthy  fetal  brain  tissue  was  downloaded  from 
ENCODE  (https://www.encodeproject.org/). From each sample included in the discovery 
(EGA:  EGAD00001004327)  or  the  validation  cohort,  total  RNA  was  prepared  and 
sequenced as described elsewhere18. The validation dataset is not public as of 03/11/2022.

3.1.2 MYC/RNAseR cell line models

UW228, DAOY and ONS76 cell lines were included in the MYC/RNAseR dataset. All cell 
lines  were  cultured  in  DMEM  medium  with  10%  fetal  bovine  serum  (FBS)  and  1% 
penicillin/streptomycin (P/S) at 37°C in a 5% CO2 atmosphere. Cell line authenticity was 
proven by short tandem repeats (STR) profiling, contamination based on mycoplasma was 
ruled out by PCR testing. Cell culture work was kindly performed by Sarah Göbbels.

Table 1: Consumables used for medulloblastoma cell line cultivation.

Consumable Catalog ID Producer
DMEM Medium 31966-021 Thermo Fischer Scientific
FBS F9665/ P30-3302 Sigma-Aldrich/ Pan Biotech
P/S P4333 Sigma-Aldrich
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3.1.3 Lentiviral vector construction for MYC overexpression

Stable MYC overexpression was achieved by lentiviral transduction. The vector used was 
previously constructed by Dr. Viktoria Marquardt based on the LeGO-iG2 (Addgene ID 
27314) vector ligated with the cDNA sequence of MYC derived from the pcDNA3.3_c-MYC 
plasmid (derived from Addgene ID 26818). Successfully transduced cells were identified 
and filtered by flow cytometry for GFP expression utilizing the MoFLo XDP (Beckman 
Coulter). This experimental work was kindly performed by Dr. Nan Qin.

3.1.4 MYC/RNAseR RNA isolation and sample preparation 

RNA was  collected  using  the  Maxwell  RSC  instrument  with  the  manufacturers’  RNA 
isolation kit and a RNA Integritiy Number (RIN) of >9 was confirmed for each sample not 
treated with RNAseR. A total  of  100ng of  isolated RNA of  each sample was used for 
reverse transcription and library preparation (according to Illumina, USA, low throughput 
protocol, ID RS-122-2001). Libraries were validated and quantified using DNA1000 and 
high-sensitivity chips on Bioanalyzer. 7.5pM of the denatured libraries were used as cBot 
input (Illumina, USA). After this, the prepared samples were sequenced on an Illumina 
HiSeq2500 machine (Illumina, USA). RNA collection and sample preparation were kindly 
performed by Frauke-Dorothee Meyer.

3.2 Dry lab experiments

In the following paragraphs the software and hardware packages used in this thesis are 
listed.  Additional  custom  code  can  be  acquired  from  Github 
(https://github.com/daaaaande),  GitLab  (https://gitlab.com/daaaaande/circs)  or  upon 
request  from  danielrickert@protonmail.com.  All  data  analysis  and  code  writing  was 
performed by Daniel Rickert.
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3.2.1 Software packages

Major software packages used in this thesis are listed below in Table 2.

Table 2: software packages used in this thesis.

Software package Source
R https://www.r-project.org/
Inkscape https://inkscape.org/de/
STAR https://github.com/alexdobin/STAR
Bowtie2 http://bowtie-bio.sourceforge.net/bowtie2/  index.shtml  
find_circ http://circbase.org/cgi-bin/downloads.cgi
DCC https://github.com/dieterich-lab/DCC
CIRCexplorer https://github.com/YangLab/CIRCexplorer
bedtools https://sourceforge.net/projects/bedtools
Samtools http://samtools.sourceforge.net/
Snakemake https://github.com/snakemake/snakemake
Perl https://www.perl.org/get.html
FastQC https://sourceforge.net/projects/fastqc.mirror/
MultiQC https://multiqc.info/
RStudio https://www.rstudio.com/products/rstudio/download/

3.2.2 Non-default Perl packages

The non-default Perl packages used in this thesis are listed in Table 3.

Table 3: Non-default Perl packages used during this project.
Perl Package Purpose
Parallel::ForkManager Multi-threading of matrixmaker_V4.pl
Getopt::Long Input parameter parsing

3.2.3 Non-default R packages

The non-default R packages used in this thesis are listed below in Table 4.
Table 4: Non-default R packages used in this thesis.
R package Purpose

32

https://www.rstudio.com/products/rstudio/download/
https://multiqc.info/
https://sourceforge.net/projects/fastqc.mirror/
https://www.perl.org/get.html
https://github.com/snakemake/snakemake
http://samtools.sourceforge.net/
https://sourceforge.net/projects/bedtools
https://github.com/YangLab/CIRCexplorer
https://github.com/dieterich-lab/DCC
http://circbase.org/cgi-bin/downloads.cgi
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://github.com/alexdobin/STAR
https://inkscape.org/de/
https://www.r-project.org/


dplyr Data subsetting
VennDiagram Voting visualization

3.2.4 Hardware used

The hardware used during this thesis is listed in Table 5 below.
Table 5: Hardware utilized during this thesis.
Hardware Primary purpose
HPC Computing Cluster HILBERT CircRNA detection pipeline 
Thinkpad L480 Data analysis
TERRA-Server Data repository

3.2.5 RNA sequencing pre-processing

Raw RNA sequencing data were demultiplexed based on unique adapter sequences and 
converted to fastq format using the bcl2fastq package, ensuring adapter sequences were 
not masked. Sequencing read quality was then assessed using the FastQC sequencing 
quality  control  package  and  summarized  with  MultiQC.  All  samples  passed  all  quality 
controls.

3.2.6 Circular RNA detection using the circs workflow

Circular RNAs were quantified with a three pipelines workflow including DCC, find_circ and 
CIRCexplorer1. We named this analytical pipeline circs. Briefly, circs used custom written 
Perl scripts to locally execute DCC, find_circ and CIRCexplorer1 (the automated version 
includes a non-default choice of STAR as the aligner) pipelines, overlapped the data to 
minimize false positives and normalizes the final data output. First, each circRNA detection 
pipeline was run according to the input data format (here both datasets were paired-end).  
Second, each of the three circRNA output datasets was filtered to include only circRNAs 
that are detected with at least two junction reads in at least one sample. Third, voting 
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includes the overlap of the three filtered output tables: Only circRNAs that were present in 
all three filtered output tables were accepted for further analysis. In a last step, the DCC 
quantifications of accepted circRNAs were normalized to DCC circRNA backsplice junction 
reads per million total RNA sequencing reads to ensure comparability across data sets.  
The  normalized,  filtered  and  voted  DCC  circRNA quantifications  were  then  used  for 
downstream analysis.

3.2.7 Data processing

All  downstream  analyses  were  performed  in  R.  For  clustering,  the  data  were  first 
normalized,  filtered for  the top 500 differentially  expressed (highest  standard deviation 
across all samples) circRNAs, and then clustered according to Pearson's dissimilarity (1- 
(average Pearson's correlation). For statistical comparison of circRNA expression across 
MB groups, ANOVA was used with Tukey’s HSD as post-hoc test. All p-values shown in 
this document are adjusted p-values if applicable.

3.2.8 MiOncoCircDB overlap and comparisons

For  MiOncoCircDB  overlaps  of  all  three  datasets  (discovery,  validation  and  healthy 
samples),  the  liftOver  tool  was  used  to  convert  the  genomic  coordinates  of  all  three 
datasets  from  hg19  into  hg38.  In  case  that  the  respective  coordinates  could  not  be 
correctly annotated, circRNA coordinates were excluded from all following analysis steps. 
To compare circs data to MiOncoCircDB expression data, circs CIRCexplorer1 output was 
normalized to  the median number of  RNA sequencing reads in the dataset  to  ensure 
comparability between the two datasets (Validation cohort: 43 million RNA sequencing on-
target  reads,  on  average).  MiOncoCircDB  circRNA data  were  downloaded  from  the 
MiOncoCircDB webpage (https://mioncocirc.github.io/download/) and normalized using the 
same  approach.  For  MiOncoCircDB  sample  classification,  the  available  data  were 
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subdivided into four categories based on their respective tissues of origin: cancer_CNS, 
including all  CNS malignancies; cancer_non_CNS, including all  non-CNS malignancies; 
and the two healthy tissue categories, healthy_CNS and healthy_non_CNS.
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4 Results

4.1 Development and application of the circs workflow

Circs is  a  RNA-Seq  based  circRNA quantification  multi-pipeline  approach  similar  to 
CirComPara103 or Docker4Circ118.
Circs utilizes three already published and established circRNA detection pipelines53,99,119, 
find_circ,  DCC  and  CIRCexplorer1,  employing  a  subsequent  three  out  of  three 
confirmation  vote  between  these  pipelines,  resulting  in  DCC-based  quantifications  of 
circRNAs found by all three pipelines.

4.1.1 Selection of appropriate circular RNA detection pipelines

The three pipelines were chosen based on multiple parameters and constrains: find_circ 
was the first published start-to-end pipeline. Here, find_circ was used to compare to old 
results  (where  only  find_circ  was  used)  and  check  the  output  of  all  other  pipelines. 
find_circ  also  has  a  low ressource  demand100 and  a  relatively  low false-positive  rate, 
especially if the “40x40” filter is applied that can be used in the  circs pipeline as a non-
default option102. Find_circ, as other detection methods88,108,109, provides a complementary 
database for circRNAs found with the algorithm110. This database was later used as a part 
of the circRNA candidate annotation to map identified circRNAs to circbase ids, directly 
adding one layer of information to the output of the pipeline. If needed, this can be used to 
filter  for circRNAs that are only included in circbase. This feature was mainly used for 
validation purposes. DCC uses an even more resource-efficient mapper, STAR47, with a 
high true positive rate49 approaching 97% with a default minimum reads filter. Additionally, 
DCC has a high complementary score when coupled with find_circ102. The output of DCC 
can be used with FUCHS112 and circtools105 for back-splice junction PCR primer design and 
other downstream analysis of the identified circRNAs. CIRCexplorer1 has a high sensitivity  
used in  combination with DCC and a high complementary score paired with  find_circ. 
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These  three  pipelines  can  also  be  successfully  applied  to  analyze  single-read  data, 
allowing the evaluation of additional datasets. CIRCexplorer1 is not able to detect de novo 
spliced  circRNA  species102 and  thus  excludes  some  circRNAs  from  the  output  file 
generated  by  circs,  for  example  ciRS-7124.  Overall,  the  combination  of  three  pipelines 
results in a more robust and sensitive analytical  pipeline that is not dependent on the 
detection of many backsplice junctions in order to achieve an acceptable false-positive 
rate. Figure 8 offers a visual representation of the internal data flow of the created pipeline.  
As an additional function of circs, the “voting” step can be omitted and “unvoted” output of 
each pipeline can be used, which allowed for the identification of ciRS-7, for example 102. 
Furthermore, DCC and find_circ are unable to detect non-canonical splice signals, thus 
precluding identification of another potentially interesting type of circRNAs49. This limitation 
is overcome by only using the output data of CIRCexplorer1 for downstream analysis.
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4.1.2 Circs internal data flow
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First,  three  circRNA detection  pipelines  were  run  on our  RNA-Seq dataset.  Two non-
default options were chosen for the three pipelines: STAR was selected as the mapper for 
CIRCexplorer1, due to speed and accuracy47; and DCC’s read-filter was set to two reads in 
at least one sample to improve interoperability. 

Next, the resulting data from each pipeline were summarized, with circbase110 ids, parental 
gene names and information as well as circbank108 information if possible, added in the 
process. 

In a third step called “voting”, the output of the pipelines was compared and only circRNA 
species (genomic coordinates) that were detected by all three pipelines were approved. 
This step was crucial as it reduced the false positive rate, while preserving the sensitivity 
of each pipeline100,102. 

Normalization constitutes the fourth step in this workflow and improves the raw output of 
the circRNA quantification to make the results more comparable to other data analysis 
flows50. The raw back-splice junction read counts for each circRNA were divided by the 
total  sum  of  RNA-Seq  reads  in  the  Fastq  input  files  (in  millions).  This  ensured 
comparability  between  datasets.  Circs is  able  to  process  single-end  and  paired-end 
sequencing data, although paired end (pe) is the default data input for the pipeline and 
results in a higher degree of uniquely identified circRNAs in a given dataset (data not 
shown). The pipeline can be used with any genome if all annotation and reference files are 
available. So far, the pipeline has only been used with human reference genomes hg19 
and hg38. 

The  Circs  code (https://gitlab.com/daaaaande/circs)  is  written  in  Perl  and  based  on 
automation  scripts  developed  previously  for  a  local  server  deployment: 
https://github.com/daaaaande/auto_find_circ, 
https://github.com/daaaaande/automate_DCC and 
https://github.com/daaaaande/circexplorer1_auto. These versions were only used on hg19 
and are outdated.  Circs was written and adapted for the local HPC environment called 
HILBERT at  the  Heinrich-Heine  Universität  Düsseldorf  (HHU).  The  recently  developed 
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snakemake125 based  pipeline  is  available  at  https://github.com/daaaaande/circs_snake. 
This  rewrite  aims to  improve access for  other  users  and reproducible  results,  without 
dependency on the software packages included with HPC. 

4.1.3 Execution of circs

Circs accepts .fastq files from single-end and paired-end sequencing. Both .fastq file types 
are trimmed and quality checked/filtered. Examples of RNASeq data quality checks are 
provided in Figure 2 and Figure 3. The file and sample annotations are provided as an 
infile.tsv file. This file can also be created with run_prep_guide.pl as an interactive run 
preparation tool. This tool was established in order to work within the local HPC rules and 
environment, therefore translation of this script is needed for use in other environments.

The primary pipeline runs can be started with pbs_array_execution.pl as a PBS array job.  
After completion of the PBS array job, the first step of this workflow is completed and is 
available  for  the  next  data  analysis  step.  Subsequently,  the  script  run_post_guide.pl 
concatenates output files of all samples for each pipeline and executes matrixmaker-V4.pl 
and  matrixtwo_V4.pl  consecutively  for  each  included  pipeline.  Matrixmaker-V4.pl  first 
summarizes the results of circRNA identification and creates a matrix including output for 
all samples from each pipeline. In the summarizing step, information about the included 
circRNAs is  added in  the  form of  genomic  annotation  of  the  circRNAs parental  gene 
region. The second script, matrixtwo_V4.pl, adds further annotation information. Voting of 
the  matrixtwo_V4.pl  output  file  starts  using  auto_voting.R  and  data  are  subsequently 
normalized  to  junction  reads  per  million  using  run_prep_guide.pl  or  a 
reads_per_sample.tsv file provided by the user. This file includes the total number of RNA-
Seq  reads  for  each  analyzed  sample  and  their  sample  names.  The  normalization  is  
executed using norm_a_voted_circs_df.R, but any of the voted circRNA output files can be 
normalized separately, including CIRCexplorer1 and find_circ. A more detailed manual is 
available in the README.md file provided in circs.

The minimum reads threshold filtering was originally part of the output filtering step, but 
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HPC  deployment  has  since  been  incorporated  into  the  pipelines  directly  in  order  to  
decrease the output of unnecessary data.

As mentioned above, the vote is mainly used to minimize the false positive rate at the 
coordinate  level.  The  exact  circRNA  candidate  is  defined  by  its  unique  genomic 
coordinates. The circRNA vote is based on overlapping genomic coordinates of all three 
pipelines and only accepts circRNA candidates that are detected by each pipeline. Once a 
set of coordinates is accepted by the vote, circs provides three normalized quantifications 
for the same set of coordinates from find_circ, CIRCexplorer1, and DCC. The user can 

choose which output file to use. In the own experience, the DCC output was the most 
sensitive  when  using  approved  circRNA coordinates  and  it  found  more  back-splice 
junctions in the same data.

This output of  circs demonstrates the correlation of each of the datasets to each other 
(Figure 9). The find_circ pipeline utilizes a different RNA-Seq mapper (Bowtie2) than DCC 
and  CIRCexplorer1.  DCC  is  able  to  detect  a  greater  number  of  approved  circRNAs 
compared to  CIRCexplorer1.  The Pearson's  correlation  between find_circ  and DCC is 
0.77, between CIRCexplorer1 and find_circ 0.78 and between CIRCexplorer1 and DCC 
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(both using STAR for RNA-Seq mapping) 0.94.

Circs  output  format  is  a  .csv  file  with  the  normalized  circRNA reads  for  all  samples 
included in a run, with annotations added to each circRNA, such as RefseqID, host gene 
name, strand information, circbase id, cancer hallmark association of the parental gene,  
biological description of the parental gene, and, if desired, coding potential of the circRNA 
according to circBank and mm9 (mouse) homolog circRNA. 

4.1.4 Circs_snake

To leverage the functions of snakemake, a snakemake-based version of circs was created: 
circs_snake.

The  snakemake-based  circs_snake  workflow  is  available  at 
https://github.com/daaaaande/circs_snake and part of the snakemake workflow catalog.

Circs does not come with software versions of all packages used, but if it is setup to use 
the same software that circs_snake comes with, the output is identical. The circs_snake 
workflow is intended to be published later.

Circs_snake introduces several changes compared to circs to ease the use and improve 
the reproducibility of the pipeline based on snakemake features:

Most required packages are available via conda (www.anaconda.org) and thus can be 
managed with conda. This greatly simplifies the setup process and makes the installation 
and management of the used tools easy. The conda packages required for each step are 
listed in .yaml files that can be found in the envs/ directory of circs_snake. These .yaml 
files and their included packages can be handled by snakemake, installing all tools during 
the first run of the pipeline. Two of the three circRNA detection pipelines are the exception 
here,  as  the required  software  is  not  available  through conda.  These tools,  DCC and 
find_circ,  still  need  to  be  installed  in  other  ways.  Needed  aligner-specific  reference 
genome indices also need to be created before a first run, or provided in the config.yaml  
file. 
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Additionally, snakemake supports “dry-runs”. These “dry-runs” are a theoretical run of the 
user’s  setup  where  no  rules  are  executed,  but  the  exact  commands  that  would  be 
executed outside a dry run are listed with input files, output files, software environment that 
will be used and the reason why a specific rule is executed. This is especially helpful when 
preparing a pipeline run and to catch any abnormalities that might occur.

Due to the structure of circs_snake, files that are created by any rule can be defined as 
final output files, making the whole workflow more versatile if only certain output files are 
needed. Rules are only executed if  their output files are needed by other rules or are  
stated as the desired final output. The same feature is used in the first few steps of the 
pipeline: the three utilized circRNA detection tools require uncompressed .fastq files as 
input, and circs_snake is able to detect wether the input files need to be decompressed 
(from .fastq.gz files) or not and act accordingly.

Circs_snake is also able to conveniently switch between environments with job scheduling 
software  and  other,  usually  smaller  environments  without.  Since  its  first  deployment 
circs_snake is used on the local HPC with PBS Pro as a managing layer between many 
users and finite computing resources. If  the scheduling-specific snakemake parameters 
are not given during the pipeline execution, circs_snake will execute the rules without one. 
In the current HPC based setup, each rule is executed as a single PBS Pro job. For each 
job, separate logfiles are created by PBS Pro for output and error messages, giving the 
user additional context for each job.

All genome index, circRNA annotation files and deployment-specific directories need to be 
customized in the config.yaml file. From this file circs_snake retrieves files, folder locations 
and parameters needed for the pipeline execution. This config.yaml file can be cloned and 
changed  for  each  genome of  interest  or  different  setups.  This  enables  easy and  fast  
switches between runs of the pipeline for different organisms, if needed.

The file cluster.json includes the resources for each job that will be requested. This file 
includes one general setup for minor tasks, but custom setups for each resource intensive 
part.
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Snakemake organizes the rules that need to be executed into a directed acyclic graph 
(DAG). This structure results in an independent execution of several parts of the pipeline. 
This is especially helpful if some samples in one dataset are corrupted or differ in size 
compared to the other samples of the dataset. If one rule is finished, the used resources  
are freed directly afterwards and the resulting files are ready for the next rule. In the non-
snakemake based circs there is only one linear path of command execution until the final  
output is generated or one error is encountered, with one set of resources allocated to one  
sample for all steps combined. For the mapping step 12 CPU cores are used by default,  
resulting in 11 unused CPU cores during most other steps. Conversely, the snakemake 
approach of defining resources for each rule results in less total resources used and thus a 
faster total execution time. Each rule that needs only one CPU core will occupy only one 
CPU core. Additionally, If one rule fails or the complete snakemake run is interrupted, the 
run can be resumed later without additional checks – snakemake notifies the user if rules  
were  executed  unsuccessful  or  output  files  are  incomplete,  with  the  option  to  repeat  
incomplete rules the workflow can be continued if desired.

To illustrate all  steps taken in a theoretical circs_snake run with one sample, the DAG 
figure generated by snakemake including all to be executed rules is shown below in Figure 
10.
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This DAG can be split into four different parts:

The rules starting with _r0 are the pipeline independent steps: preparation, read counting 
for later normalization and collection of output of the three circRNA detection pipelines. 
Here output folders are created, reads for each sample are counted and later used for  
circRNA count normalization and the 3/3 vote is executed. General rules are numbered 
while pipeline-specific rules are denominated with letters. Circs_snake is also split into four 
separate  snakemake  files  as  represented  by  the  rule  names.  One  for  each  circRNA 
detection tool and a fourth one for all general rules. 

Rules  starting  with  _fc  are  the  find_circ  specific  rules.  After  a  count  file  including  all  
detected back-splice junctions for each sample is created, results are converted into a 
count matrix file including results from all samples.

The DCC pipeline is executed by rules starting with _dcc. Here each of the two read files is 
mapped separately to the reference genome in addition to the combined mapping. The 
results of these three mapping steps are then collected in step _dcc_e.

CIRCexplorer steps are denominated with the prefix _cx. This part of the pipeline is the 
least resource intensive as it includes only one mapping step, less steps overall and the 
more resource efficient mapper of the two used, STAR.

The overall DAG structure shows a difference between find_circ and the two other tools, 
namely  find_circ  includes  more  steps  than  DCC  and  CIRCexplorer.  Another  notable 
difference is the number of cores used by these tools outside the mapping step: find_circ  
uses one CPU core while the other two tools can use multiple. 

The rule “all“ is the final rule of circs_snake. It takes three voted and normalized circRNA 
tables as an input and does not create any output. Circs_snake is not a complete re-write:  
many scripts have been taken from circs. For example, the voting and normalization of the 
voted circRNAs are the same script  in  both  pipelines  that  gets  executed.  Additionally, 
scripts that reformat each pipelines output and create the circRNA count tables are also 
not specially created for circs_snake.
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4.1.5 Circs_snake execution

To give an insight into the circs_snake execution, a typical execution command is shown 
below, with each part explained separately below.

snakemake -p --cluster-config cluster.json --cluster "qsub -A {cluster.account} -q 
{cluster.queue} -l walltime={cluster.time}-l 
select={cluster.nodes}:ncpus={cluster.ncpus}:mem={cluster.mem}:arch={cluster.arch}" -j 
100 --latency-wait 90 --use-conda --max-status-checks-per-second 1 --keep-going 

snakemake -p : is the snakemake command itself. The -p results in snakemake showing 
all commands that are executed. This part is the only mandatory part of the snakemake 
execution. All other options are optional and can be combined as needed. The -p 
argument is also not needed, but is highly recommended to be used. 

--cluster-config cluster.json : points snakemake to the file listing cluster-specific resource 
allocations for each rule. 

--cluster "qsub -A {cluster.account} -q {cluster.queue} -l walltime={cluster.time} : shows how 
the interaction with the job-scheduling software, in this case PBS Pro, happens. The curly 
brackets will be filled in with numbers and strings from the aforementioned cluster.json file, 
differing between rules. 

-j 100 : This parameter limits the number of concurrent job submissions to PBS. A higher 
number can result in PBS instability issues.

--latency-wait 90 : When jobs are executed, snakemake checks the outputfiles. On 
distributed file systems like the ones used for HPC, big files are not instantly synchronized 
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between nodes but need time. This lets snakemake wait for 90 seconds before assuming 
a file is missing.

--use-conda : This enables snakemake to install missing packages for each environment 
using the conda package manager.

--max-status-checks-per-second 1: Snakemake also checks if jobs are executed 
successfully, are still waiting in the jobs queue to be executed or are already finished 
without errors. This parameter is used to limit the amount of job status checks to one 
check per second.

--keep-going : If a single job failed, snakemake can either stop the pipeline completely (not 
submitting any more jobs) or as shown here, continue with its execution until all other 
executable (meaning that all input files for these rules are created or still can be created) 
rules are done. 

4.2 Discovery cohort

The first dataset analyzed with circs was taken from Forget et al. 201833. The initial cohort 
comprised RNA-Seq data from 38 primary MB samples, for most of which additional DNA 
methylation,  proteomics  and  phosphoproteomics  data  were  available.  Further 
characteristics of this dataset are provided below. 

4.2.1 Detection of circular RNAs in the discovery cohort

The trimmed RNA-Seq reads of the discovery cohort  were taken as input for  circRNA 
analysis with circs. The initial numbers of uniquely identified circRNAs by each of the three 
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pipelines is illustrated in Figure 11. 

This plot illustrates the absolute number of circRNA species in the discovery cohort data 
uniquely  identified  by  each  of  the  three  pipelines.  CIRCexplorer1,  DCC and  find_circ 
detected a total of 10724, 49470 and 32642 unique circRNAs, respectively. The absolute 
numbers  of  detected  circRNAs depended  on  the  applied  filter  settings.  Specifically,  a 
unique circRNA had to be detected twice in at least one sample to be listed. These results 
were then used for the “voting” step illustrated below in Figure 12. 
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Figure 11: Amount of unique circular 
RNAs identified from each pipeline in the 
discovery cohort. DCC detected the most 
circular RNAs, find_circ an intermediate 
amount, while CIRCexplorer1 detected the 
least.
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The Venn diagram shows that the voting step resulted in 8379 accepted unique circRNAs. 
The  overlaps  between  pairs  of  the  three  datasets  were  asymmetric.  Most  of  DCCs 
coordinates  (68.62%)  were  non-overlapping,  as  expected,  since  DCC  detected  more 
circRNA candidates than the other pipelines. By contrast, most CIRCexplorer1 coordinates 
overlapped with  at  least  one of  the other  algorithms (only  1.9% are non-overlapping).  
CIRCexplorer1 identified a smaller absolute number of circRNA candidates compared to  
DCC and  find_circ.  The  results  obtained  by  find_circ  were  similar  to  those  by  DCC: 
58.34% of putative circRNAs detected by find_circ are in no other dataset and thus do not 
overlap.  A total  of  7242  putative  circRNAs  were  identified  by  only  two  of  the  three 
pipelines. The number of accepted circRNAs would have been almost twice as high if circs 
had accepted putative circRNAs detected by two out  of  three algorithms.  This  type of 
voting is employed in CircComPara, where only two out of several algorithms must agree.  
Thus,  circs constitutes a circRNA detection pipeline with relatively strict filtering criteria. 
The quantifications from DCC of the voted coordinates were subsequently normalized. The 
resulting data was called the discovery cohort. 
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Figure 12: The vote result of the 
discovery cohort. The vote including 
all three algorithms agreed on 8379 
circular RNA species. The DCC 
quantifications of these circular RNA 
candidates were normalized and then 
used for all subsequent analysis.
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4.2.2 Medulloblastoma group classification utilizing circular RNA data 
in the discovery cohort

To gain insight into the discovery dataset and the group-wise clustering, a heatmap was 
created based on the expression levels of the top 500 differentially expressed circRNAs 
across  the  dataset.  The  result  is  depicted  in  Figure  13.  The  dendogram  above  the 
heatmap revealed an initial separation between Group 4 MB and a group of WNT, SHH 
and  Group  3  MBs.  Compared  to  other  omics  studies,  this  was  an  uncommon  initial 
separation of MB data14,17,24,29(p5). The second degree of separation was observed between 
SHH and Group 3 and WNT MBs. The final MB group wise separation was determined 
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between WNT MB and Group 3 MB. Furthermore, several subclusters could be observed 
in  SHH,  Group 3 and Group 4 MBs.  One Group 4 MB sample (MB07) demonstrated 
aberrantly high circRNA expression for a large set of circRNAs. 

The depicted hierarchical clustering result of the top 500 differentially expressed circRNAs 
was compared with the previously published sample classification according to several 
methods, including SNF126(Figure 13). 

Figure 14 shows a broad agreement between most clustering approaches using distinct 
input data, but with some key differences: MB38, MB36 and MB41 did not have an SNF 
group annotation but are included in the circRNA analysis. This is due to several missing 
omics layers for these samples, which are necessary to determine the SNF-based group. 
MB38, for example, showed insufficient RNA-Seq data quality and had to be excluded 
from the RNA-Seq data analysis. However, this was not the case for circRNA analysis, for 
which the data quality was sufficient. MB36 was diagnosed as SHH MB by a pathologist in  
the  standard  clinical  setting  and,  due  to  sufficient  RNA-Seq  data  quality  for  circRNA 
analysis, was also included in this dataset. MB41 showed low cellularity in the sample and 
the sample quantity did not suffice for most analyses. However, the quantity and quality of 
RNA-Seq data  was still  sufficient  for  circRNA analysis.  These cases illustrate  the two 
major advantages of circRNA-based clustering of these samples: More samples could be 
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Figure 14: Comparison of group classification from Forget et al. 2018 and top 500 differentially 
expressed circular RNAs (Pearson's dissimilarity) in the discovery cohort. Similarity network fusion 
(SNF) is a method using multiple input data layers, resulting in one consensus classification. When a sample 
lacked any omics data layer, SNF could not be performed. Blue = WNT medulloblastoma, red = SHH 
medulloblastoma, yellow = Group 3 medulloblastoma, green = Group 4 medulloblastoma, White boxes = no 
data available.
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included since other omics data layers were not needed, with the exception of RNA-Seq 
data, and lower RNA quality was acceptable. Notably, MB36 was not classified into one of 
the four MB groups by any other omics method, with the exception of circRNA data. To  
further  understand the  resulting  sample  clusters  in  the  discovery  cohort,  the  detected 
circRNA signal for each sample was sorted into the previously described MB groups based 

on SNF, and again based on the circRNA MB groups defined here (Figure 15).

These boxplots show a highly significant difference in the total circRNA signal between 
Group 4 and Group 3 MB (Tukey HSD p-values adjusted = 4.1x10-4  for SNF-based MB 
groups and 2.9x10-4 for circRNA-based MB groups). The outlier in Group 4 in each of 
these plots was MB07, which was determined to be a Group 4 MB according to SNF and 
circRNA data analysis. Significant differences in the mean circRNA signal were observed 
between Group 3 and Group 4.  Notably,  Group 3 MB had particularly  low normalized 
circRNA signal and that of Group 4 MB was particularly high. 

To further  determine MB-group-specific  circRNA expression patterns,  a  second cohort, 
called the validation cohort, was analyzed using the same approach as was used for the 
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Figure 15: Circular RNA signal across medulloblastoma groups according to two differing MB group 
classifications. a) Circular RNA signal according in SNF MB groups. b) Circular RNA signal in MB groups 
according to circular RNA data. ***=Tukey HSD p-value adjusted <0.001. Normalized circRNA signal to back-
splice reads per million.
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discovery cohort.

4.3 Validation cohort

The  validation  cohort  included  previously  unpublished  RNA-Seq  data  from  35  MB 
samples. At the time of the circRNA analysis, only DNA methylation and RNA-Seq-data-
based MB groups were known, so no SNF result could be obtained for these samples.  
After the voting step in circs, 8460 circRNAs were accepted, and the RNA-Seq and DNA 
methylation  MB  groups  were  identical  in  this  dataset  for  each  sample.  The  circRNA 
quantifications of approved DCC coordinates were then normalized to back-splice junction 
reads per million total RNA-Seq reads, as previously described for the discovery cohort.

4.3.1 Medulloblastoma group classification utilizing circular RNA data 
in the validation cohort

The top  500  differentially  expressed  circRNAs in  the  validation  cohort  were  clustered 
according to Pearson's dissimilarity and a heatmap was generated, as described above for 
the discovery cohort. The clustering result is shown below in Figure 16.
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Similar to the discovery cohort clustering results, Group 4 was first segregated from all  
other MB groups according to the hierarchical clustering dendrogram of the circRNA data 
shown in  Figure  16.  Notably,  the  discrimination  of  the  other  MB groups was different 
compared to the discovery dataset: Group 3 MB separated from SHH MB and WNT MB 
first, while WNT MB and SHH MB segregated in the last step when distinguishing MB 
groups. Next, circRNA signal strength was compared between the four MB groups in the 
validation cohort (Figure 17). 

55

 
 
 



The  samples  of  the  validation  cohort  were  annotated  according  to  circRNA,  DNA 
methylation and RNA-Seq MB group classification. MB_V9 was the top outlier in Group 4,  
with the highest circRNA signal across the whole dataset. The only significant difference 
according to MB subgroups in circRNA signal was seen for Group 4 and SHH MB (p-value  
adjusted  Tukey  HSD  =  0.0208),  while  in  the  discovery  cohort,  the  only  significant 
difference was observed for Group 3 MB and Group 4 MB. Notably, in both cohorts, Group 
4 MB had the highest circRNA signal. 

4.4 Cross-dataset circular RNA signal evaluation

To further compare the circRNA signal in MB and normal controls, a cohort of 12 healthy 
fetal  brain  tissues  was  analyzed  as  reported  above  for  the  discovery  and  validation 
cohorts. The resulting comparison of the normalized circRNA signal across these three 
datasets (healthy brain tissue, discovery and validation) is depicted below in Figure 18.
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Figure  17:  Circular  RNA signal 
across  medulloblastoma 
groups  in  validation  cohort. 
Here  the  difference  between 
Group  4  and  SHH  MB  was 
significant.*=  Tukey HSD p-value 
adjusted <0.05. 

No
rm

. c
irc

RN
A 

Si
gn

al 

SHHWNT G3 G4

200 *

50

100

150



The difference between the healthy brain,  discovery and validation cohorts  was highly 
significant (Tukey HSD p-value adjusted discovery  versus healthy_brain < 2.62 × 10-14, 
validation  versus healthy_brain < 2.62 × 10-14).  Note the log-scale of the boxplot.  The 
circRNA signal  boxes  of  the  discovery  and  validation  cohorts  showed only  a  minimal 
circRNA signal difference in comparison.

To further  assess the  similarity  of  the  discovery  cohort  and validation  cohort  data,  all  
included samples were correlated to each other. The resulting Pearson correlation matrix 
is represented in the corrplot below (Figure 19). 
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Figure 18: Circular RNA signal 
across three datasets. ***=p-
value adjusted Tukey HSD 
<0.001. Healthy = ENCODE 
healthy fetal brain tissue samples.
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This  analysis  demonstrated  a  strong  correlation  between  WNT MBs  throughout  both 
cohorts, and the lowest correlation between any WNT MBs in this combined cohort was 
0.824. Additionally, the four MB groups formed visible clusters in the combined dataset, 
with WNT MB clearly showing the highest degree of correlation of individual samples. The 
diagonal  line  in  Figure  19  shows  the  correlation  of  each  sample  with  itself  and 
corresponded to the expected correlation coefficient of 1 in all cases. Samples that had a 
relatively high correlation with WNT samples were observed in each MB group. Samples 
MB02, MB48 and MB_V27 had a particularly high correlation coefficient with WNT MB 
subgroup samples, despite the fact that these samples were ultimately classified as Group 
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3 MB or Group 4 MB samples. After comparing the overall similarity of samples across 
these two cohorts, the data were investigated for potential circRNA biomarker candidates 
across both datasets, as well as in the discovery and validation cohorts separately.

4.5  Medulloblastoma pan-cohort group circular RNA 
biomarker definition

To detect biomarkers across the discovery and validation cohorts, all circRNA data were 
divided  into  their  respective  circRNA-defined  MB groups,  as  previously  described.  An 
ANOVA was carried out for all circRNAs present in the dataset, followed by a Tukey HSD 
as a post-hoc test. The circRNAs that showed a significant difference (Tukey HSD p-value 
adjusted <0.05) in all comparisons between one group of interest and the three remaining 
groups  in  the  discovery  cohort  were  selected  for  evaluation  in  the  validation  cohort.  
Biomarker identification for each subgroup was performed using the same approach for 
the  validation  cohort.  To  reveal  the  amount  of  circRNAs  with  significant  expression 
differences according to MB subgroups across both datasets, the two biomarker lists were 
compared  (Figure  20).  The  resulting  overlappeing  circRNAs  are  also  listed  in 
supplementary Tables 11-13.
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Initially,  a  strikingly  different  overlapping  of  potential  biomarkers  was  observed:  Most 
group-specific circRNA biomarkers were detected for  the WNT MB group,  while  not  a 
single overlapping circRNA-based biomarker could be identified for Group 3 MB. Since 
most group-specific circRNA biomarkers were determined for WNT MB, most overlapping 
circRNAs across both datasets also belonged to this group. Next, the mean expression 
levels according to MB group were compared to further investigate the biomarker potential 
of overlapping circRNAs candidates. This step aimed to exclude candidates with highly 
significant  expression  chances  that  were  not  biologically  relevant,  as  some  of  these 
candidates  had  very  low  expression  levels  in  all  datasets.  Only  the  candidates  with 
relatively high expression are reliably detected, since circRNAs with low expression levels 
are  more  likely  to  be  destroyed  during  sample  preparation,  simply  do  not  reach  the 
detection limit of the specific methodological platforms or suffer from a comparably high 
amount of linear mRNA noise. 
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For three MB groups, pan-cohort circRNA biomarkers with the highest normalized mean 
expression were selected. However, this selection was not possible for Group 3, since no 
overlapping biomarkers could be identified when both datasets were compared. Multiple 
circRNA transcripts that originated from the same parental gene, including different exons, 
were identified as significant  biomarkers for  some genes (e.g.  RMST and  PATJ).  The 

61

 
 
 



outlier in the top right corner of Figure 21 was circRMST, consisting of exons 6-12 with the 
backsplice junction between exon 12 and exon 6. The other isoforms of circRMST were 
significant as well, but all showed a lower mean expression levels compared to circRMST6-

12.  Due  to  the  aberrant  overexpression  of  this  isoform of  circRMST in  both  datasets, 
circRMST6-12 (further called circRMST) was selected for further investigation. 

4.5.1 CircRMST as WNT medulloblastoma biomarker 

To investigate the MB-group-specific expression patterns of this circRNA candidate,  its 
expression was first investigated in all samples of the discovery cohort.

Figure  22  shows  aberrant  circRMST expression  in  WNT MB in  the  discovery  cohort,  
rendering it an interesting candidate for further investigation. Outliers with high circRMST 
were  observed  in  a  small  subset  of  non-WNT MB.  To  further  confirm  the  biomarker 
potential of circRMST, circRMST expression patterns were determined according to MB 
groups in the validation dataset using the same approach.
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Figure  22: Boxplot  of 
normalized  circRMST 
expression  in  the  discovery 
cohort.  Samples  are  ordered 
according  to  circular  RNA 
medulloblastoma groups, 
genomic coordinates based on 
hg19.  ***=Tukey  HSD p-value 
adjusted<0.001.
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The median expression level of RMST was lower in WNT MBs compared to WNT samples 
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Figure  24:  Boxplot  of 
normalized  circRMST 
expression in the validation 
cohort. Samples are ordered 
according  to  circular  RNA 
medulloblastoma groups, 
genomic  coordinates  based 
on  hg19.  ***=Tukey  HSD p-
value adjusted<0.001.
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in the discovery cohort (mean circRMST expression of 13.013 circRNA junctions/106 reads 
in the discovery cohort versus 10.101 circRNA junctions/106 reads in the validation cohort). 
However,  the  overall  expression  patterns  remained  highly  comparable  between  the 
discovery and validation cohorts: Aberrant overexpression of circRMST was detected in 
the WNT MB group compared to all other groups. In line with the discovery cohort, Group 
4  displayed  higher  circRMST  expression  compared  to  SHH  MB  and  Group  3  MB. 
Furthermore,  a small  subset of  SHH MB and Group 4 MB samples had relatively low 
expression  but  detectable  expression  of  this  candidate  as  outliers.  Overall,  circRMST 
expression was strikingly similar in both datasets, underlining the biomarker potential of 
this circRNA for WNT MBs. 

The parental gene of this circRNA,  Rhabdomysarcoma associated transcript 2 (RMST), 
has been the subject of a number of studies. This non-protein coding gene is located on  
chromosome  band  12q21.  Its  exact  hg19-based  genomic  coordinates  are 
chr12:97856554-97958793  on the  plus-strand and  the  genomic  sequence includes 14 
exons.  RMST has previously been associated with the development of the human brain 
and cancerogenesis  59,127–130.  In  addition  the  circular  RNA form was  shown  to  be  the 
dominant transcript compared to the linear form of this long non-coding RNA131. It was just 
recently  demonstrated  that  the  circular  RNA reported  here  is  expressed  in  MB  and 
ependymomas104. Furthermore, circRMST was previously also detected in the brain59. The 
linear form of the long non-coding RNA RMST has been found to regulated neurogenesis 
by  interacting  with  SOX2127.  Another  publication  showed  a  direct  interaction  between 
RMST (here a “trans-spliced” form, “ts-RMST”) and WNT132, postulating a direct impact of 
tsRMST on  non-canonical  WNT-signaling.  Our  biomarker  candidate  circRMST was 
detected in multiple studies according to circbase. To investigate the expression patterns 
of  circRMST in  many  additional  datasets  including  different  cancer  entities,  RMST 
expression was determined in databases that cannot distinguish between the linear and 
the  circular  isoform.  Since  the  circular  isoform  of  RMST  constitutes  the  predominant 
isoform,  this  approach already provides an  indirect  indication  of  circRMST expression 
patterns  in  these  datasets.  Several  datasets  including  cancerous  and  non-cancerous 
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tissues showed a highly variable range of RMST expression. Neuronal precursor cells had 
the highest mean RMST expression in the included datasets. Medulloblastomas samples 
show  a  RMST expression  level  lower  than  most  glioblastomas  samples  but  higher 
expression level than malignant melanoma samples. Notably, samples with the highest 
RMST expression  levels  were  observed  in  the  cancer  cell  line  encyclopedia  (CCLE) 
dataset. Grouped expression analysis according to cancer entities revealed that small cell  
lung  carcinoma  cell  lines  predominantly  showed  RMST overexpression  in  the  CCLE 
dataset (data not shown). 

4.5.2 CircISPD as SHH medulloblastoma biomarker

The  circs pipeline  revealed  aberrant  overexpression  of  circISPD in  SHH MB for  both 
datasets (Figure 19). Even though the overall expression of this candidate was lower than 
circRMST expression,  this  biomarker  candidate  was  still  significantly  overexpressed 
compared to the other groups in both datasets.
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Figure  25:  CircISPD normalized  expression  in  circular  RNA  defined 
medulloblastoma groups in discovery (a) and validation (b) cohort with genomic 
coordinates (hg19). Tukey HSD p-values adjusted: *<0.05,**<0.01,***<0.001. 
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Notably,  circISPD showed a significant  variation of  expression levels  between the two 
cohorts. The mean circISPD level in SHH MB samples was 0.467 and 0.161 back-splice 
junction reads per million in the discovery and the validation cohorts, respectively. The 
discovery cohort data showed two outliers in the SHH group that expressed even higher 
levels of the candidate circRNA. Both datasets showed a partial overlap of the circISPD 
expression levels in Group 3 and Group 4 MBs, with SHH MB indicating worse biomarker  
potential for group determination compared to circRMST. According to circbase, several 
circISPD isoforms have been detected in brain tissue, including the isoform identified in 
this study. The parental gene was investigated further to gain an insight into the functional  
importance of this locus. Isoprenoid synthase domain containing (ISPD) is a protein-coding 
gene on chromosome 7p21 (hg19 genomic coordinates: chr7:16127152-16460947) that 
has been associated with Walker-Warburg syndrome and muscular dystrophy by SNP-
analysis133,134.  This  gene  has  been  renamed  to  CDP-L-ribitol  pyrophosphorylase  A 
(CRPPA) and includes 10 exons. One non-coding antisense transcript is known. 

4.5.3 CircEXOC6B as Group 4 medulloblastoma biomarker
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Figure  26:  CircEXOC6B normalized  expression  in  circular  RNA  defined 
medulloblastoma  groups  in  discovery  (a)  and  validation  (b)  cohorts  with 
genomic  coordinates  (hg19). Tukey  HSD  p-values  adjusted: 
*<0.05,**<0.01,***<0.001.

WNT SHH G3 G4

CircEXOC6B Discovery
chr2:72945231-72960247

No
rm

. c
irc

RN
A 

Ex
pr

es
sio

n

0.0

0.5

1.0

1.5

2.0
1.5

1.0

0.5

0

b
chr2:72945231-72960247

CircEXOC6B Validation

No
rm

. c
irc

RN
A 

Ex
pr

es
sio

n

WNT SHH G3 G4

a



In both datasets, circEXOC6B was identified as the most promising biomarker of Group 4 
MBs (Figure  19).  However,  it  also  showed a  higher  expression  level  in  Group  3  MB 
samples in the validation cohort. Furthermore, increased circEXOC6B expression levels in 
other non-Group 4 MB samples were comparable to those in Group 4 MB samples with 
lower circEXOC6B expression. The linear EXOC6B transcript was expressed at relatively 
high levels (data not shown). Overall, the overlap in the circEXOC6B expression of some 
non-Group 4 MB samples and the highly expressed linear isoform render this candidate 
less desirable for clinical application. CircEXOC6B has been previously identified in brain 
samples according to circbase, and the exact isoform identified in our biomarker study has 
been  found  to  regulate  neural  gene expression135.  Furthermore,  several  genomic 
alterations of the parental  gene have been implicated in intellectual  disability136(p6).  The 
parental gene, Exocyst Complex Component 6B (EXOC6B) encodes a protein which is a 
part of the evolutionarily conserved exocyst, a multimeric protein complex necessary for  
exocytosis,  which,  in  turn,  is  crucial  for  cell  growth,  polarity  and  migration137(p6),138(p6). 
EXOC6B is located on the minus strand of chromosome band 2p13.2, precisely at hg19 
genomic coordinates chr2:72403113-73053162. The gene consists of 28 exons, resulting 
in several alternatively spliced circRNAs.
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4.5.4 Other medulloblastoma group-specific circular RNA biomarkers

Another set of biomarkers was identified to complement the candidates described above 
using an additional approach. Specifically, the two cohorts were combined into one cohort  
and fetal brain control samples were also included. As a result, more MB group biomarkers 
were detected (see Figure 27). Most of these additional candidates were expressed at a 
relatively low level, making them unsuitable for further investigation. CircPATJ (Figure 27a) 
was a significant WNT-MB-specific circRNA, but showed highly variable expression in this 
group and a low overall expression. In addition, circPATJ expression overlapped between 
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Figure  27:  CircPATJ,  circEYA1,  circEYS and circRPH3A normalized expression in  circular  RNA 
defined MB groups in merged discovery and validation cohort combined with 12 fetal brain tissue 
controls with genomic coordinates (hg19). Tukey HSD p-values adjusted: *<0.05,**<0.01,***<0.001.
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WNT MB and other samples from non-WNT MB groups, as shown in the plot. The SHH 
MB biomarker circEYA1 also had low overall but highly differential expression between the 
MB groups and healthy control samples. However, overlapping expression was seen in 
SHH  MB  and  healthy  control  samples.  The  additional  biomarker  candidate  circEYS 
showed a  different  pattern:  This  circRNA was identified as  a  significant  biomarker  for  
Group 3 MB. However, based on the expression levels of this circRNA, no clear distinction 
could be made between Group 3 MB and Group 4 MB, due to the highly similar expression 
in these groups. One WNT MB outlier also had increased circEYS expression comparable 
to Group 3 MB cases in the pooled cohort. CircRPH3A showed an overlap between the 
median  of  Group  4  MB  and  the  3rd quartile  of  healthy  control  samples,  making  this 
biomarker  unsuitable  for  clinical  biomarker  development.  Overall,  these  additional 
biomarkers  were  mainly  expressed  at  low  levels  and  lacked  a  high  specificity,  as 
demonstrated by overlap of circRNA expression between groups including healthy controls 
samples.  Therefore,  these  circRNAs  should  be  deprioritized  for  future  biomarker 
development. 

4.6 Medulloblastoma-subtype-specific  circular  RNA 
biomarkers

To investigate the potential of circRNA as a biomarker for MB subtypes – not MB groups 
as previously discussed – the two cohorts were again visualized in a heatmap of the top 
500 differentially expressed circRNAs. To discern subtypes however, the color annotation 
was shifted to show the DNA methylation-based subtypes of both cohorts.
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The heatmaps shown here revealed a high degree of MB group clustering, but also a low 
degree of MB subtype separation (Figure 28a). The validation cohort, on the other hand, 
showed a clear separation between Group 4 subtype VIII and subtype VII. The clear WNT 
MB separation in both cohorts was the same, as expected, since all WNT MBs were also 
the same subtype, WNT. In both discovery and validation, the subtype separation of Group 
3 MB subtypes was not exact according to the dendrograms. However, since the validation 
cohort  included  fewer  subtypes  than  the  discovery  cohort  –  including  samples  with 
unknown  subtype  –  the  overall  separation  between  MB subtypes  was  greater  in  the 
validation cohort. Since some MB subtypes were cohort-specific (only present in one of the 
two data sets, i.e. Group 4 VI only present in the discovery cohort), all further MB subtype 
investigation was made with the pooled cohorts, plus the healthy fetal brain controls, for a  
lack of better healthy brain tissue samples. Group 4 subtype VI is a good example of  
excluded subtypes; this thesis does not make claims based on a n = 1. On the heatmap 
annotation, the subtype allocation shows more details. SHH CHLD AD is present in only 
one sample  in  the  validation  cohort,  but  in  three in  the  discovery  cohort.  Additionally, 
Group 3 type II is seen 8 times in the discovery cohort and is not seen in the validation 
cohort.  Conversely, Group 3 IV is seen in the validation cohort seven times and three 
times in the discovery cohort. A more detailed subtype allocation overview is shown in 
Table 6. 
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Figure  28: Heatmap of the top 500 differentially expressed circular RNAs in the discovery (a) and 
validation (b) cohorts. Clustering according to Pearson's dissimilarity, color according to DNA methylation 
subtype information (see legend on the right side).
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Table 6: Comparison of DNA methylation subtypes in the discovery and validation cohorts.
subtype discovery validation sum subtype discovery 
NA 1 0 1 no
WNT 4 5 9 Not useful
SHH CHL AD 3 1 4 yes
SHH INF 7 9 16 yes
Group 3 II 8 0 8 no
Group 3 III 2 3 4 yes
Group 3 IV 2 5 7 yes
Group 3 V 1 1 2 no
Group 4 VI 1 0 1 no
Group 4 VII 5 4 8 yes
Group 4 VIII 4 7 11 yes
Sum 38 35 73

To further investigate the potential for DNA methylation subtype biomarkers in the circRNA 
data, only subtypes that are spread throughout both data sets and provide a total number  
of samples greater than 4 were investigated. For this analysis, an ANOVA was carried out, 
followed by a TukeyHSD as the post-hoc test.  All  mentioned p-values are adjusted p-

S
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Figure  29: SHH CHLD AD subtype circular RNA biomarkers. Based on DNA methylation 
subtypes and combined cohort with genomic coordinates (hg19). Tukey HSD p-values adjusted: 
*<0.05,**<0.01,***<0.001. 
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The circRNA biomarker  candidates  for  SHH CHLD AD shown in  Figure  29  displayed 
significant differences in circRNA expression between DNA methylation-based subtypes. 
Both candidates showed expression levels  overlapping with  the healthy brain  samples 
included in this plot. CIrcNDST3 also showed an overlap of expression with the other SHH 
subtype,  SHH INF.  Due  to  this  amount  of  overlap  between  different  subtypes,  these 
candidates were not followed up in further studies.

4.6 Validation of in silico prediction based on circs workflow

To evaluate the identified circRNA biomarker candidates and all circRNA species detected 
by circs, a number of verification methods were used. First, we used in silico methods to 
overlap the detected circRNA coordinates with circRNAs from other databases, then the 
circleseq protocol was used to evaluate the number of RNAseR-resistant circRNA species, 
indicating the true detection rate in the datasets shown here. 

4.6.1 Database-aided validation of circRNAs detected with circs

The first and foremost in silico validation method is the built-in overlap with circbase, the 
first  circRNA database including human data from several  experiments.  To assess the 
overlap with circbase, the total amount of unique circRNA species was divided into two 
parts: the circRNAs with a circbase id attached and the circRNAs without one. 
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The overlap with circbase showed a similar percentage of circRNAs confirmed in both 
datasets.  However,  this  database  is  neither  exhaustive  nor  focused  on  samples  of 
malignant brain tumors. To correct this missing overlap in sample number and tissue of 
origin,  this  overlap  was  repeated  with  a  larger,  more  exhaustive  and  cancer-focused 

circRNA database, MiOncoCircDB.

Since MiOncoCircDB is not a manually curated circRNA database, some of its data could  
have quality control issues, so circRNAs of both datasets were again overlapped with all 
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Figure 30: Circbase-based circular RNA validation of discovery cohort (a) and validation cohort (b).

Figure 31: MiOncoCircDB coordinates overlaps with discovery (a) and validation dataset (b). LiftOver 
was used to translate the hg19 coordinates of both datasets into hg38 coordinates, failed liftover coordinates 
were excluded from this analysis.

a bDiscovery cohort circbase IDs Validation cohort circbase IDs

a bDiscovery cohort MiOncoCircDB overlap Validation cohort MiOncoCircDB overlap



curated circRNA databases available at date of analysis. The striking similarity between 
the discovery and validation cohorts again resulted in similar overlap results.

The comparatively small overlap of both cohorts with all curated databases, seen in Figure 
32, could be explained by the nature of these databases themselves: the content was 
manually  curated,  which  leads  to  a  smaller  total  number  of  circRNAs included  in  the 
databases compared to their non-manually curated counterparts.

4.6.2 Quantitative circular RNA in silico specificity determination 

To  investigate  the  specificity  of  the  top  3  chosen  biomarker  candidates,  circRMST, 
circISPD and circEXOC6B, data from the largest cancer-focused circRNA database was 
used and overlapped with the data of the validation cohort for reference. 
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Figure 32: Overlap of discovery (a) and validation (b) cohort with all curated data bases. 
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The  staggering  amount  of  circRMST specificity  in  this  dataset  was  disturbed  by  one 
sample  in  the  Healthy_Non_CNS group  of  the  MiOncoCircDB data,  a  healthy  control 
prostate sample from non-neurologic tissue of origin. This assessment was continued for 
the remaining two circRNA biomarker candidates, circISPD and circEXOC6B.
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Figure  33:  CircRMST in  validation  cohort  and  MiOnciCircDB  data  divided  into  four  categories: 
Healthy_CNS, Healthy_Non_CNS, Cancer_CNS and Cancer_NON_CNS. All MiOncoCircDB samples with 
detected circRMST were included in this plot.
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These  plots  show  a  wide  variety  of  cancerous  and  non-cancerous  tissues  in 
MiOncoCircDB, expressing circEXOC6B and circISPD in much higher levels than in their 
respective  biomarker  groups.  The plot  a  depicts  a  high  expression  of  circEXOC6B in 
validation  Group  4  MB  (as  previously  eluded  to),  but  also  a  comparably  high  mean 
expression in both healthy central nervous system samples and even higher outliers in 
both tumor categories, inside and outside the central nervous system. Next, an orthogonal 
method was used to further assess the biomarkers and all  detected circRNAs in both 
datasets. 
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Figure  34:  MiOncoCircDB megasamplers  for  circEXOC6B (a)  and  circISPD (b)  in  validation  and 
MioOncoCircDB. N  numbers  refer  to  total  samples  in  the  validation  cohort  and  circular  RNA positive 
samples for the respective circular RNA in each plot.
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4.6.3 Circleseq based circular RNA validation in an in vitro model

To demonstrate circs as a valid circRNA detection pipeline delivering reliable and precise 
results,  the  Circleseq  protocol  was  used.  The  total  circRNA signal  detected  for  each 
condition was measured to confirm a successful RNAseR treatment of the three cell lines. 
The results can be seen in Figure 35.

Figure  35  shows  a  substantial  circRNA enrichment  across  all  three  cell  lines  upon 
RNAseR treatment,  as expected.  Additionally  one can observe that  the  MYC samples 
(samples overexpressing MYC) show a decreased circRNA signal compared to the control 
(ctrl) samples. Since this is an isogenic model, outside of analysis or experimental errors,  
this can be traced back to the  MYC overexpression and its effects. Another observation 
from this plot is that each cell line had a different level of baseline circRNAs present, which 
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Figure 35: Normalized circular RNA signal. a) for each sample, ordered by cell line and condition. b) 
across 4 conditions in 3 medulloblastoma cell lines combined. RNAseR= sample treated with RNAseR. 
** = Tukey HSD p-value adjusted <0.01. MYC OE= MYC Overexpression.
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was increased with a sample-specific factor for each of these cell lines (see Table 7 for  
circRNA signal details). 

Table 7: Circular RNA signal across all MYC/RNAseR samples. Circ signal decrease calculated in 
percent of baseline, MYC OE effect calculated based on x times baseline.

Sample circ 
signal ctrl 
untreated 

circ 
signal 
MYC 
untreated 

circ 
signal ctrl 
RNAseR

circ 
signal 
MYC 
RNAseR 

circ 
signal 
decrease 
unpon 
MYC OE - 
no 
RnaseR

circ 
signal 
decrease 
unpon 
MYC OE - 
RNAseR 
treatment

RnaseR 
circ 
signal 
amplificat
ion: ctrl

RnaseR 
circ 
signal 
amplificat
ion: MYC 
OE

DAOY 11.95 11.1 219.55 115.81 7.11 47.25 17.37 9.43
UW229 16.5 6.89 107.91 78.12 58.25 27.6 5.54 10.34
ONS76 10.02 8.22 108.53 72.62 18 33.09 9.83 7.84

In  addition,  Figure  35b  shows  the  same  data  sorted  into  four  conditions.  Here  the 
previously described trend of lower circRNA signal as a result of MYC overexpression was 
visible. Table 7 shows a global circRNA signal decrease upon  MYC overexpression, in 
untreated  and  RNAseR  treated  samples,  with  RNAseR-based  numbers  being  higher 
except for the UW228 cells. Additionally, the RNAseR-treated samples showed a higher 
level of circRNA signal. The only significant differences between these treatment groups 
were between the RNAseR samples without MYC overexpression and both non-RNAseR-
treated groups. The cell line specificity of the resulting circRNA signal observable in Figure  
35a can also be observed in the heatmap of the top 10% differentially expressed circRNAs 
across this dataset.
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In the heatmap depicted in Figure 36, the strong circRNA signal increase is observable 
throughout  all  RNAseR-treated  samples  (red  =  high  signal).  Generally,  the  RNAseR-
treated  sample  of  one  cell  line  clustered  closely  to  the  RNAseR-treated  MYC-
overexpressing sample, pointing further to strong circRNA signal increase upon RNAseR 
treatment. Since the non-treated samples had a much lower overall  signal (Figure 35), 
these clustered together, with the  MYC-overexpressing sample being next to its relative 
control. The DAOY control cells that were RNAseR treated showed a clear difference: this 
sample clustered more closely to the same cell line in other treatment conditions rather 
than other cell lines in the same treatment conditions.

4.6.4 In silico validation of experimental data

As before, the first step in evaluating the MYC/RNAseR dataset was the in silico validation. 
The included circbase overlap was performed as a first validation effort (Fig. 37).
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Figure  36:  Heatmap  of  top  500 
differentially  expressed  circular 
RNAs  across  the  MYC/RNAseR 
dataset. Normalized  circRNA data. 
Clustering  based  on  Pearson's 
dissimilarity, high circRNA expression 
=  red,  low  circRNA  expression  = 
green.

Figure 37: Circbase - 
based  overlap  of 
circular  RNA 
candidates  included 
in  the  whole 
MYC/RNAseR 
dataset.



This pie chart shows an elevated (in comparison to the discovery and validation cohorts) 
circbase  validation  ratio  of  74.62%.  This  included  the  circRNA species  from the  non-
treated and RNAseR-treated samples. For the next validation step, the circRNAs were 
overlapped with MiOncoCircDB data, leveraging the more cancer-specific circRNAs. This 
plot, like the previous one, shows a relative increase of circRNAs identified in the database 
(Fig. 38). This could be a sign of the dataset including a smaller number of circRNAs, or a 
generally higher number of true positive circRNAs. The next in-silico validation step of the 
in-vitro validation data  was the  overlap of  circRNA detected by circs  with  the  curated 
databases. 

The next step in this analysis was the validation of the detected circRNAs. All circRNAs 
also detected in the RNAseR treated samples were considered true positives, all circRNAs 
not detected in the with RNAseR treated one false positive.  All  in-silico validation rates 
calculated here are summarized in Table 8.

Table 8: In silico validation rate of the three MB circRNA datasets included in this thesis.

Dataset circbase overlap MiOncoCircDB overlap Curated DBs overlap
Discovery 61.26% 98.03% 9.03%
Validation 62.23% 98.28% 9.37%
MYC/RNAseR 74.62% 98.60% 12.90%
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Figure  38:  MYC/RNAseR 
samples and MiOncoCIrcDB 
overlap. All  in  the  dataset 
included  circular  RNAs  were 
used for this plot.

Figure  39: 
MYC/RNAseR 
samples and curated 
databases overlap.

coordinates 
in MiOncoCircDB



The overall trend of an increased validation rate in the MYC/RNAseR data set compared 
to the discovery and validation cohorts across all databases used continued and can be 
observed in Table 8. 

The  MYC/RNAseR  dataset  was  then  used  to  calculate  the  rate  of  RNAseR–stable 
circRNAs across all cell lines used. 

4.6.5 RNAseR validation rate assessment

To calculate the overall RNAseR validation rate, circRNAs detected in samples that were 
not treated with RNAseR were compared to those that were. In this approach, one cell line  
can confirm previously unconfirmed circRNAs from another cell line.

The pie chart  in Figure 40 shows a relative validation rate of 86.8% in  the combined  
MYC/RNAseR  samples.  Overall,  1085  circRNAs  could  be  validated.  Another  form  of 
visualizing the same result can be seen below as a Venn diagram, additionally visualizing  
the circRNAs that were exclusively detected in the not RNAseR treated samples (Fig. 41).
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Figure 40: RNAseR stable circRNAs found in the dataset relative to all 
non-RNAseR circRNA species across all three used cell lines.



Clearly,  the larger number of individual circRNAs can be found in the RNAseR-treated 
samples. However, 165 non-RNAseR circRNAs (13.2%) could not be validated using this 
approach.  Figure  41  also  shows  one  key  shortcoming  of  this  data:  there  are  many 
RNAseR circRNAs that were not detected in the non-RNAseR samples. There are multiple 
possible  reasons  for  this  that  will  be  evaluated  in  the  Discussion.  Furthermore,  
circEXOC6B and circISPD were detected in RNAseR and non-RNAseR treated samples in 
the  MYC/RNAseR  dataset,  but  circRMST was  not  detected.  To  maximize  the  insight 
gained from the  MYC/RNAseR dataset,  the previously shown discovery and validation 
cohorts were overlapped with the complete MYC/RNAseR cohort in Figure 42a, and with 
only the RNAseR-stable circRNAs included in this dataset in Figure 42b and Figure 42c for 
discovery and validation, respectively. 

82



The validation rates of the discovery and validation cohorts depicted in this figure must be  
taken as estimates; the RNAseR-treated samples are not able to accurately describe the 
whole intertumoral heterogeneity of any typical MB. Additionally, the cell lines were not  
representative of all four MB groups mentioned in this thesis. Further, the full dataset was 
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not as comprehensive as the discovery or validation cohorts, based on the much smaller  
number of included samples (three cell lines grown in vitro versus 35 or 38 patient-derived 
samples). 

4.6.6 Cell-line-specific RNAseR validation rate

To further  elucidate  the  circRNA detections made in  the  paired  treated and untreated 
samples and to define cell-line-specific RNAseR validation rates, the data set was split for  
each cell line. Here, two samples are compared to each other: RNAseR treated versus the 
same condition (MYC or ctrl) untreated. The results are shown in Figure 43.

Figure 43 shows a relative validation rate loss between ctrl and MYC samples in DAOY 
MB cells of 4.6%. The general correlation of circRNA quantification between the treated 
and untreated sample is higher in the ctrl sample.The axis on Figure 43a shows a 10-fold  
increase upon RNAseR treatment, hinting at the signal amplification rate of this RNAseR 
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Figure 43: DAOY-specific RNAseR validation rate. R² based on a linear model through all data points.

C

DAOY ctrl versus DAOY ctrl RNAseR DAOY MYC versus DAOY MYC RNAseR
a b



treatment. The untreated DAOY sample has the highest single-sample validation rate, 1% 
less than the overall validation rate considering all cell lines where each RNAseR sample 

can confirm non-treated circRNA detection in another cell line.. 

Figure  44  shows  a  comparatively  lower  validation  rate,  also  decreasing  for  the  MYC 
samples  by  13.9%.  The  correlation  between  RNAseR-treated  and  -untreated 
quantifications is much lower compared to the DAOY samples shown above.
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Figure 44: ONS76-specific RNAseR validation rate. R² based on a linear model through all data points.

a b
ONS76 ctrl versus ONS76 ctrl RNAseR ONS76 MYC versus ONS76 MYC RNAseR



Figure 45 shows an intermediate result for the UW228 MB cell line: the validation rates in  
both conditions are lower compared to  DAOY cells,  yet  higher  than the ONS76 cells. 
However,  for  the  non-MYC sample,  the  correlation  between  the  RNAseR-treated  and 
RNAseR-untreated samples was the highest in all comparisons shown here. Arguably, the 
cell-line-specific RNAseR validation rates were more precise compared to the samples 
including a pooled overlap of circRNAs. 

4.6.7 Circular RNA pertubations in the MYC/RNAseR dataset 

To evaluate the direct effect of MYC overexpression in MB cell lines on circRNA detection, 
a  volcano  plot  was  created  showing  two  dimensions  of  the  MYC-specific  circRNA 
pertubations: fold change and p-value. For this, all cell lines were pooled again, this time 
based on their MYC status, yielding two groups with 6 samples in each.
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Figure 45: UW228-specific RNAseR validation rate. R² based on a linear model through all data points.

UW228 ctrl versus UW228 ctrl RNAseR UW228 MYC versus UW228 MYC RNAseR
a b



The  differentially  expressed  circRNAs  shown  here  spread  in  both  directions  of  the 
“volcano”. All data points to the right side are increased upon MYC overexpression, and 
the opposite is true for the left side. Only one circRNA species (circFAT3) was significantly 
perturbed in the ctrl samples compared to the MYC overexpressing cells. Generally, more 
circRNAs were downregulated upon MYC overexpression, indicated by the higher number 
of circRNAs on the left side of the volcano plot.

87

Figure 46: Volcano plot of MYC overexpression specific circular RNA 
changes. red line signals statistical significance. the parental gene names of 
some circular RNAs are next to its datapoint.



5 Discussion

In the last 10 years, considerable progress has been achieved in the still relatively young 
circRNA research field49-63. However, there are still no circRNA-based biomarkers in daily 
use today. Given the emerging field of circRNAs as biomarkers for disease104,91,86-88, this 
thesis aimed to identify and validate the first circRNA-based biomarkers in MB, a highly 
malignant and biologically heterogeneous pediatric cancer14-18.
To reliably detect and quantify circRNAs from RNA-Seq data,  circs was established, a 
pipeline enabling researchers to  use the output  of  three circRNA detection algorithms. 
Using  this  pipeline  in  two  non-overlapping  MB  cohorts,  circRNAs  were  detected  and 
quantified, revealing MB-group-specific circRNA signals in both cohorts. In the analysis of 
the  top  500  differentially  expressed  circRNAs  in  both  cohorts,  it  was  revealed  that 
clustering  the  circRNA data  can classify  MB samples  into  their  respective  MB groups 
almost as precisely as SNF, a much more costly and data-demanding method. Additionally,  
Group 3 MB expressed the lowest number of circRNAs in both cohorts, suggesting that the 
total circRNA signal observed in each sample could potentially be relevant regarding the 
underlying tumor biology or the clinical course of the patient.
The enrichment of circRNAs in brain tissues described in the literature and its relative 
depletion in MB was confirmed57,61.  A stark contrast was observed in the circRNA signal 
between both MB cohorts and healthy fetal brain tissue. This needs to be taken with a 
grain of salt, because the healthy fetal brain tissue samples were sequenced as part of the 
ENCODE project much more deeply than both MB cohorts and on different platforms. The 
strong comparability between the two MB cohorts remained and illustrates the stability of 
circRNA-based biological classification across MB data sets. 
Next, reproducible MB group-specific circRNA biomarker were revealed using both cohorts 
(‘pan-cohort’). CircRMST was the most highly expressed circRNA in WNT MB, circISPD in 
SHH MB and circEXOC6B in Group 4 MB. Group 3 MB did not reveal any group-specific 
significantly  upregulated  circRNA.  This  might  be  due  to  the  overall  lower  number  of  
circRNAs in  Group 3 MB observed across both cohorts.  From all  pan-cohort  circRNA 
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biomarkers found, the most highly expressed circRNA was identified as the “candidate” for 
its group, due to practical concerns to be outlined later. The circRNA biomarker candidates 
defined  in  this  thesis,  circRMST,  circEXOC6B and  circISPD,  have  several  interesting 
shared properties. All of these candidates have been found in other datasets of circRNA 
expression, such as circbase. The parental genes of these candidates also show some 
common properties.  They have all  been investigated in  relation  to  abnormal  neuronal  
development and/or cancer132,133: RMST (rhabdomysarcoma-associated transcript) has this 
property already included in its name; ISPD is associated with Walker-Warburg syndrome 
(one key symptom being mental retardation and seizures); and EXOC6B has been found 
to play a role in intellectual  disability136.  However,  none of these have been previously 
linked to medulloblastoma, neither in circular nor in  linear forms.
The  defined  circRNA biomarker  candidates  were  then  validated  in  a  cancer-focused 
circRNA database, MiOncoCircDB. Here, each of the three candidates was first confirmed 
to  be  present  in  the  dataset.  Secondly,  the  expression  of  the  specific  candidate  was 
compared to all samples in this database, sorted into four distinct sample groups based on 
their  tissue  of  origin:  healthy_CNS,  Healthy_non_CNS,  cancer_CNS  and 
cancer_non_CNS. This was used as an additional indicator of the candidates’ specificity 
throughout the whole body in states of health and disease. Here, circRMST showed a high 
degree of specificity, with only one healthy prostate sample overlapping with the WNT MB 
circRMST levels in the validation dataset. However, the other biomarker candidates were 
shown to  be  less  specific  this  way;  for  circISPD and  circEXOC6B,  higher  expression 
values were found in CNS and non-CNS tissues, making neither sufficiently MB-specific, 
and thus both are not promising candidates for further circRNA biomarker investigations. 
In a next approach, both cohorts were merged to identify DNA methylation-based subtype 
biomarkers. Here, the small number of samples in some subtypes made the search for 
biomarkers challenging,  but  some subtypes were identified as having specific circRNA 
biomarkers. However, these findings are based on small sample sizes, arguably lowering 
their value. Additionally, this approach did not yield highly specific biomarkers; the best  
subtype circRNA biomarkers presented overlapped with other subtypes of the same MB 
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group.
To validate all circRNA species detected in the discovery and validation cohorts, first the 
circbase data included in  circs was used to confirm circRNAs already published in other 
studies. For the same target, a number of manually curated databases were also used, 
and  finally,  MiOncoCircDB.  All  three  in  silico validation  methods  showed  a  slightly 
increased number of validated circRNAs in the validation cohort compared to the discovery 
cohort. 
To further  validate the  identified circRNA biomarkers and the  established pipeline,  the 
Circleseq protocol was used. Here, three well-established MB cell lines (ONS67, UW228 
and DAOY) were treated to overexpress  MYC42, a risk-indication for MB patients known 
from clinical data. The three cell lines, with and without MYC overexpression, were treated 
with  RNAseR, an enzyme that  digests linear  RNAs but not  most  circRNAs in a given 
sample. This dataset, called MYC/RNAseR, was used to a) validate ~40% of all circRNAs 
detected in the validation and discovery cohorts and b) show the circRNA true detection 
rate of circs to be 86.8% in this data set, when all  samples are used at once and the 
maximum cell-line-specific validation rate is 85.8%. Even though the three MB cell lines 
lack heterogeneity found in the discovery and validation cohort (not all  four MB groups 
were  represented),  the  achieved  circRNA  validation  rate  is  surprisingly  high  and 
consistent. This relative validation rate can be seen as an indicator of missing sequencing 
depth  in  the  cell  lines,  indicated  by  the  high  number  of  circRNAs  from the  RNAseR 
samples  not  found  in  the  corresponding  untreated  samples.  These  circRNAs  did  not 
emerge due to the RNAseR treatment. They were supposedly already in the untreated 
samples,  but  only  the  RNAseR-based  enrichment  made  these  “visible”,  essentially 
identifying one key argument for 86.8% not being the exact number of true positives in all  
three datasets. To evaluate this hypothesis, these samples would need to be sequenced 
again, but with a much higher amount of input material and a higher sequencing depth.  
However, the own findings are a good indication and in line with other publications that  
utilized the Circleseq protocol to identify the true-positive rate of their respective circRNA 
detection tools49,100. 
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During this project, a pair of matched FFPE (formalin fixed paraffin embedded) samples –  
commonly used for routine histological studies and long-term sample storage and snap 
frozen samples of glioblastoma were analyzed as well (Supplementary Figure 47). The key 
finding here was that highly expressed circRNAs detected in the snap frozen tissue could 
also be found in the corresponding FFPE sample, albeit with a relative signal loss of ~ 
75%.  This  preliminary  data  suggests  that  elevated  circRMST expression  could  be 
determined in RNA extracted from FFPE samples to identify WNT Mbs(similar to 107). 
Additional data not shown in this thesis include other exclusion reasons for circEXOC6B. 
The  lin-to-circ  ratio  (the  fraction  of  linear  transcript  versus  the  number  of  backsplice 
junctions found in the same data) was ~1 for circRMST, indicating complete or almost 
complete circular isoform dominance, while circEXOC6B’s lin-to-circ ratio was close to 0.3. 
This makes circEXOC6B even harder to detect, because of the expected amount of linear 
“noise” not contributing to an exact measurement but leading to biased quantifications. 
Another striking property makes circRMST a surprising candidate: it is the circRNA in the 
discovery cohort with the highest expression level across all samples (22.1 junction reads 
per  million),  suggesting  circRMST is  one  of  the  best  circRNAs  to  detect  due  to  low 
minimum detection sensitivity.
The spatio-temporal regulation of circRNA and its therefore distinct expression patterns 
make this novel type of (mostly) non-coding RNA an emerging field of biomarker research.
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However,  there  are  numerous  pitfalls  in  circRNA-based  biomarker  research:  generally 
lower agreement between different circRNA detection pipelines indicates a low number of 
consensus species,  and points  toward significant  false positive rates for  each existing 
algorithm. However, this can be overcome by using multiple approaches at once and only  
proceeding with the overlapping circRNA species. This, however, can combine the blind 
spots of each algorithm102,103.
The in silico circRNA research field is based on three main circRNA validation methods: 
RNAseR treatment of  samples and the analysis  thereof,  called the Circleseq protocol; 
PCR of  the back-splice junction;  and northern blot.  The shortcomings of the Circleseq 
protocol are manifold: the sequence depth is a crucial factor in the number of detected 
circRNAs in a given sample; long circRNAs are RNAseR sensitive49; and if not treated long 
enough, linear RNA can falsify the resulting data. By contrast, PCR is inexpensive and 
fast, but not every circRNA candidate can be measured with this approach. The length of  
most circRNAs is limited, hence the design of suitable primers may be challenging. PCR 
primers also can, if not designed carefully, indicate not only the circular but also the linear 
isoform, corrupting the whole approach. Other pitfalls are typical  for  PCR: self-sticking 
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primers that attach to themselves rather than the DNA template105; primer sequences that 
are not unique leading to unspecific amplications; and products that are too large for the 
PCR reaction, making the desired PCR signal weaker through unfinished synthesis steps.
Northern blotting is also not ideal for circRNA validation. Even though circRNA is more 
stable than its linear counterpart, it may degrade over time, making the whole analysis 
time sensitive.  This method is also limited in throughput,  making it  laborious and time 
consuming for the validation of multiple candidates. 
RNA-Seq-based methods, such as those presented here with  circs, are not immune to 
mistakes  either49,100..  RNA-Seq  is  not  an  easy,  inexpensive  or  fast  process46.  The 
sequencing of genetic material using current NGS sequencing machines is still prone to 
PCR biases and sequencing errors,  and can,  supplied  with  material  of  low quality  or  
quantity, result in poor data quality43. Before RNA is sequenced, reverse transcriptase is 
used  to  convert  the  unstable  RNA into  the  more  stable  DNA molecules  that  are  the 
ultimate input for all  Illumina-based RNA-Seq efforts43. This, again can bias the results, 
and there have been no extensive studies on how selective this conversion step is towards 
circRNAs. 
However, before the emerging and promising biomarkers presented here can be applied,  
several developments and advancements have to be achieved.
First, more patient-derived samples need to be screened for circRMST, ideally by PCR or 
RNA-Seq. A high number of samples would be beneficial, ensuring the reliability of this 
putative biomarker molecule. A potential key finding could be the detection of circRMST in 
the CSF of WNT MB patients. This would make circRNA screening a faster method of 
diagnosis, allowing timely risk stratification of the patient before a biosample of the tumor  
itself  can be obtained during resection of  the cancerous tissue.  Time is  crucial  in  the 
treatment of  cancer,  and the ability to identify certain malignant brain cancers through 
biofluids like CSF would improve the time to  diagnosis  as well  as monitoring disease 
activity after diagnosis substantially. Exosomal circRNAs have been identified before92,93 

and  have  even  been  shown to  be  enriched  in  CSF95,  but  the  ratio  of  circRNAs in  a 
pediatric brain tumor to circRNAs in its CSF has not yet been identified. CSF samples 
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could be contaminated by blood, indicating another source of noise in this still  feasible 
circRNA biomarker development path. If a circRNA based biomarker for a MB group is 
found  in  another  malignant  brain  tumor,  such  as  ependymoma,  it  could  render  the 
candidate unsuitable for further studies. For biomarker development, a high false positive 
or false negative rate results in an unreliable indicator139.  Additionally, practical aspects 
have to be accounted for, such as utility (in the clinic) and practicability (to measure). This 
refers to the required resources in order to implement the biomarker in the clinical setting;  
if an expensive machine must be purchased for a single biomarker and new protocols 
must  be  established,  the  biomarker  is  much harder  to  use than  one  with  a  standard 
protocol using a new probe. For example, a new set of PCR primers is easy to implement.  
Lastly, if the biomarker has excellent reliability, but lacks a significant clinical impact (only 
indicating  minor  differences  that  are  not  actionable),  the  biomarker  will  not  be 
implemented.
This  thesis  demonstrated  the  remarkable  potential  of  circRMST in  sensitivity  and 
specificity, in two independent MB datasets with limited size. Its clinical utility could be 
immense; early and precise risk stratification can lead to more children surviving this still 
deadly disease, and lead to less severe side effects in the process. As far as practicability  
is concerned, the measurement of the circRNA itself is already feasible in almost every 
standard clinic laboratory equipped with a PCR machine49,54.
In total, circRMST emerged as a promising WNT MB biomarker, but additional research is 
required to verify and test its biomarker capacity in the clinical setting.
The performance (measured in RNAseR resistant circRNAs detected in the non-RNAseR 
treated sample) of  the circRNA detection pipeline circs presented here is  high (86.8% 
combining all cell lines / 85.8% for maximal single-cell line), and thus re-using the pipeline 
can be recommended, especially the snakemake-based circs_snake. However, circRNA 
analysis typically benefits from strictly trimmed and deeply sequenced paired end data102, 
which is recommended as input here as well. 
Although the biological function is mostly elusive and remains to be understood, circRNA is 
still an emerging field that, despite its many pitfalls, holds the promise of being the next  
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frontier  in biomarker discovery. Here, we could find a suitable biomarker candidate for 
WNT MBs, but subsequent studies in this field with a larger number of samples or more 
sequencing data available could uncover a plethora of suitable circRNAs. This thesis also 
demonstrated that biomarker discovery can fail at several stages, as seen here in the two 
other main candidates, circEXOC6B and circISPD. 
Furthermore, this thesis demonstrated that circRNA is a useful additional layer of data,  
serving as another approach to understand the complex biology of pediatric malignancies.  
Here, several aspects can lead to further investigations. For example, the circRNA signal 
holds some informational value, as demonstrated by the MB-group specific circRNA signal, 
but  could  not  be  followed up on in  the  validation  cohort.  The  MYC/RNAseR data  set 
confirmed this trend further, with MYC overexpression leading to a generally lower circRNA 
signal in these cells. In this dataset, as in the validation dataset, this behavior did not reach 
statistical  significance,  yet  its  consistency  is  striking.  This  global  change  of  circRNA 
abundance upon MYC expression perturbations could be caused by a mechanistic role of  
MYC  antagonistic to  QKI, as has been reported previously75.  However,  independent of 
MYC, the general trend of circRNA signal decrease observed here might be of further use 
in other cancer entities and diseases, as previously demonstrated91. 
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7 Appendix

7.1 Supplementary figures
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Figure 47: Relative signal loss in matched formalin fixated paraffin 
embedded (FFPE) and snap frozen (SF) glioblastoma samples. Red 
linear trend line. Gene names correspond to parental gene annotation.

Mean circRNA expression in FFPE versus SF 
glioblastoma samples 

pearson correlation = 0.76 
r² = 0.58
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Figure 48: DAG resulting from circs_snake on 2 samples of paired-end data as of version 10.05.2021. 
Rule “all” does only collect output files. 
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Figure 49: Circular RNA biomarkers for medulloblastoma compared to healthy fetal brain tissue. 
Medulloblastoma cohort combines discovery and validation cohorts. ***=p-value <0.001.

CircFIRRE Combined Cohort 
chrX:130883333-130928494

CircRNF220 Combined Cohort 
chr1:44877652-44878394

a b

*** ***
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Figure 51: Heatmap of the combined discovery and validation cohort. Shown are the top 10% 
differentially expressed circular RNAs. Dendrogram is based on Pearson's dissimilarity. colors based on 
circRNA MB group. blue = WNT MB, red = SHH MB, yellow= Group 3 MB, green = Group 4 MB.

Discovery and Validation cohort combined 
top 10% diverging (1138) circRNAs



7.2 Supplementary tables 
The input data from the MYC/RNAseR data set is shown below in Table 9.

Table 9: Table of RNA-Seq preparation metrics for the MYC/RNAseR dataset used in this thesis. 
Sample Name RNA 

isolation 
method

determinatio
n of 
concentratio
n

Conc (ng/µl) volume (~µl) treatment

DAOY_GFP-MYC Maxwell NanoDrop 640,2 15 Total RNA
DAOY_GFP ctrl. Maxwell NanoDrop 708,6 15 Total RNA
ONS76_GFP-MYC Maxwell NanoDrop 1237,6 15 Total RNA
ONS76_GFP ctrl. Maxwell NanoDrop 1342,9 15 Total RNA
UW228-3_GFP-MYC Maxwell NanoDrop 795,3 15 Total RNA
UW228-3_GFP ctrl. Maxwell NanoDrop 800 15 Total RNA
DAOY_GFP-MYC Maxwell NanoDrop 54,2 ~29 RnaseR treated
DAOY_GFP ctrl. Maxwell NanoDrop 55,1 ~29 RnaseR treated
ONS76_GFP-MYC Maxwell NanoDrop 53,8 ~29 RnaseR treated
ONS76_GFP ctrl. Maxwell NanoDrop 49,4 ~29 RnaseR treated
UW228-3_GFP-MYC Maxwell NanoDrop 65,8 ~29 RnaseR treated
UW228-3_GFP ctrl. Maxwell NanoDrop 64,1 ~29 RnaseR treated

Table 10: RNA-Seq MYC quantifications across MYC/RNAseR dataset.
Sample name Original name Status Cell line Treatment MYC linear RNA reads
RICK_01_S3 DAOY_GFP-MYC MYC DAOY Total RNA 974
RICK_02_S4 DAOY_GFP ctrl. Control DAOY Total RNA 154
RICK_03_S1 ONS76_GFP-MYC MYC ONS76 Total RNA 2924
RICK_04_S2 ONS76_GFP ctrl. Control ONS76 Total RNA 2591
RICK_05_S1 UW228-3_GFP-MYC MYC UW228-3 Total RNA 4277
RICK_06_S2 UW228-3_GFP ctrl. Control UW228-3 Total RNA 500
RICK_07_S3 DAOY_GFP-MYC MYC DAOY RnaseR treated 373
RICK_08_S4 DAOY_GFP ctrl. Control DAOY RnaseR treated 20
RICK_09_S1 ONS76_GFP-MYC MYC ONS76 RnaseR treated 940
RICK_10_S2 ONS76_GFP ctrl. Control ONS76 RnaseR treated 259
RICK_11_S3 UW228-3_GFP-MYC MYC UW228-3 RnaseR treated 2067
RICK_12_S4 UW228-3_GFP ctrl. Control UW228-3 RnaseR treated 73

Table 11: Pan-cohort circRNA biomarker species for circ medulloblastoma RNA-based WNT 
medulloblastoma group. Circular RNA information according to DCC. 
coordinates strand gene refseqid circ_id_circbase
chr12:97886238-97954825 + RMST NR_024037 unknown
chr17:63739185-63746842 + CEP112 NM_001037325 hsa_circ_0002910
chr11:92085261-92088570 - FAT3 NM_001008781 hsa_circ_0000348
chr11:36248634-36248980 - LDLRAD3 NM_174902 hsa_circ_0006988
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chr12:97886238-97924637 + RMST NR_024037 hsa_circ_0027821
chr9:115030328-115060196 + MIR3134 NR_036085 hsa_circ_0003500
chr1:62321701-62350080 - PATJ NM_176877 hsa_circ_0012779
chr9:115024714-115060196 - MIR3134 NR_036085 hsa_circ_0008192
chr9:73442762-73479427 + TRPM3 NM_020952 unknown
chr2:223084858-223097002 + PAX3 NM_001127366 hsa_circ_0007333
chr3:89390065-89391240 - EPHA3 NM_182644 hsa_circ_0066598
chr3:89456418-89480509 - EPHA3 NM_005233 unknown
chr3:89456418-89499520 - EPHA3 NM_005233 hsa_circ_0066601
chr4:42505466-42546003 + ATP8A1 NM_001105529 hsa_circ_0069613
chr6:94066434-94068129 + EPHA7 NM_004440 hsa_circ_0077398
chr9:115013208-115060196 + MIR3134 NR_036085 hsa_circ_0003458
chr9:114842353-114875148 + MIR3134 NR_036085 unknown
chr9:73477823-73479427 + TRPM3 NM_020952 unknown
chr3:107910367-107932868 - IFT57 NM_018010 hsa_circ_0066741
chr22:29517344-29521404 - KREMEN1 NM_001039570 hsa_circ_0004547
chr4:183522076-183550042 + TENM3 NM_001080477 hsa_circ_0071480
chr2:159165944-159201830 + CCDC148 NM_138803 hsa_circ_0056768
chr4:108603170-108622441 + PAPSS1 NM_005443 hsa_circ_0006935
chr5:145144493-145205763 + PRELID2 NM_182960 hsa_circ_0008132
chr12:128899276-128900165 - TMEM132C NM_001136103 unknown
chr2:107446521-107460490 + ST6GAL2 NM_001142351 hsa_circ_0055954
chr1:210186977-210194599 - SYT14 NM_001146261 hsa_circ_0016334
chr9:73376516-73399195 + TRPM3 NM_020952 unknown
chr4:42618049-42629126 - ATP8A1 NM_001105529 unknown
chr2:178681555-178705110 + PDE11A NM_001077196 unknown
chr4:42505466-42526864 + ATP8A1 NM_001105529 hsa_circ_0069612
chr1:232596632-232607274 + SIPA1L2 NM_020808 unknown
chr3:3197902-3215945 + CRBN NM_001173482 hsa_circ_0003400
chr5:145197456-145205763 + PRELID2 NM_182960 hsa_circ_0006528
chr17:63685246-63746842 - CEP112 NM_001037325 unknown
chr12:97886238-97954476 + RMST NR_024037 unknown
chr9:114860749-114875148 + MIR3134 NR_036085 hsa_circ_0088046
chr1:62321701-62341038 + PATJ NM_176877 unknown
chr4:183522076-183575046 - TENM3 NM_001080477 unknown
chr4:103225473-103236987 - SLC39A8 NM_001135147 hsa_circ_0002782
chr3:89259009-89259670 - EPHA3 NM_182644 hsa_circ_0066596
chr9:73399020-73479427 + MIR204 NR_029621 unknown
chr21:27326903-27354790 + APP NM_001136016 unknown
chr3:196831773-196846401 - DLG1 NM_001204387 hsa_circ_0008500
chr4:42487512-42526864 + ATP8A1 NM_001105529 hsa_circ_0069608
chr1:65131739-65141666 - CACHD1 NM_020925 hsa_circ_0007009
chr4:183245098-183268082 + TENM3 NM_001080477 hsa_circ_0071475
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chr1:62321701-62393501 - PATJ NM_176877 unknown
chr3:157839891-157921034 + RSRC1 NM_001271834 hsa_circ_0067808
chr1:232649602-232651354 + SIPA1L2 NM_020808 unknown
chr3:196817782-196846401 - DLG1 NM_001204387 hsa_circ_0008583
chr4:42487512-42546003 + ATP8A1 NM_001105529 unknown
chr2:171884848-171902872 + TLK1 NM_001136555 hsa_circ_0004442
chr8:40532222-40554920 - ZMAT4 NM_001135731 unknown
chr4:42487512-42509171 + ATP8A1 NM_001105529 hsa_circ_0069607
chr1:65068488-65107652 - CACHD1 NM_020925 unknown
chr17:63545637-63554854 + AXIN2 NM_004655 hsa_circ_0045350
chr20:8720990-8746005 - PLCB1 NM_015192 unknown
chr18:346294-357522 + COLEC12 NM_130386 unknown
chr3:89444986-89468540 - EPHA3 NM_182644 unknown
chr14:63447589-63483672 + KCNH5 NM_139318 hsa_circ_0032148
chr9:74309424-74313120 + CEMIP2 NM_001135820 hsa_circ_0003861
chr1:62321701-62367131 - PATJ NM_176877 unknown
chr3:77595488-77617585 - ROBO2 NM_002942 unknown
chr2:171709223-171710532 + GAD1 NM_000817 hsa_circ_0057012
chr9:115013208-115024879 - MIR3134 NR_036085 hsa_circ_0088073
chr1:62455839-62516730 + PATJ NM_176877 unknown
chr4:107092251-107157965 + TBCK NM_001163435 hsa_circ_0070585
chr12:97856929-97954825 - MIR1251 NR_031653 unknown
chrX:10534927-10535643 + MID1 NM_001193277 hsa_circ_0007933
chr2:188243666-188252483 + CALCRL NM_001271751 unknown
chr11:128932174-128936763 + ARHGAP32 NM_001142685 hsa_circ_0024840
chr1:62374043-62380336 - PATJ NM_176877 unknown
chr16:30740286-30745329 - SRCAP NM_006662 hsa_circ_0004236
chr2:206023445-206058044 - PARD3B NM_057177 hsa_circ_0008172
chr8:40532222-40532450 + ZMAT4 NM_001135731 unknown
chr9:73376516-73426160 + MIR204 NR_029621 unknown
chr1:62455839-62503721 - PATJ NM_176877 unknown
chr6:45459677-45480144 - RUNX2 NM_001015051 hsa_circ_0076691
chr4:108984778-109000770 + LEF1 NM_001166119 unknown
chr1:232551239-232568217 + SIPA1L2 NM_020808 hsa_circ_0016909

Table 12: Pan-cohort circular RNA biomarker species for circular RNA-based SHH medulloblastoma 
group. Circular RNA information according to DCC. 
coordinates strand gene refseqid circ_id_circbase
chr7:16298014-16317851 + ISPD NM_001101417 hsa_circ_0079480
chr4:119026172-119064839 - NDST3 NM_004784 unknown
chr2:110321942-110350696 - SEPT10 NM_144710 hsa_circ_0002076
chr8:18656804-18662408 + PSD3 NM_206909 hsa_circ_0004458
chr5:64747301-64769779 - ADAMTS6 NM_197941 hsa_circ_0072688
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chr4:119026172-119036115 - NDST3 NM_004784 unknown
chr10:86177526-86237420 - CCSER2 NM_018999 hsa_circ_0018996

Table 13: Significant circular RNA biomarkers in Group 3 medulloblastoma (circular RNA 
medulloblastoma groups) in discovery and validation. Circular RNA information according to DCC. 
discovery
coordinates strand gene refseqid circ_id_circbase
chr15:76152218-76165909 - UBE2Q2 NM_173469 unknown
chr2:227729319-227779067 - RHBDD1 NM_001167608 hsa_circ_0058495
chr3:138289159-138290198 - CEP70 NM_024491 hsa_circ_0002468
chr5:72370568-72373320 - FCHO2 NM_001146032 hsa_circ_0002490
chr7:80418621-80440017 - SEMA3C NM_006379 hsa_circ_0004365

validation
coordinates strand gene refseqid circ_id_circbase
chr1:216495224-216500996 + USH2A NM_007123 unknown
chr1:225140371-225195246 - DNAH14 NM_144989 hsa_circ_0016601
chr1:231930987-231954263 - unkn NR_002227 hsa_circ_0007848
chr12:5841685-5916534 + ANO2 NM_001278596 unknown
chr12:5860001-5941769 + ANO2 NM_001278596 unknown
chr12:5908672-5941769 + ANO2 NM_001278596 unknown
chr12:5915217-5941769 + ANO2 NM_001278596 unknown
chr12:5936934-5941769 - ANO2 NM_001278596 unknown
chr13:96577933-96651561 - UGGT2 NM_020121 unknown
chr15:33445248-33447246 - FMN1 NM_001277314 unknown
chr2:207144263-207162097 + ZDBF2 NM_020923 hsa_circ_0002141
chr2:40366540-40405633 + SLC8A1-AS1 NR_038441 unknown
chr2:40655612-40657441 + SLC8A1 NM_001112800 hsa_circ_0005232
chr2:40655612-40657444 + SLC8A1 NM_001112800 hsa_circ_0000994
chr3:18419661-18462483 - SATB1 NM_001195470 hsa_circ_0064555
chr3:33725850-33738425 + CLASP2 NM_015097 hsa_circ_0001280
chr3:68929880-68934461 + FAM19A4 NM_001005527 hsa_circ_0066495
chr4:162376155-162431576 + FSTL5 NM_001128427 unknown
chr6:135621637-135644462 + AHI1 NM_001134830 hsa_circ_0005214
chr6:65300115-65303202 - EYS NM_001142800 unknown
chr6:66200486-66205886 + EYS NM_001142800 unknown
chr7:81662112-81746489 + CACNA2D1 NM_000722 unknown
chr7:81689743-81746489 + CACNA2D1 NM_000722 hsa_circ_0003159
chr8:104922361-104973361 - RIMS2 NM_001100117 unknown
chr8:105080739-105161076 - RIMS2 NM_001100117 hsa_circ_0005114
chr8:105105698-105161076 + RIMS2 NM_001100117 hsa_circ_0085302
chr8:32453345-32474403 - NRG1 NM_013962 hsa_circ_0007279
chr9:88284399-88327481 + AGTPBP1 NM_015239 hsa_circ_0087391
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Table 14: Pan-cohort circular RNA biomarker species for circular RNA-based Group 4 
medulloblastoma group. Circular RNA information according to DCC.
coordinates strand gene refseqid circ_id_circbase
chr2:72945231-72960247 + EXOC6B NM_015189 hsa_circ_0009043
chrX:147743428-147744289 - AFF2 NM_001169122 hsa_circ_0001947
chr4:39739039-39776553 + UBE2K NM_001111112 hsa_circ_0002590
chr10:32832227-32873232 - CCDC7 NM_001026383 hsa_circ_0000233
chr2:72958135-72960247 + EXOC6B NM_015189 hsa_circ_0001030
chr13:78293666-78327493 - SLAIN1 NM_001242868 hsa_circ_0000497
chr5:16779653-16783578 + MYO10 NM_012334 unknown
chr10:49609654-49618211 - MAPK8 NM_001278548 hsa_circ_0002968
chr14:50616725-50616948 + SOS2 NM_006939 hsa_circ_0007695
chr4:73950965-73958017 + ANKRD17 NM_032217 hsa_circ_0001417
chr6:17507399-17514185 - CAP2 NM_006366 hsa_circ_0002245
chr6:70447833-70500364 + LMBRD1 NM_018368 unknown
chr21:17553910-17603435 - MIR99AHG NR_027790 unknown
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7.3 Figure directory

Figure 1: Medulloblastoma groups and subtypes displayed with characteristics of each 
subtype. Taken from Cavalli et.al. 2017...............................................................................12
Figure 2: FastQC report summarized by MultiQC. Each horizontal line represents one 
sample and the mean quality (Phred) score in the corresponding position. The green area 
indicates generally good quality data, yellow acceptable and red bad quality. At least the 
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