Dokument: Crystal Engineering von γ-Aminobuttersäure und ihren Pharmazeutisch Aktiven Derivaten

Titel:Crystal Engineering von γ-Aminobuttersäure und ihren Pharmazeutisch Aktiven Derivaten
Weiterer Titel:Crystal Engineering of γ-Amino Butanoic Acid and its Pharmaceutically Active Derivatives
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=62402
URN (NBN):urn:nbn:de:hbz:061-20230424-081341-3
Kollektion:Dissertationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Komisarek, Daniel [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]108,76 MB in 2 Dateien
[ZIP-Datei erzeugen]
Dateien vom 12.04.2023 / geändert 13.04.2023
Beitragende:Prof. Dr. Janiak, Christoph [Gutachter]
Prof. Dr. Ganter, Christian [Gutachter]
Stichwörter:Crystal Engineering, GABA, Mechanochemie, Gitterenergie
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 540 Chemie
Beschreibungen:Crystal Engineering hat sich spätestens seit den neunziger Jahren des vergangenen Jahrhunderts als eigenständige Subdisziplin der supramolekularen Chemie etabliert. Allerdings sind viele Vorgänge, die das supramolekulare Aggregationsverhalten betreffen, auch über dreißig Jahre später noch nicht vollkommen aufgeklärt. Daraus ergeben sich zahlreiche Probleme für das Feld, welche vor Allem die Vorhersagbarkeit von Struktur und Eigenschaften kristalliner Festkörper betreffen. In der Pharmazie gipfelt diese geminderte Kontrollfähigkeit über die Festphase im Phänomen der sogenannten Disappearing Polymorphs. In so bezeichneten Fällen ist es im industriellen Maßstab plötzlich nicht mehr möglich ein zuvor über lange Zeit wohldefiniertes Produkt unter den scheinbar gleichen Bedingungen wie in der Vergangenheit zu erhalten. Ein unerkannter Einfluss begünstigt dabei einen unerwarteten Phasenwechsel des Zielproduktes zu einer anderen polymorphen Modifikation. Dieses Problem ist beispielhaft für die Herausforderungen des modernen Crystal Engineerings: der Komplexität des Kristallisationsvorgangs mit Mitteln Herr zu werden, die kaum die Vielzahl an möglichen Einflüssen auf diesen Prozess erfassen können. In den vorliegenden Arbeiten wurde die Kristallisation der γ-Aminobuttersäure (GABA) und ihren Derivaten Gabapentin, Pregabalin, Phenibut und Baclofen im Vergleich miteinander untersucht. Dabei wurden zahlreiche Kristallstrukturen sowohl von Einzel- als auch Multikomponentenphasen wie Salzen und Co-Kristallen dieser Stoffe mit einer Auswahl an Carbonsäuren aufgeklärt und ihre physikochemischen Eigenschaften bestimmt. Dazu wurden sowohl analytische Methoden wie auch Computer basierte Rechnungsmodelle verwendet. Es konnte gezeigt werden, dass in vielerlei Hinsicht ein ähnliches Verhalten in den Bindungsmodi der supramolekularen Aggregation der untersuchten Substanzen besteht. Solche Gemeinsamkeiten bleiben jedoch oberflächlich. So wurde beispielsweise festgestellt, dass die Bildung von Multikomponentensystemen mit der selben Carbonsäure oftmals mit mehr als einem GABA-Derivat möglich ist. Allerdings unterscheiden sich die erhaltenen Produkte in vielerlei Fällen sowohl strukturell als auch in ihren Eigenschaften. Ein kristallisationsbasiertes Verfahren zur Deracemisierung von Pregabalin ist nicht in gleicher Weise auf Phenibut übertragbar. Die Arbeit zeigt auf, dass sogar zwischen molekular nah verwandten Spezies gravierende Unterschiede im Kristallisationsverhalten bestehen können, denen nicht einfach Herr zu werden ist.

Crystal engineering has been established as an independent subdiscipline of supramolecular chemistry since the 1990s of the previous century at the latest. However, many processes affecting supramolecular aggregation behaviour have not been fully elucidated even more than thirty years later. This poses numerous problems for the field, mainly concerning the predictability of structure and properties of crystalline solids. In pharmaceutics, this diminished ability to control the solid phase culminates in the phenomenon known as disappearing polymorphs. In such cases, it is suddenly no longer possible on an industrial scale to obtain a product that has previously been well-defined over a long period of time under what appear to be the same synthesis conditions as in the past. In this case, an unrecognized influence favours an unexpected phase change of the target product to a different polymorphic modification. This problem is exemplary for the challenges of modern crystal engineering: to cope with the complexity of the crystallization process by means that can hardly capture the multitude of possible influences on this process. In the present work, the crystallization of γ-amino butanoic acid (GABA) and its derivatives Gabapentin, Pregabalin, Phenibut, and Baclofen were studied in comparison with each other. Numerous crystal structures of both single and multicomponent phases such as salts and co-crystals of these substances with a selection of carboxylic acids were elucidated and their physicochemical properties were determined. Both analytical and computational models were used for this purpose. It was shown that in many respects there is similar behaviour in the binding modes of supramolecular aggregation of the studied substances. However, such similarities remain superficial. For example, it was found that the formation of multicomponent systems with the same carboxylic acid is often possible with more than one GABA-derivative. However, in many cases the products obtained differ both structurally and in their properties. A crystallization-based procedure for the deracemization of Pregabalin is not equally applicable to Phenibut. The work demonstrates that even between molecularly closely related species there can be serious differences in crystallization behaviour that are not easy to master.
Quelle:[1] Pepinsky, R. Crystal Engineering - New Concept in Crystallography. Phys. Rev. 1955, 100, 971.
[2] Schmidt, G. M. J. Photodimerization in the solid state. Pure Appl. Chem. 1971, 27, 647–678.
[3] Gnanaguru, K.; Murthy, G. S.; Venkatesan, K.; Ramamurthy, V. A study in Crystal engineering: Solid-state photodimerization of chloro- and methyl-coumarins. Chem. Phys. Lett. 1984, 109, 255–258.
[4] Gnanaguru, K.; Ramasubbu, N.; Venkatesan, K.; Ramamurthy, V. A study on the photochemical dimerization of coumarins in the solid state. J. Org. Chem. 1985, 50, 2337–2346.
[5] Trotter, J. Structural aspects of the solid-state photochemistry of tetrahydronaphthoquinones. Acta Crystallogr. B Struct. Sci. 1983, 39, 373–381.
[6] Danielmeyer, H. G.; Jeser, J. P.; Schönherr, E.; Stetter, W. The growth of laser quality NdP5O14 crystals. J. Cryst. Growth 1974, 22, 298–302.
[7] Jiang, Z. Q.; Scheffer, J. R.; Secco, A. S.; Trotter, J. Crystal engineering in the solid state photochemistry of cyclohexenones. Tetrahedron Lett. 1981, 22, 891–894.
[8] Jones, W.; Ramdas, S.; Theocharis, C. R.; Thomas, J. M.; Thomas, N. W. Crystal engineering of photodimerizable cyclopentanones. Comparison of chloro- and methyl- substitution as solid-state steering groups. J. Phys. Chem. 1981, 85, 2594–2597.
[9] Adams, J. M.; Pritchard, R. G.; Thomas, J. M. Preparation and X-ray crystal structure of guanidinium oxalate dihydrate monoperhydrate: a novel example of crystal engineering. J. Chem. Soc., Chem. Commun. 1976, 358.
[10] Brown, G. M.; Frazier, C. C. The structure of tricarbonyl(styrene)chromium, a crystal active in second-harmonic generation. Acta Crystallogr. C Cryst. Struct. Commun. 1989, 45, 1158–1161.
[11] Sankaran, H.; Sharma, S. M.; Sikka, S. K.; Chidambaram, R. High pressure phase transitions in organic solids II: X-ray diffraction study ofp-dichlorobenzene at high pressures. Pramana - J. Phys. 1986, 27, 835–839.
[12] Theocharis, C. R.; Desiraju, G. R.; Jones, W. The use of mixed crystals for engineering organic solid-state reactions: application to benzylbenzylidenecyclopentanones. J. Am. Chem. Soc. 1984, 106, 3606–3609.
[13] Sarma, J. A.; Desiraju, G. R. The chloro-substituent as a steering group: A comparative study of non-bonded interactions and hydrogen bonding in crystalline chloro-aromatics. Chem. Phys. Lett. 1985, 117, 160–164.
[14] Sarma, J. A. R. P.; Desiraju, G. R. Crystal engineering via Cl ⋯ Cl non-bonded interactions. The novel 2 : 1 complex, 6-chloro-3,4-(methylenedioxy)cinnamic acid–2,4-dichlorocinnamic acid. Topochemical conversion into an unsymmetrical cyclobutane and kinetics of the reaction. J. Chem. Soc., Chem. Commun. 1984, 145–147.
[15] Radha Kishan, K. V.; Desiraju, G. R. Crystal engineering: a solid state Diels-Alder reaction. J. Org. Chem. 1987, 52, 4640–4641.
[16] Nalini, V.; Desiraju, G. R. Crystal engineering through non-bonded contacts to sulphur. Tetrahedron 1987, 43, 1313–1320.
[17] Ganguly, S.; Fernandes, J. R.; Desiraju, G. R.; Rao, C. Phase transition in malonic acid: An infrared study. Chem. Phys. Lett. 1980, 69, 227–229.
[18] Desiraju, G. R.; Sarma, J. A. R. P. Crystal engineering via donor–acceptor interactions. X-Ray crystal structure and solid state reactivity of the 1 : 1 complex, 3,4-dimethoxycinnamic acid–2,4-dinitrocinnamic acid. J. Chem. Soc., Chem. Commun. 1983, 45–46.
[19] Desiraju, G. R.; Paul, I. C.; Curtin, D. Y. Conversion in the solid state of the yellow to the red form of 2-(4’-methoxyphenyl)-1,4-benzoquinone. X-ray crystal structures and anisotropy of the rearrangement. J. Am. Chem. Soc. 1977, 99, 1594–1601.
[20] Desiraju, G. R.; Luss, H. R.; Smith, D. L. Resonance interactions in metal chelates of o-hydroxyazo compounds. Crystal growth, structure, and spectra of 1-(2-pyridylazo)-2-naphtholatochlorocopper(II). J. Am. Chem. Soc. 1978, 100, 6375–6382.
[21] Desiraju, G. R.; Curtin, D. Y.; Paul, I. C. Synthesis and interconversion by hydrogen exchange of isomeric quinhydrones. J. Org. Chem. 1977, 42, 4071–4075.
[22] Desiraju, G. R.; Curtin, D. Y.; Paul, I. C. Crystal growth by nonaqueous gel diffusion. J. Am. Chem. Soc. 1977, 99, 6148.
[23] Desiraju, G. R. Carrying out organic chemistry within crystalline solids. Endeavour 1984, 8, 201–206.
[24] Duncan-Hewitt, W. C.; Weatherly, G. C. Modeling the uniaxial compaction of pharmaceutical powders using the mechanical properties of single crystals. II: Brittle materials. J. Pharm. Sci. 1990, 79, 273–278.
[25] Ganesan, T.; Muthudoss, P.; Voguri, R. S.; Ghosal, S.; Ann, E. Y. C.; Kwok, J.; Shahnawaz, S. S.; Omar, M. F.; Allada, R.; See, H. H. A new Febuxostat-Telmisartan Drug-Drug Cocrystal for Gout-Hypertension Combination Therapy. J. Pharm. Sci. 2022, 111, 3318–3326.
[26] Karamertzanis, P. G.; Kazantsev, A. V.; Issa, N.; Welch, G. W. A.; Adjiman, C. S.; Pantelides, C. C.; Price, S. L. Can the Formation of Pharmaceutical Cocrystals Be Computationally Predicted? 2. Crystal Structure Prediction. J. Chem. Theory Comput. 2009, 5, 1432–1448.
[27] Kawashima, Y.; Cui, F.; Takeuchi, H.; Niwa, T.; Hino, T.; Kiuchi, K. Improvements in flowability and compressibility of pharmaceutical crystals for direct tabletting by spherical crystallization with a two-solvent system. Powder Technol. 1994, 78, 151–157.
[28] Li, Z. J.; Grant, D. J. Relationship between physical properties and crystal structures of chiral drugs. J. Pharm. Sci. 1997, 86, 1073–1078.
[29] OTSUKA, M.; HASEGAWA, H.; MATSUDA, Y. Effect of Polymorphic Forms of Bulk Powders on Pharmaceutical Properties of Carbamazepine Granules. Chem. Pharm. Bull. 1999, 47, 852–856.
[30] Sanphui, P.; Mishra, M. K.; Ramamurty, U.; Desiraju, G. R. Tuning mechanical properties of pharmaceutical crystals with multicomponent crystals: voriconazole as a case study. Mol. Pharm. 2015, 12, 889–897.
[31] Sheth, A. R.; Grant, D. J. Relationship between the Structure and Properties of Pharmaceutical Crystals. KONA 2005, 23, 36–48.
[32] Sorensen, R. A.; Liau, W. B.; Kesner, L.; Boyd, R. H. Prediction of polymer crystal structures and properties: polyethylene and poly(oxymethylene). Macromolecules 1988, 21, 200–208.
[33] Steed, J. W. The role of co-crystals in pharmaceutical design. Trends Pharmacol. Sci. 2013, 34, 185–193.
[34] Thakur, T. S.; Thakuria, R. Crystalline Multicomponent Solids: An Alternative for Addressing the Hygroscopicity Issue in Pharmaceutical Materials. Cryst. Growth Des. 2020, 20, 6245–6265.
[35] Vishweshwar, P.; McMahon, J. A.; Bis, J. A.; Zaworotko, M. J. Pharmaceutical co-crystals. J. Pharm. Sci. 2006, 95, 499–516.
[36] Walsh, R. D. B.; Bradner, M. W.; Fleischman, a. S.; Morales, L. A.; Moulton, a. B.; Rodríguez-Hornedo, N.; Zaworotko, M. J. Crystal engineering of the composition of pharmaceutical phases. Chem. Commun. 2003, 186–187.
[37] York, P. Crystal Engineering and Particle Design for the Powder Compaction Process. Drug Dev. Ind. Pharm 1992, 18, 677–721.
[38] Dunitz, J. D.; Bernstein, J. Disappearing Polymorphs. Acc. Chem. Res. 1995, 28, 193–200.
[39] Beldjoudi, Y.; Arauzo, A.; Palacio, F.; Pilkington, M.; Rawson, J. M. Studies on a “Disappearing Polymorph”: Thermal and Magnetic Characterization of α-p-NCC6F4CNSSN•. J. Am. Chem. Soc. 2016, 138, 16779–16786.
[40] Bernstein, J.; Henck, J.-O. Disappearing and reappearing polymorphs—an anathema to crystal engineering? Cryst. Eng. 1998, 1, 119–128.
[41] Cuppen, H. M.; Smets, M. M. H.; Krieger, A. M.; van den Ende, J. A.; Meekes, H.; van Eck, E. R. H.; Görbitz, C. H. The Rich Solid-State Phase Behavior of l-Phenylalanine: Disappearing Polymorphs and High Temperature Forms. Cryst. Growth Des. 2019, 19, 1709–1719.
[42] Hasa, D.; Marosa, M.; Bučar, D.-K.; Corpinot, M. K.; Amin, D.; Patel, B.; Jones, W. Mechanochemical Formation and “Disappearance” of Caffeine–Citric-Acid Cocrystal Polymorphs. Cryst. Growth Des. 2020, 20, 1119–1129.
[43] Henck, J. O.; Bernstein, J.; Ellern, A.; Boese, R. Disappearing and reappearing polymorphs. The benzocaine:picric acid system. J. Am. Chem. Soc. 2001, 123, 1834–1841.
[44] Liu, Y.; Gabriele, B.; Davey, R. J.; Cruz-Cabeza, A. J. Concerning Elusive Crystal Forms: The Case of Paracetamol. J. Am. Chem. Soc. 2020, 142, 6682–6689.
[45] Lucaioli, P.; Nauha, E.; Gimondi, I.; Price, L. S.; Guo, R.; Iuzzolino, L.; Singh, I.; Salvalaglio, M.; Price, S. L.; Blagden, N. Serendipitous isolation of a disappearing conformational polymorph of succinic acid challenges computational polymorph prediction. CrystEngComm 2018, 20, 3971–3977.
[46] Malec, L. M.; Gryl, M.; Oszajca, M. T.; Brela, M. Z.; Stadnicka, K. M. Chasing the Co-crystal Disappearing Polymorph with Ab Initio Methods. Cryst. Growth Des. 2021, 21, 6902–6912.
[47] Prashad, M.; Sutton, P.; Wu, R.; Hu, B.; Vivelo, J.; Carosi, J.; Kapa, P.; Liang, J. Process Research and Development of a MTP Inhibitor: Another Case of Disappearing Polymorphs upon Scale-up. Org. Process Res. Dev. 2010, 14, 878–882.
[48] Rubin-Preminger, J. M.; Bernstein, J. 3-Aminobenzenesulfonic Acid: A Disappearing Polymorph. Cryst. Growth Des. 2005, 5, 1343–1349.
[49] Speight, I. R.; Huskić, I.; Arhangelskis, M.; Titi, H. M.; Stein, R. S.; Hanusa, T. P.; Friščić, T. Cover Feature: Disappearing Polymorphs in Metal–Organic Framework Chemistry: Unexpected Stabilization of a Layered Polymorph over an Interpenetrated Three‐Dimensional Structure in Mercury Imidazolate (Chem. Eur. J. 8/2020). Chem. Eur. J. 2020, 26, 1696.
[50] Lancaster, R. W.; Karamertzanis, P. G.; Hulme, A. T.; Tocher, D. A.; Lewis, T. C.; Price, S. L. The polymorphism of progesterone: stabilization of a ‘disappearing’ polymorph by co-crystallization. J. Pharm. Sci. 2007, 96, 3419–3431.
[51] Bučar, D.-K.; Lancaster, R. W.; Bernstein, J. Disappearing polymorphs revisited. Angew. Chem. Int. Ed. Engl. 2015, 54, 6972–6993.
[52] Byrn, S. R.; Siew, P. Y. Crystal structure and solid-state behavior of aspirin anhydride crystals. J. Pharm. Sci. 1981, 70, 280–283.
[53] Cohen, M. L. Prediction of new materials and properties of solids. Int. J. Quantum Chem. 1986, 29, 843–854.
[54] Blackwell, J.; Quay, J. R.; Nagarajan, M. R.; Born, L.; Hespe, H. Molecular parameters for the prediction of polyurethane structures. J. Polym. Sci. Polym. Phys. Ed. 1984, 22, 1247–1259.
[55] Gdanitz, R. J. Prediction of molecular crystal structures by Monte Carlo simulated annealing without reference to diffraction data. Chem. Phys. Lett. 1992, 190, 391–396.
[56] Pannetier, J.; Bassas-Alsina, J.; Rodriguez-Carvajal, J.; Caignaert, V. Prediction of crystal structures from crystal chemistry rules by simulated annealing. Nature 1990, 346, 343–345.
[57] Payne, R. S.; Roberts, R. J.; Rowe, R. C.; Docherty, R. Examples of successful crystal structure prediction: polymorphs of primidone and progesterone. Int. J. Pharm. 1999, 177, 231–245.
[58] van Eijck, B. P.; Kroon, J. Fast clustering of equivalent structures in crystal structure prediction. J. Comput. Chem. 1997, 18, 1036–1042.
[59] Desiraju, G. R. Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis. Angew. Chem. Int. Ed. Engl. 1995, 34, 2311–2327.
[60] Desiraju, G. R. The supramolecular concept as a bridge between organic, inorganic and organometallic crystal chemistry. J. Mol. Struct. 1996, 374, 191–198.
[61] Reddy, D. S.; Craig, D. C.; Desiraju, G. R. Supramolecular Synthons in Crystal Engineering. 4. Structure Simplification and Synthon Interchangeability in Some Organic Diamondoid Solids 1. J. Am. Chem. Soc. 1996, 118, 4090–4093.
[62] Reddy, D. S.; Ovchinnikov, Y. E.; Shishkin, O. V.; Struchkov, Y. T.; Desiraju, G. R. Supramolecular Synthons in Crystal Engineering. 3. Solid State Architecture and Synthon Robustness in Some 2,3-Dicyano-5,6-dichloro-1,4-dialkoxybenzenes 1. J. Am. Chem. Soc. 1996, 118, 4085–4089.
[63] Jin, S.; Sanii, R.; Song, B.-Q.; Zaworotko, M. J. Crystal Engineering of Ionic Cocrystals Sustained by the Phenol-Phenolate Supramolecular Heterosynthon. Cryst. Growth Des. 2022, 22, 4582–4591.
[64] Li, D.; Li, J.; Deng, Z.; Zhang, H. The discovery of new cocrystals of 5-fluorocytosine using amine–carboxylate supramolecular synthon. J. Drug Deliv. Sci. Technol. 2022, 78, 103934.
[65] Lin, Z.-J.; Mahammed, S. A. R.; Liu, T.-F.; Cao, R. Multifunctional Porous Hydrogen-Bonded Organic Frameworks: Current Status and Future Perspectives. ACS Cent. Sci. 2022, 8, 1589–1608.
[66] Marcela, L.-C.; Everardo, J.-A.; Perla, R.-B.; Gabriela, V.-P.; Vojtech, J.; Margarita I, B.-U.; Raymundo, C.-O.; Hugo, T. Is the phosphorous atom a stereogenic center? Crystallographic findings in five new dithiophosphonate compounds supported with non covalent interaction index (NCI), theoretical approach and spectroscopic analysis. J. Mol. Struct. 2022, 1270, 133987.
[67] Sadhukhan, A.; Brandão, P.; Saha, S.; Mal, D.; Sepay, N. Insight into non-covalent interactions in 1D Gd-based coordination polymer for solid-state self-assembly through a new supramolecular synthon. J. Mol. Struct. 2023, 1272, 134204.
[68] Bučar, D.-K.; Henry, R. F.; Zhang, G. G. Z.; MacGillivray, L. R. Synthon Hierarchies in Crystal Forms Composed of Theophylline and Hydroxybenzoic Acids: Cocrystal Screening via Solution-Mediated Phase Transformation. Cryst. Growth Des. 2014, 14, 5318–5328.
[69] Corpinot, M. K.; Stratford, S. A.; Arhangelskis, M.; Anka-Lufford, J.; Halasz, I.; Judaš, N.; Jones, W.; Bučar, D.-K. On the predictability of supramolecular interactions in molecular cocrystals – the view from the bench. CrystEngComm 2016, 18, 5434–5439.
[70] Chen, J.; Sarma, B.; Evans, J. M. B.; Myerson, A. S. Pharmaceutical Crystallization. Cryst. Growth Des. 2011, 11, 887–895.
[71] Kitamura, M. Strategy for control of crystallization of polymorphs. CrystEngComm 2009, 11, 949.
[72] Thakur, A. K.; Kumar, R.; Vipin Kumar, V. K.; Kumar, A.; Kumar Gaurav, G.; Naresh Gupta, K. A critical review on thermodynamic and hydrodynamic modeling and simulation of liquid antisolvent crystallization of pharmaceutical compounds. J. Mol. Liq. 2022, 362, 119663.
[73] Yao, C.; Zhang, S.; Wang, L.; Tao, X. Recent Advances in Polymorph Discovery Methods of Organic Crystals. Cryst. Growth Des. 2023, 23, 637–654.
[74] Hagler, A. T.; Bernstein, J. Conformational polymorphism. 2. Crystal energetics by computational substitution. Further evidence for the sensitivity of the method. J. Am. Chem. Soc. 1978, 100, 6349–6354.
[75] Piela, L.; Stolarczyk, L. Z. On the relativity of short- and long-range effects in calculations for periodic systems. Chem. Phys. Lett. 1982, 86, 195–198.
[76] Hopfinger, A. J.; Pearlstein, R. A.; Mabilia, M.; Tripathy, S. K. Estimation of thermodynamic and spatial properties of organic compounds for quantitative molecular design. Pure Appl. Chem. 1988, 60, 271–276.
[77] Krogh-Jespersen, K.; Zhang, X.; Ding, Y.; Westbrook, J. D.; Potenza, J. A.; Schugar, H. J. Molecular and electronic structures of pentaammineruthenium(II)-thioether complexes. The nature of Ru(II)-S back bonding elucidated by structural, electronic spectral, and molecular orbital studies. J. Am. Chem. Soc. 1992, 114, 4345–4353.
[78] Perlstein, J. Molecular self-assemblies. 2. A computational method for the prediction of the structure of one-dimensional screw, glide, and inversion molecular aggregates and implications for the packing of molecules in monolayers and crystals. J. Am. Chem. Soc. 1994, 116, 455–470.
[79] Zimmerman, H. E.; Sebek, P.; Zhu, Z. Ab Initio Computations of Reacting Species in Crystal Lattices; Mechanistic and Exploratory Organic Photochemistry 1,2. J. Am. Chem. Soc. 1998, 120, 8549–8550.
[80] van de Bovenkamp, J.; Matxain, J. M.; van Duijneveldt, F. B.; Steiner, T. Combined ab Initio Computational and Statistical Investigation of a Model C−H···O Hydrogen Bonded Dimer as Occurring in 1,4-Benzoquinone. J. Phys. Chem. A 1999, 103, 2784–2792.
[81] Madsen, G. K. H.; Wilson, C.; Nymand, T. M.; McIntyre, G. J.; Larsen, F. K. The Structure of Nitromalonamide: A Combined Neutron-Diffraction and Computational Study of a Very Short Hydrogen Bond. J. Phys. Chem. A 1999, 103, 8684–8690.
[82] Gavezzotti, A. Molecular Aggregation of Acetic Acid in a Carbon Tetrachloride Solution: A Molecular Dynamics Study with a View to Crystal Nucleation. Chem. Eur. J. 1999, 5, 567–576.
[83] Chin, D. N.; Palmore, G. T. R.; Whitesides, G. M. Predicting Crystalline Packing Arrangements of Molecules That Form Hydrogen-Bonded Tapes. J. Am. Chem. Soc. 1999, 121, 2115–2122.
[84] Braun, D. E.; Ardid-Candel, M.; D’Oria, E.; Karamertzanis, P. G.; Arlin, J.-B.; Florence, A. J.; Jones, A. G.; Price, S. L. Racemic Naproxen: A Multidisciplinary Structural and Thermodynamic Comparison with the Enantiopure Form. Cryst. Growth Des. 2011, 11, 5659–5669.
[85] D’Oria, E.; Karamertzanis, P. G.; Price, S. L. Spontaneous Resolution of Enantiomers by Crystallization: Insights from Computed Crystal Energy Landscapes. Cryst. Growth Des. 2010, 10, 1749–1756.
[86] Davey, R. J.; Schroeder, S. L. M.; Horst, J. H. ter. Nucleation of organic crystals—a molecular perspective. Angew. Chem. Int. Ed. Engl. 2013, 52, 2166–2179.
[87] Dey, D.; Mohan, T. P.; Vishalakshi, B.; Chopra, D. Computational Study of the Formation of Short Centrosymmetric N–H···S Supramolecular Synthon and Related Weak Interactions in Crystalline 1,2,4-Triazoles. Cryst. Growth Des. 2014, 14, 5881–5896.
[88] Dudek, M. K.; Jeziorna, A.; Potrzebowski, M. J. Computational and experimental study of reversible hydration/dehydration processes in molecular crystals of natural products – a case of catechin. CrystEngComm 2016, 18, 5267–5277.
[89] Foces-Foces, C.; Echevarría, A.; Jagerovic, N.; Alkorta, I.; Elguero, J.; Langer, U.; Klein, O.; Minguet-Bonvehí, M.; Limbach, H. H. A solid-state NMR, X-ray diffraction, and ab initio computational study of hydrogen-bond structure and dynamics of pyrazole-4-carboxylic acid chains. J. Am. Chem. Soc. 2001, 123, 7898–7906.
[90] Gavezzotti, A. Ten years of experience in polymorph prediction: what next? CrystEngComm 2002, 4, 343–347.
[91] Issa, N.; Karamertzanis, P. G.; Welch, G. W. A.; Price, S. L. Can the Formation of Pharmaceutical Cocrystals Be Computationally Predicted? I. Comparison of Lattice Energies. Cryst. Growth Des. 2009, 9, 442–453.
[92] Lewis, T. C.; Tocher, D. A.; Price, S. L. Investigating Unused Hydrogen Bond Acceptors Using Known and Hypothetical Crystal Polymorphism. Cryst Growth Des 2005, 5, 983–993.
[93] Lewis, T. C.; Tocher, D. A.; Day, G. M.; Price, S. L. A computational and experimental search for polymorphs of parabanic acid – a salutary tale leading to the crystal structure of oxo-ureido-acetic acid methyl. CrystEngComm 2003, 5, 3–9.
[94] Liu, C.; Wang, C.; Wan, S.; Liu, L.; Sun, C. C.; Qian, F. An Elusive Drug–Drug Cocrystal Prepared Using a Heteroseeding Strategy. Cryst. Growth Des. 2021, 21, 5659–5668.
[95] McKinnon, J. J.; Mitchell, A. S.; Spackman, M. A. Hirshfeld Surfaces: A New Tool for Visualising and Exploring Molecular Crystals. Chem. Eur. J. 1998, 4, 2136–2141.
[96] Sallum, L. O.; Napolitano, H. B.; Carvalho, P. d. S.; Cidade, A. F.; Aquino, G. L. B. de; Coutinho, N. D.; Camargo, A. J.; Ellena, J.; Oliveira, H. C. B. de; Silva, V. H. C. Effect of the methanol molecule on the stabilization of C₁₈H₁₈O₄ crystal: combined theoretical and structural investigation. J. Phys. Chem. A 2014, 118, 10048–10056.
[97] Sciortino, F.; Zaccarelli, E. Computational materials science: Soft heaps and clumpy crystals. Nature 2013, 493, 30–31.
[98] Shruti, I.; Almehairbi, M.; Saeed, Z. M.; Alkhidir, T.; Ali, W. A.; Vishwakarma, R.; Mohamed, S.; Chopra, D. Unravelling the Origin of Solvate Formation in the Anticancer Drug Trametinib: Insights from Crystal Structure Analysis and Computational Modeling. Cryst. Growth Des. 2022, 22, 5861–5871.
[99] Taylor, C. R.; Mulvee, M. T.; Perenyi, D. S.; Probert, M. R.; Day, G. M.; Steed, J. W. Minimizing Polymorphic Risk through Cooperative Computational and Experimental Exploration. J. Am. Chem. Soc. 2020, 142, 16668–16680.
[100] Tremayne, M.; Grice, L.; Pyatt, J. C.; Seaton, C. C.; Kariuki, B. M.; Tsui, H. H. Y.; Price, S. L.; Cherryman, J. C. Characterization of complicated new polymorphs of chlorothalonil by X-ray diffraction and computer crystal structure prediction. J. Am. Chem. Soc. 2004, 126, 7071–7081.
[101] Woo, X. Y.; Tan, R. B. H.; Chow, P. S.; Braatz, R. D. Simulation of Mixing Effects in Antisolvent Crystallization Using a Coupled CFD-PDF-PBE Approach. Cryst. Growth Des. 2006, 6, 1291–1303.
[102] Zhang, P.; Wood, G. P. F.; Ma, J.; Yang, M.; Liu, Y.; Sun, G.; Jiang, Y. A.; Hancock, B. C.; Wen, S. Harnessing Cloud Architecture for Crystal Structure Prediction Calculations. Cryst. Growth Des. 2018, 18, 6891–6900.
[103] Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179.
[104] Fang, L.; Liu, J.; Han, D.; Gao, Z.; Gong, J. Revealing the role of polymer in the robust preparation of the 2,4-dichlorophenoxyacetic acid metastable crystal form by AI-based image analysis. Powder Technol. 2023, 413, 118077.
[105] Altomare, A.; Billinge, S. J. L. Modern crystallography and its foundations. Acta Crystallogr. A Found. Adv. 2021, 77, 1.
[106] Liu, J.; Zhang, Q.; Chen, M.; Gao, Z.; Rohani, S.; Gong, J. A verified open-access AI-based chemical microparticle image database for in-situ particle visualization and quantification in multi-phase flow. J. Chem. Eng. 2023, 451, 138940.
[107] Heng, T.; Yang, D.; Wang, R.; Zhang, L.; Lu, Y.; Du, G. Progress in Research on Artificial Intelligence Applied to Polymorphism and Cocrystal Prediction. ACS Omega 2021, 6, 15543–15550.
[108] W. Ostwald. Studien über die Bildung und Umwandlung fester Körper. Z. Phys. Chem. 1897, 289–330.
[109] Yoreo, J. J. de. Casting a bright light on Ostwald’s rule of stages. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2121661119.
[110] Gebauer, D.; Cölfen, H. Prenucleation clusters and non-classical nucleation. Nano Today 2011, 6, 564–584.
[111] Mangin, D.; Puel, F.; Veesler, S. Polymorphism in Processes of Crystallization in Solution: A Practical Review. Org. Process Res. Dev. 2009, 13, 1241–1253.
[112] Paul, E. L.; Tung, H.-H.; Midler, M. Organic crystallization processes. Powder Technol. 2005, 150, 133–143.
[113] Oxtoby, D. W. Nucleation of First-Order Phase Transitions. Acc. Chem. Res. 1998, 31, 91–97.
[114] Xu, S.; Di Cao; Liu, Y.; Wang, Y. Role of Additives in Crystal Nucleation from Solutions: A Review. Cryst. Growth Des. 2022, 22, 2001–2022.
[115] Zahn, D. Thermodynamics and Kinetics of Prenucleation Clusters, Classical and Non-Classical Nucleation. Chemphyschem 2015, 16, 2069–2075.
[116] Yoreo, J. de. Crystal nucleation: more than one pathway. Nat. Mater. 2013, 12, 284–285.
[117] Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630.
[118] Jreidini, P.; Kocher, G.; Provatas, N. Classical nucleation Theory in the phase-field crystal model Phys. Rev. E, 2018, 97, 042802.
[119] Li, J.; Deepak, F. L. In Situ Kinetic Observations on Crystal Nucleation and Growth. Chem. Rev. 2022, 122, 16911–16982.
[120] Karthika, S.; Radhakrishnan, T. K.; Kalaichelvi, P. A Review of Classical and Nonclassical Nucleation Theories. Cryst. Growth Des. 2016, 16, 6663–6681.
[121] Gebauer, D.; Kellermeier, M.; Gale, J. D.; Bergström, L.; Cölfen, H. Pre-nucleation clusters as solute precursors in crystallisation. Chem. Soc. Rev. 2014, 43, 2348–2371.
[122] Fu, H.; Gao, X.; Zhang, X.; Ling, L. Recent Advances in Nonclassical Crystallization: Fundamentals, Applications, and Challenges. Cryst. Growth Des. 2022, 22, 1476–1499.
[123] Chen, J.; Zhu, E.; Liu, J.; Zhang, S.; Lin, Z.; Duan, X.; Heinz, H.; Huang, Y.; Yoreo, J. J. de. Building two-dimensional materials one row at a time: Avoiding the nucleation barrier. Science 2018, 362, 1135–1139.
[124] Delach, D. L.; Dukes, M. J.; Varano, A. C.; Kelly, D. F.; Dukes III, A. D. Real-time imaging of lead nanoparticles in solution – determination of the growth mechanism. RSC Adv. 2015, 5, 104193–104197.
[125] Rodríguez-Navarro, C.; Ruiz-Agudo, E.; Harris, J.; Wolf, S. E. Nonclassical crystallization in vivo et in vitro (II): Nanogranular features in biomimetic minerals disclose a general colloid-mediated crystal growth mechanism. J. Struct. Biol. 2016, 196, 260–287.
[126] Ostwald, W. Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Z. Phys. Chem. 1900, 34U, 495–503.
[127] Lee, D.; Park, S.; Lee, J.; Hwang, N. A theoretical model for digestive ripening. Acta Materialia 2007, 55, 5281–5288.
[128] Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.
[129] Li, D.; Nielsen, M. H.; Lee, J. R. I.; Frandsen, C.; Banfield, J. F.; Yoreo, J. J. de. Direction-specific interactions control crystal growth by oriented attachment. Science 2012, 336, 1014–1018.
[130] Li, J.; Chen, J.; Wang, H.; Chen, N.; Wang, Z.; Guo, L.; Deepak, F. L. In Situ Atomic-Scale Study of Particle-Mediated Nucleation and Growth in Amorphous Bismuth to Nanocrystal Phase Transformation. Adv. Sci. (Weinh.) 2018, 5, 1700992.
[131] Niederberger, M.; Cölfen, H. Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 2006, 8, 3271–3287.
[132] Zheng, H.; Smith, R. K.; Jun, Y.-W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.
[133] Li, Q.; Yin, D.; Li, J.; Deepak, F. L. Atomic-Scale Understanding of Gold Cluster Growth on Different Substrates and Adsorption-Induced Structural Change. J. Phys. Chem. C 2018, 122, 1753–1760.
[134] Smets, M. M. H.; Brugman, S. J. T.; van Eck, E. R. H.; van den Ende, J. A.; Meekes, H.; Cuppen, H. M. Understanding the Solid-State Phase Transitions of dl -Norleucine: An in Situ DSC, Microscopy, and Solid-State NMR Study. Cryst. Growth Des. 2015, 15, 5157–5167.
[135] Vaksler, Y.; Idrissi, A.; Shishkina, S. V. High-Pressure Influence on Piracetam Crystals: Studying by Quantum Chemical Methods. Cryst. Growth Des. 2021, 21, 5697–5711.
[136] Konovalova, I. S.; Shaposhnyk, A. M.; Baumer, V. N.; Chalyk, B. A.; Shishkina, S. V. Polymorphic transition due to grinding: the case of 3-1-(tert-butoxycarbonyl)azetidin-3-yl-1,2-oxazole-4-carboxylic acid. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2022, 78, 510–519.
[137] Potter, C. B.; Kollamaram, G.; Zeglinski, J.; Whitaker, D. A.; Croker, D. M.; Walker, G. M. Investigation of polymorphic transitions of piracetam induced during wet granulation. Eur. J. Pharm. Biopharm. 2017, 119, 36–46.
[138] Krishnan, B. P.; Sureshan, K. M. A spontaneous single-crystal-to-single-crystal polymorphic transition involving major packing changes. J. Am. Chem. Soc. 2015, 137, 1692–1696.
[139] Guo, J.; Ziegler, G. R.; Kong, L. Polymorphic transitions of V-type amylose upon hydration and dehydration. Food Hydrocoll. 2022, 125, 107372.
[140] Matsuo, K.; Matsuoka, M. Solid-State Polymorphic Transition of Theophylline Anhydrate and Humidity Effect. Cryst. Growth Des. 2007, 7, 411–415.
[141] Sarcevica, I.; Orola, L.; Belyakov, S.; Veidis, M. V. Spontaneous cocrystal hydrate formation in the solid state: crystal structure aspects and kinetics. New J. Chem. 2013, 37, 2978.
[142] Yoshinari, T.; Forbes, R. T.; York, P.; Kawashima, Y. Moisture induced polymorphic transition of mannitol and its morphological transformation. Int. J. Pharm. 2002, 247, 69–77.
[143] Park, H.; Kim, J.-S.; Hong, S.; Ha, E.-S.; Nie, H.; Zhou, Q. T.; Kim, M.-S. Tableting process-induced solid-state polymorphic transition. J. Pharm. Investig. 2022, 52, 175–194.
[144] Woo, M. W.; Lee, M. G.; Shakiba, S.; Mansouri, S. Controlling in situ crystallization of pharmaceutical particles within the spray dryer. Expert Opin. Drug Deliv. 2017, 14, 1315–1324.
[145] Wang, H.; Wang, Z.; Liu, L.; Gong, X.; Wang, M. Alumina Hydrate Polymorphism Control in Al–Water Reaction Crystallization by Seeding to Change the Metastable Zone Width. Cryst. Growth Des. 2016, 16, 1056–1062.
[146] Nagy, Z. K.; Braatz, R. D. Advances and new directions in crystallization control. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 55–75.
[147] Liu, F.; Bagi, S. D.; Su, Q.; Chakrabarti, R.; Barral, R.; Gamekkanda, J. C.; Hu, C.; Mascia, S. Targeting Particle Size Specification in Pharmaceutical Crystallization: A Review on Recent Process Design and Development Strategies and Particle Size Measurements. Org. Process Res. Dev. 2022, 26, 3190–3203.
[148] Kulkarni, S. A.; Meekes, H.; Horst, J. H. ter. Polymorphism Control through a Single Nucleation Event. Cryst. Growth Des. 2014, 14, 1493–1499.
[149] Griffin, D. J.; Kawajiri, Y.; Grover, M. A.; Rousseau, R. W. Feedback Control of Multicomponent Salt Crystallization. Cryst. Growth Des. 2015, 15, 305–317.
[150] Garg, R. K.; Sarkar, D. Polymorphism control of p-aminobenzoic acid by isothermal anti-solvent crystallization. J. Cryst. Growth 2016, 454, 180–185.
[151] Comerci, C. J.; Herrmann, J.; Yoon, J.; Jabbarpour, F.; Zhou, X.; Nomellini, J. F.; Smit, J.; Shapiro, L.; Wakatsuki, S.; Moerner, W. E. Topologically-guided continuous protein crystallization controls bacterial surface layer self-assembly. Nat. Commun. 2019, 10, 2731.
[152] Bhattacharya, B.; Das, S.; Lal, G.; Soni, S. R.; Ghosh, A.; Reddy, C. M.; Ghosh, S. Screening, crystal structures and solubility studies of a series of multidrug salt hydrates and cocrystals of fenamic acids with trimethoprim and sulfamethazine. J. Mol. Struct. 2020, 1199, 127028.
[153] Deng, Y.; Zhang, Y.; Huang, Y.; Zhang, M.; Lou, B. Preparation, Crystal Structures, and Oral Bioavailability of Two Cocrystals of Emodin with Berberine Chloride. Cryst. Growth Des. 2018, 18, 7481–7488.
[154] Izatulina, A. R.; Gurzhiy, V. V.; Krzhizhanovskaya, M. G.; Kuz’mina, M. A.; Leoni, M.; Frank-Kamenetskaya, O. V. Hydrated Calcium Oxalates: Crystal Structures, Thermal Stability, and Phase Evolution. Cryst. Growth Des. 2018, 18, 5465–5478.
[155] Singaraju, A. B.; Nguyen, K.; Jain, A.; Haware, R. V.; Stevens, L. L. Aggregate Elasticity, Crystal Structure, and Tableting Performance for p-Aminobenzoic Acid and a Series of Its Benzoate Esters. Mol. Pharm. 2016, 13, 3794–3806.
[156] Wang, C.; Paul, S.; Wang, K.; Hu, S.; Sun, C. C. Relationships among Crystal Structures, Mechanical Properties, and Tableting Performance Probed Using Four Salts of Diphenhydramine. Cryst. Growth Des. 2017, 17, 6030–6040.
[157] Wang, J.; Dai, X.-L.; Lu, T.-B.; Chen, J.-M. Temozolomide–Hesperetin Drug–Drug Cocrystal with Optimized Performance in Stability, Dissolution, and Tabletability. Cryst. Growth Des. 2021, 21, 838–846.
[158] Zheng, K.; Xie, C.; Li, X.; Wu, W.; Li, A.; Qian, S.; Pang, Q. Crystal structures, thermal stabilities, and dissolution behaviours of tinidazole and the tinidazole–vanillic acid cocrystal: insights from energy frameworks. Acta Crystallogr. C Struct. Chem. 2020, 76, 389–397.
[159] Duggirala, N. K.; Perry, M. L.; Almarsson, Ö.; Zaworotko, M. J. Pharmaceutical cocrystals: along the path to improved medicines. Chem. Commun. 2016, 52, 640–655.
[160] Aitipamula, S.; Banerjee, R.; Bansal, A. K.; Biradha, K.; Cheney, M. L.; Choudhury, A. R.; Desiraju, G. R.; Dikundwar, A. G.; Dubey, R.; Duggirala, N.; Ghogale, P. P.; Ghosh, S.; Goswami, P. K.; Goud, N. R.; Jetti, R. R. K. R.; Karpinski, P.; Kaushik, P.; Kumar, D.; Kumar, V.; Moulton, B.; Mukherjee, A.; Mukherjee, G.; Myerson, A. S.; Puri, V.; Ramanan, A.; Rajamannar, T.; Reddy, C. M.; Rodriguez-Hornedo, N.; Rogers, R. D.; Row, T. N. G.; Sanphui, P.; Shan, N.; Shete, G.; Singh, A.; Sun, C. C.; Swift, J. A.; Thaimattam, R.; Thakur, T. S.; Kumar Thaper, R.; Thomas, S. P.; Tothadi, S.; Vangala, V. R.; Variankaval, N.; Vishweshwar, P.; Weyna, D. R.; Zaworotko, M. J. Polymorphs, Salts, and Cocrystals: What’s in a Name? Cryst. Growth Des. 2012, 12, 2147–2152.
[161] Berry, D. J.; Steed, J. W. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Adv. Drug Deliv. Rev. 2017, 117, 3–24.
[162] Gryl, M.; Kozieł, M.; Stadnicka, K. M. A proposal for coherent nomenclature of multicomponent crystals. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2019, 75, 53–58.
[163] Grothe, E.; Meekes, H.; Vlieg, E.; Horst, J. H. ter; Gelder, R. de. Solvates, Salts, and Cocrystals: A Proposal for a Feasible Classification System. Cryst. Growth Des. 2016, 16, 3237–3243.
[164] d’Agostino, S.; Fornasari, L.; Braga, D. Binary and Ternary Solid Solutions of Ionic Plastic Crystals, and Modulation of Plastic Phase Transitions. Cryst. Growth Des. 2019, 19, 6266–6273.
[165] Lusi, M. Engineering Crystal Properties through Solid Solutions. Cryst. Growth Des. 2018, 18, 3704–3712.
[166] Lusi, M.; Vitorica-Yrezabal, I. J.; Zaworotko, M. J. Expanding the Scope of Molecular Mixed Crystals Enabled by Three Component Solid Solutions. Cryst. Growth Des. 2015, 15, 4098–4103.
[167] Riaz, U.; Shabib, I.; Haider, W. The current trends of Mg alloys in biomedical applications-A review. J Biomed Mater Res B Appl Biomater 2019, 107, 1970–1996.
[168] George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534.
[169] Zhou, M.; Li, C.; Fang, J. Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chem. Rev. 2021, 121, 736–795.
[170] Wu, Z.; Bei, H.; Otto, F.; Pharr, G. M.; George, E. P. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 2014, 46, 131–140.
[171] Laurent-Brocq, M.; Perrière, L.; Pirès, R.; Champion, Y. From high entropy alloys to diluted multi-component alloys: Range of existence of a solid-solution. Mater. Des. 2016, 103, 84–89.
[172] LaRosa, C. R.; Shih, M.; Varvenne, C.; Ghazisaeidi, M. Solid solution strengthening theories of high-entropy alloys. Mater. Charact. 2019, 151, 310–317.
[173] Koshima, H.; Wang, Y.; Matsuura, T.; Mibuka, N.; Imahashi, S. Two-Component Mixed Crystals Consisting of Nitroanilines and Nitrophenols and Their Nonlinear Optical Property. Mol. Cryst. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 1996, 275, 233–239.
[174] Fiala, T.; Ludvíková, L.; Heger, D.; Švec, J.; Slanina, T.; Vetráková, L.; Babiak, M.; Nečas, M.; Kulhánek, P.; Klán, P.; Sindelar, V. Bambusuril as a One-Electron Donor for Photoinduced Electron Transfer to Methyl Viologen in Mixed Crystals. J. Am. Chem. Soc. 2017, 139, 2597–2603.
[175] Alkhidir, T.; Saeed, Z. M.; Shunnar, A. F.; Abujami, E.; Nyadzayo, R. M.; Dhokale, B.; Mohamed, S. Expanding the Supramolecular Toolkit: Computed Molecular and Crystal Properties for Supporting the Crystal Engineering of Higher-Order Molecular Ionic Cocrystals. Cryst. Growth Des. 2022, 22, 485–496.
[176] Braga, D.; Grepioni, F.; Maini, L.; Prosperi, S.; Gobetto, R.; Chierotti, M. R. From unexpected reactions to a new family of ionic co-crystals: the case of barbituric acid with alkali bromides and caesium iodide. Chem. Commun. 2010, 46, 7715–7717.
[177] Braga, D.; Grepioni, F.; Shemchuk, O. Organic–inorganic ionic co-crystals: a new class of multipurpose compounds. CrystEngComm 2018, 20, 2212–2220.
[178] Dyker, G.; Mastalerz, M.; Müller, I. M.; Merz, K.; Koppe, K. Solvent-Dependent Pseudopolymorphism of Tripyridoxycalix[4]arene:cone versuspartial-cone Conformation. Eur. J. Org. Chem. 2005, 2005, 4963–4966.
[179] Lipkowski, J.; Bielejewska, A.; Presly, O. Pseudo-polymorphism of a camphor α-cyclodextrin complex. Carbohydr. Res. 2022, 520, 108601.
[180] Mukherjee, A.; Desiraju, G. R. Synthon polymorphism and pseudopolymorphism in co-crystals. The 4,4’-bipyridine-4-hydroxybenzoic acid structural landscape. Chem. Commun. 2011, 47, 4090–4092.
[181] Bernstein, J. …And Another Comment on Pseudo polymorphism. Cryst. Growth Des. 2005, 5, 1661–1662.
[182] Farias, M. A. D. S.; Soares, F. L. F.; Carneiro, R. L. Crystalline phase transition of ezetimibe in final product, after packing, promoted by the humidity of excipients: Monitoring and quantification by Raman spectroscopy. J. Pharm. Biomed. Anal. 2016, 121, 209–214.
[183] Feth, M. P.; Nagel, N.; Baumgartner, B.; Bröckelmann, M.; Rigal, D.; Otto, B.; Spitzenberg, M.; Schulz, M.; Becker, B.; Fischer, F.; Petzoldt, C. Challenges in the development of hydrate phases as active pharmaceutical ingredients—an example. Eur. J. Pharm. Sci. 2011, 42, 116–129.
[184] Vogt, F. G.; Brum, J.; Katrincic, L. M.; Flach, A.; Socha, J . M.; Goodman, R. M.; Haltiwanger, R. C. Physical, Crystallographic, and Spectroscopic Characterization of a Crystalline Pharmaceutical Hydrate: Understanding the Role of Water. Cryst. Growth Des. 2006, 6, 2333–2354.
[185] Healy, A. M.; Worku, Z. A.; Kumar, D.; Madi, A. M. Pharmaceutical solvates, hydrates and amorphous forms: A special emphasis on cocrystals. Adv. Drug Deliv. Rev. 2017, 117, 25–46.
[186] Pettersen, A.; Putra, O. D.; Light, M. E.; Namatame, Y. A peculiar dehydration and solid–solid phase transition of the active pharmaceutical ingredient AZD9898 based on in situ single crystal-to-single crystal transformations. CrystEngComm 2020, 22, 7280–7289.
[187] Reutzel-Edens, S. M.; Braun, D. E.; Newman, A. W. Hygroscopicity and Hydrates in Pharmaceutical Solids. In Polymorphism in the pharmaceutical industry:Solid form and drug development, Second edition; Hilfiker, R., Raumer, M. von, Eds.; Wiley-VCH Verlag GmbH & Co, 2019; pp 159–188.
[188] Tong, H. H. Y.; Chow, A. S. F.; Chan, H. M.; Chow, A. H. L.; Wan, Y. K. Y.; Williams, I. D.; Shek, F. L. Y.; Chan, C. K. Process-induced phase transformation of berberine chloride hydrates. J. Pharm. Sci. 2010, 99, 1942–1954.
[189] Nyman, J.; Day, G. M. Static and lattice vibrational energy differences between polymorphs. CrystEngComm 2015, 17, 5154–5165.
[190] Gelbrich, T.; Braun, D. E.; Ellern, A.; Griesser, U. J. Four Polymorphs of Methyl Paraben: Structural Relationships and Relative Energy Differences. Cryst. Growth Des. 2013, 13, 1206–1217.
[191] Rivera, S. A.; Allis, D. G.; Hudson, B. S. Importance of Vibrational Zero-Point Energy Contribution to the Relative Polymorph Energies of Hydrogen-Bonded Species. Cryst. Growth Des. 2008, 8, 3905–3907.
[192] Boothroyd, S.; Kerridge, A.; Broo, A.; Buttar, D.; Anwar, J. Why Do Some Molecules Form Hydrates or Solvates? Cryst. Growth Des. 2018, 18, 1903–1908.
[193] Braun, D. E.; Griesser, U. J. Why do Hydrates (Solvates) Form in Small Neutral Organic Molecules? Exploring the Crystal Form Landscapes of the Alkaloids Brucine and Strychnine. Cryst. Growth Des. 2016, 16, 6405–6418.
[194] Takieddin, K.; Khimyak, Y. Z.; Fábián, L. Prediction of Hydrate and Solvate Formation Using Statistical Models. Cryst. Growth Des. 2016, 16, 70–81.
[195] Almarsson, O.; Zaworotko, M. J. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chem. Commun. 2004, 1889–1896.
[196] Berge, S. M.; Bighley, L. D.; Monkhouse, D. C. Pharmaceutical salts. J. Pharm. Sci. 1977, 66, 1–19.
[197] dos Santos, J. A. B.; Chaves Júnior, J. V.; Araújo Batista, R. S. de; Sousa, D. P. de; Ferreira, G. L. R.; Lima Neto, S. A. de; Santana Oliveira, A. de; Souza, F. S. de; Aragão, C. F. S. Preparation, physicochemical characterization and solubility evaluation of pharmaceutical cocrystals of cinnamic acid. J. Therm. Anal. Calorim. 2021, 145, 379–390.
[198] Joshi, M.; Roy Choudhury, A. Salts of Amoxapine with Improved Solubility for Enhanced Pharmaceutical Applicability. ACS Omega 2018, 3, 2406–2416.
[199] Nikam, V. J.; Patil, S. B. Pharmaceutical cocrystals of nebivolol hydrochloride with enhanced solubility. J. Cryst. Growth 2020, 534, 125488.
[200] Zhang, Y.; Zhang, Y.; Chang, L.; Ji, Y.; Liu, L.; Feng, Y.; Wu, L.; Zhang, L.; Zhang, Y.; Zou, D.; Liu, Y.; Su, X. Crystalline palmatine saccharinate pharmaceutical salt without reducing solubility and improving its hygroscopic stability with regard to palmatine chloride. J. Mol. Struct. 2021, 1230, 129631.
[201] Deka, P.; Gogoi, D.; Althubeiti, K.; Rao, D. R.; Thakuria, R. Mechanosynthesis, Characterization, and Physicochemical Property Investigation of a Favipiravir Cocrystal with Theophylline and GRAS Coformers. Cryst. Growth Des. 2021, 21, 4417–4425.
[202] Kruger, C. The relevance of international assessments to GRAS determinations. Regul. Toxicol. Pharmacol. 2016, 79 Suppl. 2, S119-23.
[203] Zheng, Q.; Unruh, D. K.; Hutchins, K. M. Cocrystallization of Trimethoprim and Solubility Enhancement via Salt Formation. Cryst. Growth Des. 2021, 21, 1507–1517.
[204] Haskins, M. M.; Lusi, M.; Zaworotko, M. J. Supramolecular Synthon Promiscuity in Phosphoric Acid-Dihydrogen Phosphate Ionic Cocrystals. Cryst. Growth Des. 2022, 22, 3333–3342.
[205] Guerin, S.; Khorasani, S.; Gleeson, M.; O’Donnell, J.; Sanii, R.; Zwane, R.; Reilly, A. M.; Silien, C.; Tofail, S. A. M.; Liu, N.; Zaworotko, M.; Thompson, D. A Piezoelectric Ionic Cocrystal of Glycine and Sulfamic Acid. Cryst. Growth Des. 2021, 21, 5818–5827.
[206] Duggirala, N. K.; Smith, A. J.; Wojtas, Ł.; Shytle, R. D.; Zaworotko, M. J. Physical Stability Enhancement and Pharmacokinetics of a Lithium Ionic Cocrystal with Glucose. Cryst. Growth Des. 2014, 14, 6135–6142.
[207] Kavanagh, O. N.; Walker, G.; Lusi, M. Graph-Set Analysis Helps To Understand Charge Transfer in a Novel Ionic Cocrystal When the Δp Ka Rule Fails. Cryst. Growth Des. 2019, 19, 5308–5313.
[208] Song, L.; Shemchuk, O.; Robeyns, K.; Braga, D.; Grepioni, F.; Leyssens, T. Ionic Cocrystals of Etiracetam and Levetiracetam: The Importance of Chirality for Ionic Cocrystals. Cryst. Growth Des. 2019, 19, 2446–2454.
[209] Wang, T.; Stevens, J. S.; Vetter, T.; Whitehead, G. F. S.; Vitorica-Yrezabal, I. J.; Hao, H.; Cruz-Cabeza, A. J. Salts, Cocrystals, and Ionic Cocrystals of a “Simple” Tautomeric Compound. Cryst. Growth Des. 2018, 18, 6973–6983.
[210] Childs, S. L.; Stahly, G. P.; Park, A. The salt-cocrystal continuum: the influence of crystal structure on ionization state. Mol. Pharm. 2007, 4, 323–338.
[211] Edwards, P. T.; Saunders, L. K.; Pallipurath, A. R.; Britton, A. J.; Willneff, E. A.; Shotton, E. J.; Schroeder, S. L. M. Proton Transfer on the Edge of the Salt/Cocrystal Continuum: X-Ray Photoelectron Spectroscopy of Three Isonicotinamide Salts. Cryst. Growth Des. 2021, 21, 6332–6340.
[212] Hathwar, V. R.; Pal, R.; Guru Row, T. N. Charge Density Analysis of Crystals of Nicotinamide with Salicylic Acid and Oxalic Acid: An Insight into the Salt to Cocrystal Continuum. Cryst. Growth Des. 2010, 10, 3306–3310.
[213] Rajput, L.; Banik, M.; Yarava, J. R.; Joseph, S.; Pandey, M. K.; Nishiyama, Y.; Desiraju, G. R. Exploring the salt-cocrystal continuum with solid-state NMR using natural-abundance samples: implications for crystal engineering. IUCrJ 2017, 4, 466–475.
[214] Surov, A. O.; Vasilev, N. A.; Churakov, A. V.; Stroh, J.; Emmerling, F.; Perlovich, G. L. Solid Forms of Ciprofloxacin Salicylate: Polymorphism, Formation Pathways, and Thermodynamic Stability. Cryst. Growth Des. 2019, 19, 2979–2990.
[215] Stainton, P.; Nauha, E.; Grecu, T.; McCabe, J. F.; Munshi, T.; Scowen, I.; Chan, H. C. S.; Nilsson, S.; Blagden, N. Chameleon Behavior of a New Salt of 3-(Aminocarbonyl) Pyridinium Malonate and Implications for Polymorphism on the Salt/Cocrystal Continuum. Cryst. Growth Des. 2022, 22, 1665–1679.
[216] Perumalla, S. R.; Wang, C.; Guo, Y.; Shi, L.; Sun, C. C. Robust bulk preparation and characterization of sulfamethazine and saccharine salt and cocrystal polymorphs. CrystEngComm 2019, 21, 2089–2096.
[217] Salajee, A.; Morrison, C.; Erasmus, R.; Lemmerer, A. Polymorphism and photoluminescence seen in (2-amino-5-chloropyridine)·(9-anthracenecarboxylic acid)·(trinitrobenzene): a further example of the salt-cocrystal continuum observed by virtue of isolating multiple crystal forms. CrystEngComm 2022, 24, 6297–6301.
[218] Jones, C. L.; Skelton, J. M.; Parker, S. C.; Raithby, P. R.; Walsh, A.; Wilson, C. C.; Thomas, L. H. Living in the salt-cocrystal continuum: indecisive organic complexes with thermochromic behaviour. CrystEngComm 2019, 21, 1626–1634.
[219] Good, D. J.; Rodríguez-Hornedo, N. Solubility Advantage of Pharmaceutical Cocrystals. Cryst. Growth Des. 2009, 9, 2252–2264.
[220] Batisai, E.; Ayamine, A.; Kilinkissa, O. E. Y.; Báthori, N. B. Melting point–solubility–structure correlations in multicomponent crystals containing fumaric or adipic acid. CrystEngComm 2014, 16, 9992–9998.
[221] Chu, K. A.; Yalkowsky, S. H. An interesting relationship between drug absorption and melting point. Int. J. Pharm. 2009, 373, 24–40.
[222] Kilinkissa, O. E. Y.; Govender, K. K.; Báthori, N. B. Melting point–solubility–structure correlations in chiral and racemic model cocrystals. CrystEngComm 2020, 22, 2766–2771.
[223] Wyttenbach, N.; Niederquell, A.; Kuentz, M. Machine Estimation of Drug Melting Properties and Influence on Solubility Prediction. Mol. Pharm. 2020, 17, 2660–2671.
[224] Kelley, S. P.; Narita, A.; Holbrey, J. D.; Green, K. D.; Reichert, W. M.; Rogers, R. D. Understanding the Effects of Ionicity in Salts, Solvates, Co-Crystals, Ionic Co-Crystals, and Ionic Liquids, Rather than Nomenclature, Is Critical to Understanding Their Behavior. Cryst. Growth Des. 2013, 13, 965–975.
[225] Alhameedi, K.; Karton, A.; Jayatilaka, D.; Thomas, S. P. Bond orders for intermolecular interactions in crystals: charge transfer, ionicity and the effect on intramolecular bonds. IUCrJ 2018, 5, 635–646.
[226] Koumpouras, K.; Larsson, J. A. Distinguishing between chemical bonding and physical binding using electron localization function (ELF). J. Phys. Condens. Matter. 2020, 32, 315502.
[227] Lu, T.; Chen, Q. Interaction Region Indicator: A Simple Real Space Function Clearly Revealing Both Chemical Bonds and Weak Interactions**. Chem. Methods 2021, 1, 231–239.
[228] Ray, U.; Pang, Z.; Li, T. Programming material properties by tuning intermolecular bonding. J. Appl. Phys. 2022, 132, 210703.
[229] Shaik, S.; Danovich, D.; Hiberty, P. C. On the nature of the chemical bond in valence bond theory. J. Chem. Phys. 2022, 157, 90901.
[230] Chen, X.; Jin, S.; Zhang, H.; Xiao, X.; Liu, B.; Wang, D. Structure of five molecular salts assembled from noncovalent associations between organic acids, imidazole, benzimidazole, and 1-(2-(1H-benzimidazol-1-yl)ethyl)-1H-benzimidazole. J. Mol. Struct. 2017, 1144, 514–528.
[231] Bickelhaupt, F. M.; Solà, M.; Guerra, C. F. Table salt and other alkali metal chloride oligomers: structure, stability, and bonding. Inorg. Chem. 2007, 46, 5411–5418.
[232] Du Chen, H.; Pan, R.; Dong, X.; Huan, W. Theoretical Study on the Compounds of Chlorine Fluoride (ClF3, ClOF3) and Superhalogens (BeF2, MgF2): Preferred Structures and Significant Nonlinear Optical Properties. Russ. J. Phys. Chem. B 2020, 14, 905–909.
[233] Li, Y.; Di Wu; Li, Z. Compounds of superatom clusters: preferred structures and significant nonlinear optical properties of the BLi6-X (X = F, LiF2, BeF3, BF4) motifs. Inorg. Chem. 2008, 47, 9773–9778.
[234] Spruijt, E.; van den Berg, S. A.; Cohen Stuart, M. A.; van der Gucht, J. Direct measurement of the strength of single ionic bonds between hydrated charges. ACS Nano 2012, 6, 5297–5303.
[235] Yang, H.; Li, Y.; Di Wu; Li, Z. Structural properties and nonlinear optical responses of superatom compounds BF 4 -M (M = Li, FLi 2 , OLi 3 , NLi 4 ). Int. J. Quantum Chem. 2012, 112, 770–778.
[236] Salikolimi, K.; Sudhakar, A. A.; Ishida, Y. Functional Ionic Liquid Crystals. Langmuir 2020, 36, 11702–11731.
[237] Kapernaum, N.; Lange, A.; Ebert, M.; Grunwald, M. A.; Haege, C.; Marino, S.; Zens, A.; Taubert, A.; Giesselmann, F.; Laschat, S. Current Topics in Ionic Liquid Crystals. Chempluschem 2021, 87, e202100397.
[238] Goossens, K.; Lava, K.; Bielawski, C. W.; Binnemans, K. Ionic Liquid Crystals: Versatile Materials. Chem. Rev. 2016, 116, 4643–4807.
[239] Steiner, T. The Hydrogen Bond in the Solid State. Angew. Chem. Int. Ed. 2002, 41, 48–76.
[240] Bolla, G.; Sarma, B.; Nangia, A. K. Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved Drugs. Chem. Rev. 2022, 122, 11514–11603.
[241] Buckingham, A. D.; Del Bene, J. E.; McDowell, S. The hydrogen bond. Chem. Phys. Lett. 2008, 463, 1–10.
[242] Emamian, S.; Lu, T.; Kruse, H.; Emamian, H. Exploring Nature and Predicting Strength of Hydrogen Bonds: A Correlation Analysis Between Atoms-in-Molecules Descriptors, Binding Energies, and Energy Components of Symmetry-Adapted Perturbation Theory. J. Comput. Chem. 2019, 40, 2868–2881.
[243] Meot-Ner, M. The ionic hydrogen bond. Chem. Rev. 2005, 105, 213–284.
[244] Kenny, P. W. Hydrogen-Bond Donors in Drug Design. J. Med. Chem. 2022, 65, 14261–14275.
[245] Lin, X.; Jiang, X.; Wu, W.; Mo, Y. Induction, Resonance, and Secondary Electrostatic Interaction on Hydrogen Bonding in the Association of Amides and Imides. J. Org. Chem. 2018, 83, 13446–13453.
[246] Sinnokrot, M. O.; Sherrill, C. D. Substituent effects in pi-pi interactions: sandwich and T-shaped configurations. J. Am. Chem. Soc. 2004, 126, 7690–7697.
[247] Thakuria, R.; Nath, N. K.; Saha, B. K. The Nature and Applications of π–π Interactions: A Perspective. Cryst. Growth Des. 2019, 19, 523–528.
[248] Yao, Z.-F.; Wang, J.-Y.; Pei, J. Control of π–π Stacking via Crystal Engineering in Organic Conjugated Small Molecule Crystals. Cryst. Growth Des. 2018, 18, 7–15.
[249] Zhuang, W.-R.; Wang, Y.; Cui, P.-F.; Xing, L.; Lee, J.; Kim, D.; Jiang, H.-L.; Oh, Y.-K. Applications of π-π stacking interactions in the design of drug-delivery systems. J. Control. Release 2019, 294, 311–326.
[250] Sherrill, C. D. Energy component analysis of π interactions. Acc. Chem. Res. 2013, 46, 1020–1028.
[251] Salini, P. S.; Rajagopal, S. K.; Hariharan, M. Haloacetylation-Driven Transformation of Sandwich Herringbone to Lamellar/Columnar Packing in Pyrene. Cryst. Growth Des. 2016, 16, 5822–5830.
[252] Wang, D.-X.; Wang, M.-X. Exploring Anion-π Interactions and Their Applications in Supramolecular Chemistry. Acc. Chem. Res. 2020, 53, 1364–1380.
[253] Chifotides, H. T.; Dunbar, K. R. Anion-π interactions in supramolecular architectures. Acc. Chem. Res. 2013, 46, 894–906.
[254] Tkatchenko, A. Current Understanding of Van der Waals Effects in Realistic Materials. Adv. Funct. Mater. 2015, 25, 2054–2061.
[255] Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.
[256] Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601.
[257] Kellett, C. W.; Kennepohl, P.; Berlinguette, C. P. π covalency in the halogen bond. Nat. Commun. 2020, 11, 3310.
[258] Lee, L. M.; Tsemperouli, M.; Poblador-Bahamonde, A. I.; Benz, S.; Sakai, N.; Sugihara, K.; Matile, S. Anion Transport with Pnictogen Bonds in Direct Comparison with Chalcogen and Halogen Bonds. J. Am. Chem. Soc. 2019, 141, 810–814.
[259] Scilabra, P.; Terraneo, G.; Resnati, G. The Chalcogen Bond in Crystalline Solids: A World Parallel to Halogen Bond. Acc. Chem. Res. 2019, 52, 1313–1324.
[260] Varadwaj, A.; Varadwaj, P. R.; Marques, H. M.; Yamashita, K. The Pnictogen Bond: The Covalently Bound Arsenic Atom in Molecular Entities in Crystals as a Pnictogen Bond Donor. Molecules 2022, 27.
[261] Wang, W.; Ji, B.; Zhang, Y. Chalcogen bond: a sister noncovalent bond to halogen bond. J. Phys. Chem. A 2009, 113, 8132–8135.
[262] Liu, Y.; Wang, Y.; Huang, X.; Li, X.; Zong, S.; Wang, N.; Hao, H. Conformational Selectivity and Evolution Affected by the Desolvation Process. Cryst. Growth Des. 2022, 22, 1283–1291.
[263] Choong, K. L.; Smith, R. Optimization of batch cooling crystallization. Chem. Eng. Sci. 2004, 59, 313–327.
[264] Gregson, F. K. A.; Robinson, J. F.; Miles, R. E. H.; Royall, C. P.; Reid, J. P. Drying Kinetics of Salt Solution Droplets: Water Evaporation Rates and Crystallization. J. Phys. Chem. B 2019, 123, 266–276.
[265] Izutsu, K.-I.; Koide, T.; Takata, N.; Ikeda, Y.; Ono, M.; Inoue, M.; Fukami, T.; Yonemochi, E. Characterization and Quality Control of Pharmaceutical Cocrystals. Chem. Pharm. Bull. 2016, 64, 1421–1430.
[266] He, G.; Bhamidi, V.; Wilson, S. R.; Tan, R. B. H.; Kenis, P. J. A.; Zukoski, C. F. Direct Growth of γ-Glycine from Neutral Aqueous Solutions by Slow, Evaporation-Driven Crystallization. Cryst. Growth Des. 2006, 6, 1746–1749.
[267] Liang, S.; Duan, X.; Zhang, X.; Qian, G.; Zhou, X. Supersaturation-dependent polymorphic outcome and transformation rate of l -glutamic acid. RSC Adv. 2016, 6, 74700–74703.
[268] Sudha, C.; Srinivasan, K. Nucleation control and separation of paracetamol polymorphs through swift cooling crystallization process. J. Cryst. Growth 2014, 401, 248–251.
[269] Bai, C.; Zheng, T.; Wang, C. Glycine polymorphs screening by antisolvent crystallization in a surface acoustic wave microfluidic device. Inorg. Chem. Commun. 2022, 143, 109816.
[270] Kumar, R.; Thakur, A. K.; Banerjee, N.; Kumar, A.; Gaurav, G. K.; Arya, R. K. Liquid antisolvent crystallization of pharmaceutical compounds: current status and future perspectives. Drug Deliv. Transl. Res. 2023, 13, 400–418.
[271] Lonare, A. A.; Patel, S. R. Antisolvent Crystallization of Poorly Water Soluble Drugs. IJCEA 2013, 337–341.
[272] Park, M.-W.; Yeo, S.-D. Antisolvent crystallization of carbamazepine from organic solutions. Chem. Eng. Res. Des. 2012, 90, 2202–2208.
[273] Beckmann, W. Seeding the Desired Polymorph: Background, Possibilities, Limitations, and Case Studies. Org. Process Res. Dev. 2000, 4, 372–383.
[274] He, Y.; Gao, Z.; Zhang, T.; Sun, J.; Ma, Y.; Tian, N.; Gong, J. Seeding Techniques and Optimization of Solution Crystallization Processes. Org. Process Res. Dev. 2020, 24, 1839–1849.
[275] Svanberg, L.; Ahrné, L.; Lorén, N.; Windhab, E. Effect of sugar, cocoa particles and lecithin on cocoa butter crystallisation in seeded and non-seeded chocolate model systems. J. Food Eng. 2011, 104, 70–80.
[276] Dowling, R.; Davey, R. J.; Curtis, R. A.; Han, G.; Poornachary, S. K.; Chow, P. S.; Tan, R. B. H. Acceleration of crystal growth rates: an unexpected effect of tailor-made additives. Chem. Commun. 2010, 46, 5924–5926.
[277] Lee, S.-H.; Lee, G.-H.; Lee, K.-H.; Jazbinsek, M.; Kang, B. J.; Rotermund, F.; Kwon, O.-P. In Situ Tailor-Made Additives for Molecular Crystals: A Simple Route to Morphological Crystal Engineering. Cryst. Growth Des. 2016, 16, 3555–3561.
[278] Surov, A. O.; Solanko, K. A.; Bond, A. D.; Perlovich, G. L.; Bauer-Brandl, A. Crystallization and Polymorphism of Felodipine. Cryst. Growth Des. 2012, 12, 4022–4030.
[279] Thomas, L. H.; Wales, C.; Wilson, C. C. Selective preparation of elusive and alternative single component polymorphic solid forms through multi-component crystallisation routes. Chem. Commun. 2016, 52, 7372–7375.
[280] Zhang, K.; Xu, S.; Liu, S.; Tang, W.; Fu, X.; Gong, J. Novel Strategy to Control Polymorph Nucleation of Gamma Pyrazinamide by Preferred Intermolecular Interactions during Heterogeneous Nucleation. Cryst. Growth Des. 2018, 18, 4874–4879.
[281] Barret, P.; Smith, B.; Worlitschek, J.; Bracken, V.; O’Sullivan, B.; O’Grady, D. A Review of the Use of Process Analytical Technology for the Understanding and Optimization of Production Batch Crystallization Processes. Org. Process Res. Dev. 2005. 9, 348–355
[282] Darmali, C.; Mansouri, S.; Yazdanpanah, N.; Woo, M. W. Mechanisms and Control of Impurities in Continuous Crystallization: A Review. Ind. Eng. Chem. Res. 2019, 58, 1463–1479.
[283] Ma, Y.; Wu, S.; Macaringue, E. G. J.; Zhang, T.; Gong, J.; Wang, J. Recent Progress in Continuous Crystallization of Pharmaceutical Products: Precise Preparation and Control. Org. Process Res. Dev. 2020, 24, 1785–1801.
[284] Wieckhusen, D. Development of Batch Crystallizations. In Crystallization:Basic concepts and industrial applications; Beckmann, W., Ed.; Wiley-VCH, 2013; pp 187–202.
[285] Yano, Y.; Kasai, H.; Zheng, Y.; Nishibori, E.; Hisaeda, Y.; Ono, T. Multicomponent Crystals with Competing Intermolecular Interactions: In Situ X-ray Diffraction and Luminescent Features Reveal Multimolecular Assembly under Mechanochemical Conditions. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203853.
[286] Saikia, B.; Seidel-Morgenstern, A.; Lorenz, H. Role of Mechanochemistry in Solid Form Selection and Identification of the Drug Praziquantel. Cryst. Growth Des. 2021, 21, 5854–5861.
[287] Parakatawella, S.; Gogoi, D.; Deka, P.; Xu, Y.; Sandaruwan, C.; Jayasundera, A. C. A.; Arhangelskis, M.; Thakuria, R.; Adassooriya, N. M. Mechanochemical Synthesis of Polymorphic Urea ⋅ Adipic Acid Cocrystal as a Sustained-Release Nitrogen Source. ChemSusChem 2022, 15, e202102445.
[288] Orehek, J.; Teslić, D.; Likozar, B. Continuous Crystallization Processes in Pharmaceutical Manufacturing: A Review. Org. Process Res. Dev. 2021, 25, 16–42.
[289] Douroumis, D.; Ross, S. A.; Nokhodchi, A. Advanced methodologies for cocrystal synthesis. Adv. Drug Deliv. Rev. 2017, 117, 178–195.
[290] Kumar, S.; Prakash, O.; Gupta, A.; Singh, S. Solvent-free Methods for Co-crystal Synthesis: A Review. Curr. Org. Synth. 2019, 16, 385–397.
[291] Muresan-Pop, M.; Vulpoi, A.; Simon, V.; Todea, M.; Magyari, K.; Pap, Z.; Simion, A.; Filip, C.; Simon, S. Co-Crystals of Etravirine by Mechanochemical Activation. J. Pharm. Sci. 2022, 111, 1178–1186.
[292] Kulla, H.; Haferkamp, S.; Akhmetova, I.; Röllig, M.; Maierhofer, C.; Rademann, K.; Emmerling, F. In Situ Investigations of Mechanochemical One-Pot Syntheses. Angew. Chem. Int. Ed. Engl. 2018, 57, 5930–5933.
[293] Beyer, M. K.; Clausen-Schaumann, H. Mechanochemistry: the mechanical activation of covalent bonds. Chem. Rev. 2005, 105, 2921–2948.
[294] Beamish-Cook, J.; Shankland, K.; Murray, C. A.; Vaqueiro, P. Insights into the Mechanochemical Synthesis of MOF-74. Cryst. Growth Des. 2021, 21, 3047–3055.
[295] Haskins, M. M.; Zaworotko, M. J. Screening and Preparation of Cocrystals: A Comparative Study of Mechanochemistry vs Slurry Methods. Cryst. Growth Des. 2021, 21, 4141–4150.
[296] Koskela, J.; Sutton, J. J.; Lipiäinen, T.; Gordon, K. C.; Strachan, C. J.; Fraser-Miller, S. J. Low- versus Mid-frequency Raman Spectroscopy for in Situ Analysis of Crystallization in Slurries. Mol. Pharm. 2022, 19, 2316–2326.
[297] Qu, H.; Jin, S.; Gong, J.; Du, S.; Jia, L.; Wu, S. Enhancing Stability and Formulation Capability of Fungicides by Cocrystallization through a Novel Multistep Slurry Conversion Process. Cryst. Growth Des. 2020, 20, 7356–7367.
[298] Feng, H.; Wang, N.; Huang, X.; Wang, T.; Zhou, L.; Hao, H. Recent progress in melt crystallization. Chem. Eng. Res. Des. 2023, 190, 268–281.
[299] Shtukenberg, A. G.; Tan, M.; Vogt-Maranto, L.; Chan, E. J.; Xu, W.; Yang, J.; Tuckerman, M. E.; Hu, C. T.; Kahr, B. Melt Crystallization for Paracetamol Polymorphism. Cryst. Growth Des. 2019, 19, 4070–4080.
[300] Yao, X.; Henry, R. F.; Zhang, G. G. Z. Ritonavir Form III: A New Polymorph After 24 Years. J. Pharm. Sci. 2023, 112, 237–242.
[301] Bunaciu, A. A.; Udriştioiu, E. G.; Aboul-Enein, H. Y. X-ray diffraction: instrumentation and applications. Crit. Rev. Anal. Chem. 2015, 45, 289–299.
[302] von Dreele, R. B.; Toby, B. H. X-Ray Powder Diffraction. In Characterization of Materials 2 Volume Set; Kaufmann, E. N., Ed.; Wiley Interscience Imprint, 2003.
[303] Fucke, K.; Steed, J. W. X-ray and Neutron Diffraction in the Study of Organic Crystalline Hydrates. Water 2010, 2, 333–350.
[304] Pope, C. G X-Ray Diffraction and the Bragg Equation. J. Chem. Educ. 1997, 74, 129
[305] Lavina, B.; Dera, P.; Downs, R. T. Modern X-ray Diffraction Methods in Mineralogy and Geosciences. Rev. Mineral Geochem. 2014, 78, 1–31.
[306] Meisburger, S. P.; Thomas, W. C.; Watkins, M. B.; Ando, N. X-ray Scattering Studies of Protein Structural Dynamics. Chem. Rev. 2017, 117, 7615–7672.
[307] Jamrógiewicz, M. Application of the near-infrared spectroscopy in the pharmaceutical technology. J. Pharm. Biomed. Anal. 2012, 66, 1–10.
[308] Czarnecki, M. A.; Morisawa, Y.; Futami, Y.; Ozaki, Y. Advances in Molecular Structure and Interaction Studies Using Near-Infrared Spectroscopy. Chem. Rev. 2015, 115, 9707–9744.
[309] van Eerdenbrugh, B.; Taylor, L. S. Application of mid-IR spectroscopy for the characterization of pharmaceutical systems. Int. J. Pharm. 2011, 417, 3–16.
[310] Tolstorozhev, G. B.; Bel′kov, M. V.; Skornyakov, I. V.; Bazyl, O. K.; Artyukhov, V. Y.; Mayer, G. V.; Shadyro, O. I.; Kuzovkov, P. V.; Brinkevich, S. D.; Samovich, S. N. Infrared Spectroscopy of Hydrogen Bonds in Benzoic Acid Derivatives. J. Appl. Spectrosc. 2014, 81, 109–117.
[311] Flakus, H. T.; Michta, A.; Nowak, M.; Kusz, J. Effects of dynamical couplings in IR spectra of the hydrogen bond in N-phenylacrylamide crystals. J. Phys. Chem. A 2011, 115, 4202–4213.
[312] Liao, X.; Zhou, N. Dehydration Study of Piracetam Co-Crystal Hydrates. J. Pharm. Sci. 2018, 107, 2804–2809.
[313] Suzuki, T.; Araki, T.; Kitaoka, H.; Terada, K. Studies on mechanism of thermal crystal transformation of sitafloxacin hydrates through melting and recrystallization, yielding different anhydrates depending on initial crystalline forms. Int. J. Pharm. 2010, 402, 110–116.
[314] da Silva, C. C.; Guimarães, F. F.; Ribeiro, L.; Martins, F. T. Salt or cocrystal of salt? Probing the nature of multicomponent crystal forms with infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 167, 89–95.
[315] Ali, H. R. H.; Alhalaweh, A.; Mendes, N. F.; Ribeiro-Claro, P.; Velaga, S. P. Solid-state vibrational spectroscopic investigation of cocrystals and salt of indomethacin. CrystEngComm 2012, 14, 6665.
[316] Luan, Y.; Li, J.; Kaliwanda, M.; Wang, N.; Chen, K.; Li, X.; Su, W.; Hao, H. Solution Thermodynamics of Benzotriazole in Different Pure Solvents. J. Chem. Eng. Data 2018, 63, 1546–1555.
[317] Jouyban-Gharamaleki, V.; Jouyban, A.; Acree, W. E.; Rahimpour, E. Smart systems for determination of drug’s solubility. Drug Dev. Ind. Pharm. 2019, 45, 177–187.
[318] Sou, T.; Bergström, C. A. S. Automated assays for thermodynamic (equilibrium) solubility determination. Drug Discov. Today Technol. 2018, 27, 11–19.
[319] Bharti, S. K.; Roy, R. Quantitative 1H NMR spectroscopy. TrAC, Trends Anal. Chem. 2012, 35, 5–26.
[320] Dikmen, G. Determination of the solubility of 2-Methyl-1,3-benzothiazol-5-amine molecule with aqueous ethanol by NMR spectroscopy. J. Mol. Liq. 2018, 272, 851–856.
[321] Lin, M.; Tesconi, M.; Tischler, M. Use of (1)H NMR to facilitate solubility measurement for drug discovery compounds. Int. J. Pharm. 2009, 369, 47–52.
[322] Zloh, M. NMR spectroscopy in drug discovery and development: Evaluation of physico-chemical properties. ADMET DMPK 2019, 7, 242–251.
[323] Zheng, Q.; Zhang, Y.; Montazerian, M.; Gulbiten, O.; Mauro, J. C.; Zanotto, E. D.; Yue, Y. Understanding Glass through Differential Scanning Calorimetry. Chem. Rev. 2019, 119, 7848–7939.
[324] Knopp, M. M.; Löbmann, K.; Elder, D. P.; Rades, T.; Holm, R. Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development. Eur. J. Pharm. Sci. 2016, 87, 164–173.
[325] Clas, S. D.; Dalton, C. R.; Hancock, B. C. Differential scanning calorimetry: applications in drug development. Pharm. Sci. Technol. Today 1999, 2, 311–320.
[326] Saadatkhah, N.; Carillo Garcia, A.; Ackermann, S.; Leclerc, P.; Latifi, M.; Samih, S.; Patience, G. S.; Chaouki, J. Experimental methods in chemical engineering: Thermogravimetric analysis—TGA. Can. J. Chem. Eng. 2020, 98, 34–43.
[327] Fang, T.; Li, W.; Gu, F.; Li, S. Accurate prediction of lattice energies and structures of molecular crystals with molecular quantum chemistry methods. J. Chem. Theory Comput. 2015, 11, 91–98.
[328] Greenwell, C.; McKinley, J. L.; Zhang, P.; Zeng, Q.; Sun, G.; Li, B.; Wen, S.; Beran, G. J. O. Overcoming the difficulties of predicting conformational polymorph energetics in molecular crystals via correlated wavefunction methods. Chem. Sci. 2020, 11, 2200–2214.
[329] Price, S. L.; Braun, D. E.; Reutzel-Edens, S. M. Can computed crystal energy landscapes help understand pharmaceutical solids? Chem. Commun. 2016, 52, 7065–7077.
[330] Surov, A. O.; Solanko, K. A.; Bond, A. D.; Bauer-Brandl, A.; Perlovich, G. L. Cocrystals of the antiandrogenic drug bicalutamide: screening, crystal structures, formation thermodynamics and lattice energies. CrystEngComm 2016, 18, 4818–4829.
[331] Yuan, S.; Chan, H. S.; Hu, Z. Using PyMOL as a platform for computational drug design. WIREs Comput. Mol. Sci. 2017, 7.
[332] van Mourik, T.; Bühl, M.; Gaigeot, M.-P. Density functional theory across chemistry, physics and biology. Philos. Trans. A Math. Phys. Eng. Sci. 2014, 372, 20120488.
[333] Baseden, K. A.; Tye, J. W. Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom. J. Chem. Educ. 2014, 91, 2116–2123.
[334] Paier, J.; Hirschl, R.; Marsman, M.; Kresse, G. The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J. Chem. Phys. 2005, 122, 234102.
[335] Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627.
[336] Bursch, M.; Mewes, J.-M.; Hansen, A.; Grimme, S. Best-Practice DFT Protocols for Basic Molecular Computational Chemistry. Angew. Chem. Int. Ed. Engl. 2022, 61, e202205735.
[337] Beran, G. J. O. Modeling Polymorphic Molecular Crystals with Electronic Structure Theory. Chem. Rev. 2016, 116, 5567–5613.
[338] Kronik, L.; Tkatchenko, A. Understanding molecular crystals with dispersion-inclusive density functional theory: pairwise corrections and beyond. Acc. Chem. Res. 2014, 47, 3208–3216.
[339] Marchese Robinson, R. L.; Geatches, D.; Morris, C.; Mackenzie, R.; Maloney, A. G. P.; Roberts, K. J.; Moldovan, A.; Chow, E.; Pencheva, K.; Vatvani, D. R. M. Evaluation of Force-Field Calculations of Lattice Energies on a Large Public Dataset, Assessment of Pharmaceutical Relevance, and Comparison to Density Functional Theory. J. Chem. Inf. Model. 2019, 59, 4778–4792.
[340] Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928.
[341] Popelier, P. L. A.; Aicken, F. M., O’Brien, S. E. Atoms in molecules. In Chemical Modelling: Applications and Theory Volume 1; Hinchliffe, A., Ed.; Royal Society of Chemistry, 2000, pp. 143–198.
[342] Bartlett, R. J. Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry. J. Phys. Chem. 1989, 93, 1697–1708.
[343] Blom, M. N.; Compagnon, I.; Polfer, N. C.; Helden, G. von; Meijer, G.; Suhai, S.; Paizs, B.; Oomens, J. Stepwise solvation of an amino acid: the appearance of zwitterionic structures. J. Phys. Chem. A 2007, 111, 7309–7316.
[344] Nugrahani, I.; Jessica, M. A. Amino Acids as the Potential Co-Former for Co-Crystal Development: A Review. Molecules 2021, 26.
[345] Price, W. D.; Jockusch, R. A.; Williams, E. R. Is arginine a zwitterion in the gas phase? J. Am. Chem. Soc. 1997, 119, 11988–11989.
[346] Wyttenbach, T.; Witt, M.; Bowers, M. T. On the Stability of Amino Acid Zwitterions in the Gas Phase: The Influence of Derivatization, Proton Affinity, and Alkali Ion Addition. J. Am. Chem. Soc. 2000, 122, 3458–3464.
[347] Bormann, J. The ‘ABC’ of GABA receptors. Trends Pharmacol. Sci. 2000, 21, 16–19.
[348] Luo, Y.; Balle, T. GABAA receptors as targets for anaesthetics and analgesics and promising candidates to help treat coronavirus infections: A mini-review. Basic Clin. Pharmacol. Toxicol. 2022, 131, 443–451.
[349] Naffaa, M. M.; Hung, S.; Chebib, M.; Johnston, G. A. R.; Hanrahan, J. R. GABA-ρ receptors: distinctive functions and molecular pharmacology. Br. J. Pharmacol. 2017, 174, 1881–1894.
[350] Decavel, C.; van den Pol, A. N. GABA: a dominant neurotransmitter in the hypothalamus. J. Comp. Neurol. 1990, 302, 1019–1037.
[351] Gottesmann, C. GABA mechanisms and sleep. Neuroscience 2002, 111, 231–239.
[352] Jasmin, L.; Wu, M. V.; Ohara, P. T. GABA puts a stop to pain. Curr. Drug Targets CNS Neurol. Disord. 2004, 3, 487–505.
[353] Kalueff, A. V.; Nutt, D. J. Role of GABA in anxiety and depression. Depress. Anxiety 2007, 24, 495–517.
[354] Dobson, A. J.; Gerkin, R. E. gamma-Aminobutyric acid: a novel tetragonal phase. Acta Crystallogr. C Cryst. Struct. Commun. 1996, 52 (Pt 12), 3075–3078.
(355) Lamkowski, L.; Komisarek, D.; Merz, K. GABA-Controlled Synthesis of the Metastable Polymorphic Form and Crystallization Behavior with a Chiral Malic Acid. Cryst. Growth Des. 2022, 22, 356–362.
[356] Tomita, K.; Higashi, H.; Fujiwara, T. Crystal and Molecular Structure of ω-Amino Acids, ω-Amino Sulfonic Acids and Their Derivatives. IV. The Crystal and Molecular Structure of γ-Aminobutyric Acid (GABA), a Nervous Inhibitory Transmitter. BCSJ 1973, 46, 2199–2204.
[357] Wang, L.; Sun, G.; Zhang, K.; Yao, M.; Jin, Y.; Zhang, P.; Wu, S.; Gong, J. Green Mechanochemical Strategy for the Discovery and Selective Preparation of Polymorphs of Active Pharmaceutical Ingredient γ-Aminobutyric Acid (GABA). ACS Sustain. Chem. Eng. 2020, 8, 16781–16790.
[358] Dai, L.; Feng, W.-X.; Zheng, S.-P.; Jiang, J.-J.; Wang, D.; van der Lee, A.; Dumitrescu, D.; Barboiu, M. Progressive Folding and Adaptive Multivalent Recognition of Alkyl Amines and Amino Acids in p-Sulfonatocalix4arene Hosts: Solid-State and Solution Studies. Chempluschem 2020, 85, 1623–1631.
[359] Fabbiani, F. P. A.; Buth, G.; Levendis, D. C.; Cruz-Cabeza, A. J. Pharmaceutical hydrates under ambient conditions from high-pressure seeds: a case study of GABA monohydrate. Chem. Commun. 2014, 50, 1817–1819.
[360] Vries, E. J. C. de; Levendis, D. C.; Reece, H. A. A hexagonal solvate of the neurotransmitter γ-aminobutyric acid. CrystEngComm 2011, 13, 3334.
[361] Losev, E. A.; Boldyreva, E. V. A salt or a co-crystal – when crystallization protocol matters. CrystEngComm 2018, 20, 2299–2305.
[362] Losev, E. A.; Pishchur, D. P.; Boldyreva, E. V. A new monohydrated molecular salt of GABA with l -tartaric acid: the structure-forming role of water. CrystEngComm 2021, 23, 6086–6092.
[363] Bockbrader, H. N.; Wesche, D.; Miller, R.; Chapel, S.; Janiczek, N.; Burger, P. A comparison of the pharmacokinetics and pharmacodynamics of pregabalin and gabapentin. Clin. Pharmacokinet. 2010, 49, 661–669.
[364] Evoy, K. E.; Morrison, M. D.; Saklad, S. R. Abuse and Misuse of Pregabalin and Gabapentin. Drugs 2017, 77, 403–426.
[365] Kukkar, A.; Bali, A.; Singh, N.; Jaggi, A. S. Implications and mechanism of action of gabapentin in neuropathic pain. Arch. Pharm. Res. 2013, 36, 237–251.
[366] Mao, J.; Chen, L. L. Gabapentin in Pain Management. Anesth. Analg. 2000, 91, 680–687.
[367] Rose, M. A.; Kam, P. C. A. Gabapentin: pharmacology and its use in pain management. Anaesthesia 2002, 57, 451–462.
[368] Sills, G. J. The mechanisms of action of gabapentin and pregabalin. Curr. Opin. Pharmacol. 2006, 6, 108–113.
[369] Delaney, S. P.; Smith, T. M.; Korter, T. M. Conformation versus cohesion in the relative stabilities of gabapentin polymorphs. RSC Adv. 2014, 4, 855–864.
[370] Hsu, C.-H.; Ke, W.-T.; Lin, S.-Y. Progressive steps of polymorphic transformation of gabapentin polymorphs studied by hot-stage FTIR microspectroscopy. J. Pharm. Pharm. Sci. 2010, 13, 67–77.
[371] Lin, S.-Y.; Hsu, C.-H.; Ke, W.-T. Solid-state transformation of different gabapentin polymorphs upon milling and co-milling. Int. J. Pharm. 2010, 396, 83–90.
[372] Reece, H. A.; Levendis, D. C. Polymorphs of gabapentin. Acta Crystallogr. C 2008, 64, o105-8.
[373] Kumar, Y.; Khanduri, C. H.; Ganagakhedkar, K. K.; Chakraborty, R.; Dorwal, H. N.; Rohtagi, A.; Panda, A. K. Crystallization of gabapentin polymorph IV and its applications in treatment of cerebral disorders WO2004106281. 2004.
[374] Patel, D. J.; Patel, A. M.; Patel, H. P.; Hublikar, M.; Agarwal, V. K.; Pandita, K.; Patel, P. R. A novel process for preparing gabapentin polymorph II IN2003MU00454. 2003.
[375] Satyanarayana, C.; Ramanjaneyulu, G. S.; Kumar, I. V. S. Novel polymorph of gabapentin and its conversion to gabapentin form-II WO2004110342. 2004.
[376] André, V.; Fernandes, A.; Santos, P. P.; Duarte, M. T. On the Track of New Multicomponent Gabapentin Crystal Forms: Synthon Competition and pH Stability. Cryst. Growth Des. 2011, 11, 2325–2334.
[377] Fowler, D. A.; Tian, J.; Barnes, C.; Teat, S. J.; Atwood, J. L. Cocrystallization of C-butyl pyrogallol[4]arene and C-propan-3-ol pyrogallol[4]arene with gabapentin. CrystEngComm 2011, 13, 1446–1449.
[378] Kumari, H.; Zhang, J.; Erra, L.; Barbour, L. J.; Deakyne, C. A.; Atwood, J. L. Cocrystals of gabapentin with C-alkylresorcin[4]arenes. CrystEngComm 2013, 15, 4045.
[379] Martins, I. C. B.; Sardo, M.; Čendak, T.; Gomes, J. R. B.; Rocha, J.; Duarte, M. T.; Mafra, L. Hydrogen bonding networks in gabapentin protic pharmaceutical salts: NMR and in silico studies. Magn. Reson. Chem. 2019, 57, 243–255.
[380] Reddy, L. S.; Bethune, S. J.; Kampf, J. W.; Rodríguez-Hornedo, N. Cocrystals and Salts of Gabapentin: pH Dependent Cocrystal Stability and Solubility. Cryst. Growth Des. 2009, 9, 378–385.
[381] Shaikjee, A.; Levendis, D. C.; Marques, H. M.; Mampa, R. A gold(III) complex and a tetrachloroaurate salt of the neuroepileptic drug gabapentin. Inorg. Chem. Commun. 2011, 14, 534–538.
[382] Wenger, M.; Bernstein, J. An Alternate Crystal Form of Gabapentin: A Cocrystal with Oxalic Acid. Cryst. Growth Des. 2008, 8, 1595–1598.
[383] Zhao, C.; Su, X.; Fang, L.; Shang, Z.; Li, Z.; Gong, J.; Wu, S. Multivariate Analysis of a Highly Effective Drug Combination Tablet Containing the Antiepileptic Drug Gabapentin to Enhance Pharmaceutical Properties with a Multicomponent Crystal Strategy. Cryst. Growth Des. 2022, 22, 7234–7247.
[384] Soliman, I. I.; Kandil, S. M.; Abdou, E. M. Gabapentin-saccharin co-crystals with enhanced physicochemical properties and in vivo absorption formulated as oro-dispersible tablets. Pharm. Dev. Technol. 2020, 25, 227–236.
[385] Aramini, A.; Allegretti, M.; Bianchini, G.; Lillini, S.; Tomassetti, M. “CO-CRYSTAL OF KETOPROFEN, LYSINE AND GABAPENTIN, PHARMACEUTICAL COMPOSITIONS AND THEIR MEDICAL USE” WO2021224217. 2021.
[386] Vittal, Tangirala Venkata Subramanya Krishna; Taj, S. A.; Kodimuthali, A.; Maddali, K. Preparation of new mineral acid addition salts of gabapentin WO2003070683. 2002.
[387] Samineni, R.; Chimakurthy, J.; P., G.; Muneer, S.; Kolakaluri, C. S.; Tirumala, C. S. K. A formulation for improved drug release characteristic of gabapentin with benzoic acid as co-former IN202241039465. 2022.
[388] Zhang, J.; Ho, K.-Y.; Wang, Y. Efficacy of pregabalin in acute postoperative pain: a meta-analysis. Br. J. Anaesth. 2011, 106, 454–462.
[389] Verma, V.; Singh, N.; Singh Jaggi, A. Pregabalin in neuropathic pain: evidences and possible mechanisms. Curr. Neuropharmacol. 2014, 12, 44–56.
[390] Lauria-Horner, B. A.; Pohl, R. B. Pregabalin: a new anxiolytic. Expert Opin. Investig. Drugs 2003, 12, 663–672.
[391] Federico, C. A.; Mogil, J. S.; Ramsay, T.; Fergusson, D. A.; Kimmelman, J. A systematic review and meta-analysis of pregabalin preclinical studies. Pain 2020, 161, 684–693.
[392] Bonnet, U.; Scherbaum, N. How addictive are gabapentin and pregabalin? A systematic review. Eur. Neuropsychopharmacol. 2017, 27, 1185–1215.
[393] Marras, G. Polymorphic crystalline form alpha of (S)-pregabalin and process for its preparation EP1977744. 2007.
[394] Plata Salaman, C. R.; Tesson, N.; Trilla Castano, M.; Cardenas Romana, L. Crystalline forms of pregabalin and co-formers in the treatment of pain EP2527319. 2012.
[395] Khandavilli, U. B. R.; Lusi, M.; Frawley, P. J. Plasticity in zwitterionic drugs: the bending properties of Pregabalin and Gabapentin and their hydrates. IUCrJ 2019, 6, 630–634.
[396] Khandavilli, U. B. R.; Yousuf, M.; Schaller, B. E.; Steendam, R. R. E.; Keshavarz, L.; McArdle, P.; Frawley, P. J. Plastically bendable pregabalin multi-component systems with improved tabletability and compressibility. CrystEngComm 2020, 22, 412–415.
[397] Li, M.; Sun, J.; Kuang, W.; Zhou, L.; Han, D.; Gong, J. Drug–Drug Multicomponent Crystals of Epalrestat: A Novel Form of the Drug Combination and Improved Solubility and Photostability of Epalrestat. Cryst Growth Des 2022, 22, 5027–5035.
[398] Venu, N.; Vishweshwar, P.; Ram, T.; Surya, D.; Apurba, B. (S)-3-(Ammoniomethyl)-5-methylhexanoate (pregabalin). Acta Crystallogr C Cryst Struct Commun 2007, 63, o306-8.
[399] Samas, B.; Wang, W.; Godrej, D. B. CCDC 663673: Experimental Crystal Structure Determination, Cambridge Crystallographic Data Centre, 2007.
[400] Thaper, R. K.; Prabhavat, M. D.; Arora, S. K.; Pawar, Y. D.; Varma, D. K. P.; Kamble, V. S.; Shinde, V. S. Resolution of pregabalin using chiral salts IN2008KO00929. 2008.
[401] Gore, V.; Datta, D.; Gadakar, M.; Pokharkar, K.; Mankar, V.; Wavhal, S. Resolution of pregabalin WO2009122215. 2009.
[402] Gore, V.; Datta, D.; Gadakar, M.; Pokharkar, K.; Mankar, V.; Wavhal, S. Novel process US20110124909. 2011.
[403] Khaja, A.; Potla, V. S. R.; Rawat, G. S.; Konudula, B. R.; Chauhan, Y. K.; Datta, D. Process for preparing (S)-3-(aminomethyl)-5-methylhexanoic acid WO2009125427. 2009.
[404] Mafatlal, K. B.; Keshavlal, K. N.; Sivaprasad, K.; Rajendra, P. C.; Bhikhalal, V. P.; Rajaram, B. U.; Ambalal, M. I. Improved process for the preparation of pregabalin using a mixture of two acids for the resolution of its racemic IN2009MU01587. 2009.
[405] Pradhan, B. S. A process for resolution of (±)-3-(aminomethyl)-5-methylhexanoic acid IN2010CH01584. 2010.
[406] Reddy, S. R. D.; Velivela, S. R.; Reddy, R. R. V. An improved process for the preparation of enantiomerically pure pregabalin IN2010CH00299. 2010.
[407] Zvejniece, L.; Vavers, E.; Svalbe, B.; Veinberg, G.; Rizhanova, K.; Liepins, V.; Kalvinsh, I.; Dambrova, M. R-phenibut binds to the α2-δ subunit of voltage-dependent calcium channels and exerts gabapentin-like anti-nociceptive effects. Pharmacol. Biochem. Behav. 2015, 137, 23–29.
[408] Owen, D. R.; Wood, D. M.; Archer, J. R. H.; Dargan, P. I. Phenibut (4-amino-3-phenyl-butyric acid): Availability, prevalence of use, desired effects and acute toxicity. Drug Alcohol Rev. 2016, 35, 591–596.
[409] Lapin, I. Phenibut (beta-phenyl-GABA): a tranquilizer and nootropic drug. CNS Drug Rev. 2001, 7, 471–481.
[410] Kupats, E.; Vrublevska, J.; Zvejniece, B.; Vavers, E.; Stelfa, G.; Zvejniece, L.; Dambrova, M. Safety and Tolerability of the Anxiolytic and Nootropic Drug Phenibut: A Systematic Review of Clinical Trials and Case Reports. Pharmacopsychiatry 2020, 53, 201–208.
[411] Jouney, E. A. Phenibut (β-Phenyl-γ-Aminobutyric Acid): an Easily Obtainable “Dietary Supplement” With Propensities for Physical Dependence and Addiction. Curr. Psychiatry Rep. 2019, 21, 23.
[412] Dambrova, M.; Zvejniece, L.; Liepinsh, E.; Cirule, H.; Zharkova, O.; Veinberg, G.; Kalvinsh, I. Comparative pharmacological activity of optical isomers of phenibut. Eur. J. Pharmacol. 2008, 583, 128–134.
[413] Y. Mao, P. Y. Zavalij, CCDC 1821706: Experimental Crystal Structure Determination, Cambridge Crystallographic Data Centre, 2018.
[414] Senior, T.; Botha, M. J.; Kennedy, A. R.; Calvo-Castro, J. Understanding the Contribution of Individual Amino Acid Residues in the Binding of Psychoactive Substances to Monoamine Transporters. ACS Omega 2020, 5, 17223–17231.
[415] Addolorato, G.; Leggio, L. Safety and efficacy of baclofen in the treatment of alcohol-dependent patients. Curr. Pharm. Des. 2010, 16, 2113–2117.
[416] Brennan, J. L.; Leung, J. G.; Gagliardi, J. P.; Rivelli, S. K.; Muzyk, A. J. Clinical effectiveness of baclofen for the treatment of alcohol dependence: a review. Clin. Pharmacol. 2013, 5, 99–107.
[417] Bowery, N. G. Baclofen: 10 years on. Trends Pharmacol. Sci. 1982, 3, 400–403.
[418] Dario, A.; Tomei, G. A benefit-risk assessment of baclofen in severe spinal spasticity. Drug Saf. 2004, 27, 799–818.
[419] Kent, C. N.; Park, C.; Lindsley, C. W. Classics in Chemical Neuroscience: Baclofen. ACS Chem. Neurosci. 2020, 11, 1740–1755.
[420] Leggio, L.; Garbutt, J. C.; Addolorato, G. Effectiveness and safety of baclofen in the treatment of alcohol dependent patients. CNS Neurol. Disord. Drug Targets 2010, 9, 33–44.
[421] Leo, R. J.; Baer, D. Delirium associated with baclofen withdrawal: a review of common presentations and management strategies. Psychosomatics 2005, 46, 503–507.
[422] Couvrat, N.; Sanselme, M.; Poupard, M.; Bensakoun, C.; Drouin, S. H.; Schneider, J.-M.; Coquerel, G. Solid-State Overview of R-Baclofen: Relative Stability of Forms A, B and C and Characterization of a New Heterosolvate. J. Pharm. Sci. 2021, 110, 3457–3463.
[423] Maniukiewicz, W.; Oracz, M.; Sieroń, L. Structural characterization and Hirshfeld surface analysis of racemic baclofen. J. Mol. Struct. 2016, 1123, 271–275.
[424] Mirza, S.; Miroshnyk, I.; Rantanen, J.; Aaltonen, J.; Harjula, P.; Kiljunen, E.; Heinämäki, J.; Yliruusi, J. Solid-state properties and relationship between anhydrate and monohydrate of baclofen. J. Pharm. Sci. 2007, 96, 2399–2408.
[425] Báthori, N. B.; Kilinkissa, O. E. Y. Are gamma amino acids promising tools of crystal engineering? – Multicomponent crystals of baclofen. CrystEngComm 2015, 17, 8264–8272.
[426] Kavuru, P.; Aboarayes, D.; Arora, K. K.; Clarke, H. D.; Kennedy, A.; Marshall, L.; Ong, T. T.; Perman, J.; Pujari, T.; Wojtas, Ł.; Zaworotko, M. J. Hierarchy of Supramolecular Synthons: Persistent Hydrogen Bonds Between Carboxylates and Weakly Acidic Hydroxyl Moieties in Cocrystals of Zwitterions. Cryst. Growth Des. 2010, 10, 3568–3584.
[427] Malapile, R. J.; Nyamayaro, K.; Nassimbeni, L. R.; Báthori, N. B. Multicomponent crystals of baclofen with acids and bases—conformational flexibility and synthon versatility. CrystEngComm 2021, 23, 91–99.
[428] Córdova-Villanueva, E. N.; Rodríguez-Ruiz, C.; Sánchez-Guadarrama, O.; Rivera-Islas, J.; Herrera-Ruiz, D.; Morales-Rojas, H.; Höpfl, H. Diastereomeric Salt Formation by the γ-Amino Acid RS -Baclofen and L -Malic Acid: Stabilization by Strong Heterosynthons Based on Hydrogen Bonds between RNH 3+ and COOH/COO – Groups. Cryst. Growth Des. 2018, 18, 7356–7367.
[429] Songsermsawad, S.; Nalaoh, P.; Promarak, V.; Flood, A. E. Chiral Resolution of RS -Baclofen via a Novel Chiral Cocrystal of R -Baclofen and L -Mandelic Acid. Cryst. Growth Des. 2022, 22, 2441–2451.
[430] Zaworotko, M.; Clarke, H.; Kapildev, A.; Kavuru, P.; Shytle, R. D.; Pujari, T.; Marshall, L.; Ong, T. T. Nutraceutical co-crystal compositions WO2008153945. 2008.
[431] Coquerel, G.; Mahieux, J.; Gendron, F.-X. Method for the resolution of baclofen salts WO2018015677. 2017.
[432] Peterson, M.; Oliveira, M. Preparation of organic acid salts of gabapentin WO2004091278. 2004.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Chemie » Anorganische Chemie und Strukturchemie
Dokument erstellt am:24.04.2023
Dateien geändert am:24.04.2023
Promotionsantrag am:21.02.2023
Datum der Promotion:28.03.2023
english
Benutzer
Status: Gast
Aktionen