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II Kurzzusammenfassung 

Crystal Engineering hat sich spätestens seit den neunziger Jahren des vergangenen 

Jahrhunderts als eigenständige Subdisziplin der supramolekularen Chemie etabliert. 

Allerdings sind viele Vorgänge, die das supramolekulare Aggregationsverhalten 

betreffen, auch über dreißig Jahre später noch nicht vollkommen aufgeklärt. Daraus 

ergeben sich zahlreiche Probleme für das Feld, welche vor Allem die Vorhersagbarkeit 

von Struktur und Eigenschaften kristalliner Festkörper betreffen. In der Pharmazie 

gipfelt diese geminderte Kontrollfähigkeit über die Festphase im Phänomen der 

sogenannten Disappearing Polymorphs. In so bezeichneten Fällen ist es im 

industriellen Maßstab plötzlich nicht mehr möglich ein zuvor über lange Zeit 

wohldefiniertes Produkt unter den scheinbar gleichen Bedingungen wie in der 

Vergangenheit zu erhalten. Ein unerkannter Einfluss begünstigt dabei einen 

unerwarteten Phasenwechsel des Zielproduktes zu einer anderen polymorphen 

Modifikation. Dieses Problem ist beispielhaft für die Herausforderungen des modernen 

Crystal Engineerings: der Komplexität des Kristallisationsvorgangs mit Mitteln Herr zu 

werden, die kaum die Vielzahl an möglichen Einflüssen auf diesen Prozess erfassen 

können. In den vorliegenden Arbeiten wurde die Kristallisation der γ-Aminobuttersäure 

(GABA) und ihren Derivaten Gabapentin, Pregabalin, Phenibut und Baclofen im 

Vergleich miteinander untersucht. Dabei wurden zahlreiche Kristallstrukturen sowohl 

von Einzel- als auch Multikomponentenphasen wie Salzen und Co-Kristallen dieser 

Stoffe mit einer Auswahl an Carbonsäuren aufgeklärt und ihre physikochemischen 

Eigenschaften bestimmt. Dazu wurden sowohl analytische Methoden wie auch 

Computer basierte Rechnungsmodelle verwendet. Es konnte gezeigt werden, dass in 

vielerlei Hinsicht ein ähnliches Verhalten in den Bindungsmodi der supramolekularen 

Aggregation der untersuchten Substanzen besteht. Solche Gemeinsamkeiten bleiben 

jedoch oberflächlich. So wurde beispielsweise festgestellt, dass die Bildung von 

Multikomponentensystemen mit der selben Carbonsäure oftmals mit mehr als einem 

GABA-Derivat möglich ist. Allerdings unterscheiden sich die erhaltenen Produkte in 

vielerlei Fällen sowohl strukturell als auch in ihren Eigenschaften. Ein 

kristallisationsbasiertes Verfahren zur Deracemisierung von Pregabalin ist nicht in 

gleicher Weise auf Phenibut übertragbar. Die Arbeit zeigt auf, dass sogar zwischen 

molekular nah verwandten Spezies gravierende Unterschiede im 

Kristallisationsverhalten bestehen können, denen nicht einfach Herr zu werden ist.  
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III Short Summary 

Crystal engineering has been established as an independent subdiscipline of 

supramolecular chemistry since the 1990s of the previous century at the latest. 

However, many processes affecting supramolecular aggregation behaviour have not 

been fully elucidated even more than thirty years later. This poses numerous problems 

for the field, mainly concerning the predictability of structure and properties of 

crystalline solids. In pharmaceutics, this diminished ability to control the solid phase 

culminates in the phenomenon known as disappearing polymorphs. In such cases, it 

is suddenly no longer possible on an industrial scale to obtain a product that has 

previously been well-defined over a long period of time under what appear to be the 

same synthesis conditions as in the past. In this case, an unrecognized influence 

favours an unexpected phase change of the target product to a different polymorphic 

modification. This problem is exemplary for the challenges of modern crystal 

engineering: to cope with the complexity of the crystallization process by means that 

can hardly capture the multitude of possible influences on this process. In the present 

work, the crystallization of γ-amino butanoic acid (GABA) and its derivatives 

Gabapentin, Pregabalin, Phenibut, and Baclofen were studied in comparison with each 

other. Numerous crystal structures of both single and multicomponent phases such as 

salts and co-crystals of these substances with a selection of carboxylic acids were 

elucidated and their physicochemical properties were determined. Both analytical and 

computational models were used for this purpose. It was shown that in many respects 

there is similar behaviour in the binding modes of supramolecular aggregation of the 

studied substances. However, such similarities remain superficial. For example, it was 

found that the formation of multicomponent systems with the same carboxylic acid is 

often possible with more than one GABA-derivative. However, in many cases the 

products obtained differ both structurally and in their properties. A crystallization-based 

procedure for the deracemization of Pregabalin is not equally applicable to Phenibut. 

The work demonstrates that even between molecularly closely related species there 

can be serious differences in crystallization behaviour that are not easy to master. 
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IV List of Abbreviations 
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1 Introduction 

 

1.1 Basics of (pharmaceutical) crystal engineering 

 

1.1.1 Crystal Engineering: A brief introduction on history and challenges in a 

developing field 

Crystal Engineering is a comparatively new research field that has developed from a 

concept regarding solid state matrices of specific purposes to a strongly diversified 

topic over several decades. In 1955 Raymond Pepinsky was the first to introduce the 

term crystal engineering in his Physical Review contribution Crystal Engineering – New 

Concept in Crystallography.[1] However, filling this term with meaning is most 

commonly attributed to Gerhard Schmidt’s Photodimerization in the solid state 

published in 1971.[2] Schmidt viewed crystal engineering as the use of a crystalline 

matrix to influence the outcome of photochemical reactions. His particular interest was 

the targeted formation of a photo reaction product without impurities. By using a solid 

crystalline template to limit unwanted molecular configurations, he was able to reduce 

by-products that occur in solvent-based reactions. Many published works from the 

1970s and 1980s refer to this early established relation to photochemistry.[3–8] Parallel 

to this a more general view on the topic has developed that focuses on the crystalline 

solid state as a whole rather than just its applicability in photochemistry.[9–11] This 

process has been remarkably impacted by Gautam Desiraju who published many of 

the early works on crystal engineering and established concepts such as noncovalent 

attractive interactions without the involvement of hydrogen.[12–23]   

In the 1990s, crystal engineering research topics continued to diversify, and 

pharmaceutical crystal engineering emerged as one of the most commonly addressed 

subject matters, which remains important to this day.[24–36] In 1992, Peter York was the 

first to review crystal engineering in a pharmaceutical context and used the term crystal 

engineering, even though earlier works had already established connections between 

crystal structure and pharmaceutical properties.[37] Just three years later in 1995 

Bernstein and Dunitz described an interesting phenomenon that highlighted what 

would prove to be a major challenge to overcome for crystal engineering in general 

and pharmaceutical crystal engineering in particular. Their contribution Disappearing 

Polymorphs showcases the unpredictability and unreliableness of the crystal phase.[38] 
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The article described how previously obtainable crystalline modifications of 

pharmaceutical substances become unavailable in industrial production settings for 

seemingly no discernible reason. Over the years this topic has been brought up time 

and again in differing contexts,[39–50] and sometimes ways have been found to make a 

disappeared polymorph reappear.  In 2015, Bernstein, Bučar, and Lancaster revisited 

the issue 20 years after the first publication, but their contribution did not end on a 

positive note. They essentially concluded that while methods have improved, a 

definitive solution cannot be proposed.[51]  

In the 1980s and 1990s, research interests began to focus on developing ways to 

control crystallization outcomes, and this led to the generation of numerous 

perspectives that address this problem.[52–58] Maybe one the most accessible solutions 

regarding the question of crystal phase predictability was proposed by Desiraju. His 

concept of the supramolecular synthon explains how subunits in organic molecules 

can serve as building blocks for supramolecular assembly, for example, by enabling 

hydrogen bonds (HBs) (Figure 1).[59–62] 

 

Figure 1. Examples for supramolecular synthons. Single hydrogen bond between two carboxylic acid subunits and 
a heterodimer between an amide and a carboxylic acid synthon a), halogen bond between two iodine residues as 
well as a bromine residue and trimethylamine b), and an edge-to-face π-interaction with benzene rings c). 

The supramolecular synthon might be deemed as a first attempt to identify obvious 

regularities in crystallization, and to generate an accessible, visible understanding of 

crystallization behaviour. Despite being a staple in the field for close to thirty years after 

its introduction,[63–67] it has been subject to critique. Predicting whether a desired 

supramolecular synthon will form upon crystallization is not always easy, as expected 

interaction motifs based on the strongest synthon do not always occur reliably.[68,69] 

This model simply overlooks too many other factors that play a role in the crystallization 



 

 
7 

process, such as the crystallization medium or method, temperature, saturation level, 

pH-value, additives, choice of antisolvent, and their manifold influences on modes of 

prenucleation, nucleation and crystal growth.[70–73] Thus, the effectiveness of 

identifying a supramolecular synthon for crystal structure prediction should not be 

overestimated. 

Although the supramolecular synthon offers a simple method to predict possible 

interaction motifs, more quantifiable methods have become prevalent in crystal 

engineering around the same time as well. Computational approaches, initially used 

as a tool for crystal structure solutions, were enhanced during this time. Applications 

to analyse connections between structure and physical properties, find ways to 

quantify intermolecular interactions, attempt crystal structure predictions or understand 

the steps of the crystallization process were developed.[74–83] These methods were 

continuously advanced during the following years.[73,84–102] Concomitant to the 

increasing computerization was and is the emergence and growing importance of 

databases for recorded crystal data, such as the Cambridge Structural Database 

(CSD).[103] Established in 1965, the CSD is one of the most important collections of 

single crystal data of organic and metal-organic compounds, enabling analysis of large 

file sets. As more dedicated artificial intelligence-based tools become available, their 

capability to connect non-obvious and complex correlations in huge datasets could 

solve the problem of making crystallization actually predictable.[104–107]  

This short introduction highlights how crystal engineering has developed from a very 

specified niche to a diversified and broad field over the years of its existence 

(Figure 2). Crystal engineering still faces key problems that already occurred during 

its infancy. The unpredictability of crystal structures and the complex interplay of 

factors that influence their formation continue to pose challenges for researchers. This 

is especially problematic for pharmaceutical crystal engineering, where high standards 

of phase purity and product effectiveness are applied that all depend on reliable 

production processes. Experimental trial and error approaches, computational 

modelling to various degrees, or mixtures of both remain the methodology of choice to 

overcome these challenges. While artificial intelligence may be able to find order in the 

complexity of the supramolecular field in the future, at this point each system of interest 

must be investigated thoroughly and understood on its own, with only limited 

applicability of generalizations concerning other systems. The crystallization process, 

solid-phase classification, intermolecular interactions, experimental crystallization 
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approaches, analytical methods in characterization, computational models to identify 

phase properties and a specific set of herein investigated compounds shall be 

discussed to understand the framework upon which the published works concerning 

this thesis were prepared.  

 

Figure 2. Scifinder-n searches conducted in Jan. 2023 using the terms: a) Crystal Engineering, b) Pharmaceutical 
Crystal Engineering, c) Supramolecular Synthon, and d) Computational Crystal Engineering. The search results 
highlight how interest in the presented topics has developed over the last years. 

1.1.2 The crystallization process 

More than 125 years ago, Wilhelm Ostwald proposed that during crystallization, the 

most stable product is not always formed first. Instead, multiple stages must be passed 

before the thermodynamically most beneficial entity is reached.[108,109] In modern times, 

crystallization is categorized into three possible steps, two of which must necessarily 

occur: nucleation (classical or non-classical nucleation theory), crystal growth, and 

potential solid phase transformations.[71,110–112] Each system must undergo some form 

of nucleation and crystal growth steps to form a visible crystalline entity. Various 

mechanisms for the formation of early-stage clusters, nuclei, or seeds have been 
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proposed, the mechanism that takes action depends on the system being 

crystallized.[113]  

In the classical sense, nucleation can be summarized as the one-step formation of 

larger molecular or ion clusters from smaller particles in the crystallization environment. 

If the energy barrier for coagulation is breached, cluster formation is induced, 

depending on various thermodynamic factors such as temperature, saturation level, 

pressure, mechanical stress, or the presence of impurities (heterogeneous nucleation). 

These formed clusters or seeds either dissolve again or start to undergo crystal 

growth.[73,114–122]  This level of understanding for the nucleation process is sufficient in 

many cases, but recent research results concerning nano structures contradict this 

simple model. Classically, a spherical form for early-stage clusters is assumed, which 

is not always the case.[73] Non-classical nucleation theory offers various possible 

mechanisms for the nucleation stage, taking into consideration non-spherical cluster 

formations as well. For example, the spontaneous separation of phases from solution 

without actual nucleation occurs for metals in the so-called spinodal region and leads 

to a crystalline product if the phases are sufficiently separated.[119,121] Other described 

mechanisms include the formation of phase intermediates prior to nucleation. These 

intermediates can be seen as dense solution droplets or surface ordered droplets and 

be of crystalline, amorphous, or mixed nature.[119] Phase intermediates do not 

necessarily nucleate in one step, and multistep nucleation can undergo all various 

intermediate stages before forming a seed. An interesting specific mechanism that was 

discovered for protein crystal growth on a MoS2 surface is called direct nucleation. This 

nucleation mode occurs for systems that can crystallize one array at a time, forming 

monolayers on a given surface. As such the energy barrier necessary to form three 

dimensional clusters is circumvented, thus contradicting classical nucleation 

theory.[123]    

The complexity of the crystal growth stage is not reduced compared to nucleation. 

Again, there is a classical and a non-classical understanding of the growth 

mechanisms. In the classical understanding, monomers from the crystallization 

environment are adsorbed onto the surface of a formed nucleus that is of a sufficient 

size to remain stable. Subsequently, these monomers diffuse over to the 

thermodynamically most favourable surface and cause its growth, layer by 

layer.[117,119,122,124,125] However, observations contrary to the classical understanding 

have been conducted in the past. For example, nuclei of varying sizes can be present 
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that are converted into either larger or smaller sizes, the nuclei morphology can 

undergo drastic changes, and nuclei of different sizes can aggregate. Modes of growth 

can also depend on a previously present substrate. Ostwald ripening and digestive 

ripening are examples for the first mentioned category.[126,127] In the former, smaller 

nuclei dissolve in favour of larger ones, minimizing surface energy and thus facilitating 

the crystal growth. In the latter the reverse takes place, which occurs in cases of 

charged colloidal solutions. The contribution of the chemical potential to the modified 

Gibbs-Thomson equation proposed by Park et al. leads to an equilibrium state for 

smaller sized particles as opposed to bulk material. Intraparticle growth, which is an 

example for morphology changing nuclei, is dependent on shifts in diffusion dynamics 

near the crystallite.[128] If the growth facet’s surface energy becomes approximately 

equal to that of the bulk solution, previously unfavourable surface facets turn 

energetically beneficial.[117,119] In coalescence and oriented attachment already formed 

larger crystallites fuse.[129–132] Both modes are distinctive for how that occurs: in a 

coalescence lattice orientation does not influence the aggregation of the crystallites 

impactfully, while in an oriented attachment a crystallographic alignment of the 

particles takes place. Lastly, crystal growth can be affected by a substrate or template 

on which a new phase is deployed. Li et al. have shown that gold deposited on MgO 

shows different growth properties from gold deposited on amorphous carbon.[133]  

Even if nucleation and growth processes lead to a desired crystalline entity in the first 

place, solid phase transitions can occur long after the initial crystallization. In many 

cases such transitions require some form of energetic input, for example in form of 

high temperatures,[134] high pressures,[135] mechanical stress,[136] or environmental 

changes that benefit recrystallization.[137] Especially the last-mentioned example can 

become problematic when the energetic barrier for phase transitions happens to be 

low. The literature mentions various cases where a target product undergoes a 

polymorphic phase transition or formation of a hydrate even from the solid-state during 

storage or processing. Krishnan et al. have reported a case of single crystal to single 

crystal transition which is apparently temperature controlled but can also occur at 

ambient temperature given enough time.[138] Much more common are phase transitions 

induced through atmospheric humidity. These can include transitions between 

anhydrous forms as well as the formation of a hydrate.[139–142] Maybe the most 

inconvenient cases of phase transitions concern processing induced changes, for 
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example by tableting.[143] Inability to bring a pharmaceutical product into a marketable 

form can turn into a costly endeavour. 

The stated insights regarding the crystallization process highlight its complexity as well 

as how vulnerable for disturbance each stage of this event might be (Figure 3).  

 

Figure 3. Visual representation of the different crystallization stages with classical and non-classical routes 
including a choice of examples. The classical nucleation is depicted in a), classical monomer layer growth in b). 
The non-classical route is highlighted with roman numerals. A schematic depiction of a phase intermediate is shown 
in I), spinodal decomposition in II), direct nucleation in III). Non-classical growth routes are presented in IV) for 
Ostwald ripening, V) for coalescence, and VI) for substrate growth. The influence of atmospheric humidity on 
possible phase transitions is illustrated by a portrayal of lose water molecules. This figure is based on similar 
representations in recent literature.[73,110,117,119–122] 

Numerous factors can potentially influence crystallization at every stage. In 2009, 

Kitamura proposed a categorization of such influences regarding the control of 

polymorphism into primary and secondary factors.[71] Primary factors include items that 

directly concern the crystallization reactants, such as saturation, temperature, stirring 

rate, mixing rate of reactants or solution, antisolvent, and seed crystals. Secondary 

factors include items that are connected to the crystallization environment, such as the 

solvent, presence of additives, a crystallization interface, the pH-value, or host-guest 

composition. While this list may not be complete, there are various examples in recent 

literature that show how control on one or more of the proposed factors lead to a 

desired crystallization product.[73,114,144–151]  
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Understanding the complexity of the crystallization process and the different factors 

which can change its outcome is a key to comprehend how the historically established 

challenges in crystal engineering are not yet overcome. The next section shall 

elucidate on possible product outcomes, and how their complicated interrelationships 

further impede simple solutions in generalization of the crystallization process. 

1.1.3 Classification and properties of (crystalline) solids 

The structure of a crystalline solid is linked to its thermodynamic properties such as 

solubility and thermal stability, but also mechanical properties such as the tabletability 

or pharmaceutical properties such as the bioavailability upon consumption.[152–158] 

Categorization of phases is thus an attempt to understand links between structure and 

these properties but also to form a legal basis for potential marketability.[159–163] 

Different disciplines may have different interpretations of what constitutes a specific 

solid-phase, and even within a given field, there may be differences in the use of 

terminology. For example, a pharmaceutical crystal engineer might deem a crystalline 

system composed of two different molecular species that is devoid of long-range order 

a solid solution, or a mixed crystal.[164–166] A metallurgist on the other hand might rather 

view a similar entity composed of distinctive metals as an alloy.[167–169] However, this 

does not necessarily mean that these terms are not interchangeable,[170–172] or that 

they are not also used in entirely different contexts altogether,[173,174] at least 

historically. Henceforth the pharmaceutical crystal engineering point of view will be 

used as the focus for further explanations, to keep the scope of this discussion in a 

reasonable range.  

In pharmaceutical crystal engineering, the classification of the crystalline solid depends 

on several factors, including the charge status of the crystallized molecules, whether 

one of the crystallized species could be deemed a solvent or water, whether all species 

are organic, inorganic, or a mix of both, and whether a crystalline system is composed 

stoichiometrically or statistically. It furthermore plays a role whether the crystal 

structure is formed by a single or multiple molecular species (Figure 4).[159–163,175–177] 

The figure illustrates the complexity of crystalline systems: they may involve iterations 

of multiple chemical entities that could be organic, inorganic, a metal, or a solvent and 

each system has the potential to form polymorphs. Polymorphism refers to the ability 

of a substance to crystallize in more than one lattice modification.  
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Figure 4. Depiction of choice crystalline solids, ordered by the number of singular compounds that participate in a 
lattice and how many possible iterations of organic, inorganic or metallic species could be present. Polymorphs of 
single species crystallized in two different lattices a), hydrate of a single species b), from left to right: co-crystal 
composed of neutral species, salt composed of charged species, mixed crystal composed of neutral species but 
distributed stochastically c), from left to right: hydrate of salt and hydrate of co-crystal d), and from bottom to top: 
ionic co-crystal or co-crystal salt composed of charged as well as neutral species, and ionic co-crystal hydrate e). 
This figure is based on similar representations in recent literature.[159–161,163,175] 

This is shown in a) of Figure 4 for a single-component crystal. The incorporation of 

water or a solvent into a crystal lattice is called a hydrate (b)) or solvate (d)), sometimes 

pseudopolymorph,[178–180] although the use of this term was discouraged in the past.[181]  

The distinction between hydrates and solvates especially in comparison to co-crystals 

may seem arbitrary, but it is historically grown and widely accepted. Multicomponent 

entities of stoichiometric composition formed by uncharged species are called 

co-crystals, and the different singular compounds co-formers. For charged forms, such 

entities are deemed salts, with the positively charged part referred to as a cation and 

the negatively charged part as an anion. A multicomponent system with stochastically 

distributed co-formers is the previously mentioned solid solution. These bi-component 

forms are shown in c). Ionic co-crystals or co-crystal salts form a crystal lattice 

composed of anions, cations, and a further co-former, depiction in e). Polymorphs, 
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hydrates and solvates, as well as co-crystals, salts and ionic co-crystals will be 

discussed in more detail in the upcoming paragraphs.   

The formation of an undesired polymorphic phase after prior crystallization of the 

desired one is the original crystallographic problem for pharmaceutical crystal 

engineering described by Dunitz and Bernstein.[38,51] Similarly, pseudopolymorphs can 

be unreliable because they can either decompose to an undesired anhydrous form or 

form from a different desired species during storage or processing.[182–188] Transition 

events like these can cause severe changes in targeted properties of an active 

pharmaceutical ingredient (API). In case of true polymorphs, past studies have shown 

that energetic relations between polymorphs are often closely related, facilitating 

phase transitioning.[189–191] For hydrates or solvates, on the other hand, formation is 

linked to molecular structure, especially molecular size, and the ability to form solvent 

accessible voids, as well as capability to form a strong intermolecular interaction with 

a solvent molecule that exceeds solvent-solvent interaction energies.[192–194] The 

possible fragility of these examples of relative crystallographic simplicity has given rise 

to more complex formulations to circumvent their propensity to change phases. 

The production of multicomponent crystalline entities, such as salts and co-crystals, is 

a long established process.[195,196] While they still have the potential to undergo 

unwanted transitions,[180,188] they can be the solution to phase changes of unreliable 

single phase compounds, or enable targeted properties on their own.[50,197–200] The first 

question that might arise in context of these crystallographically more complex 

multicomponent entities is how the co-former or counterion should be chosen. 

Chemically, this question is answered for example through Desiraju’s supramolecular 

synthon concept.[60] This involves identifying supramolecular synthons that enable 

intermolecular interactions between target molecule and co-former or counterion. 

These could for example involve HB sites or π-systems. For salt formations it might be 

the potential to be ionized on the target API and chosen counterion. When considering 

potential co-formers or counterions, it is important to ensure that they are harmless 

upon human consumption. The generally recognized as safe (GRAS) list, evaluated 

and updated by the US-based food and drug administration (FDA), is a useful resource 

for identifying such compounds.[201–203] The second emerging question on the 

background of the discussed relationships between structure and properties may be 

how valid the classification of crystallographically complex solids actually is, and 

whether there are specific properties that are inherent to one or the other category. To 
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answer this question, ionic co-crystals should be considered. In 2010 Braga et al. 

published their work on new crystalline forms of barbituric acid with inorganic acid/base 

pairs of alkali halogenides coining the term ionic co-crystal.[176] Ever since these 

compounds were established, numerous other examples of similar nature were 

described, also involving completely organic formulations.[203–209] The mere existence 

of these species might be deemed as emphasizing of an understanding about 

crystalline solids first established by Childs et al. in 2007: crystal species are best 

recognized on a spectrum, on the salt-cocrystal continuum.[210] In their early work they 

link crystallization environment as well as pKa-values inherent to the single component 

species and specifically the deviation of pKa-values in two or more co-formers to rather 

form charged salts or neutral co-crystals upon multicomponent crystallization. 

Empirically recorded, the salt-cocrystal continuum predicts salt formation to rather 

occur if ΔpKa ≥ 3 or co-crystal formation if ΔpKa ≤ 0. Especially in between those 

ranges, multicomponent entity formation can become hardly reliable. Subsequently, 

various techniques for the identification of the proton position were established over 

the years,[211–213] and examples of molecularly related species crystallizing under 

similar conditions in different crystal phase categories presented.[214–218] This shows 

how close the call of forming one class of solid over the other can be. There are some 

choice connections between (structural) properties that could be identified: choosing a 

well-soluble co-former in a co-crystallization with a worse soluble target compound 

leads to solubility increases in the multicomponent entity.[219] Furthermore, properties 

such as solubility and melting point appear to show an inverse correlation.[220–223] 

However, there is no clear distinction of a co-crystal, salt, or ionic co-crystal regarding 

their possible respective physicochemical behaviours. The described connections can 

occur independent of how the compound of interest would be classified. Thus, crystal-

phase classification should be deemed as a tool to understand structural features 

rather than compound properties.[224] The potential complexity of crystalline systems 

and the difficult interrelationship of structure and properties is not yet understood 

sufficiently enough to propose a property-based categorization system.  

The key to understand the structural features of the different crystalline embodiments 

lies in a comprehension of how the participating molecular entities aggregate. 

Therefore, intermolecular interactions relevant for the formation of crystal systems 

received in this work will be discussed next. 
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1.1.4 Intermolecular interactions: ionic bond and hydrogen bond, π-

interactions and dispersive forces 

Crystalline solids are formed through interactions between atoms, ions, or molecules. 

Supramolecular bonding is a type of attractive interaction that does not lead to the 

formation of a new chemical compound but binds particles in a specific way to a defined 

position in relation to other aggregated co-formers or ions. In contrast to that the 

formation of a covalent bond leads to a new chemical entity. The key distinction 

between these two examples is whether electrons are shared or whether these 

interactions occur with a closed electron shell. Examples for the former include the 

covalent or metallic bond. Examples for the latter are the ionic bond, HBs, π-

interactions or van-der-Waals forces. However, similar to solid compound categories 

these should not be viewed as rigid classes that stand for themselves. Rather than 

that, there are usually different contributions of factors such as electron induction, 

electrostatic forces, or dispersive forces, and covalent bonds can be characterized by 

ionic contributions and vice versa.[225–229] As bonds of closed shell type are the relevant 

type in pharmaceutical crystal engineering, or supramolecular chemistry in general, 

some chosen examples shall be discussed in further detail (Figure 5). The depicted 

structures are ordered by interaction or bond strength and directionality. The 

interaction strength is quantified by modelled energy values for the respective 

interactions as well as observable variables such as binding sites distances and 

angles. Directionality in the discussed context means how dominant the depicted 

interactions usually are in a given supramolecular system. For example, a chloride 

anion is very likely to be in the vicinity of a cationic subgroup in a crystal structure. HB 

binding sites are more likely to interact the stronger they are. On the other hand, if ionic 

sites or HB sites suitable for strong HBs are present, π-interactions might occur 

between relevant aryl residues, but not necessarily. The formation of the crystal 

compound will rather be directed via the stronger binding moieties and the weaker 

ones will take place if possible.  The overall makeup of a crystalline solid is rather 

determined by stronger interactions than by weaker forces, and thus they are deemed 

more directional. 
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Figure 5. Chosen attractive interaction types roughly sorted by interaction strength and directionality. Ionic attraction 
of an anion and cation a); strong, charge assisted hydrogen bond, mid-strength neutral hydrogen bond, and weak 
neutral hydrogen bond b); halogen bond between two halogens c), π-interaction of T-shaped type between aryls 
d); and dispersive van-der-Waals forces between alkyl chains e). Contents are based on recent literature.[225,228] 

The defining feature of a salt is the presence of ionicity, whether it is composed of 

completely inorganic ions or ionized molecules.[230,231] For inorganic salts, in particular 

exceedingly high bond energies are reported, reaching values up to 

about -920 kJmol-1.[232–235] Even though such high binding energies via the ionic bond 

are possible, the presence of large organic residues on anions or cations enables the 

formation of liquid crystalline phases composed of salts.[236–238] This illustrates how the 

repulsive forces between such residues, even though weak by nature, can cancel out 

the strong ionic bond. These ionic liquid crystals demonstrate how competing 

influences on the level of intermolecular interactions shape and influence the nature of 

a crystalline product. Similarly, molecular ionicity potentially influences the nature of 

the HB and thereby makeup and classification of a crystal.  

HBs can be seen as the most important non-covalent interaction type. They should be 

considered in congruence with the ionic bond, as both interaction types pose some 

similarities in many cases. The HB was referred to a proton transfer frozen before 

completion in Steiner’s important 2002 publication The Hydrogen Bond in the Solid 



 

 
18 

State.[239] In its simplest description, the HB can be understood as an interaction 

between an electronegative atom with a covalently bound hydrogen, the donor, forming 

an attractive interaction towards another electronegative atom, the acceptor, via said 

hydrogen. This can be written in the form X-H•••Y-Z, where X is the electronegative 

donor atom, H is the respective hydrogen, Y the electronegative acceptor atom, and Z 

a residue atom, often a carbon. The covalent bond between X and H is not broken but 

elongated.[239–242] The energetic range for this type of interaction is approximately 

between -1 kJmol-1 and -170 kJmol-1.[239,240,243] Furthermore, there are visual indicators 

that can demonstrate the strength of HBs. For example, stronger interactions show the 

shortest H•••Y and X•••Y distances between 1.2 – 1.5 Å and 2.2 – 2.5 Å respectively, 

as well as bond angles close to 180°. Moderately strong HBs pose H•••Y and X•••Y 

distances between 1.5 – 2.2 Å and 2.5 – 3.2 Å, and bond angles larger than 130°. 

Lastly, weak HBs show H•••Y and X•••Y distances larger than 2.2 Å and 3.2 Å, and 

bond angles which are at least larger than 90°.[239] Similar to the pKa influences on the 

salt-cocrystal continuum, differences in acidity play an important role the strength of 

the HB, at least for heterogenic interactions between different molecular synthons. 

Here, the proton transfer is driven by a Brønsted understanding of acidity. If the 

difference in pKa-values is too large, complete deprotonation will occur. In case of 

homogenic interaction, between for example two carboxylic acid subunits of the same 

molecular entity, the HB character is more covalent. In these systems, the bond can 

be understood as half covalently bound to X and to Y.[239,243,244] To better categorize 

HBs, it has become common to identify and quantify the different force contributions. 

As such electrostatic, inductive, and dispersive forces have been mentioned as the 

most important contributions to the attractive nature of the HB, furthermore resonance 

effects of multiple HBs in close vicinity enhance their strength.[239,242,245] On the strong 

side, inductive effects that locally change electron density, in combination with 

electrostatic forces are the dominant factors for the HB formation. Moderate HBs are 

mainly of an electrostatic nature, while weaker HBs take on a dispersive character, 

similar to van-der-Waals or other dispersive attractions.  

Next to the stronger ionic bond or HBs there are π-interactions and dispersive forces. 

The former depend on the presence of π-systems on the molecular entities, mostly 

aryl residues and various related derivatives. Furthermore, π-interactions are 

subdivided into cofacial or face-to-face interactions, parallelly displaced or offset 

stacking interactions, and T-shaped or edge-to-face interactions (Figure 6).[246–249] The 
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typical interaction distance between ring centres or between a ring centre and edge is 

about 3 – 4 Å and the energy range is between -1 kJmol-1 and -50 kJmol-1, but it can 

be higher when a π-system interacts with an anion or cation.[249,250] The type of π-

interaction that occurs depends on the substituents of the aryl subunit.  

 

Figure 6. Different geometries of π-interactions. Cofacial stacking a), parallel displacement b), and edge-to-face 
stacking c). 

Cofacial stacking is uncommon and mostly occurs between substituted phenyl rings. 

Here, the substitution influences the charge distribution on the π-system in such a way 

that face-to-face stacking becomes the most beneficial geometry. However, parallel 

displacement is still the more common stacking mode for substituted or large aryl 

species. In unsubstituted aryl systems, the charge distribution on the ring system is 

equal between the different molecular entities. Thus, they align in such a way that 

opposite charges face, which is usually the edge-to-face geometry.[247,251] In some 

cases, there is potential for overlap of intermolecular interaction, for example through 

the aforementioned π/ionic interactions.[250,252,253] Excluding these cases where 

inductive forces can play an important role, it is mostly electrostatic and dispersive 

forces that influence the π-interaction.[246,250,252]  Solely dependent on dispersive forces 

are van-der-Waals interactions. Fluctuations of molecular electron density, so-called 

dipole waves, offer both attractive and repulsive contributions of these interactions.254 

Interactions of the van-der-Waals type are binding in a low energy range and are 

mostly important for macrostructures lacking any potential for stronger interactions, 

such as graphene.[227,255]  

Further types of intermolecular interactions exist, such as the halogen bond, pnictogen 

bond or chalcogen bond.[256–261] The presented examples illustrate the overlap of 

attractive forces and how the attractive interactions in these systems are interrelated, 

much like the overlapping categories of crystalline solids. This fluid nature of both 
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intermolecular interactions and crystal structure types serves as an indication on why 

reliable crystal synthesis and property prediction is so difficult to achieve. 

1.1.5 Interim Summary I 

From highly specialized origins in the field of photochemistry crystal engineering has 

become diversified over the years. Although a plethora of approaches, both simple and 

complicated, have been developed, key problems at the heart of research concerning 

the field could not be holistically solved. The reason for this is the complexity of 

supramolecular chemistry at the level of crystalline solids. The process of 

crystallization, even though studied for more than a hundred years, is not fully 

understood. This is due to the numerous possible mechanisms involved in its stages. 

Various factors can potentially influence each step of the crystallization. Furthermore, 

crystalline products exist on a spectrum in large influenced by the intermolecular 

interactions necessary to form a specific compound. The fluid nature and close relation 

of these interactions limits reliable predictions of structural outcomes. This is even 

more true for compound properties. At this point in time, thorough investigation of target 

species remains the only way to understand aggregation behaviour and property 

relationships, and general statements concerning a large number of different 

crystalline entities can hardly be made.  
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1.2 Experimental, analytical, and computational approaches 

 

1.2.1 Experimental approaches to (pharmaceutical) crystal engineering 

It was established that crystallization is a complicated process, and the resulting 

products exist on a structural continuum that does not necessarily correlate with 

compound properties. In the following paragraphs, an overview on possible crystal 

synthesis techniques shall be provided, with an emphasis on the ones that were 

actually applied in the works related to this thesis. 

Crystallization from solution is probably the most common method to perform a crystal 

synthesis and what most models explaining this process are based on. In addition to 

the thermodynamic or kinetic factors mentioned earlier, the solvent environment itself 

is possibly the strongest influence on single as well as multicomponent crystallization 

from solution. A recent example for research in this area was conducted by Liu et al. 

in 2022. They investigated how the solvent environment influences molecular 

conformational preferences on API Gabapentin. It was determined that different 

solvents favour specific conformations which leads to crystal formation directed by 

these molecular preferences.[262] The requirement to crystallize a given substance from 

a solvent environment is that said compound must be soluble in the chosen solvent. 

To induce an instance of the possible described crystallization processes, the correct 

target species saturation level in the solvent environment must be reached. This can 

be achieved for example through cooling or solvent evaporation.[263–268] Another 

possible way to start crystallization from solution is the so-called antisolvent 

crystallization. For this process, a second solvent in which the solute is badly soluble 

is required. Crystallization can be induced via layering of the solute/solvent solution 

with the determined antisolvent. Another possibility instead of layering is to add the 

antisolvent in a closed system by gas diffusion. In this case, the antisolvent should 

ideally show a higher vapour pressure than the original solvent.[269–272] A further 

common technique is seeding. Here, an already grown crystalline particle of the 

targeted crystal system is added to a saturated solution of the desired substance. This 

offers the advantage that a given crystal structure is predetermined, and phase 

transitions are less likely.[273–275] One more common way to induce or influence the 

crystallization process is the use of additives. These include substances which are 

added to a crystallization solution usually in a smaller, non-stoichiometric amount to 
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change crystallization behaviour at a specific stage. The range of how these additives 

alter the usual crystallization route is spread widely, for example blocking of growth 

faces or supramolecular synthons, directing crystal morphology, or even just changing 

the pH.[276–280] Lastly, it is worth mentioning that the described techniques are mostly 

aimed at a laboratory environment. In an industrial context, these methods must be 

scaled up and it has to be decided whether a batch crystallization or a continuous flow 

crystallization should be applied. The latter is a relatively recent development, that 

offers lower operational costs and generated wastes, better potential for scale up, and 

better product reliability, as it works continuously. Batch crystallization on the other 

hand is well established, and investment costs for new continuous operations appear 

to keep it in place for some time to come, but its batch-by-batch nature can vary product 

quality. On the other hand, batch crystallization offers a better control of the 

crystallization steps, especially because of its discontinuous nature.[281–284]  

Mechanochemical crystallization is a technique which has gained increased attention 

over the last years, especially for multicomponent species or polymorphs that might be 

inaccessible in a solvent environment.[285–288] Mechanochemical approaches to 

crystallization typically involve grinding techniques, either in a mortar and pestle or a 

ball mill. One advantage of this technique is that no solvent or only a negligible amount 

of solvent (liquid-assisted grinding) is required, which reduces cost and environmental 

impact. Additionally, the crystallization process via mechanochemical means is faster 

than solvent crystallization, typically only taking a few minutes.[289,290] Unlike solvent 

crystallization, the solubility of the target system in a given solvent is not necessary. 

However, solvent crystallization enables formation of single crystals, whereas 

mechanochemical treatment only yields powders. The mechanism underlying grinding 

crystallization is still not fully understood, although theories have been proposed. The 

process is mostly linked to local temperature or pressure changes induced through 

mechanical stress. This might cause surface defects and therefore changes in surface 

energy, leading to particle migration that even reaches into the bulk phase to form a 

new structure. Multiple crystalline or non-crystalline stages can be undergone during 

this process.[291–294] There is still additional research necessary to fully understand the 

mechanochemical crystallization. 

Additional common crystallization methods include crystallization via slurry or from a 

melt. In the case of slurry, a crystal/solvent dispersion is continuously stirred over 

prolonged time periods. This mixture can be influenced by solvent-based as well as 
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mechanochemical influences, leading to crystallization products that may not be 

accessible via the usual solvent or grinding route.[295–297] Crystallization from melt 

requires the target compound to be able to melt without decomposing. Where 

applicable, this method is popular for accessing otherwise non-receivable 

polymorphs.[298–300]  

All discussed crystallization methods show some distinctive benefits, but in the course 

of this thesis crystallization through solvent evaporation, antisolvent crystallization, 

usage of additives upon crystallization and mechanochemical crystallization from a ball 

mill were used (Figure 7).  

 

Figure 7. Simplified depiction of the applied crystallization techniques. Crystallization through evaporation of the 
solvent a), diffusion crystallization b), additive crystallization from solution c), and mechanochemical crystallization 
in a ball mill d). The chemical target species is depicted in red, the solvent in blue, antisolvent in green, additive in 
purple and ball milling balls in grey. Arrows indicate vaporization direction or shaking direction of the ball mill. 

1.2.2 Analytical approaches to (pharmaceutical) crystal engineering 

After a successful crystal synthesis, it is essential to characterize the resulting product. 

Characterization methods can be roughly divided into two categories: structure 

determination and investigation of physicochemical properties. In the context of 

pharmaceutical crystal engineering, structural makeup mostly refers to crystal structure 
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and supramolecular binding behaviour, as opposed to molecular structure. Further 

interesting properties to investigate include solubility and thermal behaviour, such as 

melting point, thermally driven phase transitions, or thermal decomposition. In the 

following paragraphs, the analytical methods used for characterization will be 

discussed. 

X-ray diffraction methods can be considered the foundation of crystal engineering 

analytics. In principle, a metal cathode (usually Cu, Mo, or Ag) is used to produce an 

x-ray beam that is directed at a crystalline sample from various angles. As crystalline 

samples behave like meshes due to their structurally periodic nature, they interact with 

the beam. If the correct angles are reached, constructive interference will occur, and a 

reflected ray can be detected using an appropriate x-ray detector. Braggs law 

describes the conditions under which this constructive interference can occur 

(Equation 1). 

𝑛𝜆 = 2𝑑 sin 𝜃      (1) 

Here, n is an integer number describing the degree of diffraction. The wavelength λ of 

the x-ray source depends on the specific type of source. The distance between the grid 

layers is represented by d. Finally, the angle of incidence of the x-ray is represented 

by θ. This allows for the recording of a two- or three-dimensional pattern, depending 

on the diffraction method, that is characteristic of the structure.[301–306]  

Diffraction methods can be performed on both crystalline powders and small, 

favourably well-ordered single crystals. Powder x-ray diffraction (PXRD) is a potentially 

very fast, non-destructive method that gives a two-dimensional diffraction pattern as a 

function of diffraction signal intensity in relation to double of the angle position. A 

recorded powder pattern can be thought of as a fingerprint of a crystalline substance. 

As such, distinguishing between polymorphs or the formation of a new multicomponent 

phase becomes possible through simple comparison of powder patterns. Additionally, 

the signal intensity in the diffraction pattern can provide information about preferential 

growing directions of crystal surfaces, while Bragg reflection resolution compared to 

noise can reveal information about the crystallinity of the sample.[301,302]  

Three-dimensional diffraction on single crystals (SCXRD) can reveal even more 

detailed structural information. In this technique, the single crystal is irradiated with an 

x-ray beam from up to three different angles (ω, χ, φ) in a three-dimensional alignment. 
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This generates a reciprocal lattice in a so-called reciprocal space. This reciprocal 

lattice can be understood as a model containing information about how the crystal 

lattice is composed at the geometric level, without any information about the chemical 

species. To identify the latter, the signal intensity in the reciprocal space must be 

evaluated. The interaction of x-ray beams with a crystalline substance can be seen as 

the interaction of photons with electrons. As the beam wavelength is fixed, the intensity 

of a reflected ray depends on the number and nature of the electrons present on the 

irradiated sample. As such it becomes possible to determine the atomic species 

participating in the investigated lattice. Together with the geometrical information it is 

possible to generate a detailed description of the crystal structure.[303,305,306] SCXRD 

can provide information on various characteristics of the crystal structure, such as axis 

lengths and angles, cell volume, space group of a unit cell, intermolecular bonding 

behaviour in the crystal system, and chiral information on molecular species. With the 

advent of advanced detector technology, SCXRD has become considerably faster. 

However, if the quality of the single crystal is too low, it can still take hours, days, or 

even be impossible to determine the structure sufficiently. In such cases, a powder 

pattern can be recorded, and if intermolecular interactions need to be investigated, 

infrared spectra can be a helpful tool. 

Infrared (IR) spectroscopy is another technique based on the interaction of light and 

matter. However, contrary to diffraction methods, far less energetic infrared radiation 

is used. The resulting spectrum of an IR experiment is based on absorption, rather 

than on irradiation angles and subsequent reflection. Various setups are possible, such 

as transmittance of light through a sample, reflectance of an evanescent wave on the 

sample, or interference of reflected beams. The energy level of IR radiation is sufficient 

to excite molecular vibrations which are characteristic to specific bonds between 

atomic species and their close environment. After the initial beam transmits through or 

reflects on the sample, its energetic properties change, depending on the interaction 

with the matter. One commonly applied setup makes use of attenuated total reflection 

(ATR) through a reflective crystal over the sample surface. This maximizes sample 

exposition to the IR-beam and minimizes the beam travel path, leading to better signal-

to-noise ratio. The reflected beam in either setup can be recorded with a suitable 

detector, and Fourier transformation is commonly applied to produce an IR-spectrum 

that is a function of band intensity dependent on infrared wavelength.[307–309] By 

investigating these bands, it is possible, for example, to identify HBs,[310,311] the 
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presence of lattice water,[312,313] or distinguish between salt and co-crystal through 

examination of carbonyl bands.[314,315] As such, IR spectroscopy can help classify a 

received crystalline solid if single crystal diffraction is not an option. The described 

methods are visualized in Figure 8. 

 

Figure 8. Simplified depiction of described structural characterization methods. X-ray reflectance in θ/2θ 
measurement geometry for PXRD a), SCXRD setup showing the separately movable diffraction angles with χ able 
to move vertically b), exemplary diffraction pattern in reciprocal space c), and ATR-IR setup d). 

The determination of solubility can be achieved by various methods. One simple 

approach involves removing a specific volume of a saturated solution from a larger 

sample and allowing the liquid to evaporate. The remaining residue can be weighed to 

determine the ratio of solute mass to solvent volume.[316] However, in the 

pharmaceutical context, there are several commonly used methods for measuring 

solubility that do not require solvent evaporation. These mostly do not require 

evaporation of the solvent, but involve microscopic or spectroscopic methods to record 

the content of the target solute in a given solution.[317,318] In the context of this thesis, 

proton magnetic resonance (1H-NMR) spectroscopy was used to measure product 

solubility. 1H-NMR spectroscopy is commonly used for molecular structure 

characterization and is based on proton excitation through a magnetic field.  A Fourier-
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transformed spectrum is produced, similar to infrared spectroscopy, which is presented 

as a one-dimensional spectrum of peaks at their respective chemical shift positions in 

parts per million (ppm). These peak positions are characteristic for different molecular 

subgroups in a given molecular environment. For solubility studies, the quantitative 

nature of 1H-NMR spectroscopy is useful. Integration of peak areas of different signals 

in the spectrum reveals the ratio in which the compounds corresponding to the signals 

are present in a sample.[319–322] This enables the measurement of the desired species 

content against the solvent signal or a standard of fixed concentration. 

Understanding the thermal properties of pharmaceutical solids is essential for their 

characterization. Differential scanning calorimetry (DSC) is a powerful method for 

investigating the behaviour of compounds upon heat treatment. In a typical DSC setup, 

the sample of interest is put in a metal crucible and placed in a heating chamber. An 

empty reference crucible is either present during the subsequent measurement, or the 

reference measurement is conducted beforehand. A temperature regime is then 

applied in the heating chamber, and via temperature sensors the heat flux on the 

sample is measured in Jg-1s-1. If through the applied temperature regime, a phase 

transition of the sample occurs this heat flux changes. Depending on whether such a 

phase transition is endothermic and requires energy, or exothermic and releases 

energy, the heat flux curve as a function of the temperature will show a transition peak. 

It is common practice to present the direction of exothermic events in a received 

thermogram.[323–325] The evaluation of these thermograms thusly reveals solid/solid 

phase transitions, melting, and whether such processes are endothermic or 

exothermic.  

To investigate decomposition, the thermogravimetric analysis (TGA) is the most 

common method of choice. Here, the sample is also placed in a metal crucible and 

exposed to a previously determined temperature regime. However, instead of 

measuring heat flux changes, the mass change caused by thermal decomposition of 

the sample is recorded. This enables identification of hydrates or solvates through 

decomposition events at low temperatures, or general decomposition behaviour at 

higher temperatures.[326]  

1.2.3 Computational approaches to (pharmaceutical) crystal engineering 

Computational modelling methods can provide a deeper understanding of 

experimentally and analytically determined compound properties. These can include 
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energetic benchmarks such as lattice energies of different structural embodiments 

received from a crystallization batch, detailed analyses of intermolecular interaction 

properties, the electronic structure of a molecular species in a given crystalline system, 

or even moderately successful structure predictions.[242,327–331] 

Many approaches regarding such applications are based on density functional theory 

(DFT). In principle, DFT offers an approach to calculate the electronic structure for 

atoms, molecules, agglomerates or (crystalline) solids based on electron 

density.[332,333] Total electronic energy is calculated by summing up different energetic 

contributions (Equation 2). 

𝐸𝑡𝑜𝑡 = 𝐸𝑇 + 𝐸𝑉 + 𝐸𝐽 + 𝐸𝑋 + 𝐸𝐶     (2) 

Where ET is the kinetic energy term for the electrons, EV their potential energy 

concerning attractive electron/nuclei interactions, EJ their potential energy regarding 

averaged electron/electron repulsion, EX the electron exchange energy and EC the 

electron correlation energy. While EJ only considers averaged values for 

electron/electron interactions the DFT evaluates both EX and EC, offering a more 

accurate description of electron behaviour. It is the interpretation of these terms that 

distinguishes DFT from other available methods. Various functionals that each 

interpret electronic structure differently have been established over the years. Popular 

examples include the Becke-3-parameter-Lee-Yang-Paar functional B3LYP, or the 

Perdew-Burke-Ernzerhof PBE exchange-correlation functionals.[334,335] Furthermore, 

these functionals require a basis-set which usually contains a number of different 

electronic wave functions for chosen atomic species. The right combination of 

functional and basis-set is essential for accurate results.[336] As DFT is only concerned 

with electronic contributions, energetic descriptions of periodic systems like crystals 

can become challenging. Contributions of other forces such as dispersion or long-

range interactions play a role here as well. To account for such factors, it has become 

common practice to use dispersion correction models and/or apply periodic-boundary 

conditions.[327,337,338] A dispersion correction adds a further energetic contribution for 

the dispersion to Equation 2. Periodic boundary conditions significantly decrease 

calculation costs of large, quasi-infinite systems such as a crystal by reducing the 

calculation effort to the unit cell, or equivalently a previously established super cell 

alone. A quasi-infinite number of cells are approximated by introducing an original unit 
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cell surrounded by infinite images of itself to simulate interactions between adjacent 

cells.   

The DFT-based electronic property description enables the visualization of electron 

density on investigated chemical species. However, the obtained energetic values can 

also be utilized to calculate further properties. By performing a structural optimization 

on a crystalline system using a DFT method, an Etot value for the electronic structure 

of the investigated system is received. For the calculation of lattice energies, this value 

is typically referred to as ideal solid-state energy, or Eiss (Equation 3).[339] 

𝐸𝑙𝑎𝑡 =
𝐸𝑖𝑠𝑠

𝑍
− 𝐸𝑖𝑠𝑔      (3) 

Here, Z is the number of crystallographic entities in the unit cell, and Eisg the ideal static 

gas energy. The latter corresponds to the Etot value for the geometric optimization of a 

single molecule in an otherwise empty cluster of predetermined size through DFT 

approaches. The calculation effort is visually highlighted in Figure 9. In essence, 

Equation 3 compares the energetic effort of the crystallographic entity in the crystalline 

system with that of the entity on its own in an empty space. Thereby, the gain in energy 

per entity (kJoule per mol) is received, which is considered the lattice energy. This 

energetic value is useful for assessing phase stability and could help identify stable 

crystalline forms of a target species if calculated for theoretical phase geometries.[329]  

 

Figure 9. Principle of the unit cell evaluation of a crystalline solid under periodic boundary conditions to account for 
long-range interactions a), and of a singular entity in an otherwise empty cluster b). 

In addition to the energetic evaluations of the solid phase, it is common to investigate 

the energetic properties of specific bonding interactions such as HBs. The Atoms in 

Molecules (AIM) model is a common approach for this. After determining the electron 

density distribution of a system of interest, such as via DFT methods, it is possible to 
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identify electron density extrema between atomic species. These bond critical points 

can be interpreted as binding interactions such as covalent bonds, but also HBs 

depending on the energetic extrema properties.[340,341] Emamian et al. have developed 

an approachable method to feasibly use bond critical point evaluation for the 

calculation of HB bond strength.[242] They employed a B3LYP method with the Grimme 

DFT-D3(BJ) dispersion correction to determine electronic properties and applied 

coupled cluster singles and doubles with perturbative triples correction (CCSD(T))[342] 

in conjunction with Boys and Bernadi's counterpoise technique to determine interaction 

energies at these points. By empirically investigating various electronic properties of 

42 HB complexes, they established a linear equation that links bond energies to 

electron density extrema at the bond critical points, which can be adjusted for neutral 

and charged HBs (Equation 4, 4a and 4b).  

𝐸𝑖𝑛𝑡 = 𝐸𝑠 × 𝜌𝐵𝐶𝑃 + 𝐸𝐶      (4) 

𝐸𝑖𝑛𝑡 = −223.08 × 𝜌𝐵𝐶𝑃 + 0.7423     (4a) 

𝐸𝑖𝑛𝑡 = −332.34 × 𝜌𝐵𝐶𝑃 − 1.0661     (4b) 

Where ρBCP is the electron density at the bond critical point in atomic units, Es the 

empirically determined slope of the linear regression in kcal mol-1, and Ec the 

empirically determined intercept in kcal mol-1. The linear correlation between 

interaction energy and electron density produced by this approach allows for easy 

determination of interaction energies by simply identifying the bond critical point 

electron density, which saves time and resources compared to fully DFT-based energy 

calculations. 

1.2.4 Interim Summary II 

The described well-established methods to determine crystal structure, 

physicochemical properties and modelling further attributes computationally are 

powerful and have undergone significant progress over the recent decades. However, 

they remain mostly descriptive. Although computational methods like DFT-based 

energetic evaluations have been used to predict possible stable phases, these 

applications are still in their infancy. It is not yet possible to reveal general laws of 

crystallization that would enable complete control of the crystallization process. This 

emphasizes the point previously stated that, at this time, individual systems of interest 

must be investigated separately.   
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1.3 γ-amino butanoic acid and its pharmaceutically active derivatives 

 

1.3.1 γ-amino butanoic acid (GABA) 

γ-amino butanoic acid (GABA) is a small amino acid consisting of a four carbon alkylic 

chain and a carboxylate residue on C1 as well as an ammonium residue on C4. This 

makes it zwitterionic in nature, a common feature of amino acids.[343–346]  Furthermore 

it is nonessential, which means that it can be produced by the body on its own without 

the need to be consumed via food uptake. Up to three neuroreceptors are named after 

GABA: the GABAA receptor and its subclass GABAAρ, which is sometimes argued to 

be its own GABAC receptor, and GABAB.[347–349] All GABA type receptors are linked to 

inhibition and excitation of the central nervous system in vertebrates. GABA regulates 

pain and stress experiencing, sleep and immune responses.[350–353] 

Three polymorphic modifications of GABA have been described to date.[354–357] The 

first form was described by Tomita et al. in 1973 and crystallizes readily from water. 

The second polymorph was discovered in 1996 by Dobson et al., compared to the first 

form it is elusive and may undergo phase transitions. Wang et al. and Lamkowski et 

al. have described ways to stabilize this form through additive crystallization via 

mechanochemical means and from solution respectively. Furthermore, Wang et al. 

also discovered the third modification via mechanochemical additive crystallization. 

Regarding crystallization of multicomponent species, GABA has received less 

attention. A solvate and a hydrate are known, as well as a calixarene complex.[358–360] 

Losev et al. have described salts with diastereomeric and L-forms of tartaric acid, while 

Lamkowski et al. have found salts with malic acid species.[355,361,362]  

1.3.2 2-(1-(aminomethyl)-cyclohexyl)acetic acid (Gabapentin) 

2-(1-(aminomethyl)-cyclohexyl)acetic acid (Gabapentin) is an API derived from GABA. 

While retaining the basic GABA-chain, a cyclohexyl residue is introduced in C3, which 

increases Gabapentin’s molecular size compared to GABA, but does not introduce 

further supramolecular synthons. Marketed as an anticonvulsant agent since 1993 in 

Europe, its uses today include treatment of neuropathic pain, pain in general and 

easement of anxiety. As such it can be regarded a blockbuster API, that is still 

prescribed regularly as of today. Interestingly, it does not interact with any GABA 

receptors, though some studies have linked it to GABAB activity. Recently its abuse 

potential has become cause of concern, primarily abused by opioid users.[363–368]  
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The crystallization behaviour of Gabapentin has been extensively studied since its 

introduction. Three polymorphic modifications and a hydrate have been identified. 

These can undergo phase transitions between each other through mechanical stress, 

heat treatment, or recrystallization from different solvents.[369–372] Numerous patents 

have been published regarding the stabilization of specific polymorphs, reflecting its 

status as a commercially viable API.[373–375] Additionally, research has focused on the 

formation of multicomponent species of Gabapentin. Thus, salts and co-crystals were 

described, but also large clathrate-like formulations or complexes involving gold.[376–

383] A notable study was conducted in 2020 by Soliman et al. who co-crystallized 

Gabapentin with Saccharin. The received compound improved the taste properties of 

the API, in congruence with other, more classically considered physicochemical 

attributes.[384] Furthermore noteworthy is the plethora of patents concerning 

multicomponent species of Gabapentin.[385–387] 

1.3.3 3-(aminomethyl)-5-methylhexanoic acid (Pregabalin) 

3-(aminomethyl)-5-methylhexanoic acid (Pregabalin) is an API that is very similar to 

Gabapentin. However, instead of a cyclohexyl residue in C3, it has an isobutyl group 

in this position. This makes Pregabalin chiral, and strictly only the (S)-form, its eutomer, 

the enantiomer showing the desired pharmaceutical properties, is marketed as 

Pregabalin. The similarities to Gabapentin go beyond structural level, and the two 

compounds are sometimes referred to as Gabapentinoids. Pregabalin, released in 

2004, has similar pharmacokinetic properties to Gabapentin and is not active on GABA 

receptors. It is used to treat similar diseases as an anticonvulsant, pain inhibitor, and 

anxiolytic. Its commercial impact is significant, and it has similar addictive properties 

that have come to light in the past decade. Several studies have been conducted to 

investigate its abuse potential.[363,364,368,388–392] 

In the case of Pregabalin, much of the research on its crystallization behaviour has 

been conducted in the form patents.[393,394] However, there are some works published 

in scientific journals which mostly concern multicomponent formation or the structure 

of (S)-Pregabalin.[395–398] One structure evaluation by Samas et al. presented a co-

crystal of (S)-Pregabalin and mandelic acid.[399] Apparently, this spurred a significant 

industrial research effort concerning crystallization-based enantiopurification 

processes of Pregabalin.[400–406] These methods utilize co-crystallization of racemic 

Pregabalin with enantiopure mandelic acid to separate Pregabalin enantiomers. The 

commercial success of (S)-Pregabalin has motivated the development of cost-effective 
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methods for enantiopurification. A plethora of patented crystallization-based 

deracemizations demonstrates the potential of these approaches. 

1.3.4 γ-Amino-3-phenylbutanoic acid (Phenibut)   

γ-Amino-3-phenylbutanoic acid (Phenibut) has the typical zwitterionic GABA chain 

capable of HB or ionic interaction, and a further phenyl group in C3, which introduces 

chirality in that position. First marketed in 1963 in the Soviet Union it is primarily sold 

as a racemate, while research has suggested that the (R)-enantiomer is the eutomer. 

Phenibut might be considered the-odd-one-out among the discussed GABA-derived 

APIs. It is not authorized on European or US markets, only being officially sold as a 

medication in some former soviet countries where it is used to treat anxiety, insomnia, 

and other stress-related symptoms. In contrast to Pregabalin and Gabapentin, it shows 

affinity for the GABAB-receptor in combination with pharmacokinetic properties of the 

Gabapentinoids. In Western countries, it has gained notoriety for its abuse potential, 

being sold as a dietary supplement disregarding its severe pharmaceutical 

potency.[407–412]  

Research regarding its crystallographic properties is sparse. The crystal structure of 

Phenibut • HCl was reported by Mao et al. in a CSD communication in 2018.[413] This 

structure was furthermore reproduced and used to investigate binding motifs to 

monoamine transporters by Senior et al. in 2020.[414] Prior to the works concerning this 

thesis, there was no significant research conducted on the structural properties of 

Phenibut. 

1.3.5 γ-Amino-3-(4-chlorophenyl)butanoic acid (Baclofen) 

γ-Amino-3-(4-chlorophenyl)butanoic acid (Baclofen) is structurally most similar to 

Phenibut, differing only by the presence of a chloro-group in the para position of the 

phenyl ring. It shares the zwitterionic GABA chain, a chiral center at C3, and a phenyl 

residue capable of π-interactions, with the added potential for halogen bonding due to 

the chloro-substituent. Baclofen was approved by the FDA in 1977 and is commonly 

used to treat spasticity and related conditions that cause involuntary muscle movement 

and twitching. Like Phenibut, it targets the GABAB-receptor and its (R)-enantiomer is 

considered the eutomer, though it is mostly sold as a racemate. An interesting use of 

Baclofen, given the abuse potential of the Gabapentinoids and Phenibut, is in the 

treatment of alcohol and other substance addictions. However, discontinuation of 

Baclofen treatment can lead to problems, including delirious states.[415–421] 
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Maybe due to its success as a medication, investigations on Baclofens structural 

properties are plentiful compared to Phenibut and are on a level closer to that of the 

Gabapentinoids. These investigations include structural determinations of the 

racemate, polymorphs of the enantiopure (R)-form, and hydrates of Baclofen.[422–424] 

Additionally, there is significant interest in multicomponent structures as well. Salts as 

well as co-crystals with multiple organic structures have been described.[425–427] It is 

worth highlighting that processes for chiral resolution were developed by Córdova-

Villanueva et al. as well as Songsermawad et al. in 2018 and 2022 respectively.[428,429] 

The former proposes the use of malic acid, while the latter uses mandelic acid again 

to perform the enantiopurification. The interest from an industrial perspective is also 

high, with processes being patented to enhance Baclofen solubility or resolve the 

racemate through crystallization.[430,431]   

1.3.6 Co-formers 

The choice of co-formers to be used in this work was based on what was known to 

form multicomponent structures with at least one of the investigated compounds from 

literature evaluation. As such mandelic acid was chosen, as its potential to resolve 

racemic structures of Pregabalin and Baclofen was established in the past.[400–406,429] 

Malic- as well as tartaric acid multicomponent forms with GABA and Baclofen were 

shown to exist, as were maleic acid forms with Baclofen and 

Gabapentin.[355,361,362,427,429,432] Furthermore, succinic acid and fumaric acid were 

chosen due to their molecular similarity with maleic acid, malic acid and tartaric acid. 

If considered at large, an increase of molecular complexity akin to the APIs is present 

in the co-formers. Succinic acid is the simplest entity, a four carbon alkylic chain with 

two carboxyl groups on C1 and C4. Fumaric acid introduces a π-bond, and maleic acid 

furthermore a cis conformation. This enables intramolecular HB und thus slightly 

changed properties compared to fumaric acid. Malic acid lacks the π-bond but shows 

a hydroxy residue in the chiral C2 position. Tartaric acid poses an additional hydroxy 

group in C3 whit another chiral centre here. Mandelic acid is the only non-dicarboxylic 

acid between the co-formers, but it poses a carboxylic group, a hydroxy residue on the 

chiral C2 and an aromatic phenyl ring. 

1.3.7 Interim Summary III 

GABA and some of its relevant derivatives Gabapentin, Pregabalin, Phenibut, and 

Baclofen are a successful class of APIs. In the stated order they offer increasingly 

complex molecular makeups. While their crystallization behaviour was investigated 
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separately to varying degrees, up until this point no one has tried to connect these 

molecularly very similar entities from a crystallographic point of view. Thus, this group 

of commercially viable substances shall be evaluated based on the established central 

problems of crystal engineering under use of the available methods.  
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2 Motivation 

The central problem of modern pharmaceutical crystal engineering, as well as crystal 

engineering in general, still is the unpredictability of the crystallization process as well 

as the inability to generalize findings regarding structural and physicochemical 

properties on a meaningful level. Thus, it remains necessary to investigate target 

systems piece by piece and further our understanding incrementally. 

 

Figure 10. Investigated γ-amino butanoic acid derivatives and dicarboxylic or α-hydroxy carboxylic acid co-formers. 
Molecular complexity increases in the order a) GABA, b) Gabapentin, c) Pregabalin, d) Phenibut, e) Baclofen and 
in the order I) succinic acid, II) fumaric acid, III) maleic acid, IV), malic acid, V), tartaric acid, and VI) mandelic acid. 

The compounds central to this thesis, GABA and its pharmaceutically relevant 

derivatives, are a class of successful APIs. They are molecularly small substances that 

offer limited capacity for intermolecular interactions but increase in complexity from 

GABA to Baclofen (Figure 10). The investigation of their crystallization behaviour is 

interesting, as it enables the revelation of how slight changes in molecular makeup 

affect structural properties on the supramolecular level, be it in terms of single 

component or multicomponent species. The choice of co-formers was undertaken 

according to established literature and serves to uncover how structural features, 

physicochemical properties, or crystallization-based processes established regarding 
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one compound are applicable to the related GABA-derivatives. As such the following 

questions are central to this thesis: 

In how far are structural properties between the investigated species comparable 

regarding intermolecular interaction motifs in single and multicomponent systems? 

Are there co-formers that form a multicomponent entity with each compound, and do 

these potential forms show similar physicochemical properties? 

How does the crystal synthesis route affect the outcome of a crystallization for the 

central compounds? Are there any similarities between them? 

How do established processes for example regarding enantiopurification work? Which 

structural characteristics enable these methods? Can this be transferred to other 

similar systems as well?   

Answers to these questions on one hand highlight how far along we are in 

understanding relations between molecular and structural properties. Are we actually 

able to predict a crystal structure by observations on the molecular level? On the other 

hand, it offers a deeper understanding regarding solid-phase behaviour of blockbuster 

medications. Especially the commercial success of Gabapentin, Pregabalin and in a 

more limited capacity Baclofen serves to indicate that further APIs related to the 

investigated compounds will be marketed in the future. A sound understanding of their 

solid-phase behaviour can facilitate the optimization process prior to the product 

launch.  
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3 Published works 

 

The different works published in, or submitted to a scientific journal will be presented 

on the upcoming pages. Each publication has an independent list and numeration of 

references, as well as an independent numeration of figures and tables. At the end of 

each article, the corresponding supporting information is shown as well. 

All works are introduced with a short description of their contents, followed by a list of 

the authors contributions to the specific publication. The published or submitted articles 

are presented chronologically.  

The published articles are provided in the form they can be accessed online. Submitted 

articles are presented as the most recent manuscript that is available. 

Permissions were acquired where necessary and mentioned in the introductory 

remarks to each chapter.   
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3.1 Crystal Structure and Thermal Properties of Phenibut, Phenibut 

H2O and Phenibut HCl: a Case for Phase Stability Based on 

Structural Considerations 

 

 

Komisarek, D.; Pallaske, M.; Vasylyeva, V. Crystal Structure and Thermal Properties 

of Phenibut, Phenibut H2O and Phenibut HCl: a Case for Phase Stability Based on 

Structural Considerations, Z. Anorg. Allg. Chem., 2021, 647, 984–991. 

DOI: 10.1002/zaac.202100012  

Republished with Permission of Zeitschrift für Anorganische und Allgemeine Chemie 

© John Wiley & Sons, Inc. 

In this first contribution, the structure of Phenibut and its hydrate was presented and 

compared to that of the previously described HCl salt. Hirshfeld surfaces and an 

analysis of the existing HBs were made using Crystal Explorer. Thermogravimetric 

analysis was conducted to determine the heat induced decomposition behaviour of the 

investigated compounds. Based on this analysis, the stability of the different crystal 

phases was evaluated.  
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Contributions-list: 

• Conceptualization of this work based on literature research and feedback from 

Dr. Vera Vasylyeva-Shor. 

• Experimental work, including single crystal synthesis of the investigated 

compounds together with Mark Pallaske. 

• Measurement of SCXRD and PXRD, FT-IR spectroscopy, and sample 

preparation for the TGA together with Mark Pallaske. 

• Data evaluation of the recorded analyses. 

• Crystal Explorer-based evaluation of the determined crystal structures. 

• Manuscript preparation, including text writing, figure and table preparation, 

literature research and providing the supporting information. 

• Revision process of the manuscript together with Dr. Vera Vasylyeva-Shor 

before and after Peer-Review process. 
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3.2 A Lection in Humbleness: Crystallization of Chiral and 

Zwitterionic APIs Baclofen and Phenibut 

 

Herbst, M. & Komisarek, D.; Strothmann, T.; Vasylyeva, V. A Lection in Humbleness: 

Crystallization of Chiral and Zwitterionic APIs Baclofen and Phenibut, Crystals, 2022, 

12, 1393. 

DOI: 10.3390/cryst12101393  

As per the MDPI Open Access Information and Policy, no special permission is 

required to reuse all or part of article published by MDPI, including figures and tables. 

In the second publication, the synthesis of multicomponent systems of Baclofen and 

Phenibut with chiral malic- as well as tartaric acid was studied. Solution-based and 

mechanochemical crystallization methods were used and compared. Some single 

crystal structures of salts, hydrates and salt hydrates of these systems were obtained, 

and their thermal properties were characterized. The work illustrates how chiral 

information and the crystal synthesis method exert a complex influence on the 

crystallization behaviour of these materials and shows that even between molecularly 

very similar Baclofen and Phenibut, there may be major differences in the product 

obtained. 
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Contributions-list: 

• Conceptualization of this work based on literature research and feedback from 

Dr. Vera Vasylyeva-Shor. 

• Experimental work, including single crystal synthesis of the investigated 

compounds via solution or mechanochemically together with Marco Herbst. 

• Measurement of SCXRD and PXRD, DSC, FT-IR spectroscopy, and sample 

preparation for the TGA together with Marco Herbst. 

• Measurement of TGA Curves was conducted by Till Strothmann. 

• Data evaluation of the recorded analyses. 

• Manuscript preparation, including text writing, figure and table preparation and 

literature research. 

• Supporting information was produced together with Marco Herbst. 

• Revision process of the manuscript together with Dr. Vera Vasylyeva-Shor 

before and after Peer-Review process. 
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3.3 Co-crystals of zwitterionic GABA API's pregabalin and phenibut: 

properties and application 

 

Komisarek, D.; Haj Hassani Sohi, T.; Vasylyeva, V. Co-crystals of zwitterionic GABA 

API's pregabalin and phenibut: properties and application, CrystEngComm, 2022, 24, 

8390-8398. 

DOI: 10.1039/D2CE01416E  

The article is licensed under a Creative Commons Attribution 3.0 Unported License. 

Material can be used in other publications without requesting further permissions from 

the RSC, provided that the correct acknowledgement is given.  

In this third study, a process for deracemizing pregabalin with mandelic acid was 

enhanced on, by offering a quicker way of multicomponent species formation through 

mechanochemical means. In addition, an attempt was made to transfer this same 

process to Phenibut for comparison. Furthermore, it was shown that mandelic acid is 

essential for this process and malic acid cannot be used in the same way. Quantum 

Espresso was used to evaluate the energies of all the crystal systems obtained, 

thermal properties were determined using DSC and solubilities with 1H-NMR 

spectroscopy. The work highlights that quite interesting applications can be developed 

via crystal engineering methods. However, it is also shown that the limits of 

transferability are quickly reached, since deracemization of Phenibut could not be 

achieved by the same route as for Pregabalin. 
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Contributions-list: 

• Conceptualization of this work based on literature research and feedback from 

Dr. Vera Vasylyeva-Shor. 

• Experimental work, including single crystal synthesis, mechanochemical and 

solvent-based crystallization of the investigated compounds and development 

of the deracemization process for Pregabalin. 

• Measurement of SCXRD and PXRD, FT-IR spectroscopy, DSC, and 1H-NMR 

solubilities. 

• Data evaluation of the recorded analyses. 

• Quantum Espresso-based evaluation of the determined crystal structures with 

Takin Haj Hassani Sohi. 

• Manuscript preparation, including text writing, figure and table preparation, 

literature research and providing the supporting information. 

• Revision process of the manuscript together with Dr. Vera Vasylyeva-Shor and 

Takin Haj Hassani Sohi before and after Peer-Review process. 
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3.4 Maleic Acid as a Co-former for Pharmaceutically Active GABA 

Derivatives: Mechanochemistry or Solvent Crystallization? 

 

Komisarek, D.; Taskiran, E.; Vasylyeva, V. Maleic Acid as a Co-former for 

Pharmaceutically Active GABA Derivatives: Mechanochemistry or Solvent 

Crystallization?, Submitted to Materials, Jan. 2023 

No DOI yet available. 

As per the MDPI Open Access Information and Policy, no special permission is 

required to reuse all or part of article published by MDPI, including figures and tables. 

The fourth paper deals with the crystallization of GABA and all its derivatives studied 

with maleic acid. It was found that all these substances are capable of forming a 

maleate salt. Nevertheless, the physicochemical properties of the obtained salts vary 

greatly, and their supramolecular structure is also not uniform. Furthermore, it was 

compared whether a solvent crystallization route or a mechanochemical crystallization 

should be preferred to receive the described maleates. The work shows that similarities 

in crystallization behaviour of related substances often remain superficial, but for single 

cases, improvements in desired physicochemical properties are possible. Additionally, 

it is shown that it can be beneficial to investigate which specific crystal synthesis route 

to use best, as in some cases a better product quality is attainable mechanochemically 

and in some cases through the solution crystallization. 

 

 

 

 



 

 
183 

Contributions-list: 

• Conceptualization of this work based on literature research and feedback from 

Dr. Vera Vasylyeva-Shor. 

• Experimental work, including single crystal synthesis, mechanochemical and 
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3.5 Understanding Polymorphism and Multicomponent Crystal 

Formation of GABA and Gabapentin 

 

Komisarek, D.; Demirbas, F.; Merz, K.; Schauerte, C.; Vasylyeva, V. Understanding 

Polymorphism and Multicomponent Crystal Formation of GABA and Gabapentin, 

Submitted to Cryst. Growth Des., Feb. 2023 

No DOI yet available. 

Reprinted with permission under the American Chemical Society Terms and Rights in 

the Journal Publishing Agreement for republication in a printed thesis. Copyright 2023 

American Chemical Society. 

In the last paper, the polymorphism and multicomponent system formation behaviour 

with fumaric and succinic acids of GABA and Gabapentin were investigated. Using 

multiwfn, a comprehensive analysis of the non-covalent interactions in the crystal 

lattices of eleven crystal species was carried out. It was shown how the HBs in the 

polymorphs of GABA and Gabapentin exhibit very similar patterns and bond strengths. 

On the basis of this, an explanation for polymorphic phase changes in these 

substances was presented. For comparison, it was shown that the introduction of 

carboxylic acids into the crystallization process leads to the formation of a very strong 

HB, which subsequently has a directing influence on the remaining binding motif. The 

publication highlights a possible solution to the problem of unstable polymorphs via 

multicomponent phase formation. 
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4 Summary and Outlook 

The conducted thesis on GABA and its pharmaceutically active derivatives 

emphasizes the inherent problem of crystal engineering: even the slightest distinctions 

on target molecules, crystal synthesis process or crystallization conditions can have 

grave effects on the crystal structure. An evaluation of the published works based on 

the previously formulated questions summarizes the point. 

In how far are structural properties between the investigated species comparable 

regarding intermolecular interaction motifs in single and multicomponent systems? 

This question was discussed to some degree in all presented publications. For single 

component entities, some similarities can be observed in most compounds. In GABA, 

Gabapentin, Pregabalin, Phenibut, and Baclofen singular species a very prevalent 

basic interaction motif is present. The ammonium subunit serves as a threefold HB 

donor, while the carboxylate entity serves as a HB acceptor, once on one of the 

carboxylate oxygens, twice on the other one (Figure 11). 

 

Figure 11. Visualisation of the HB properties on the GABA chain of the investigated APIs, with a) GABA form II, b) 
Gabapentin form II, c) (S)-Pregabalin, d) Phenibut, and e) Baclofen,423 as proposed by Maniukiewicz and 

colleaques. 
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However, the identification of this simple motif is where the structural commonalities 

end. The different described polymorphs of GABA and Gabapentin for example already 

show some decisive distinctiveness regarding their crystal makeup between I and II or 

II and IV-forms respectively. The HBs they form are similar in ways such as lengths, 

angles, and even energetic contributions, but different overall lattice motives are 

undertaken. Concerning multicomponent entities like co-crystals or salts this behaviour 

becomes even more pronounced. In many of the described structures of GABA-

derivatives with carboxylic acids a strong HB between a carboxyl and carboxylate 

group is observed, as well as a threefold HB-donor function in ammonium subunits. 

But the crystal structures are very diverse depending for example on the API and co-

former ratio, the solvent or crystal preparation method. As was shown, even the 

inversion of a chirality centre can make the difference between a salt and a co-crystal. 

The conducted investigations showcase how such molecularly similar entities can pose 

a vast variability in their supramolecular aggregation behaviour, and that while their 

interaction mode may be similar, their final structures need not be. 

Are there co-formers that form a multicomponent entity with each compound, and do 

these potential forms show similar physicochemical properties? 

The first part of this question can be answered affirmatively. It was possible to 

synthesize maleates of all compounds. However, while solubility increases and melting 

point decreases could be recorded, these are by no means intuitive. For the described 

Pregabalin species the solubility increases are exceedingly vast while for Baclofen the 

increase is percentual high but negligible in total. These differences can probably be 

attributed to the structural distinctions on a molecular as well as crystal level to some 

degree. They remain unpredictable however: Phenibut, structurally very similar to 

Baclofen, shows quite a high solubility increase, similar to that of Gabapentin. 

Gabapentin, on the other hand, is structurally closer related to Pregabalin, yet the 

solubility increase is marginal compared to that of the investigated Pregabalin forms. 

The conducted experiments highlight that multicomponent formation can improve 

desired physicochemical properties substantially, but assumptions about similar 

enhancements for structurally related compounds can hardly be made.   

How does the crystal synthesis route affect the outcome of a crystallization for the 

central compounds? Are there any similarities between them? 
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It was shown that the crystal synthesis route can significantly affect the crystallization 

product. It can be worthwhile to investigate which method leads to not only the desired 

outcome but may also be the quickest, most resourceful, and offers a uniform quality 

of the target species. However, it is again almost impossible to predict whether a 

synthesis route that works well for one compound is also beneficial for the other. Aside 

from stating a further polymorph or anhydrous phase, that is otherwise not accessible, 

could be obtained for example via mechanochemical means, more profound 

predictions are hardly possible. Polymorphic phase shifts can be induced for example 

in GABA and Gabapentin mechanochemically, but the other substances apparently 

remain unaffected. Other examples are the mechanochemically produced maleates of 

(rac)-Pregabalin and Gabapentin. In the latter, a hydrate is received from solution and 

as such it can be assumed an anhydrous phase is produced in the ball mill. However, 

(rac)-Pregabalin rather seems to undergo a polymorphic phase shift, as the solution 

product already is an anhydrous phase. For all the other investigated species, no 

phase differences occur at all between solution and mechanochemical crystallization. 

Thus, the crystal synthesis route plays a crucial role to obtain a desired product but 

offers no means of profoundly predicting any crystallization behaviour. 

How do established processes for example regarding enantiopurification work? Which 

structural characteristics enable these methods? Can this be transferred to other 

similar systems as well?     

Structural differences between multicomponent systems of Pregabalin and mandelic 

acid enantiomers that enable the deracemization of Pregabalin were identified and the 

established process was improved. The formation of a salt and a co-crystal of different 

solubility properties depending on the chiral information in mandelic acid makes it 

possible to remove the more soluble variant by washing. Even though a similar 

example exists in the literature for Baclofen, this process could not be transferred to 

Phenibut under the investigated conditions. Why does the ability to form a salt or co-

crystal depending on molecular chirality skip Phenibut? Does the investigated process 

even work the same for Baclofen? This question is not definitively answered by 

Songsermawad et al., and patents remain deliberately unclear. This again 

demonstrates the central point of this thesis: It is important and fruitful to investigate 

crystallization properties of APIs, but even between extremely similar compounds 

vastly different behaviour can occur. 
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Even among molecularly related species such as the investigated GABA-derivatives, 

strong distinctions in the crystallization behaviour occur. The following connections 

may be stated regarding their commonalties with some certainty:  

The investigated compounds form the same HB-interactions if they remain singular. 

However, the structural realization of this motif might differ. If a multicomponent 

formation or crystallization-based process such as an enantiopurification works for one 

of the investigated species, it is likely that it might work for another one as well, but this 

is not necessarily a given. Multicomponent species formation with carboxylic acids can 

likely cause solubility increases and melting point decreases. Formation of such 

compounds is energetically favoured in many cases, but not always. It is definitively 

possible to research interesting crystallization behaviours and applications for each 

compound, but the results do not necessarily transfer from one to another. 

It is the authors opinion that significant breakthroughs in crystal engineering depend 

on collection of huge dataset and suitable means to analyse them. At this point in time, 

the CSD is a great collection of crystallographic data. However, further information 

should be collected in a similar manner, and be standardized. Phase transition 

behaviour should be recorded, as should be solubility, energetic properties, and 

concerning other substance classes luminescence properties, crystal habitus, 

hardness, elasticity, and more possible properties that may be interesting in material 

and pharmaceutical sciences. As we near artificial intelligence and deep learning 

applications capable of forming connections between all these recorded properties we 

may be able to perform actual predictions in the near future. Until this point crystal 

engineering remains a Sisyphus task, with the necessity to understand each single 

system on its own. 
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