Dokument: Transport Phenomena in Two-Dimensional Lorentz Gases
Titel: | Transport Phenomena in Two-Dimensional Lorentz Gases | |||||||
Weiterer Titel: | Transportphänomene in Zweidimensionalen Lorentz Gasen | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=61610 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20230116-130433-9 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Englisch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Sanvee, Benjamin [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Horbach, Jürgen [Gutachter] Prof. Dr. Heinzel, Thomas [Gutachter] | |||||||
Dewey Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik » 530 Physik | |||||||
Beschreibungen: | In this thesis, we investigate the movement of tracer particles in a two-dimensional plane where randomly distributed fixed obstacles are placed. This system is called a Lorentz gas and is a model system for transport in heterogeneous media. It can exhibit normal and anomalous diffusion depending on the geometry of the obstacles and the obstacle density. For square obstacles all oriented in the same direction and allowed to overlap, the system exhibits anomalous diffusion as the diffusion coefficient vanishes and the mean squared displacements shows sub-diffusive behaviour. In the non-overlapping case, the diffusion is normal. This system is called Ehrenfests' wind-tree model (EWTM). In the case of non\hyp{}overlapping obstacles, we have computed the third-order term in the density expansion of the diffusion constant. In the EWTM with overlapping obstacles, we show that the mean squared displacement has a density\hyp{}dependent exponent. This settles the open question about the asymptotic behaviour of the tracer particles in the EWTM with overlapping obstacles. Furthermore, we propose a closed functional form for the van Hove correlation function in the EWTM with overlapping obstacles.
For circular obstacles, the dynamics of the tracer particles are chaotic and one observes normal diffusion in the long-time limit. If a magnetic field is switched on perpendicularly to the Lorentz gas, it then mimics the classical transport of electrons in a two-dimensional electron gas (2DEG) with obstacles. These systems can be realised experimentally and we compare our simulation results with experimental measurements performed in the group of Prof. Heinzel at the Heinrich-Heine University of Düsseldorf. We investigate the robustness of the predictions of the Drude theory for higher densities. Moreover, we analysed the behaviour of the EWTM at low fields where we observe a reversal of the Hall resistance. As the density of the obstacles is increased, the system undergoes a delocalisation-to-localisation transition at the percolation transition of the free area. At the percolation threshold, an infinite cluster of obstacles traverses the system. This cluster has a fractal structure and the tracer particles exhibit anomalous diffusion. In the presence of a magnetic field, a second percolation threshold appears. This is due to the fact that for sufficiently large magnetic fields and low densities, the particles are trapped in the vicinity of the obstacles. For circular obstacles, the critical densities are known analytically, but for arbitrary geometries the critical density of this field\hyp{}induced transition is not known. We have devised a method to compute the critical density of this second percolation transition for any geometrical shape. We have computed the phase diagram for the EWTM in the presence of a magnetic field and computed the universal exponent of the mean squared displacement at both percolation transitions. We find that both transitions are not in the same universality class in agreement with an earlier simulation study.In dieser Arbeit untersuchen wir die Bewegung von Tracerteilchen auf einer zweidimensionalen Fläche, auf der zufällig verteilte, unbewegliche Hindernisse platziert sind. Dieses System nennt sich Lorentzgas und ist ein Modell für den Transport in heterogenen Medien. In Lorentzgasen beobachtet man sowohl normale als auch anomale Diffusion. Dies hängt von der Dichte und der Geometrie der Hindernisse ab. Systeme mit \mbox{gleich} ausgerichteten quadratischen Hindernissen, die sich überlappen, weisen eine anomale Diffusion der Tracer-Teilchen auf: Der Diffusionskoeffizient verschwindet und das mittlere Verschiebungsquadrat weist ein subdiffusives Verhalten auf. Im nicht überlappenden Fall ist die Diffusion normal. Bei diesem System handelt es sich um das Ehrenfestsche Wind-Tree Modell (EWTM). Für den Fall nicht überlappender Hindernisse haben wir die dritte Ordnung in der Dichteentwicklung der Diffusionskonstante errechnet. Im Fall überlappender Hindernisse zeigen wir, dass das mittlere Verschiebungsquadrat einen dichteabhängigen Exponenten aufweist. Hiermit klären wir die Frage des asymptotischen Verhaltens der Tracer-Teilchen im EWTM mit überlappenden Hindernissen. Des Weite\-ren schlagen wir einen Ausdruck für die Van-Hove-Korrelationsfunction im EWTM mit überlappenden Hindernissen vor. Für kreisförmige Hindernisse ist die Dynamik der Tracer-Teilchen chaotisch und wir beobachten normale Diffusion im Langzeit-Limes. In Anwesenheit eines Magnetfeldes senkrecht zur Ebene des Lorentzgases, ahmt das System den Magnetotransport von Elektronen in einem zweidimensionalen Elektronengas (2DEG) in Anwesenheit von Hindernissen nach. Diese Systeme können experimentell realisiert werden. Entsprechende Experimente wurden in der Gruppe von Prof. Heinzel an der Heinrich-Heine Universität Düsseldorf durchgeführt. Wir untersuchen an ihnen die Robustheit der Drude-Theorie bezüglich der Vorhersage des Hallkoeffizienten. Des Weite\-ren untersuchen wir das Verhalten des EWTMs bei kleinen Dichten und beobachten dort einen negativen Hallwiderstand. Wird die Dichte der Hindernisse erhöht, durchläuft die freie Fläche einen Lokalisierungsübergang an der Perkolationsschwelle. Es bildet sich ein unendlich zusammenhängendes Gebiet von Hindernissen aus (Cluster). An der Perkolationsschwelle hat der Cluster eine fraktale Struktur und das System weist anomalen Transport auf. In Anwesenheit eines Magnetfeldes entsteht eine zweite Perkolationsschwelle. Dies ist darauf zurückzuführen, dass die Tracer-Teilchen wegen ihrer kreisförmigen Trajektorien nicht mehr in der Lage sind, sich beliebig weit von der Oberfläche der Hindernisse zu entfernen. Dadurch können sie sich nicht mehr durch das komplette System bewegen. Bei genügend niedriger Dichte und hohem Magnetfeld sind sie in der Umgebung der Hindernisse lokalisiert. Für kreisförmige Hindernisse ist der analytische Ausdruck für diese Perkolationsschwellen bekannt, für beliebige Obstacle-Geometrien hingegen nicht. Wir haben eine Methode ent\-wickelt, um die Perkolationsschwellen dieses Übergangs zu berechnen. Mit dieser Methode konnten wir das Phasendiagramm des EWTM bestimmen. Die kritischen Exponenten an beiden Perkolationsschwellen konnten somit bestimmt werden. Wir konnten herausfinden, dass beide Übergänge nicht dasselbe universelle Verhalten aufweisen. Dies ist im Einklang mit einer vorherigen Studie. | |||||||
Quellen: | E. H. Hauge and E. G. D. Cohen, Divergences in non-equilibrium sta-
tistical mechanics and Ehrenfest’s wind-tree model, Arkiv for Det Fy- siske Seminar i Trondheim 7 (1968). E. H. Hauge, What can one learn from Lorentz models?, in Lecture notes in physics (Springer, Berlin, 1974), p. 337. J. Kurzidim, D. Coslovich, and G. Kahl, Single-particle and collective slow dynamics of colloids in porous confinement, Phys. Rev. Lett. 103, 138303 (2009). J. Kurzidim, D. Coslovich, and G. Kahl, Impact of random obstacles on the dynamics of a dense colloidal fluid, Phys. Rev. E 82, 041505 (2010). J. Kurzidim, D. Coslovich, and G. Kahl, Dynamic arrest of colloids in porous environments: disentangling crowding and confinement, J. Phys.: Condens. Matter 23, 234122 (2011). T. O. E. Skinner, S. K. Schnyder, D. G. A. L. Aarts, J. Horbach, and R. P. A. Dullens, Localization dynamics of fluids in random confine- ment, Phys. Rev. Lett. 111, 128301 (2013). F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda- Priego, and S. U. Egelhaaf, Colloids in light fields: particle dynamics in random and periodic energy landscapes, Eur. Phys. J. Spec. Top. 222, 2995 (2013). J. Bewerunge, I. Ladadwa, F. Platten, C. Zunke, A. Heuer, and S. U. Egelhaaf, Time- and ensemble-averages in evolving systems: the case of brownian particles in random potentials, Phys. Chem. Chem. Phys. 18, 18887 (2016). L. Ning, P. Liu, F. Ye, M. Yang, and K. Chen, Diffusion of colloidal particles in model porous media, Phys. Rev. E 103, 022608 (2021). S. K. Schnyder, T. O. E. Skinner, A. L. Thorneywork, D. G. A. L. Aarts, J. Horbach, and R. P. A. Dullens, Dynamic heterogeneities and non-gaussian behavior in two-dimensional randomly confined colloidal fluids, Phys. Rev. E 95, 032602 (2017). S. G. Anekal, Y. Zhu, M. D. Graham, and J. Yin, Dynamics of virus spread in the presence of fluid flow, Integr. Biol. 1, 664 (2009). F. Höfling and T. Franosch, Anomalous transport in the crowded world of biological cells, Rep. Prog. Phys. 76, 046602 (2013). Y. Yura, H. Takayasu, D. Sornette, and M. Takayasu, Financial brow- nian particle in the layered order-book fluid and fluctuation-dissipation relations, Phys. Rev. Lett. 112, 098703 (2014). K. Kanazawa, T. Sueshige, H. Takayasu, and M. Takayasu, Kinetic theory for financial Brownian motion from microscopic dynamics, Phys. Rev. E 98, 25 (2018). S. Cordier, L. Pareschi, and G. Toscani, On a kinetic model for a simple market economy, J. Stat. Phys. 120, 253 (2005). S. Cordier, L. Pareschi, and C. Piatecki, Mesoscopic modelling of fi- nancial markets, J. Stat. Phys. 134, 161 (2009). L. Boltzmann, Über die Anzahl der Atome in den Gasmolekülen und die innere Arbeit in Gasen, in Wissenschaftliche Abhandlungen (Cam- bridge University Press, 1867), p. 34. L. Boltzmann, Ueber die Unentbehrlichkeit der Atomistik in der Natur- wissenschaft, Ann. Phys. 296, 231 (1897). L. Boltzmann, Nochmals über die Atomistik, Ann. Phys. 297, 790 (1897). A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teil- chen, Ann. Phys. 322, 549 (1905). R. Brown, A brief account of microscopical observations made in the months of june, july and august 1827, on the particles contained in the pollen of plants and on the general existence of active molecules in organic and inorganic bodies, Philos. Mag. 4, 161 (1828). H. Fischer, A history of the central limit theorem (Springer, New York, 2011). I. Bronstein, Y. Israel, E. Kepten, S. Mai, Y. Shav-Tal, E. Barkai, and Y. Garini, Transient anomalous diffusion of telomeres in the nucleus of mammalian cells, Phys. Rev. Lett. 103, 018102 (2009). M. J. Saxton, A biological interpretation of transient anomalous sub- diffusion. I. Qualitative model, Biophysical Journal 92, 1178 (2007). W. W. Wood and F. Lado, Monte carlo calculation of normal and abnormal diffusion in Ehrenfest’s wind-tree model, J. Comput. Phys. 7, 528 (1971). S. Schnyder, Anomalous transport in heterogeneous media, PhD thesis (Heinrich-Heine Universität, Düsseldorf, 2014). J. Horbach, N. H. Siboni, and S. K. Schnyder, Anomalous transport in heterogeneous media, Eur. Phys. J. Spec. Top. 226, 3113 (2017). R. Lohmann, Magnetotransport in retroreflective Lorentz gases, MA thesis (Heinrich-Heine Universität Düsseldorf, Düsseldorf, 2019). R. Lohmann, B. Horn-Cosfeld, J. Schluck, D. Mailly, N. H. Siboni, H. W. Schumacher, K. Pierz, T. Heinzel, and J. Horbach, Anomalous transport due to retroreflection, Phys. Rev. B 102, 081302 (2020). N. Siboni, J. Schluck, K. Pierz, H. Schumacher, D. Kazazis, J. Hor- bach, and T. Heinzel, Nonmonotonic classical magnetoconductivity of a two-dimensional electron gas in a disordered array of obstacles, Phys. Rev. Lett. 120, 056601 (2018). J. Schluck, M. Hund, T. Heckenthaler, T. Heinzel, N. H. Siboni, J. Horbach, K. Pierz, H. W. Schumacher, D. Kazazis, U. Gennser, and D. Mailly, Linear negative magnetoresistance in two-dimensional Lorentz gases, Phys. Rev. B 97, 115301 (2018). B. Horn-Cosfeld, J. Schluck, J. Lammert, M. Cerchez, T. Heinzel, K. Pierz, H. Schumacher, and D. Mailly, Relevance of weak and strong classical scattering for the giant negative magnetoresistance in two- dimensional electron gases, Phys. Rev. B 104, 045306 (2021). B. Horn-Cosfeld, J. Schluck, J. Lammert, M. Cerchez, T. Heinzel, K. Pierz, H. W. Schumacher, and D. Mailly, Relevance of weak and strong classical scattering for the giant negative magnetoresistance in two-dimensional electron gases, Phys. Rev. B 104, 045306 (2021). H. A. Lorentz, The motion of electrons in metallic bodies, Proc. K. Ned. Akad. Wet. 7, 438 (1905). H. van Beijeren, Transport properties of stochastic Lorentz models, Rev. Mod. Phys. 54, 195 (1982). J. van Leeuwen and A. Weijland, Non-analytic density behaviour of the diffusion coefficient of a Lorentz gas I. Divergencies in the expansion in powers in the density, Physica 36, 457 (1967). J. van Leeuwen and A. Weijland, Non-analytic density behaviour of the diffusion coefficient of a Lorentz gas, Physica 38, 35 (1968). C. P. Dettmann, Diffusion in the Lorentz gas, Commun. Theor. Phys. 62, 521 (2014). S. K. Schnyder, M. Spanner, F. Höfling, T. Franosch, and J. Horbach, Rounding of the localization transition in model porous media, Soft Matter 11, 701 (2015). G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas, Nota interna n. 358, Istituto di Fisica G. Marconi, Universitá di Roma (1972). H. Grad, Principles of the kinetic theory of gases, in, Encyclopedia of Physics (Springer, Berlin, 1958), p. 205. P. Ehrenfest and T. Ehrenfest, Begriffliche Grundlagen der statistis- chen Auffassung in der Mechanik, in Encykl. Math. Wissenschaften (Springer, Wiesbaden, 1907), p. 773. E. H. Hauge and E. G. D. Cohen, Normal and abnormal diffusion in Ehrenfest’s wind-tree model, Phys. Lett. A 25, 78 (1967). E. H. Hauge and E. G. D. Cohen, Normal and abnormal diffusion in Ehrenfests’ wind-tree model, J. Math. Phys. 10, 397 (1969). H. Van Beyeren and E. H. Hauge, Abnormal diffusion in Ehrenfest’s wind-tree model, Phys. Lett. A 39, 397 (1972). E. Hall, XVIII. On the “rotational coefficient” in nickel and cobalt, Lond. Edinb. Dubl. Phil. Mag 12, 157 (1881). A. V. Bobylev, F. A. Maaø, A. Hansen, and E. H. Hauge, There is more to be learned from the Lorentz model, J. Stat. Phys. 87, 1205 (1997). A. V. Bobylev, F. A. Maaø, A. Hansen, and E. H. Hauge, Two- dimensional magnetotransport according to the classical Lorentz model, Phys. Rev. Lett. 75, 197 (1995). A. V. Bobylev, A. Hansen, J. Piasecki, and E. H. Hauge, From the Liouville equation to the generalized Boltzmann equation for magne- totransport in the 2d Lorentz model, J. Stat. Phys. 102, 1133 (2001). W. Götze and E. Leutheußer, Magneto-transport in the two dimen- sional Lorentz model, Z. Phys. B: Condens. Matter 45, 85 (1981). A. Dmitriev and V. Y. Kachorovskii, Magnetotransport in a 2d system with strong scatterers: renormalization of Hall coefficient caused by non-Markovian effects, Semiconductors 42, 934 (2008). V. V. Cheianov, A. Dmitriev, and V. Y. Kachorovskii, Non-Markovian effects on the two-dimensional magnetotransport: low-field anomaly in magnetoresistance, Phys. Rev. B 70, 245307 (2004). A. Nota, C. Saffirio, and S. Simonella, Two-dimensional Lorentz pro- cess for magnetotransport: Boltzmann-Grad limit, in Annales de l’insti- tut Henri poincaré, probabilités et statistiques, Vol. 58 (Institut Henri Poincaré, Paris, 2022), p. 1228. A. Kuzmany and H. Spohn, Magnetotransport in the two-dimensional Lorentz gas, Phys. Rev. E 57, 5544 (1998). S. Mertens and C. Moore, Continuum percolation thresholds in two dimensions, Phys. Rev. E 86, 061109 (2012). R. W. Zwanzig, Nonequilibrium statistical mechanics (Oxford Univer- sity Press, New York, 2001). L. Van Hove, Correlations in space and time and Born approxima- tion scattering in systems of interacting particles, Phys. Rev. 95, 249 (1954). A. Rahman, Correlations in the motion of atoms in liquid argon, Phys. Rev. 136, A405 (1964). T. Heinzel, Mesoscopic electronics in solid state nanostructures (Wiley- VCH Verlag, Weinheim, 2010). J. Schluck, Classical electron magnetotransport in controlled potential landscapes, PhD thesis (Heinrich Heine Universität Düsseldorf, Düs- seldorf, 2018). K. Ploog, Molecular beam epitaxy of III-V compounds: technology and growth process, Annu. Rev. Mater. Sci. 11, 171 (1981). R. Dingle, H. L. Störmer, A. C. Gossard, and W. Wiegmann, Electron mobilities in modulation-doped semiconductor heterojunction superlat- tices, Appl. Phys. Lett. 33, 665 (1978). P. Drude, Zur Elektronentheorie der Metalle, Ann. Phys. 306, 566 (1900). E. Rutherford, The scattering of α and β particles by matter and the structure of the atom, London Edinburgh Philos. Mag. J. Sci. 21, 669 (1911). W. Kaiser, Early theories of the electron gas, Hist. Stud. Nat. Sci. 17, 271 (1987). N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Publishing, Philadelphia, 1976). R. Kubo, Statistical-mechanical theory of irreversible processes. I. Gen- eral theory and simple applications to magnetic and conduction prob- lems, J. Phys. Soc. Japan 12, 570 (1957). P. Dirac, On the theory of quantum mechanics, Proc. R. Soc. Lond. A 112, 661 (1926). J. R. Dorfman, H. van Beijeren, and T. R. Kirkpatrick, Contempo- rary kinetic theory of matter (Cambridge University Press, Cambridge, 2021). H. Spohn, Large scale dynamics of interacting particles (Springer, Berlin, 1991). C. Cercignani, On the Boltzmann equation for rigid spheres, Transp. Theory. Stat. Phys. 2, 211 (1972). N. N. Bogoliubov and G. E. Uhlenbeck, Problems of a dynamical theory in statistical physics, in (North Holland Publishing Co, Amsterdam, Holland, 1962). J. R. Dorfman and E. G. D. Cohen, On the density expansion of the pair distribution function for a dense gas not in equilibrium, Phys. Lett. 16, 124 (1965). R. Peierls, Surprises in theoretical physics, Princeton Series in Physics (Princeton University Press, Princeton, NJ, 1979). K. Kawasaki and I. Oppenheim, Logarithmic term in the density ex- pansion of transport coefficients, Phys. Rev. 139, A1763 (1965). R. Zwanzig, Method for finding the density expansion of transport co- efficients of gases, Phys. Rev. 129, 486 (1963). D. Stauffer and A. Aharony, Introduction to percolation theory (Taylor & Francis, London, 1994). P. Grassberger, Conductivity exponent and backbone dimension in 2-d percolation, Physica A 262, 251 (1999). D. ben-Avraham and S. Havlin, Diffusion and reactions in fractals and disordered systems (Cambridge University Press, Cambridge, 2000). H. T. Pinson, Critical percolation on the torus, J. Stat. Phys. 75, 1167 (1994). M. E. Newman and R. M. Ziff, Fast Monte Carlo algorithm for site or bond percolation, Phys. Rev. E 64, 016706 (2001). W. Schirmacher, B. Fuchs, F. Höfling, and T. Franosch, Anomalous magnetotransport in disordered structures: classical edge-state perco- lation, Phys. Rev. Lett. 115, 240602 (2015). G. Zhang and S. Torquato, Precise algorithm to generate random se- quential addition of hard hyperspheres at saturation, Phys. Rev. E 88 (2013). B. J. Brosilow, R. M. Ziff, and R. D. Vigil, Random sequential adsorp- tion of parallel squares, Phys. Rev. A 43, 631 (1991). A. S. Glassner, J. Arvo, D. Kirk, A. Wexelblat, M. F. Cohen, and R. T. Stevens, The AP professional graphics CD-ROM, Vol. 3 (Academic Press, San Diego, CA, 1995). D. Goldberg, What every computer scientist should know about floating- point arithmetic, ACM Computing Surveys 23, 5 (1991). J. E. Bresenham, Algorithm for computer control of a digital plotter, IBM Syst. J. 4, 25 (1965). J. E. Bresenham, A linear algorithm for incremental digital display of circular arcs, Commun. ACM 20, 100 (1977). J. E. Bresenham, Algorithms for circular arc generation, in Funda- mental algorithms for computer graphics (Springer, Berlin, 1991). J. Machta, Y. S. Choi, A. Lucke, T. Schweizer, and L. M. Chayes, Invaded cluster algorithm for potts models, Phys. Rev. E 54, 1332 (1996). B. A. Sanvee, R. Lohmann, and J. Horbach, Normal and anomalous diffusion in the disordered wind-tree model, Phys. Rev. E 106, 081302 (2022). C. P. Dettmann, Microscopic chaos and diffusion, J. Stat. Phys. 101, 775 (2000). J. P. Hansen and I. R. McDonald, Theory of simple liquids (Academic Press, New York, 1986). W. Götze, E. Leutheusser, and S. Yip, Diffusion and localization in the two-dimensional Lorentz model, Phys. Rev. A 25, 533 (1982). E. Leutheusser, Self-consistent kinetic theory for the Lorentz gas, Phys. Rev. A 28, 1762 (1983). A. Masters and T. Keyes, Diffusion, percolation, and trapping in the Lorentz gas via variational kinetic theory, Phys. Rev. A 26, 2129 (1982). L. Schubnikow and W. J. de Haas, A new phenomenon in the change of resistance in a magnetic field of single crystals of bismuth, Nature 126, 500 (1930). P. Deuflhard and A. Hohmann, Numerische Mathematik (De Gruyter, Berlin, 2002). R. Fisch and A. B. Harris, Critical behavior of random resistor net- works near the percolation threshold, Phys. Rev. B 18, 416 (1978). J. Machta and S. M. Moore, Diffusion and long-time tails in the over- lapping Lorentz gas, Phys. Rev. A 32, 3164 (1985)E. H. Hauge and E. G. D. Cohen, Divergences in non-equilibrium sta- tistical mechanics and Ehrenfest’s wind-tree model, Arkiv for Det Fy- siske Seminar i Trondheim 7 (1968). E. H. Hauge, What can one learn from Lorentz models?, in Lecture notes in physics (Springer, Berlin, 1974), p. 337. J. Kurzidim, D. Coslovich, and G. Kahl, Single-particle and collective slow dynamics of colloids in porous confinement, Phys. Rev. Lett. 103, 138303 (2009). J. Kurzidim, D. Coslovich, and G. Kahl, Impact of random obstacles on the dynamics of a dense colloidal fluid, Phys. Rev. E 82, 041505 (2010). J. Kurzidim, D. Coslovich, and G. Kahl, Dynamic arrest of colloids in porous environments: disentangling crowding and confinement, J. Phys.: Condens. Matter 23, 234122 (2011). T. O. E. Skinner, S. K. Schnyder, D. G. A. L. Aarts, J. Horbach, and R. P. A. Dullens, Localization dynamics of fluids in random confine- ment, Phys. Rev. Lett. 111, 128301 (2013). F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda- Priego, and S. U. Egelhaaf, Colloids in light fields: particle dynamics in random and periodic energy landscapes, Eur. Phys. J. Spec. Top. 222, 2995 (2013). J. Bewerunge, I. Ladadwa, F. Platten, C. Zunke, A. Heuer, and S. U. Egelhaaf, Time- and ensemble-averages in evolving systems: the case of brownian particles in random potentials, Phys. Chem. Chem. Phys. 18, 18887 (2016). L. Ning, P. Liu, F. Ye, M. Yang, and K. Chen, Diffusion of colloidal particles in model porous media, Phys. Rev. E 103, 022608 (2021). S. K. Schnyder, T. O. E. Skinner, A. L. Thorneywork, D. G. A. L. Aarts, J. Horbach, and R. P. A. Dullens, Dynamic heterogeneities and non-gaussian behavior in two-dimensional randomly confined colloidal fluids, Phys. Rev. E 95, 032602 (2017). S. G. Anekal, Y. Zhu, M. D. Graham, and J. Yin, Dynamics of virus spread in the presence of fluid flow, Integr. Biol. 1, 664 (2009). F. Höfling and T. Franosch, Anomalous transport in the crowded world of biological cells, Rep. Prog. Phys. 76, 046602 (2013). Y. Yura, H. Takayasu, D. Sornette, and M. Takayasu, Financial brow- nian particle in the layered order-book fluid and fluctuation-dissipation relations, Phys. Rev. Lett. 112, 098703 (2014). K. Kanazawa, T. Sueshige, H. Takayasu, and M. Takayasu, Kinetic theory for financial Brownian motion from microscopic dynamics, Phys. Rev. E 98, 25 (2018). S. Cordier, L. Pareschi, and G. Toscani, On a kinetic model for a simple market economy, J. Stat. Phys. 120, 253 (2005). S. Cordier, L. Pareschi, and C. Piatecki, Mesoscopic modelling of fi- nancial markets, J. Stat. Phys. 134, 161 (2009). L. Boltzmann, Über die Anzahl der Atome in den Gasmolekülen und die innere Arbeit in Gasen, in Wissenschaftliche Abhandlungen (Cam- bridge University Press, 1867), p. 34. L. Boltzmann, Ueber die Unentbehrlichkeit der Atomistik in der Natur- wissenschaft, Ann. Phys. 296, 231 (1897). L. Boltzmann, Nochmals über die Atomistik, Ann. Phys. 297, 790 (1897). A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teil- chen, Ann. Phys. 322, 549 (1905). R. Brown, A brief account of microscopical observations made in the months of june, july and august 1827, on the particles contained in the pollen of plants and on the general existence of active molecules in organic and inorganic bodies, Philos. Mag. 4, 161 (1828). H. Fischer, A history of the central limit theorem (Springer, New York, 2011). I. Bronstein, Y. Israel, E. Kepten, S. Mai, Y. Shav-Tal, E. Barkai, and Y. Garini, Transient anomalous diffusion of telomeres in the nucleus of mammalian cells, Phys. Rev. Lett. 103, 018102 (2009). M. J. Saxton, A biological interpretation of transient anomalous sub- diffusion. I. Qualitative model, Biophysical Journal 92, 1178 (2007). W. W. Wood and F. Lado, Monte carlo calculation of normal and abnormal diffusion in Ehrenfest’s wind-tree model, J. Comput. Phys. 7, 528 (1971). S. Schnyder, Anomalous transport in heterogeneous media, PhD thesis (Heinrich-Heine Universität, Düsseldorf, 2014). J. Horbach, N. H. Siboni, and S. K. Schnyder, Anomalous transport in heterogeneous media, Eur. Phys. J. Spec. Top. 226, 3113 (2017). R. Lohmann, Magnetotransport in retroreflective Lorentz gases, MA thesis (Heinrich-Heine Universität Düsseldorf, Düsseldorf, 2019). R. Lohmann, B. Horn-Cosfeld, J. Schluck, D. Mailly, N. H. Siboni, H. W. Schumacher, K. Pierz, T. Heinzel, and J. Horbach, Anomalous transport due to retroreflection, Phys. Rev. B 102, 081302 (2020). N. Siboni, J. Schluck, K. Pierz, H. Schumacher, D. Kazazis, J. Hor- bach, and T. Heinzel, Nonmonotonic classical magnetoconductivity of a two-dimensional electron gas in a disordered array of obstacles, Phys. Rev. Lett. 120, 056601 (2018). J. Schluck, M. Hund, T. Heckenthaler, T. Heinzel, N. H. Siboni, J. Horbach, K. Pierz, H. W. Schumacher, D. Kazazis, U. Gennser, and D. Mailly, Linear negative magnetoresistance in two-dimensional Lorentz gases, Phys. Rev. B 97, 115301 (2018). B. Horn-Cosfeld, J. Schluck, J. Lammert, M. Cerchez, T. Heinzel, K. Pierz, H. Schumacher, and D. Mailly, Relevance of weak and strong classical scattering for the giant negative magnetoresistance in two- dimensional electron gases, Phys. Rev. B 104, 045306 (2021). B. Horn-Cosfeld, J. Schluck, J. Lammert, M. Cerchez, T. Heinzel, K. Pierz, H. W. Schumacher, and D. Mailly, Relevance of weak and strong classical scattering for the giant negative magnetoresistance in two-dimensional electron gases, Phys. Rev. B 104, 045306 (2021). H. A. Lorentz, The motion of electrons in metallic bodies, Proc. K. Ned. Akad. Wet. 7, 438 (1905). H. van Beijeren, Transport properties of stochastic Lorentz models, Rev. Mod. Phys. 54, 195 (1982). J. van Leeuwen and A. Weijland, Non-analytic density behaviour of the diffusion coefficient of a Lorentz gas I. Divergencies in the expansion in powers in the density, Physica 36, 457 (1967). J. van Leeuwen and A. Weijland, Non-analytic density behaviour of the diffusion coefficient of a Lorentz gas, Physica 38, 35 (1968). C. P. Dettmann, Diffusion in the Lorentz gas, Commun. Theor. Phys. 62, 521 (2014). S. K. Schnyder, M. Spanner, F. Höfling, T. Franosch, and J. Horbach, Rounding of the localization transition in model porous media, Soft Matter 11, 701 (2015). G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas, Nota interna n. 358, Istituto di Fisica G. Marconi, Universitá di Roma (1972). H. Grad, Principles of the kinetic theory of gases, in, Encyclopedia of Physics (Springer, Berlin, 1958), p. 205. P. Ehrenfest and T. Ehrenfest, Begriffliche Grundlagen der statistis- chen Auffassung in der Mechanik, in Encykl. Math. Wissenschaften (Springer, Wiesbaden, 1907), p. 773. E. H. Hauge and E. G. D. Cohen, Normal and abnormal diffusion in Ehrenfest’s wind-tree model, Phys. Lett. A 25, 78 (1967). E. H. Hauge and E. G. D. Cohen, Normal and abnormal diffusion in Ehrenfests’ wind-tree model, J. Math. Phys. 10, 397 (1969). H. Van Beyeren and E. H. Hauge, Abnormal diffusion in Ehrenfest’s wind-tree model, Phys. Lett. A 39, 397 (1972). E. Hall, XVIII. On the “rotational coefficient” in nickel and cobalt, Lond. Edinb. Dubl. Phil. Mag 12, 157 (1881). A. V. Bobylev, F. A. Maaø, A. Hansen, and E. H. Hauge, There is more to be learned from the Lorentz model, J. Stat. Phys. 87, 1205 (1997). A. V. Bobylev, F. A. Maaø, A. Hansen, and E. H. Hauge, Two- dimensional magnetotransport according to the classical Lorentz model, Phys. Rev. Lett. 75, 197 (1995). A. V. Bobylev, A. Hansen, J. Piasecki, and E. H. Hauge, From the Liouville equation to the generalized Boltzmann equation for magne- totransport in the 2d Lorentz model, J. Stat. Phys. 102, 1133 (2001). W. Götze and E. Leutheußer, Magneto-transport in the two dimen- sional Lorentz model, Z. Phys. B: Condens. Matter 45, 85 (1981). A. Dmitriev and V. Y. Kachorovskii, Magnetotransport in a 2d system with strong scatterers: renormalization of Hall coefficient caused by non-Markovian effects, Semiconductors 42, 934 (2008). V. V. Cheianov, A. Dmitriev, and V. Y. Kachorovskii, Non-Markovian effects on the two-dimensional magnetotransport: low-field anomaly in magnetoresistance, Phys. Rev. B 70, 245307 (2004). A. Nota, C. Saffirio, and S. Simonella, Two-dimensional Lorentz pro- cess for magnetotransport: Boltzmann-Grad limit, in Annales de l’insti- tut Henri poincaré, probabilités et statistiques, Vol. 58 (Institut Henri Poincaré, Paris, 2022), p. 1228. A. Kuzmany and H. Spohn, Magnetotransport in the two-dimensional Lorentz gas, Phys. Rev. E 57, 5544 (1998). S. Mertens and C. Moore, Continuum percolation thresholds in two dimensions, Phys. Rev. E 86, 061109 (2012). R. W. Zwanzig, Nonequilibrium statistical mechanics (Oxford Univer- sity Press, New York, 2001). L. Van Hove, Correlations in space and time and Born approxima- tion scattering in systems of interacting particles, Phys. Rev. 95, 249 (1954). A. Rahman, Correlations in the motion of atoms in liquid argon, Phys. Rev. 136, A405 (1964). T. Heinzel, Mesoscopic electronics in solid state nanostructures (Wiley- VCH Verlag, Weinheim, 2010). J. Schluck, Classical electron magnetotransport in controlled potential landscapes, PhD thesis (Heinrich Heine Universität Düsseldorf, Düs- seldorf, 2018). K. Ploog, Molecular beam epitaxy of III-V compounds: technology and growth process, Annu. Rev. Mater. Sci. 11, 171 (1981). R. Dingle, H. L. Störmer, A. C. Gossard, and W. Wiegmann, Electron mobilities in modulation-doped semiconductor heterojunction superlat- tices, Appl. Phys. Lett. 33, 665 (1978). P. Drude, Zur Elektronentheorie der Metalle, Ann. Phys. 306, 566 (1900). E. Rutherford, The scattering of α and β particles by matter and the structure of the atom, London Edinburgh Philos. Mag. J. Sci. 21, 669 (1911). W. Kaiser, Early theories of the electron gas, Hist. Stud. Nat. Sci. 17, 271 (1987). N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Publishing, Philadelphia, 1976). R. Kubo, Statistical-mechanical theory of irreversible processes. I. Gen- eral theory and simple applications to magnetic and conduction prob- lems, J. Phys. Soc. Japan 12, 570 (1957). P. Dirac, On the theory of quantum mechanics, Proc. R. Soc. Lond. A 112, 661 (1926). J. R. Dorfman, H. van Beijeren, and T. R. Kirkpatrick, Contempo- rary kinetic theory of matter (Cambridge University Press, Cambridge, 2021). H. Spohn, Large scale dynamics of interacting particles (Springer, Berlin, 1991). C. Cercignani, On the Boltzmann equation for rigid spheres, Transp. Theory. Stat. Phys. 2, 211 (1972). N. N. Bogoliubov and G. E. Uhlenbeck, Problems of a dynamical theory in statistical physics, in (North Holland Publishing Co, Amsterdam, Holland, 1962). J. R. Dorfman and E. G. D. Cohen, On the density expansion of the pair distribution function for a dense gas not in equilibrium, Phys. Lett. 16, 124 (1965). R. Peierls, Surprises in theoretical physics, Princeton Series in Physics (Princeton University Press, Princeton, NJ, 1979). K. Kawasaki and I. Oppenheim, Logarithmic term in the density ex- pansion of transport coefficients, Phys. Rev. 139, A1763 (1965). R. Zwanzig, Method for finding the density expansion of transport co- efficients of gases, Phys. Rev. 129, 486 (1963). D. Stauffer and A. Aharony, Introduction to percolation theory (Taylor & Francis, London, 1994). P. Grassberger, Conductivity exponent and backbone dimension in 2-d percolation, Physica A 262, 251 (1999). D. ben-Avraham and S. Havlin, Diffusion and reactions in fractals and disordered systems (Cambridge University Press, Cambridge, 2000). H. T. Pinson, Critical percolation on the torus, J. Stat. Phys. 75, 1167 (1994). M. E. Newman and R. M. Ziff, Fast Monte Carlo algorithm for site or bond percolation, Phys. Rev. E 64, 016706 (2001). W. Schirmacher, B. Fuchs, F. Höfling, and T. Franosch, Anomalous magnetotransport in disordered structures: classical edge-state perco- lation, Phys. Rev. Lett. 115, 240602 (2015). G. Zhang and S. Torquato, Precise algorithm to generate random se- quential addition of hard hyperspheres at saturation, Phys. Rev. E 88 (2013). B. J. Brosilow, R. M. Ziff, and R. D. Vigil, Random sequential adsorp- tion of parallel squares, Phys. Rev. A 43, 631 (1991). A. S. Glassner, J. Arvo, D. Kirk, A. Wexelblat, M. F. Cohen, and R. T. Stevens, The AP professional graphics CD-ROM, Vol. 3 (Academic Press, San Diego, CA, 1995). D. Goldberg, What every computer scientist should know about floating- point arithmetic, ACM Computing Surveys 23, 5 (1991). J. E. Bresenham, Algorithm for computer control of a digital plotter, IBM Syst. J. 4, 25 (1965). J. E. Bresenham, A linear algorithm for incremental digital display of circular arcs, Commun. ACM 20, 100 (1977). J. E. Bresenham, Algorithms for circular arc generation, in Funda- mental algorithms for computer graphics (Springer, Berlin, 1991). J. Machta, Y. S. Choi, A. Lucke, T. Schweizer, and L. M. Chayes, Invaded cluster algorithm for potts models, Phys. Rev. E 54, 1332 (1996). B. A. Sanvee, R. Lohmann, and J. Horbach, Normal and anomalous diffusion in the disordered wind-tree model, Phys. Rev. E 106, 081302 (2022). C. P. Dettmann, Microscopic chaos and diffusion, J. Stat. Phys. 101, 775 (2000). J. P. Hansen and I. R. McDonald, Theory of simple liquids (Academic Press, New York, 1986). W. Götze, E. Leutheusser, and S. Yip, Diffusion and localization in the two-dimensional Lorentz model, Phys. Rev. A 25, 533 (1982). E. Leutheusser, Self-consistent kinetic theory for the Lorentz gas, Phys. Rev. A 28, 1762 (1983). A. Masters and T. Keyes, Diffusion, percolation, and trapping in the Lorentz gas via variational kinetic theory, Phys. Rev. A 26, 2129 (1982). L. Schubnikow and W. J. de Haas, A new phenomenon in the change of resistance in a magnetic field of single crystals of bismuth, Nature 126, 500 (1930). P. Deuflhard and A. Hohmann, Numerische Mathematik (De Gruyter, Berlin, 2002). R. Fisch and A. B. Harris, Critical behavior of random resistor net- works near the percolation threshold, Phys. Rev. B 18, 416 (1978). J. Machta and S. M. Moore, Diffusion and long-time tails in the over- lapping Lorentz gas, Phys. Rev. A 32, 3164 (1985) | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Fachbereich / Einrichtung: | Mathematisch- Naturwissenschaftliche Fakultät » WE Physik » Theoretische Physik | |||||||
Dokument erstellt am: | 16.01.2023 | |||||||
Dateien geändert am: | 16.01.2023 | |||||||
Promotionsantrag am: | 09.11.2022 | |||||||
Datum der Promotion: | 22.12.2022 |