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Abstract

πάντα ῥεῖ. In this thesis, we investigate the movement of tracer particles
in a two-dimensional plane where randomly distributed fixed obstacles are
placed. This system is called a Lorentz gas and is a model system for trans-
port in heterogeneous media. It can exhibit normal and anomalous diffusion
depending on the geometry of the obstacles and the obstacle density. For
square obstacles all oriented in the same direction and allowed to overlap,
the system exhibits anomalous diffusion as the diffusion coefficient vanishes
and the mean squared displacements shows sub-diffusive behaviour. In the
non-overlapping case, the diffusion is normal. This system is called Ehren-
fests’ wind-tree model (EWTM). In the case of non-overlapping obstacles,
we have computed the third-order term in the density expansion of the dif-
fusion constant. In the EWTM with overlapping obstacles, we show that the
mean squared displacement has a density-dependent exponent. This settles
the open question about the asymptotic behaviour of the tracer particles in
the EWTM with overlapping obstacles. Furthermore, we propose a closed
functional form for the van Hove correlation function in the EWTM with
overlapping obstacles.

For circular obstacles, the dynamics of the tracer particles are chaotic
and one observes normal diffusion in the long-time limit. If a magnetic
field is switched on perpendicularly to the Lorentz gas, it then mimics the
classical transport of electrons in a two-dimensional electron gas (2DEG) with
obstacles. These systems can be realised experimentally and we compare our
simulation results with experimental measurements performed in the group of
Prof. Heinzel at the Heinrich-Heine University of Düsseldorf. We investigate
the robustness of the predictions of the Drude theory for higher densities.
Moreover, we analysed the behaviour of the EWTM at low fields where we
observe a reversal of the Hall resistance.

As the density of the obstacles is increased, the system undergoes a
delocalisation-to-localisation transition at the percolation transition of the
free area. At the percolation threshold, an infinite cluster of obstacles tra-
verses the system. This cluster has a fractal structure and the tracer particles
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exhibit anomalous diffusion. In the presence of a magnetic field, a second
percolation threshold appears. This is due to the fact that for sufficiently
large magnetic fields and low densities, the particles are trapped in the vicin-
ity of the obstacles. For circular obstacles, the critical densities are known
analytically, but for arbitrary geometries the critical density of this field-
induced transition is not known. We have devised a method to compute
the critical density of this second percolation transition for any geometrical
shape. We have computed the phase diagram for the EWTM in the presence
of a magnetic field and computed the universal exponent of the mean squared
displacement at both percolation transitions. We find that both transitions
are not in the same universality class in agreement with an earlier simulation
study.



Zusammenfassung

πάντα ῥεῖ. In dieser Arbeit untersuchen wir die Bewegung von Tracer-
Teilchen auf einer zweidimensionalen Fläche, auf der zufällig verteilte, un-
bewegliche Hindernisse platziert sind. Dieses System nennt sich Lorentzgas
und ist ein Modell für den Transport in heterogenen Medien. In Lorentz-
gasen beobachtet man sowohl normale als auch anomale Diffusion. Dies
hängt von der Dichte und der Geometrie der Hindernisse ab. Systeme mit
gleich ausgerichteten quadratischen Hindernissen, die sich überlappen, weisen
eine anomale Diffusion der Tracer-Teilchen auf: Der Diffusionskoeffizient ver-
schwindet und das mittlere Verschiebungsquadrat weist ein subdiffusives Ver-
halten auf. Im nicht überlappenden Fall ist die Diffusion normal. Bei diesem
System handelt es sich um das Ehrenfestsche Wind-Tree Modell (EWTM).
Für den Fall nicht überlappender Hindernisse haben wir die dritte Ordnung
in der Dichteentwicklung der Diffusionskonstante errechnet. Im Fall über-
lappender Hindernisse zeigen wir, dass das mittlere Verschiebungsquadrat
einen dichteabhängigen Exponenten aufweist. Hiermit klären wir die Frage
des asymptotischen Verhaltens der Tracer-Teilchen im EWTM mit überlap-
penden Hindernissen. Des Weiteren schlagen wir einen Ausdruck für die
Van-Hove-Korrelationsfunction im EWTM mit überlappenden Hindernissen
vor.

Für kreisförmige Hindernisse ist die Dynamik der Tracer-Teilchen chao-
tisch und wir beobachten normale Diffusion im Langzeit-Limes. In Anwe-
senheit eines Magnetfeldes senkrecht zur Ebene des Lorentzgases, ahmt das
System den Magnetotransport von Elektronen in einem zweidimensionalen
Elektronengas (2DEG) in Anwesenheit von Hindernissen nach. Diese Sys-
teme können experimentell realisiert werden. Entsprechende Experimente
wurden in der Gruppe von Prof. Heinzel an der Heinrich-Heine Univer-
sität Düsseldorf durchgeführt. Wir untersuchen an ihnen die Robustheit der
Drude-Theorie bezüglich der Vorhersage des Hallkoeffizienten. Des Weite-
ren untersuchen wir das Verhalten des EWTMs bei kleinen Dichten und
beobachten dort einen negativen Hallwiderstand.

Wird die Dichte der Hindernisse erhöht, durchläuft die freie Fläche einen
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Lokalisierungsübergang an der Perkolationsschwelle. Es bildet sich ein un-
endlich zusammenhängendes Gebiet von Hindernissen aus (Cluster). An der
Perkolationsschwelle hat der Cluster eine fraktale Struktur und das System
weist anomalen Transport auf. In Anwesenheit eines Magnetfeldes entsteht
eine zweite Perkolationsschwelle. Dies ist darauf zurückzuführen, dass die
Tracer-Teilchen wegen ihrer kreisförmigen Trajektorien nicht mehr in der
Lage sind, sich beliebig weit von der Oberfläche der Hindernisse zu ent-
fernen. Dadurch können sie sich nicht mehr durch das komplette System
bewegen. Bei genügend niedriger Dichte und hohem Magnetfeld sind sie in
der Umgebung der Hindernisse lokalisiert. Für kreisförmige Hindernisse ist
der analytische Ausdruck für diese Perkolationsschwellen bekannt, für be-
liebige Obstacle-Geometrien hingegen nicht. Wir haben eine Methode ent-
wickelt, um die Perkolationsschwellen dieses Übergangs zu berechnen. Mit
dieser Methode konnten wir das Phasendiagramm des EWTM bestimmen.
Die kritischen Exponenten an beiden Perkolationsschwellen konnten somit
bestimmt werden. Wir konnten herausfinden, dass beide Übergänge nicht
dasselbe universelle Verhalten aufweisen. Dies ist im Einklang mit einer
vorherigen Studie.
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1
Introduction

The fact that a model is soluble is always due to some particular simplifying
features, and precisely those features can be decisive for the answers to the

questions asked. [2]
— E.H. Hauge —

Transport phenomena are ubiquitous. Examples are colloid diffusion in
porous media [3–10], the mechanisms of virus spread [11], transport mech-
anisms in biological cells [12], or the dynamics of financial markets [13–16].
The description of these phenomena is the endeavour of non-equilibrium sta-
tistical mechanics. Pioneering work has been done by Boltzmann who pro-
posed the reality of atoms [17–19] and shaped the very foundations of the
kinetic theory of gases and of all statistical mechanics. It is on that atomistic
basis that Albert Einstein in 1905 [20] derived his theory of the Brownian
motion observed in 1827 by the botanist Robert Brown [21]. Brown discov-
ered that pollen immersed in water fulfil a jittery random motion. Einstein
found a physical explanation of this phenomenon by assuming that this mo-
tion is due to random collisions with the water molecules. Let f(x, t) be the
one-dimensional probability distribution of finding a particle at position x at
time t. Einstein derived that for particles subjected to random uncorrelated
collisions, the distribution function is a solution of the diffusion equation

∂f(x, t)

∂t
= D

∂2f(x, t)

∂x2
, (1.1)

where x is the particle position and D the diffusion constant. For simplicity
we consider the problem in one dimension, but the results are identical in
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CHAPTER 1. INTRODUCTION

three dimensions. By assuming N particles located at position x = 0 at time
t = 0, the solution of this equation is given by

f(t, x) =
N√
4πDt

exp

{︃
− x2

4Dt

}︃
. (1.2)

It is a Gaussian distribution centred at x = 0 with variance σ = 2Dt. At
the initial time t = 0, one has a delta peak that is the limit of a Gaussian
distribution with vanishing variance. Then, at times t > 0, the Gaussian
function broadens and its maximum decays. The Gaussian form of the dis-
tribution can be justified by the central limit theorem. On a microscopic
level, a particle is subjected to random displacements due to the collisions
with the molecules of the solvent. If one looks at the system at regular
times intervals δt ≫ τ , where τ is the mean collision time of the solvent
molecules with the particles, then one sees a series of random independent
displacements Xi where i is the ith time interval. The position of the particle
up to an arbitrary time t is then the sum St =

∑︁
iXi of these displace-

ments. We assume that there is no drift in the system and therefore, the
mean displacement over many realisations ⟨Xi⟩ is zero. Also, the variance of
the distribution of the displacements is assumed to be finite , meaning that
arbitrarily large displacements are considered to be sufficiently improbable.
With these assumptions the central limit theorem states that St is a random
variable with a Gaussian distribution [22]. For the central limit theorem to
be valid [22], the displacements Xi must be independent. Thus, if the par-
ticle keeps a memory of its former displacements (the displacements are no
more independent of each other), or the displacements are dependent on the
actual position of the particle, the central limit theorem does not apply and
one is faced with anomalous diffusion. For many systems, one is faced with
anomalous diffusion at intermediate timescales. Transient memory effects
can for example be due to the local behaviour of the particles in biological
systems [23, 24]. In this case, the anomalous diffusion is a transient phe-
nomenon as opposed to anomalous diffusion in the limit t → ∞ as we will
encounter in this thesis. The second moment or variance of f(x, t) is called
the mean squared displacement δx2. It is proportional to the time t in the
case of normal diffusion:

δx2 = 2Dt. (1.3)

In the case of anomalous diffusion the relationship between the mean squared
displacement and time is no longer linear. Writing ∆2

x ∝ tα, one speaks of
superdiffusion if α > 1. The particles exhibit subdiffusive behaviour if α < 1.

With the advent of semiconductors, especially transistors and new mate-
rials like graphene, transport phenomena in two-dimensional media became

12



an important field of research. One is for example interested in the transport
properties of electrons in these materials. One way to model the transport
of particles in a two-dimensional plane is the two-dimensional Lorentz gas.
It can exhibit both normal and anomalous diffusion, and due to its sim-
plicity it is still accessible to theoretical exploration and investigation via
computer simulations [25–29]. It can also be investigated experimentally
as a two-dimensional electron gas in a semiconductor heterostructure with
obstacles [29–33].

The two-dimensional Lorentz gas consists of non-interacting point parti-
cles moving on a infinite plane on which fixed scatterers/obstacles are placed.
The tracer particles are reflected i.e. collide elastically with the boundaries
of the obstacles. In this thesis, we consider the case of identical randomly
placed obstacles. Historically the Lorentz gas with circular scatterers was
first used in an attempt by Hendrik Antoon Lorentz to explain the heat con-
ductivity of metals [34]. Apart from this, the Lorentz model has received an
extensive theoretical investigation (see for example [35–39]) to shed light on
multiple aspects of linear transport theory. Especially, it has been proven by
Galavotti [40] that the Lorentz gas can be modelled via the linear Boltzmann
equation at low densities. In the Grad limit, that is in the limit of vanishing
obstacle radius but constant mean free path [41], it exhibits normal diffu-
sion. In Ehrenfests’ wind-tree model [42], a Lorentz gas with equally oriented
quadratic obstacles, subdiffusive behaviour arises in the case of overlapping
obstacles in the asymptotic long-time limit. This is due to the geometry of
the obstacles and has been investigated with a kinetic theoretical approach
by Hauge and Cohen [1, 2, 43, 44] whose results have been hinted at, but not
conclusively settled by numerical simulations done by Wood and Lado [25].
In this thesis, we will extensively simulate the wind-tree model and compare
our results to the theoretical predictions of Hauge, Cohen and van Beyeren
[43, 45].

In the presence of a magnetic B-field perpendicular to the plane of the
Lorentz gas, a transverse current, the Hall current, arises [46]. The transport
of the tracer particles is now described by a diffusion tensor Dij (with i, j =
x, y). The Hall effect is used in many technological applications like Hall
sensors to detect magnetic fields. In the Drude model, valid in the low-
density limit, the interactions between the tracer particles and the obstacles
are described on a coarse grained scale as a friction and the relationship
between the applied magnetic field and the Hall resistance is linear. Although
the Drude theory has been superseded by more involved theories [47–50]
that take into account the memory effects introduced by the presence of a
magnetic field [51–53], the predictions of the Hall coefficient by the Drude
model are quite robust at higher densities. In this thesis, we shall investigate
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CHAPTER 1. INTRODUCTION

this phenomenon and also compare our results with experiments conducted
on a two-dimensional electron gas with circular obstacles.

With increasing density, the tracer particles are hindered to traverse the
entire system. In an infinite system, the maximal density ρc where a particle
can move trough the whole system is called the percolation threshold. At
the percolation threshold an infinite cluster of obstacles forms that has a
fractal structure and the diffusion becomes anomalous. The behaviour of
the system in the vicinity of the percolation threshold exhibits universal
behaviour. If we define the percolation threshold with ρc, and the distance
from the percolation threshold as

ϵ =
ρc − ρ
ρc

, (1.4)

where ρ is the actual density of the system, the diffusion coefficient vanishes
as

D(ρ) ∝ ϵµ, (1.5)

for ϵ > 0. The exponent µ is only dependent on the dimensionality of the
Lorentz gas and does not depend on the geometrical details of the obstacles
and the trajectories. In the presence of a magnetic field the tracer parti-
cles cannot move as far as two times the cyclotron radius from the obstacles
edges. At low densities the average distance between the obstacles increases,
the tracer particles cannot traverse the system because they become trapped
on isolated islands of obstacles. Therefore, a second B-field-induced perco-
lation transition arises [54]. In this thesis, we compute the phase diagram of
the wind-tree model with regard to the field-induced percolation transition.
Furthermore, we will compare the exponents at both percolation transitions.

In the following, this thesis will be organized into five main chapters.
After this introduction, in chapter 2, we will introduce the Lorentz model
and discuss the correlation functions computed in the simulations and the
information one can extract from them in order to describe the transport
properties of the tracer particles. Furthermore we describe the experimental
realisation of the Lorentz gas as a two-dimensional electron gas. In chapter
3, the theoretical models of the two-dimensional Lorentz gas will be dis-
cussed. We start with the simple Drude model and then we derive the linear
Boltzmann equation heuristically, and we present the more general Ansatz
of Bobylev [47–49]. We shall then turn our attention to the results of the ki-
netic theory of the wind-tree model by Hauge and Cohen [1, 43]. Finally, we
discuss the fundamental properties of the Lorentz gas in the vicinity of the
percolation threshold, especially the universal behaviour of the mean squared
displacement and the diffusion coefficient. In chapter 4, we will present the
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computational methods used for the simulations. We will review the han-
dling of the boundary conditions and the implementation of the neighbour
lists to speed up the computations. Here, we also show how to overcome
the numerical difficulties that arose due to the finite precision of computer
arithmetic. Moreover, the method used by Mertens et al. [55] to compute the
percolation transition is presented and we show how to adapt this method
for the computation of the B-field-induced transition. In chapter 5, we will
present the results of my studies. We begin the chapter by presenting the
results of the wind-tree model with non overlapping and overlapping obsta-
cles. Then, we will focus on the Hall effect in the Lorentz gas in the presence
of a magnetic field. In the last part, we will present the universal exponents
obtained at magnetic-field-induced percolation transition.
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2
The Lorentz Gas

Figure 2.1
Example of tracer
trajectories. Top:
circular trajec-
tories in the
presence of a
magnetic field
with oriented
square obstacles.
Bottom: linear
trajectory with
circular obstacles

In this chapter, we will first consider the Lorentz gas as a theoretical model
and give an overview of the quantities needed to characterize the transport
properties of the tracer particles. In the second part, we will discuss the
experimental realisation of the Lorentz gas as a two-dimensional electron gas
(2DEG) with depleted regions acting as the obstacles.

2.1 The Lorentz Gas Model

As stated earlier, the two-dimensional Lorentz gas consists of N random
distributed immovable obstacles (see figure 2.1) at positions ri where i =
1, . . . , N . The vector ri points to the centre of obstacle i taken to be its
geometric centroid. Between the obstacles non-interacting point particles
(tracer particles) move according to Newton’s laws of mechanics until they
are reflected specularly on the contour lines of the obstacles. The magnitude
of the initial velocity v0 of all tracer particles is set to be identical. Due to
the nature of the interactions between the tracer particles and the obstacles,
the velocity magnitude of the tracer particles does no change. We define
the dimensionless density ρ = n · a, where n is the number density of the
obstacles and a the surface of an obstacle.

The transport coefficient of interest for the Lorentz gas is the diffusion
coefficient D. It is related to the mean squared displacement (MSD) of each
tracer particle by the Einstein relation

D = lim
t→∞

δr2(t)

2dt
, (2.1)

where

δr2(t) =
⟨︁
[r(t)− r(0)]2

⟩︁
=

1

N

N∑︂
i=1

⟨︁
[ri(t)− ri(0)]

2⟩︁ (2.2)
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CHAPTER 2. THE LORENTZ GAS

is the MSD of the tracer particles, and d the dimensionality of the system.
The average ⟨·⟩ is taken over all possible different obstacles distributions, and
all possible start positions of the tracer particles. For the sake of readability,
we have written δr2 instead of ⟨δr2⟩. In the long time limit, in the diffusive
case, the MSD is therefore proportional to the time:

δr2 = 2dDt. (2.3)

One can also relate the MSD to the velocity autocorrelation function [56]
by noting that the displacement of a tracer particle during the time interval
[0, t] is given by the integral

r(t)− r(0) =

t∫︂
0

dτ v(τ), (2.4)

where v(τ) is the velocity of the tracer particle at time τ . The mean-squared
displacement can therefore be written as

δr2(t) =

t∫︂
0

t∫︂
0

dτdτ ′ ⟨v(τ)v(τ ′)⟩. (2.5)

One takes the time derivative of the equation above to obtain

d

dt
δr2(t) =

t∫︂
0

t∫︂
0

dτdτ ′ ⟨v̇(τ)v(τ ′)⟩+ ⟨v(τ)v̇(τ ′)⟩ (2.6)

= 2

t∫︂
0

dτ ′ ⟨v(t)v(τ ′)⟩. (2.7)

For a system in equilibrium, this average is independent of the time origin.
One therefore sets τ as the time origin by substituting s = t− τ ′ to obtain

d

dt
δr2(t) = 2

t∫︂
0

ds ⟨v(s)v(0)⟩. (2.8)

By combining equation (2.3) and (2.8), one obtains the Green-Kubo relation
(2.9) for the diffusion coefficient:

D =
1

d

∞∫︂
0

dt ⟨v(0)v(t)⟩. (2.9)
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2.1. THE LORENTZ GAS MODEL

In the two-dimensional case the diffusion coefficient becomes a tensor:

Dij =
1

d

∞∫︂
0

dt ⟨vi(0)vj(t)⟩, (2.10)

where vi and vj with i, j ∈ {x, y} are the Cartesian components of the ve-
locity vector of the tracer particle. We retrieve the longitudinal self diffusion
coefficient in two dimensions as

Dii =
1

2

∞∫︂
0

dt ⟨vi(0)vi(t)⟩, (2.11)

with ii = xx or ii = yy. For the transversal or Hall diffusivity, one has

Dyx = −Dxy =
1

2

∞∫︂
0

dt ⟨vx(0)vy(t)⟩. (2.12)

We note that the off-diagonal elements of the diffusion tensor are only non-
vanishing in the presence of a magnetic field component perpendicular to the
xy-plane.

A more detailed picture of the behaviour of the tracer particles can be
given by also resolving the spatial correlations over time. This information is
encoded by the self-part of the van Hove correlation function defined as [57]:

G(r, t) =
1

N

⟨︄
N∑︂
i=1

δ(r− (ri(t)− ri(0)))

⟩︄
. (2.13)

Here, the function δ(·) is the two-dimensional Dirac delta function. Due to
the spatial isotropy of the Lorentz gas, the van Hove correlation function has
radial symmetry. Thus, in polar coordinates one has

Gs(r, t) =

∫︂ 2π

0

dθ Gs(r, t). (2.14)

The second moment of the van Hove Correlation function returns the
MSD: ∫︂

dr r2Gs(r, t) =
1

N

∫︂
dr r2

⟨︄
N∑︂
i=1

δ(r− (ri(t)− ri(0)))

⟩︄

=
1

N

⟨︄
N∑︂
i=1

[ri(t)− ri(0)]
2

⟩︄
= δr2(t).

(2.15)
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CHAPTER 2. THE LORENTZ GAS

Here, we have used the property
∫︁
Ω
δ(x−a)f(x) dx = f(a) if a ∈ Ω. Assuming

diffusive transport one can make a Gaussian ansatz in two dimensions:

Gs(r, t) = A exp

{︄
−
(︃
r

∆2
r

)︃2
}︄

= A exp

{︃
−1

2

(︂ r
σ

)︂2}︃
, (2.16)

where σ2 = (1/2)δr2. The normalisation constant A is given by

A−1 =

∫︂ 2π

0

dϕ

∫︂ ∞

0

r dr exp

{︃
− r2

2σ2

}︃
= πδr2(t) = 2πσ2. (2.17)

If we set the tracer particles to be located at the origin at time t = 0, we can
make the ansatz Gs(r, 0) = δ(r) and the van Hove correlation function is a
delta peak at the origin. For the asymptotic behaviour one has:

lim
r→∞

Gs(r, 0) = lim
t→∞

Gs(r, 0) = 0. (2.18)

Therefore, in the diffusive case, one has a Gaussian distribution that becomes
broader as a function of time, and the width of the distribution is described
by the MSD.

On way to quantify the deviation from a Gaussian distribution is to use
the fact that Gaussian distributions have vanishing moments mn if n is odd.
The even moments are given by:

m2k =

∫︂ 2π

0

dθ

∫︂ r

0

r dr r2kGs(r, t). (2.19)

Integrating the Gaussian ansatz for Gs(r, t) in polar coordinates, one finds:

m2k = 2kk!(δr2), (2.20)

for k ∈ N. The fourth moment is related to the second moment by m4 = 2m2
2.

Therefore, in the case of a Gaussian distribution the differencem4−2m2
2 must

vanish. This fact is used to define the non-Gaussian parameter [58]:

α2(t) =
1

2

m4(t)

m2(t)2
− 1 =

1

2

δr4(t)

[δr2(t)]2
− 1, (2.21)

where δr4(t) is computed as

δr4(t) =
1

N

N∑︂
i=1

⟨︁
[ri(t)− ri(0)]

4⟩︁. (2.22)

The non-Gaussian parameter measures the deviation of the displacement
distribution from the Gaussian form, and therefore will serve as an indicator
for anomalous diffusion in the limit t→∞.

Now that we have presented the quantities of interest in the Lorentz
model, we shall review the experimental realisation of the Lorentz gas.
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2.2 Experimental Realisation of the Lorentz Gas

Figure 2.2 Cross-section of a GaAs-
Al0.3Ga0.7As heterojunction with a Si δ-
layer.

A two-dimensional electron (2DEG) gas can
be formed at the interface of two semiconduc-
tors. The experiments discussed in this thesis
have been carried out by the group of Prof.
Heinzel at the Institute of Experimental Con-
densed Matter Physics at the Heinrich-Heine
University of Düsseldorf. A semiconductor het-
erostructure of GaAs (Gallium arsenide) and
AlxGa1−xAs (Aluminium Gallium Arsenide) is
used. The parameter x ∈ [0, 1] represents the
ratio of Aluminium atoms randomly replacing
Gallium atoms and is used to tune the conduc-
tion band offset ∆Ec in such a manner that a
quantum well forms at the interface of the het-
erostructure (see figure 2.3). This parameter is
set to x = 0.3 in the experiments. This results
in a conduction band offset of ∆Ec = 300 meV between AlxGa1−xAs and
GaAs [59] (see figure 2.3). The two semiconductors are grown on top of each
other with a thin layer highly doped with silicon atoms (Si δ-layer, see fig-
ure 2.2) at 40 nm of the GaAs-Al0.3Ga0.7As interface. The Fermi levels of
both materials will equilibrate due to some of the doping electrons (about
10%, see chapt. 3.4.2 of Ref. [59]) diffusing into the GaAs substrate. As
a consequence, the conduction band of GaAs bends upwards and that of
Al0.3Ga0.7As bends downwards resulting in the band structure depicted in
figure 2.3. A triangular quantum well is formed at the interface and one
can tune the parameter x and the doping density of the Si δ-layer in such a
way that the equilibrated Fermi level EF of the heterostructure lies above the
bottom of the conduction band. The electrons from the doping layer can now
occupy states in the potential well. Preferably only the lowest state E0 must
be occupied at low temperatures and therefore the system is engineered such
that the Fermi level lies between the lowest and second lowest energy level
of the quantum well. The system is built in such a way that the width of the
potential well in the z-direction is comparable to the Fermi-wavelength of the
electrons, leading to a size quantisation of the wave vectors in the z-direction.
Therefore, in the z-direction, the movement of the electrons is highly con-
fined whereas in the xy-plane the electrons form a two-dimensional electron
gas (2DEG) with an effective electron mass of m∗ = 0.067me in GaAs, where
me is the rest mass of the electrons. The dispersion relation of the 2DEG
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Figure 2.3 Band diagram of a GaAs-AlxGa1−xAs heterojuntion. On the left: Band
diagrams of AlxGa1−xAs and GaAs without contact. EF1 and EF2 are the Fermi
levels in both materials shown as red dotted lines. Ec1 and Ec2 denote the conduc-
tion band bottoms, Ev1 and Ev2 are the top of the valence band in both materials.
The conduction band offset ∆Ec depends on the parameter x. On the right: when
brought into contact, the Fermi levels equilibrate, the bands of both materials bend
while conserving the band offsets at the junction. This results in a quantum well
being formed at the interface. Figure adapted from [60].

corresponds to that of a free electron gas in two dimension:

ϵ(k) = E0 +
ℏ2k2

2m∗ , (2.23)

where k = (kx, ky) are the components of the wave vector in the xy-plane.
The ground state energy E0 corresponds to the lowest wave vector k0 in the z-
direction. In the experiments, the thermal energy of the electron is kept below
the level spacing of 10meV in the quantum well, therefore no other state
than the ground state in the z-direction will be occupied. The velocity of the
current-carrying electrons can be assumed to be that of the Fermi velocity vf
at low temperatures and low applied electrical fields. Therefore, the velocity
of all electrons can be considered identical and constant. This justifies the
choice of a unique velocity magnitude of the tracer particles in the Lorentz gas
simulations. In the experiments discussed in this thesis, vf ≈ 2.1× 105 ms−1

and the electron density ne in the 2DEG is ne = 2.5× 1015 m2 [30].
For this 2DEG to be considered as a Lorentz gas, further conditions must

be met. Scattering mechanisms of the electrons must be reduced as much as
possible. The scattering mechanisms of the electrons are of different nature:

• Scattering due to impurities close or at the interface. This is reduced by
the crystal growing technique itself. The heterostructures used in the
experiments are grown using molecular beam epitaxy [61]. This method
takes place in ultra-high vacuum where the ultra pure solid elements
are evaporated. The elements then slowly condense on the target wafer
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allowing a build-up of the substrate atomic layer by atomic layer. This
method produces ultra-pure samples with interfaces sharply defined on
an atomic scale.

• Electrons can scatter at lattice imperfections. Especially at the inter-
face between two different crystals, lattice mismatches occur that will
scatter the electrons. The lattice mismatch between the two different
components Al0.3Ga0.7As and GaAs is only 0.4% (see chapt. 3.4.2. of
Ref. [59]), and therefore this effect is mostly suppressed due to the
choice of the materials.

• Scattering will also occur at the sites of the ionized Si donors. This is
circumvented by the fact that the doping is bounded to a thin region
that is spacially separated from the 2DEG [62]. Therefore, the elec-
trons only see weak shielded potentials that scatter at small angles (see
chapt. 3.4.2 of Ref. [59])

• Phonon scattering: This is mostly suppressed as the experiments are
carried out at cryogenic temperatures T < 1K [30].

A mean-free path of about 31µm in a 2DEG without obstacles has been
achieved in the experiments.

The obstacles etched into the 2DEG have a dimension of the order of
1 µm [30]. In two dimensions, the Fermi wavelength of the electrons in the
2DEG is given by the relation [59]:

λf =

√︃
2π

ne

. (2.24)

With the electron density given earlier, one finds λf ≈ 50nm. This is much
smaller than the obstacles dimensions and justifies the classical treatment
of the electrons in the xy-plane. The obstacles correspond to holes in the
2DEG that form if one removes the doping layer via etching. This depletes
the quantum well below the etched region and the electron density is zero.
One has to note that the depleted area is slightly larger than the etched
region. This depletion length needs to be taken into account as it increases
the effective size of the obstacles. In the experiments considered in this
thesis, the depletion length was estimated to be approximatively 75 nm [30].
The patterns of the holes are projected via electron beam lithography on the
structure coated with a resist, then, the desired regions are etched away. A
detailed explanation of the method can be found in reference [60]. These
manufacturing procedures allow for sharp edges at which the electrons are
scattered elastically.
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Figure 2.4 Sketch of a Hall bar geometry: The 2DEG is located in the yellow
region. Ohmic contacts are attached in the blue zones to allow for injections of
currents or voltage measurements. The applied B-field is perpendicular to the xy-
plane. In the experimental setup an alternate current of 17Hz is injected between
the contacts 1 and 2. Figure adapted from [60].

The final experimental setup is a 2DEG on a Hall bar (see figure 2.4). The
2DEG resides at about 150 nm [30] below the surface in the xy-plane (yellow
area). Ohmic contacts have been added (blue areas) to be able to monitor the
voltage drop along the system and inject currents. The quantities of interest
are the longitudinal voltage drop VL and the transversal/Hall voltage drop
as response to an injected current. As one can see in figure 2.4, a low-
frequency current (17 Hz) [60] is injected between the contacts 1 and 2. The
longitudinal voltage is measured between contacts 3 and 4, and the Hall
voltage between the contacts 4 and 5. Although the measurements could be
carried out with a constant current, using a signal with a frequency reference
enables the use of a lock-in amplifier and low pass filters to filter out the
noise in the measurements [60]. The measured voltages are still related to
the resistances via the common DC Ohms law as the phase shift between
current and voltage is negligible at low frequencies. One has

Rxx =
VL

I
= ρxx

L

W
, (2.25)

Rxy =
VH

I
= ρxy. (2.26)

Here, ρxx and ρxy are the components of the magnetoresistivity tensor. I is
the injected current, L and W are the length and width depicted in figure 2.4.
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In the next chapter, it will be shown how to relate the components of the
magnetoresistivity tensor ρij to the components of the diffusion tensor Dij.
Furthermore, we shall explain how to relate the experimental results with
the quantities obtained from the simulations.

25



CHAPTER 2. THE LORENTZ GAS

26



3
Aspects of Transport Theory in

the Lorentz Gas

In this Chapter, we will outline different transport theories of the Lorentz gas.
To start, we present the Drude model, then, the Lorentz-Boltzmann model.
Both theories assume uncorrelated collisions between the tracer particles and
the obstacles. A more general Boltzmann equation derived by Bobylev et
al. [48], that takes into account the memory effects due to the presence of a
magnetic field, is then presented. We will also outline the kinetic theory of a
special case of the Lorentz gas, namely Ehrenfests’ wind-tree model. In this
model, in the case of overlapping obstacles, memory effects cause anomalous
diffusion in the limit t → ∞. The end of the chapter will be dedicated to
the anomalous diffusion in the vicinity of the percolation threshold in the
Lorentz gas.

3.1 Drude Model

The empirical Wiedemann-Franz law
κ

σ
∝ T. (3.1)

states that the ratio between the heat conductance κ of a metal and its elec-
tric conductance σ is proportional to its temperature T and approximately
the same for different materials. At the end of the 19th century, in an attempt
to explain this law, Paul Drude build a microscopic model by considering free
charged point particles and their interactions through collisions with a back-
ground of fixed ion cores [63]. Drude was not aware of the exact nature
of those charged particles (we have to keep in mind that the Rutherford
model dates from 1911 [64]). He assumed positively or negatively charged
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currents [65]. It was Hendrik Antoon Lorentz in his paper of 1905 [34] who
assumed one kind of charged particles with identical mass known today as
the electron.

The main assumptions of this model are as follows [66]:

1. The electrons are considered to be point particles that behave as an
ideal gas that moves between fixed ion cores.

2. The ion cores are considered to be hard spheres, and the only interac-
tions between the electrons and the ion cores are instantaneous elastic
collisions.

3. Between collisions, the electrons move according to Newton’s equations
of motion with or without an external field.

4. The collision events occur on average after a mean free time τ and are
distributed according to a Poisson distribution.

5. After a collision, an electron has a random velocity direction.

With the assumptions above, we can derive an equation of motion for the
electrons. As we have seen in section 2.2, all the electrons move with the
Fermi velocity vf . If we consider the average velocity ⟨vf⟩, it is clear that it
is zero in the inertial frame of reference of the Lorentz gas, as all electrons
move in random directions. If we apply a constant external electric field E,
the electrostatic force F = −eE will induce a drift velocity

v(t) = −eEt
me

. (3.2)

After the mean free time τ a collision with an ion core occurs that randomizes
the built up drift velocity again. On average the drift velocity take the value
of

v̄ = − eτ
me

E. (3.3)

We shall note that the presence of a magnetic field B will not induce any
drift as ⟨vf⟩ × B = 0. The collisions of the electrons are now modelled by
a frictional force that dissipates the energy and momentum gained during
the average period of time τ . One therefore introduces a Stokes type friction
term

ζv̄ =
me

τ
v̄, (3.4)

and write down a Langevin equation without a noise term as equation of
motion

me
dv̄

dt
= −e(E+ v̄ ×B)− mev̄

τ
. (3.5)
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In the absence of a magnetic field, and if one considers all the spatial direc-
tions to be isotropic, equation (3.5) becomes

me
dv̄

dt
= −eE − mev̄

τ
. (3.6)

The steady state solution is found by setting dv̄/dt = 0 and reads

v̄ =
eτ

me

E = µE, (3.7)

where µ = eτ/me is called the electron mobility. It is the proportionality
constant between the applied electric field and the average drift velocity of
the electrons. By defining the current density j = enev̄, where ne denotes
the electron density, we get the Ohm’s law in the Drude model

j =
nee

2τ

me

E = neeµE = σ0E, (3.8)

in one dimension, where σ0 is called the zero-field Drude conductivity.
In the case of a two-dimensional Lorentz gas in the xy-plane subjected

to a constant magnetic field in the z-direction B = (0, 0, Bz), equation (3.5)
becomes

eEx + vyeBz +
me

τ
vx = 0 (3.9)

eEy − vxeBz +
me

τ
vy = 0 (3.10)

in the steady state. With the angular cyclotron frequency ωc =
eB
me

, one can
rewrite the equations above in terms of the currents jx = enev̄x , jy = enev̄y
and the zero-field conductivity σ0 leading to

Ex =
1

σ0
vx +

ωcτ

σ0
vy , (3.11)

Ey = −
1

σ0
vy +

ωcτ

σ0
vx , (3.12)

which has the matrix form(︃
Ex

Ey

)︃
=

(︃
ρxx ρxy
ρyx ρyy

)︃(︃
jx
jy

)︃
, (3.13)

where
ρxx = ρyy = σ−1

0 =
me

nee2τ
= ρ0, (3.14)
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and
ρyx = −ρxy =

ωcτ

σ0
=

B

ene

= RHB. (3.15)

Equation 3.13 has the form of Ohm’s law

E = ρ · j, (3.16)

where ρ is called the magnetoresistivity tensor. We can see that the lon-
gitudinal components ρxx = ρyy are independent of the applied magnetic
field and only depend on the scattering time τ . The transversal components
ρyx = −ρxy are linear in B where the slope RH = (nee)

−1 is called the Hall
coefficient.

The inverse of the magnetoresistivity tensor σ = ρ−1 is called the mag-
netoconductivity tensor with which we can write Ohm’s law as

j = σE. (3.17)

For the two-dimensional Lorentz gas, it is obtained by matrix inversion and
reads in terms of ωc and σ0:

σxx = σ0
1

1 + ω2
cτ

2
, (3.18)

σxy = σ0
ωcτ

1 + ω2
cτ

2
, (3.19)

where one also notes that σxx = σyy and σxy = −σyx. The components of
σ and ρ are plotted in figures 3.1 and 3.2. In numerical simulations, one
extracts the components of the conductivity tensor from the velocity auto-
correlation function and computes the magnetoresistance afterwards using
the relationships

ρxx =
σxx

σ2
xx + σ2

xy

, (3.20)

and
ρxy =

σxy
σ2
xx + σ2

xy

. (3.21)

The components of the magnetoresistivity tensor ρxx and ρxy from above,
are the quantities also extracted from the experiments (see equations 2.25
and 2.26). We shall see now how to relate these quantities to the results of
the simulations. This is done by noting the fundamental relation between
the diffusion tensor and the conductivity [67]:

σij =
nee

2

m∗v20
Dij. (3.22)
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Figure 3.1 Components of the mag-
netoconductivity tensor for the two-
dimensional electron gas. For B =
µ−1 one gets σxx = σxy, in the frame-
work of the Drude theory

Figure 3.2 Components of the mag-
netoresistivity tensor for the Drude
theory. The slope of xy-component
is the Hall coefficient RH = (nee)

−1

As the simulations and experiments are done with different units, it is advan-
tageous to work with reduced units to be able to compare the results. In the
simulations, the Fermi velocity vF ≡ v0, the effective electron mass m∗ ≡ m0,
the elementary charge e ≡ e0, and Planck’s constant h have been set to unity.
Furthermore, the characteristic length scale of the obstacles l0 (radius or the
length of the edges) defines the basis unit of length in the simulations. From
this set of basic units v0,m0, e0, l0 and h we can derive all the other relevant
units as given in table 3.1. To compare the results in reduced units one can
plot for example Dij/D0 against B/B0 by computing the corresponding D0

time: T0 =
l0
v0

magnetic field: B0 =
m0

e0T0

diffusivity: D0 = v0l0

conductivity: σ0 =
nee

2
0l0

m0v0

resistivity: ρ0 =
1

σ0

Table 3.1 Units derived from v0, m0, e0, l0, and h
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and B0 from the units of the experiments and the simulation.
One of the shortcomings of the Drude theory of electrical conduction is

that electrons do not behave classically. Their velocity distribution is not
governed by the classical Maxwell-Boltzmann distribution but by the Fermi-
Dirac distribution [68]. The electrons should be treated as a Fermi gas. The
details of the quantum mechanical aspects of the Lorentz gas are beyond the
scope of this thesis. We shall note that the Drude model does not take into
account the exact microscopic interactions between the electrons (or tracer
particles) with the atomic cores (or obstacles). It is a theory on a coarse-
grained scale, that replaces the interactions with the medium in which the
particles move, by a friction force. In the Lorentz-Boltzmann model that we
present in the next section, the collisions between the tracer particles and
the obstacles are explicitly taken into account.

3.2 Lorentz-Boltzmann Model

In the following, we outline the derivation of the Boltzmann equation in
the Grad limit for the two-dimensional Lorentz gas. The starting point
is the description of the system in the phase space. The phase space of
a two-dimensional Lorentz gas with N particles has 4N dimensions and
is spanned by the 2N dimensional position and momentum vectors rN =
{x1, y1, x2, y2, · · · , xN , yN} and pN = {px1 , py1 , px2 , py2 , · · · , pxN

, pyN},
respectively. The system can be described by the phase space probability
distribution function fN(rN , pN ; t), which gives the probability to find the
system at a certain point in the phase space. The time evolution of the this
probability function is governed by the Liouville equation [69]

dfN

dt
=
∂fN

∂t
+

N∑︂
i=1

(︃
∂fN

∂ri
· ṙi +

∂fN

∂pi

· ṗi

)︃
= 0, (3.23)

where ri and pi are the position and momentum vectors of particle i respec-
tively, and H the yet to be specified Hamiltonian of the system. Recalling
Hamilton’s equations of motion

ṙi =
∂H
∂ṗi

, ṗi = −
∂H
∂ṙi

, (3.24)

and the Poisson bracket, defined by

{A,B} =
N∑︂
i=1

(︃
∂A

∂ri
· ∂B
∂pi

+
∂A

∂pi

· ∂B
∂ri

)︃
, (3.25)
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we get the well-known form [69]

dfN

dt
=
∂fN

∂t
+
{︁
H, fN

}︁
= 0. (3.26)

As we assume that the tracer particles do no interact with each other,
their distribution functions must be independent. Therefore, the N -particle
distribution function of all particles can be written as a product of identical
one-particle distribution functions

fN(rN ,pN ; t) =
N∏︂
i=1

f(ri, pi; t). (3.27)

In an homogenous external field F the second Hamilton equation for one
particle is of the form

ṗi = Fi (3.28)

and equation (3.23) reduces to(︃
∂

∂t
+ vi∆r +

∂

∂pi

· Fi

)︃
f(ri, pi; t) = 0. (3.29)

Equation (3.29) is called the collisionless Boltzmann equation. We can drop
the index i as all particles are considered to be identical.

Up until now, we have considered only the tracer particles of the Lorentz
gas. The collisions with the obstacles should now be taken into account. Due
to the collisions, the right-hand side of equation (3.29) is no longer zero and
one introduces formally a so-called collision term on the right-hand side,(︃

∂

∂t
+ v∆r +

∂

∂pi

· F
)︃
f(r, p; t) =

(︃
∂f(r, p; t)

∂t

)︃
coll

. (3.30)

The collision term is non-trivial as it captures the geometry of the obstacles,
and also in general needs to account for multiple collisions of the tracer
particle with different or identical obstacles. It is therefore impossible to
write down this term without any further assumptions.

One possibility to derive a collision term for the Boltzmann equation of
the Lorentz gas at low density with circular obstacles of radius robs is based
on the following assumptions [40, 70]:

1. A tracer particle hits the same obstacles only once.

2. Successive collisions are uncorrelated.

3. The size of the obstacles are negligible and the obstacles are circular.
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This leads to the notion of mean free path. For small densities ρ = Nr2obs/V =
nr2obs with n = N/V being the number density, a tracer particle sees a collision
after having travelled an average distance λ = (2nrobs)

−1. One now takes
the Grad limit: in two dimensions it consist of taking the limit robs → 0 and
N →∞ while keeping the product Nrobs constant [41, 47]. As a consequence,
the mean free path λ is kept constant. It is the length scale that characterises
the collision process. One sees also that the density ρ ∝ Nr2obs vanishes in that
limit. Therefore, the Grad limit is a low-density limit. One can intuitively
see that the Grad limit enforces assumptions one and two. If the radius of the
obstacles vanishes then the probability to scatter on a previously encountered
obstacle by a random collision sequence also vanishes. Now one can make
the "Stosszahlansatz" for the collision integral [70]:(︃

∂f(r, p; t)

∂t

)︃
coll

=

∫︂
dp′ (K(p′|p)f(r, p′; t)−K(p|p′)f(r, p; t)) . (3.31)

This term can be derived formally in the framework of the BBGKY hierarchy
(see for example [71]). But this would be beyond the scope of this thesis as
it is not relevant for the further considerations. The term K(p|p′) f(r, p; t)
represents the loss term, i.e. the probability flux per time unit of particles
with momentum p being scattered and resulting in a momentum of p′ after
the collision. The distribution f(r, p; t) representing the a priori probability
of finding a particle at position (r, p) in phase space at time t and K(p|p′) the
transition probability from p to p′. Conversely the term K(p′|p)f(r, p′; t)
represents the gain term, i.e. the amount of particles being scattered from p′

to p. One gets already the intuition that the quantities K(p|p′) and K(p|p′)
must be related to the differential scattering cross-sections of the obstacles.

Due to the conservation of momentum and kinetic energy during the col-
lision process, the magnitude of the velocity vectors do no change, only the
direction of the velocity vector is affected by the collisions. We set the the
masses and velocities of all particles to unity. The one-particle distribution
function f(r, p; t) can be written as f(r, ϕ; t), where ϕ = ∠(v, x̂) is the
angle between velocity vector of the particle and the x-axis. We also set the
external field to zero and assume spatial homogeneity leading to a distribu-
tion function independent of position. Gallavotti [40] has proven that in the
case of the low-density Grad limit for Poisson distributed scatterers, equa-
tion (3.31) is exact in the sense that it is not an approximation and reflects
the exact dynamics of the model in that limit in the absence of a magnetic
field. The equation takes the form [48](︃

∂

∂t
+ ω∆ϕ

)︃
f(ϕ; t) = ν

∫︂ π

−π

dψ g(ψ) [f(ϕ− ψ; t)− f(ϕ; t)] . (3.32)
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The diffusion term ω∆ϕ with the cyclotron frequency ω = eB/me captures
the curvature of the trajectories in the presence of a magnetic field B. The
collision frequency is given by ν = nvΣ = τ−1, with Σ =

∫︁ π

−π
dϕσ(ψ) being

the total scattering cross section. The term g(ψ)/Σ defines the dimensionless
differential cross section with ϕ being the scattering angle. One notes that for
circles Σ = 2r and therefore in the low-density limit for v = 1, one retrieves
the mean free time τ = (2rn)−1.

If a finite magnetic field is switched on that is perpendicular to the plane
of the Lorentz gas, the trajectories becomes circular invalidating the key
assumptions made by taking the Boltzmann-Grad limit (also see figure 3.3):

• Circular trajectories have a finite probability P0 of not scattering with
any obstacle even in the Grad limit. This fraction of trajectories have
a scattering time τ =∞.

• With an increasing magnetic field, the trajectory will have a non-
vanishing probability to scatter on the same obstacle multiple times.
This is not compatible with the Stosszahlansatz.

To circumvent this problems one can build a model by making some
assumptions as in reference [47, 48] that are valid in the Grad limit:

• A tracer particle either remains collisionless (cycling particle) or it col-
lides with infinitely many different obstacles (wandering particle). This
assumption is due to the fact that a particle hitting an obstacle mul-
tiple times will form a rosette trajectory with uncountably infinitely
rotating petals and therefore exploring the surroundings of the obsta-
cle (exceptions are of measure zero). It will therefore encounter another
obstacle with a high probability at moderate densities and low B-fields.
It shall be noted that we will discuss the notion of moderate densities
in conjunction with the percolation transitions later in this chapter.

• An electron can only recollide with a given scatterer if no other scatterer
has been hit in the mean time. This assumption is valid in the Grad
limit as the probability to return to an obstacle encountered before
tends to zero.

• After s collisions with the same obstacle the total scattering angle is
sϕ where ϕ is the scattering angle of the first collision.

Using the assumptions above, Bobylev et al. [48] derived a more general
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Figure 3.3 Pathological trajectories arising due to a magnetic field that acts per-
pendicular to the xy-plane: On the left, the tracer particle hits the same obstacle
multiple times, whereas on the left no collisions occur. We call the particles with
no collision "orbiting" particles.

Boltzmann equation(︃
∂

∂t
+ ω∆ϕ

)︃
fG(ϕ; t) = (3.33)

[t/T ]∑︂
s=0

P s
0 ν

∫︂ π

−π

dψ g(ψ)
[︁
fG(ϕ− (s+ 1)ψ; t− sT )− fG(ϕ− sψ; t− sT )

]︁
.

(3.34)

Here, fG(ϕ; t) is the distribution function of the wandering particles only.
The collision term can be seen a weighted summation of the collision terms
arising after s recollisions with the same scatterer. Setting s = 0 retrieves
the original equation (3.32). Here T is the cyclotron period, and [t/T ] is the
number of periods elapsed during time t. Before the result of the equation is
given, it is important to note that the one-particle distribution fG disregards
the orbiting particles. Assuming circular obstacles again, for a trajectory not
to collide with any obstacle, no obstacle centre must be located between the
two circles with radius rtr ± robs. The area of this ring is S = 2πrtr · 2a =
2πrtr/λ. Given a two-dimensional Poisson point process with number density
n, the probability of a surface of measure S to be empty is given by

P0 = exp(−n · S) =⇒ P0 = exp

(︃
2πrtr
λ

)︃
. (3.35)

The solutions of the more general Boltzmann equation (3.33) are given by
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Figure 3.4 Examples of trajectories not captured in the Grad limit. The two
examples on the left depict highly correlated collisions between two obstacles. More
complex schemes like ring collisions with any amount of obstacles also are not taken
into account in the Grad limit. The right side depicts the special case of the wind-
tree model with overlapping obstacles. Here due to retroreflection, the trajectory
is being folded back onto itself, therefore the same obstacles are being collided in
reverse order. This memory effect does no vanish even for infinite times.

[47, 48]:

Dxx =
v2

2
(1− x2)τD(x)

1

1 + ω2
cτ

2
D(x)

(3.36)

Dxy =
v2

2
(1− x2)τD(x)

ωcτD
1 + ω2

cτ
2
D(x)

(3.37)

where

τD(x)
−1 = ν

[︃
1− 1− x2

2x2

(︃
1− x2

2x
log

(︃
1 + x

1− x

)︃
− 1

)︃]︃
(3.38)

is the effective diffusion mean free time, and 1− x2 = 1− P0 is the fraction
of particles traversing the system. In the limit B → 0, it follows x→ 0 and
τD(x)→ τ0, then equations (3.36) and (3.37) take the form of equations (3.18)
and (3.19) derived in the Drude model.

This generalisation of the linear Boltzmann equation still only holds in
the Grad limit and therefore at low densities and vanishing obstacles sizes.
For finite-sized obstacles, even at moderate densities, the collisions cannot be
considered to be uncorrelated any more. Also, depending on the geometry of
the scatterers, the assumption made in the Grad limit that a particle will not
scatter with previously encountered obstacles can not be upheld for finite-
sized geometries even at very low densities (see figure 3.4). The hope is to
tackle these memory effects with a kinetic theory that provides a density
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expansion of the diffusion coefficient of the form

D = DB +D1 · ρ+D2 · ρ2 + ... (3.39)

The aim of the next chapter is to provide an overview of the possibilities
and limitations of such an ansatz for a simpler model, namely Ehrenfests’
wind-tree model [42].

3.3 Ehrenfests’ Wind-tree Model

Figure 3.5 T-particle of the wind-tree
model with example trajectories of the
tracer particles

In the Lorentz-Boltzmann model, we have
made the Stosszahlansatz. Thus, we have
only considered uncorrelated collisions of
one tracer particle with one obstacle. This
corresponds to the binary collisions in a
monoatomic gas. This assumption makes
sense for very dilute gases. For gases at
higher densities terms involving more than
two particles start to play a role as the in-
teraction between many particles on short
timescales become more probable with in-
creasing density. Therefore, it seems natu-
ral to attempt a correction of the transport
coefficients derived in the low-density limit
by taking into account particle collisions of

higher order. Such a systematic expansion was first introduced by Bogoliu-
bov [72]. Later Dorfmann and Cohen showed that such an expansion does
not exist in general [73], as terms involving three particles diverge in 3 dimen-
sions [36, 37]. For the Lorentz gas with circular obstacles in two dimensions,
one can show that terms already involving 2 scatterers (second order in the
density expansion) do not converge (see chapt. 5.1 in Ref. [74]). These di-
vergences contain terms in powers of log(ρ), and are due to ring collisions
that are overemphasized with growing particle distances and therefore di-
verge in the limit ρ → 0. Resummations techniques have been developed
especially in conjunction with a series expansion of the inverse diffusion co-
efficient D−1 to tackle those divergences [75]. But nevertheless expansions
to higher order are only possible in very simple models and are very tedious
with limited success. For Ehrenfests wind-tree model (EWTM), the terms
involving ring collisions with two obstacles do not diverge as in the case of
circular obstacles. The divergence is suppressed because of the discreteness
of the velocity space [1, 43]. An expansion of the inverse of the diffusion
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coefficient has been done up to the second order in the density by Hauge
and Cohen [1, 43]. We shall outline the main steps of their calculations and
elucidate why a direct expansion of the diffusion coefficient is not possible.
We will also show that for the case of overlapping obstacles one finds a cor-
rection of the Boltzmann diffusion term, whereas for overlapping obstacles
the diffusion coefficient vanishes in the long time limit.

The EWTM [42] is a two-dimensional Lorentz gas with randomly dis-
tributed square obstacles (the trees). The diagonals of length 2a are rotated
in such a way that one of the diagonals is parallel to the x-axis of the plane.
The tracer particles (wind particles) are only allowed to move in four direc-
tions, namely up, down, right, and left. In this model one is interested in
the behaviour of the self diffusion coefficient D. The staring point of the
derivation is the Laplace transform of the Green-Kubo relation given by [67]

D = lim
ϵ→0

1

2

∫︂ ∞

0

dt e−ϵt ⟨v(0) · v(t)⟩ . (3.40)

where v(t) is the velocity of a tracer particle at time t and the average ⟨ · ⟩
is taken over all possible starting positions with initial velocity v0 at time
t = 0 for all possible configurations of the obstacles. The quantity ϵ has
the dimension of a frequency, and in the limit ϵ → 0 one retrieves equation
(2.9). In a finite volume, the MSD is bounded. Therefore, one must take the
thermodynamic limit V → ∞, N → ∞ with N/V = n, before integrating
over time.

The magnitude of the velocity is a conserved quantity and one can rewrite
the equation above as

D = lim
ϵ→0

1

2

∫︂ ∞

0

dt e−ϵt

∫︂ ∞

0

dv ϕ(t)v · ϕ⃗1(v, t). (3.41)

The average over all directions is now contained in the function ϕ⃗1(t) that
returns the average velocity of the moving tracer particle after a time t having
started at t = 0 with the velocity v⃗0. The function ϕ(v) is the probability
distribution of the magnitude of the velocity. As in the EWTM all tracer
particles are assumed to have the same magnitude, one sets ϕ(v) = δ(v−vo).
Using the property of the delta function

∫︁
Ω
δ(x − a)f(x) = f(a), for a ∈ Ω

in equation (3.41) one obtains

D = lim
ϵ→0

1

2
v0

∫︂ ∞

0

dt e−ϵtϕ⃗1(t) = lim
ϵ→0

1

2
v0 ϕ⃗

L

1 (ϵ). (3.42)

One can absorb the integral over ϵ into ϕ⃗
L

1 (ϵ), which then is the Laplace
transform of ϕ⃗1(t). For ϕ⃗1(t) to be given explicitly, we shall first look at the
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Hamiltonian of one tracer particle in a given configuration of N obstacles
with coordinates QN = {Q1, · · · ,QN}:

H(r,QN) =
p 2
0

2m
+

N∑︂
k=1

V (r−Qk) +
∑︂
k<l

W (Qk −Ql). (3.43)

Here p0 is the momentum of the tracer particle and p2
0 is constant. The

potential part V (r−Qk) encodes the interaction between the tracer particles
and the obstacles. It is given by

V (r,QN) =

{︄
∞, if r lies inside of an obstacle,
0, otherwise.

(3.44)

The last part W (Qk − Ql) encodes the interaction between the obstacles
themselves. With this term, one can enforce the two different setups of
the Lorentz gas to be investigated, namely the overlapping and the non-
overlapping cases. W (Qk−Ql) = 0 for all obstacles, describes the overlapping
case. By setting

W (Qk,Ql) =

{︄
∞, if the obstacles k and l overlap,
0, otherwise,

(3.45)

one implements non-overlapping obstacles. The time evolution of the velocity
is governed by the operator Ô(t) = etL(r,Q

N ) where the Liouville operator is
given by L(r, QN) =

{︁
H(r,QN), ·

}︁
, and {·, ·} are the Poisson brackets (see

equation (3.25)). The canonical distribution ρ(r,QN) of one moving particle
and N scatterers is given by

ρ(r,QN) =
e−H(r,QN )

ZN

(3.46)

with
ZN =

∫︂
· · ·
V

∫︂
dr dQN e−H(r,QN ), (3.47)

the canonical partition function. The average ϕ⃗1(t) can now be written as

ϕ⃗1(t) = lim
N→∞,V →∞
N/V=n

∫︂
· · ·
V

∫︂
dr dQN ρ(r,QN)etL(r,Q

N )v0 (3.48)

in the thermodynamic limit. In the Zwanzig scheme [76], this quantity is now
used for the formal density expansion of D−1. Using the Laplace transform∫︂ ∞

0

dt e−ϵtetL(r,Q
N ) = [ϵ− L(r,QN)]−1 = G(ϵ,QN), (3.49)
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the equation for the diffusion coefficient (3.48) becomes

D =
1

2
v0 lim

ϵ→0
lim

N,V →∞
N/V=n

∫︂
· · ·
V

∫︂
dr dQN ρ(r,QN)G(ϵ,QN)v0. (3.50)

Using 1
1−x

= 1+x+x2+x3+ · · · , a direct expansion of G(ϵ,QN) would have
the form

1

ϵ

(︃
1

1− L(r, QN)ϵ−1

)︃
=

1

ϵ
+

1

ϵ2
L2(r,QN) + · · · (3.51)

and therefore even in the first order with G0 = ϵ−1, the integral

D0 =
1

2
v20 lim

ϵ→0
ϵ−1 lim

N,V →∞
N/V=n

∫︂
· · ·
V

∫︂
dr dQN ρ(r,QN). (3.52)

would diverge in the limit ϵ → 0. This result is not surprising, as for a
vanishing obstacle density, the diffusion coefficient grows. At zero density
the motion of the particles is ballistic. Therefore, one expects a divergence of
D at vanishing densities. To circumvent this problem Zwanzig [76] proposed
an expansion of the reciprocal operator that leads to an expansion of the
inverse diffusion coefficient. One considers the partial average

ϕ⃗
L

1 (ϵ, t) = lim
N,V →∞
N/V=n

∫︂
· · ·
V

∫︂
dr dQN ρ(r,QN)G(ϵ,QN)v0, (3.53)

and rewrites it as formal series

ϕ⃗
L

1 (ϵ) =
1

ϵ

[︄
1 +

∑︂
l=1

nlBl(ϵ)

]︄
v0, (3.54)

that is inverted to express v0 as a function of ϕ⃗
L

1 (ϵ):

v0 =

[︄
ϵ+

∑︂
l=1

nlKl(ϵ)

]︄
ϕ⃗
L

1 (ϵ, t). (3.55)

The ϵ is absorbed in the operators Kl that can be computed from the Bl by
series reversion [76]. The nl are powers of the number density. One can set
ϕL
1v0 = v0ϕ

L
1 , as due to the isotropy of the space one can project the average

on the direction of v0 [36]. Equation (3.42) is then rewritten as

D = lim
ϵ→0

1

2
v20 ϕ

L
1 (ϵ), (3.56)
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and its inversion reads

D−1 = lim
ϵ→0

2

v20 ϕ
L
1 (ϵ)

= lim
ϵ→0

2v20
v40 ϕ

L
1 (ϵ)

. (3.57)

One now multiplies equation (3.55) with v0⃗ from the left to obtain an expres-
sion for v20. Inserting the expression in equation (3.57) one gets

D−1 = lim
ϵ→0

(︄
2ϵ

v20
+
v⃗0
[︁∑︁∞

l=1 n
lKl(ϵ)

]︁
v⃗0

v40

)︄
. (3.58)

Dropping the first term that vanishes in the limit ϵ→ 0, and introducing the
dimensionless quantity

γ(ϵ) = av−3
0 v⃗0

[︄
∞∑︂
l=1

nlKl(ϵ)

]︄
v⃗0, (3.59)

Hauge and Cohen [1, 43] obtained the formal series

D−1 = 2a−1v−1 lim
ϵ→0

γ(ϵ). (3.60)

They derived the exact forms of the operators Kl and the contributions up
to the second order in n. The first contribution is the Boltzmann term and
only accounts for interactions with one obstacle and is therefore identical in
the overlapping and non-overlapping case:

γ1 = av−3
0 v⃗0 n lim

ϵ→0
K1(ϵ)v⃗0 = 2ρ. (3.61)

The second term involving two obstacles is different for the overlapping and
non-overlapping case:

γ2 = av−3
0 v⃗0 n

2 lim
ϵ→0

K2(ϵ)v⃗0 =

{︄
π/9ρ2 (overlapping)
(π/9 + 4)ρ2 (non-overlapping)

(3.62)

There are collision events with more than 2 obstacles that contribute to
the correction in the second order in ρ. These contributions where obtained
by resummations of the binary collision expansions of the higher order opera-
tors Kl with l < 3. Hauge and Cohen [1, 43] classified the main contributions
as:

γI corresponding to ring events of length r, where the tracer particles
collide with the obstacles in the order: 1, 2, 3, · · · , r, 1.
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Order Name Overlapping trees Non-overlapping trees
O(ρ) γ1 2ρ 2ρ

O(ρ2)

γ2 (π2/9)ρ2 (π2/9 + 4)ρ2

γI (4/π)ρ2 (4/π − 17/24)ρ2

γII ≤ 0.1ρ2 ≤ 0.1ρ2

γIII log(∞)ρ2 (91/72− 4/3π)ρ2

Table 3.2 Overview of the correction terms to the inverse diffusion coefficient
as obtained in [43]. The γIII term diverges, thus, the diffusion coefficient in the
overlapping EWTM vanishes for all densities.

Figure 3.6 Examples of collision events: Type I ring event with r = 3. Type II
orbiting event with r = 4, p = 1 and k = 3. Type III retracing event in the case of
overlapping trees.

γII corresponding to orbiting events where the tracer particles collides with
obstacles in the order: (1, 2, 3, · · · , r)p, 1, 2, · · · , k. Here k > 4 p ≥ 1
and 1 ≤ k < r.

γIII corresponding to retracing events where after a certain number of col-
lisions, the obstacles are traversed in reverse order.

Example trajectories of these classes are depicted in figure 3.6, and the
corrections to the Boltzmann diffusion term are listed in table 3.2. One
can see that in the case of the overlapping wind-tree model, the γIII term
diverges logarithmically. This leads to a vanishing diffusion coefficient for
all densities and therefore to anomalous diffusion. Hauge and Cohen [43]
predicted a subdiffusive asymptotic behaviour of the MSD of the form:

∆2
r(t) ∝

3av0
4ρ2

t

ln(t)
. (3.63)

Numerical simulations done by Wood and Lado [25] show a different be-
haviour of the MSD. They found a fractional power law for the behaviour
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Figure 3.7 The left panel shows a retracing event of a W-particle. The distance
between the original and the reflected path can become arbitrarily small. The right
panel shows an "escape channel" in the case of non overlapping obstacles. These
channels are the reason why retroreflection becomes improbable arbitrarily close
to the incoming path.

of the MSD which is a contradiction to the asymptotic behaviour derived
in equation (3.63). The kinetic theory seems to predict a wrong asymptotic
behaviour. Therefore, Van Beyeren and Hauge [45] tried another approach
by considering the retracing events to derive the asymptotic behaviour of the
MSD. Their argument is that in the case of overlapping obstacles, apart from
uncorrelated collisions the only events to consider are the retracing events.
In the case of overlapping obstacles, the tracer particles can be retroreflected
arbitrarily close to their original path. This is not possible in the case of
non-overlapping obstacles, as there are small escape channels between the
obstacles suppressing narrow retroreflection. In figure 3.7, we see that a par-
ticle starting at point Q that is retroreflected, will have its contribution to
D(t) cancelled as it returned to Q′. By trespassing the point Q′ it will on
average have a "negative" contribution to D(t). Van Beyeren and Hauge
derived the behaviour of the MSD as [45]

∆2
r(t) ∝ 4t0DB

(︃
t

t0

)︃(1− 4ρ
3 )

(3.64)

in the limit ρ→ 0. It will be shown in the result section, that this behaviour
is surprisingly robust even at higher densities.

We have seen that the difference between overlapping and non-overlap-
ping obstacles is tremendous in the case of the EWTM. For non-overlapping
obstacles, the diffusion is still normal with corrections to the Boltzmann diffu-
sion term that have been derived in the low-density limit. In the overlapping
case, the diffusion coefficient vanishes in the long time limit and we are faced
with anomalous diffusion and a density dependent exponent of the MSD. In
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chapter 5 we will present the results of extensive numerical simulations of
this system along with an ansatz for the van Hove correlation function in the
overlapping case.

All the results of the previous sections are in the low-density limit. For
increasing obstacle density, the free surface on which the tracer particle can
move across the system gets smaller and smaller. Above a certain obstacle
density ρc the obstacles can no more traverse the system and are trapped
in cages formed by the obstacles. At the density ρc, the system undergoes
a so-called geometric phase transition where a percolating infinite cluster of
obstacles appears. This is a critical phenomenon that also induces anomalous
diffusion at the percolation threshold. In the next section, we shall give a
brief overview of the main results of percolation theory for the Lorentz gas.

3.4 Percolation in the Lorentz Gas

Figure 3.8 example of bond per-
colation on a 8 × 8 lattice. The
orange cluster percolates through
the lattice.

The percolation transition of the obstacles in the
Lorentz gas is an example of a continuum percolation
transition as the obstacles can be located anywhere on
the two-dimensional plane. It is instructive however to
first consider the more special case of lattice bond per-
colation as depicted in figure 3.8. In this simpler case
one considers a square lattice of N × N sites. All the
sites of the cluster have the same probability p to be
occupied. If two adjacent sites are occupied, an imagi-
nary walker could freely move between them. Multiple
connected sites between which the walker can move are
called clusters. If the walker can move from one side
of the system to the opposite side, then there exists a
percolating cluster. One is now interested in the proba-
bility RN(p) that a percolating cluster forms on aN×N
lattice with an occupation probability p. It is intuitively clear that RN(p)
is a monotonically increasing function from zero to one as with increasing
p, the sites of the lattice become more and more connected. On an infinite
lattice, RN(p) becomes a step function R∞(p) that jumps from zero to one
at a well defined probability pc called the percolation threshold. Below pc
no percolation cluster exists while above pc the probability of a percolating
cluster with an infinite number of sites is unity. Therefore, the cluster size
diverges at pc. If one defines the relative distance to the percolation threshold
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as
ϵ =

⃓⃓⃓⃓
p− pc
pc

⃓⃓⃓⃓
, (3.65)

then one finds that many quantities beside the cluster size vary as ϵ−ζ . One
of the main result of percolation theory is that these exponents ζ are uni-
versal. This means that the exponent only depends on the dimensionality of
the system and not on the structural details of the system as shape of the
obstacles, or the nature of the percolation (lattice percolation, bond perco-
lation or continuum percolation). In the following, an overview of the main
universal exponents in two dimensions is given as derived in reference [77] .

The cluster number ns(p) is defined as the number of clusters of size s per
occupied lattice site [77]. At the percolation threshold it decays exponentially
with the cluster size as

ns(pc) ∝ s−τ (3.66)

for s→∞, where τ is called the Fisher exponent [77]. The mean cluster size
S is defined as the expectation value of the number of sites in an arbitrary
cluster. It is given by

S =

∑︁s<∞
s=1 nss

2∑︁s<∞
s=1 nss

, (3.67)

and its behaviour in the vicinity of the percolation threshold is

S ∝ |p− pc|−γ . (3.68)

The mean cluster size diverges at the percolation threshold as an infinite
cluster appears.

The strength of the infinite cluster P gives the probability of an arbitrary
site to be part of the percolation cluster and is defined by

P = p−
∑︂
s

nss. (3.69)

Below the percolation threshold P vanishes, as there is no percolation cluster.
Above pc more and more sites are connected to the percolating cluster and
close to the percolation threshold P scales as

P ∝ |p− pc|β , (3.70)

with p > pc. If one defines l2, as the average squared distance of two sites
belonging to the same cluster [77], then above the percolation threshold the
quantity diverges as

l2 ∝ |p− pc|β−2ν , (3.71)
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whereas the biggest cluster radius ξ diverges as

ξ ∝ |p− pc|−ν . (3.72)

by approaching pc from below. ξ is called the correlation length. All the
quantities above can also be defined in the continuum case and due to the
universality of the above mentioned exponents they are identical to the values
of lattice percolation.

At the percolation threshold the structure of the percolating cluster is
that of a fractal. To be more precise, one can look at the scaling behaviour
of the total area covered by randomly distributed squares, where each square
has an area A. If n is the number density and L is the side length of the
area where the squares are placed, then, the total covered fraction is given
by ψ = 1− e−nA and the total area covered is given by S(L) = L2 ·ϕ. In two
dimensions the surface S(L) scales with L according to

S(αL) = α2S(L). (3.73)

This behaviour is still valid in higher dimensions if one considers a d-dimensional
volume instead of the surface, one has generally

S(αL) = αdS(L), (3.74)

with d ∈ N being the spatial dimension of the system. If the surface has
fractal structure then d is no longer an integer. Especially in the two-dimen-
sional case for the percolation cluster we have d = df = 91/48. The structure
of equation (3.74) exhibits the self similarity of the percolation cluster. It
shows that if one rescales the spacial dimension by a factor of α then it is
sufficient to rescale S(L) by a factor of αdf and therefore the system on large
length scales is just a rescaled version of the system at small length scales.
Such systems show the same behaviour over all length scales. For continuum
percolation in the Lorentz gas the equivalent of occupancy probability p is
the dimensionless quantity ρ = n × A, where A is the surface of the two-
dimensional T-particle. An overview of all the critical exponents mentioned
above is given in table 3.3.

The self-similarity and scaling behaviour of the percolating cluster has a
tremendous effect on the transport coefficients of the tracer particles moving
on the free surface. In the case of the Lorentz gas, the diffusion becomes
anomalous and exhibits universal behaviour in the vicinity of ρc and is gov-
erned by a set of so-called dynamical universal exponents. For times much
greater than the mean collision time τ , the MSD is no longer proportional
to the time as in the case of normal diffusion, and one has

∆2
r(t) ∝ t2/dw . (3.75)
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Exp. Exact Approx.
τ 187/91 2.05
γ 43/18 2.39
β 5/36 0.0139
ν 4/3 1.33
df 91/48 1.89

Table 3.3 Critical exponents as given in [77]

The value dw is called the walk dimension, and takes the value of 2.878(1) [78]
in two dimensions. If one considers the tracer particles moving on all clusters
and not solely on the percolating cluster, then on all finite clusters, the
MSD converges to a constant in the limit of infinite times. This reduces the
critical exponent of the MSD, and in equation (3.75) the walk dimension dw
is replaced by [79]:

z =
dw

1− 1
2
(d− df )

. (3.76)

As one approaches the percolation transition from below, the diffusion coeffi-
cient must vanish. This behaviour is also governed by a universal conduction
exponent µ that is related to the walk dimension and the fractal dimension
via the relation

µ = ν(dw − 2 + d− df ). (3.77)

Here, the exponent also changes to µ∞ = (ν(dw−2)) if one restricts the tracer
particles to the incipient percolating cluster. In numerical simulations, one
can therefore infer the universality class of the system by extracting the
exponents from the MSD and the diffusion coefficient near the percolation
threshold. Another aim of this work was to derive the percolation thresholds

Figure 3.9
Wrapping clus-
ters types from
top to bottom:
x-axis, y-axis.
The last type is
only possible with
periodic boundary
conditions.

for different geometries. One makes use of a result from conformal field
theory [80] that predicts the probability RL(ρc) to find a percolating cluster
on an lattice of size L at the percolation transition. The probability RL(ρc) is
independent of the shape of the obstacles and can be computed exactly in the
limit L→∞ [80, 81]. With periodic boundary conditions one considerers the
formation of wrapping clusters in the x- and y-directions (see figure 3.9). The
probability Re

∞ is defined as the probability of having any kind of wrapping
clusters, whereas Rb

∞ gives the probability to have a cluster that wraps in
both directions. These probabilities are known exactly [55, 80]:

Re
∞ = 0.690473724570168677230 . . .

Rb
∞ = 0.351642853927474898465 . . .
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Figure 3.10 On the left panel a localised particles at high densities versus a localised
particle in the low-density limit on the right panel.

Therefore, one can define an ηeL and ηbL by reading off the abscissa of the
probability distributions Re

L(ρ) and Rb
L(ρ) at the ordinates Re

∞ and Rb
∞,

receptively. It has been shown [81] that the finite size scaling obeys

ηL − ηc ∼ L−11/4 (3.78)

for the rate of convergence. Therefore, by plotting ηL against L−11/4, one
obtains a straight line that can be extrapolated to zero in order to obtain an
estimation of ηec = ηbc = ηc.

In the presence of a magnetic field, a second percolation transition arises
at the low density ρBc . This is due to the fact that for sufficiently large B-
fields, the cyclotron radius of the tracer particle becomes so small that the
particles can no longer traverse the system as it cannot jump from obstacle
cluster to obstacle cluster. Therefore, in contrast to the high density perco-
lation transition where the tracer particles become trapped in cages formed
by the obstacles, the particles are trapped around cluster islands that they
cannot leave (see figure 3.10). Therefore, at low densities the particles be-
come also localized and the diffusion coefficient vanishes. While approaching
the percolation threshold by increasing the density, the length scale of the
clusters that can be reached diverges and also has a fractal structure at the
percolation threshold. It is still an open question whether the critical expo-
nents of both percolation transitions are identical [82].

We have devised a method to compute the percolation threshold of the
magnetic-field-induced percolation transition. As shown in figure 3.11, we
use an effective obstacle that is formed by a dilation (Minkowski sum) of
the original obstacle by a disk of radius rtr. The radius rtr corresponds to
the cyclotron radius of the tracer particle in the magnetic field for which the
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Figure 3.11 Effective T-particle (orange area) with the maximal extent of the
tracer particles trajectory with cyclotron radius rtr. The orange circle represents
the outermost trajectory extent.

percolation transition is to be computed. If two effective obstacles overlap,
this means that the distance between the surfaces of the obstacles is smaller
than 2rtr and therefore, a tracer particle can jump between the two obstacles.
We compute the percolation threshold ρ̃Bc of the effective obstacles and the
percolation threshold ρBc is then simply given by the corresponding density
of the "real" obstacles. The details for the computation of the percolation
threshold for different obstacle geometries are given in the next chapter.
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4
Numerical Simulations

In this chapter, the implementation of the simulation methods used in this
work are explained in detail. In the first section, the methods used for the
time evolution of the tracer particles will be explained. We will also give an
overview of the methods implemented to find the loci of the collisions between
the tracer particles and the trajectories. Then, in the following sections, we
will tackle the numerical problems encountered and explain the novel type
of neighbour lists that we have developed in order to accelerate the simula-
tions. In the last section of this chapter, we will review the algorithm used
by Mertens et al. [55] and the modifications we made to compute the perco-
lation transitions in the Lorentz gas. The complete code of the simulation is
provided via USB stick in addition to this thesis. An overview of the header
files, and directions for compilation and configuration are given in the file
README.TXT. Minimal working scripts are provided.

4.1 Event Driven Simulations

In the simulation approach called incremental time progression, the time
evolution of the system is broken into small time slices Si separated by some
time step δt. Starting at the initial configuration S0, the system state is
updated every time step bringing it from the state Si to the state Si+1. For
hard core potentials, where the particles do not feel any interaction with
the obstacles upon collision, this method is not suitable. This is the case in
the Lorentz gas where the obstacles are formed by line segments or curves.
The collisions are instantaneous and they will mostly lie in between the time
slices. This will result in a computational overhead as we need the exact
position and time of the collisions. Secondly, the trajectory of the tracer
particle between two collisions is so simple (a line or a circular arc), that
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Figure 4.1 Examples of successive collision events ϵi for straight and circular tra-
jectories. The length of the trajectory segment li is given by the travelled distance
of the tracer particle between the two collisions events ϵi−1 and ϵi. The starting
position of the tracer particle can be considered as event ϵ0.

it does not need any further computation. Therefore, it is computationally
more efficient to hop from collision event to collision event instead of hopping
from time slice to time slice. This approach is called event-driven simulation
and the details of its implementation in the case of the Lorentz gas will be
given in the following sections of this chapter.

4.1.1 The Tracer Trajectories

The trajectory of the tracer particle can be seen as a succession of collision
events ϵ0, ϵ1, ... of the tracer particle with the obstacles (see figure 4.1). Be-
tween each collision the trajectory is either a line segment, or in presence of
a magnetic field, a circular arc. The total length l of the trajectory measured
from its starting position is related to the time via ltr = vtr · t, where t is
the time elapsed from the start at the initial position of the tracer particle.
Without loss of generality, as vtr is constant, we can set the velocity vtr of
the tracer particle to one. We can then relate the time directly to the length
of the trajectory. The total time elapsed from the initial position until the
last collision event ϵf is therefore given by the sum of the length of all paths
in between the collisions

tf =

f∑︂
i=1

li, (4.1)

where the length li corresponds to the distance travelled by the tracer particle
between the two events ϵi−1 and ϵi. From this coarse set of events, we can
extrapolate the entire trajectory for every time t̃ we want to compute. One
only needs the enclosing collision events ϵα at position A and ϵβ at position
B, with the corresponding times tα ≤ t̃ ≤ tβ (see figure 4.3). Therefore, one
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Figure 4.3 On the left: every position and velocity between two events ϵα and ϵβ
can be computed via P⃗ (t̃) = A⃗ + k · eAB if the trajectory is linear. On the right:
the angle of the particle position is given by θk = (t̃− tα)/rtr + θα.

propagates the system to the first event ϵβ with tf < t̃.
For a linear trajectory, the position at time t̃ is given by

P⃗ (t̃) = A⃗+ k · eAB, (4.2)

with k = t̃ − tα, where A⃗ is the vector from the origin of the coordinate
system to the the collision point of the event ϵα. The vector eAB is the unit
vector in the direction of the vector AB⃗ between the loci of the events ϵα and
ϵβ, as shown in figure 4.3. For a circular trajectory, the procedure is similar.

Figure 4.2 The
central angle θi is
given by the differ-
ence θβi − θαi those
angles are stored
on the fly at each
timestep.

As the length of a circular arc is given by the central angle of the arc times
the trajectory radius rtr, namely li = θi · rtr, equation (4.1) becomes

tf = rtr

f∑︂
i=0

θi. (4.3)

Here, the central angle θi of each trajectory piece is given relative to the
momentary centre of the trajectory circle ri as depicted in figure 4.2. The
position is then given by

P⃗ (t̃) = r⃗α +

(︃
rtr · cos θk
rtr · sin θk

)︃
, (4.4)

where θk = (t̃− tα)/rtr + θα. Here, θα is the angle of the beginning of the arc
with centre r⃗α on which the tracer particle is at time t̃ (see figure 4.3). We
have arbitrarily set the trajectory to evolve counterclockwise relative to its
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Algorithm 1 Generate Obstacle Distribution
Require:

• Container with N distributed non-overlapping obstacles

• ∆max maximum shift distance
for (sweeps×N) do

Choose a random obstacle.
Shift it by

(︁
∆x
∆y

)︁
with ∆x < ∆max and ∆y < ∆max.

if (Obstacles overlap) then
Accept the new configuration.

else
Reject the new configuration.

end if
end for
return Fluid of non-overlapping obstacles at desired density

axis of rotation. Also, we need a normalized angle in the interval [0, 2π] to
be able to add each central angle in order to get the total propagation time.
As the function std::atan2() of the C++ standard library used to compute
the angles returns values between −π and π, the normalisation is done by
computing

θnorm = θ −
⌊︃
θ

2π

⌋︃
· 2π (4.5)

to shift the values to the desired interval.

4.1.2 Obstacle Placement

Three types of obstacles are used in the simulations: circles, squares and
crosses. The obstacles are placed in a container of area A = Lx ·Ly. Two dif-
ferent cases of obstacle distribution have been considered, namely randomly
distributed overlapping and non-overlapping obstacles. In the overlapping
case, the distribution of the obstacles is a homogenous Poisson point process
that can be sampled by simply drawing random coordinates ( x

y ) from a uni-
form distribution where 0 < x < Lx and 0 < y < Ly. In the non-overlapping
case two protocols where used to generate the obstacle configurations. The
first protocol is called random sequential adsorption, referred to as RSA in
the following. Here, random coordinates are drawn as in the overlapping
case, but the coordinates are rejected if the obstacle to be inserted overlaps
with any obstacle already in place. This process is limited by the jamming
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transition at the maximum coverage1 θj. At this transition the rejection rate
converges to one, and the algorithm never terminates. The second protocol
consist in performing a canonical Monte Carlo relaxation on the non-overlap-
ping obstacles placed by RSA beforehand. The interaction potential between
two obstacles i and j is given by:

Uij =

{︄
0, obstacles i and j do not overlapp
∞, else

(4.6)

With this potential the acceptance criterion becomes very simple as the move
is simply rejected if the obstacles overlap after a random shift. The method
is implemented as described by Algorithm 1. The maximal shift distance
∆max should be chosen in such a way to obtain an acceptance rate of about
50%. For each class of obstacles a member function is implemented to decide
if two obstacles overlap.

4.1.3 Collision Detection

To detect the collision events between the tracer particles and the obsta-
cles, three types of intersections need to be considered: segment-segment,
segment-circle and circle-circle intersections. In the case of a straight trajec-

Figure 4.4
Segment L1 be-
tween the points
P1 and P2, and
segment L2 be-
tween P3 and P4

with intersection
point P̃

tory that intersects square obstacles, crosses or more generally any polygon,
the first type of intersections is to be computed. The representation of two
line segments as in figure 4.4 can be written as

L1 = P1 + k(P2 −P1)

L2 = P3 + l(P4 −P3),

with k ∈ [0, 1] and l ∈ [0, 1]. Setting L1 = L2 and solving for k leads to
the solution [85]:

k =
(y3 − y4)(x1 − x3)− (x3 − x4)(y1 − y3)
(y2 − y1)(x3 − x4)− (x2 − x1)(y3 − y4)

. (4.7)

As k is restricted to the unit interval, we can compare the magnitude of
the numerator in equation (4.7) against the denominator as suggested in
reference [85] (see Algorithm 2)

The starting point of the trajectory segment is the last collision point.
The end point is set by adding k times the unit velocity vector. Therefore,
the parameter k can directly be identified with the elapsed time to the next

1As an example θj = 0.5470735(28) for hard spheres [83], and θj = 0.562009(4) for
parallel squares [84].

55



CHAPTER 4. NUMERICAL SIMULATIONS

Algorithm 2 Test Segment Overlap
if denominator > 0 then

if (numerator < 0 ||numerator > denominator) then
no intersection.

end if
else

if (numerator > 0 ||numerator < denominator) then
no intersection.

end if
end if

collision. If many obstacles lie in the direction of the trajectory path, mul-
tiple intersections will be found. All the resulting k’s are stored and the
smallest k is chosen as the next collision point. We note here that due to
numerical inaccuracy the situation is more involved and one also needs to
store the second smallest k value as will be explained in section 4.1.4. For
circular obstacles and linear trajectories, instead of algebraically solving the
intersection points, it is easier to use geometric considerations to obtain the
intersection points. As one can see in figure 4.5, the two intersection points
P1,2 are given by

P⃗ 1,2 = O⃗ + h⃗± b⃗, (4.8)

where O⃗ is the location of the obstacle centre. Given v⃗⊥, the unit vector
perpendicular to the trajectory rotated clockwise, the vector h⃗ is given by

h⃗ = OC⃗ · v⃗⊥, (4.9)

where OC⃗ is the vector pointing from the centre of the obstacle to the start-
ing point of the trajectory. Using the Pythagorean theorem in the triangle
highlighted in figure 4.5, we get

∥b∥⃗ =
√
R2 − h2 =

√︁
(R + h)(R− h). (4.10)

By taking the scalar product between the velocity vector v⃗ of the trajectory
and the vectors CP⃗ 1,2 between the starting point of the trajectory and the
intersection points, we directly get the distances k1,2 to the next collisions

k1,2 = v⃗ · CP⃗ 1,2. (4.11)

For circular trajectories with polygonal obstacles, the algorithm is identical.
The point O is then the centre of the trajectory, but instead of the length
k, we store the normalized angles θc of the collision points. For circular

56



4.1. EVENT DRIVEN SIMULATIONS

Figure 4.5 Circle-line intersection: The
vector h⃗ is computed first via h⃗ = OC⃗ ·
v⃗⊥. Then, the Pythagorean theorem
is applied to the highlighted triangle
to calculate ∥b⃗∥ . The two intersection
points are then retrieved according to
equation (4.8).

Figure 4.6 Circle-circle intersection:
The vector b⃗ is computed first accord-
ing to equation (4.12). Then, the
Pythagorean theorem is applied to com-
pute ∥h⃗∥ .

obstacles and circular trajectories as depicted in figure 4.6, the calculation is
similar. The norm of b⃗ is given by

∥b∥⃗ =
d2 − r2obs + r2tr

2d
. (4.12)

If the distance d is greater than the distance between the obstacle midpoint
and the centre of the trajectory, there will be no intersection and we can
pass to the next obstacle. Furthermore, if d < |robs − rtr|, there will be
no intersection as well, and we can pass to the next obstacle saving further
calculations. The vertical offset ∥h∥⃗ is again computed using the Pythagorean
theorem

∥h∥⃗ = r2obs − b2. (4.13)

Having found the intersection points, the next step is now to mirror the
trajectory across the normal line to the surface at the intersection point,
in order to propagate the trajectory. Here too, we have four general cases,
associated with the reflection of a linear or a circular trajectory on a line or
a circle. The reflections are calculated using Householder transformations.

Figure 4.7
Tangent verctor
at the intersction
point P on a
cicrcle

Given the unit normal vector t̂ of the reflection hyperplane, the Householder
matrix is given by

H = 1− 2t̂t̂
T
. (4.14)
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Figure 4.8 Reflection of the circular tra-
jectory: The reflected centre of the tra-
jectory is computed by a simple trans-
lation.

Figure 4.9 The vector P⃗ is the vector
from an arbitrary corner of the rectan-
gle to the point P . The vectors ê1 and
ê2 are the unit vectors along the edges
of the rectangle staring from that very
same corner.

For reflections across a segment, one can directly compute the transformation
matrix as the normal vectors of all the segments of an obstacle are stored in
an array. For circles (see figure 4.7), the normal vector is the tangent vector
at the intersection point given by

t̂ =

(︄
−
−→
OP y−→
OP x

)︄
·
⃦⃦⃦−→
OP
⃦⃦⃦−1

, (4.15)

where O is the centre of the trajectory, and P the last collision point. For
circular trajectories the principle is the same. But this time the centre of
the trajectory is mirrored instead of the direction vector of the trajectory.
There is no need to compute the whole Householder matrix. As one can
see in figure 4.8, the trajectory centre can just be translated by the vector
s⃗ = 2b⃗ · t̂, where b⃗ is the vector from the centre of the trajectory to the
collision point.

So far we have considered particle-obstacle collisions, but we also need to
consider obstacles-obstacle overlaps, especially for the sampling of non-over-
lapping obstacle distributions or the computation of the percolation thresh-
old. We can use the same methods already described in the last paragraphs.
First, the overlap of the bounding circles of two obstacles is checked. If they
overlap, then all segments of both obstacles are checked against each other
for intersection. If any two segments intersect, then both obstacles intersect.
Furthermore, we also need to detect if a point lies in an obstacle, as at the
beginning of the simulation the starting positions of the trajectories are to
be set. This is done by rejection sampling: The stating coordinates ( xs

ys ) are
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drawn from a uniform distribution with 0 < xs < lx and 0 < ys < ly. If a
starting point lies inside of an obstacle it is rejected and new coordinates are
drawn. To detect if a point lies in a circular obstacle is trivial. For squares or
rectangles one can use the scalar product between unit vectors (ê1, ê2) along
the edges of the rectangle and a vector P⃗ from one vertex to the point to test
(see figure 4.9). The point lies inside of the rectangle if 0 < P⃗ · ê1 < l1 and
0 < P⃗ · ê2 < l2. Crosses are considered as two overlapping rectangles and the
method above is applied to each of them.

All the methods used to setup the Lorentz gas and to propagate the tracer
particles have been presented. However, due to the finite precision of floating
point numbers, numerical problems arise. In the next section we will explain
the nature of these problems and how they were solved.

4.1.4 Numerical Problems

Floating point numbers have a finite precision. As an example, the data
model on the 64 bit Unix systems used for these simulations is LP64. This
means that the data type int has a size of 32 bits and the data type double
has a size of 64 bits and a precision of 16 digits. This finite precision can lead
to major problems in the computations described in the two last sections.

The first problem that arises naturally is that the intersection points
computed are not exact. Therefore, they lie either slightly inside or slightly
outside the obstacles. This leads to a problem if an intersection point is inside
of an obstacle. While searching the collision of the trajectory with the next
obstacle, an intersection point with the same obstacle will be found. This is
due to the fact that the tracer particle "leaves" the obstacle thus leading to
an additional intersection point very close to the last one. If one now mirrors
the trajectory on this point, the trajectory propagation is erroneous and the
tracer particle can become trapped inside the obstacle.

In the case of linear trajectories and convex obstacles, this problem can
be solved quite easily by just ignoring the new intersection point if it lies on
the same obstacles as the previous one. For circular trajectories or concave
obstacles, the problem is more involved. In these cases, we use the sign
of the scalar product of the velocity vector of the trajectory at the impact
point with the normal vector pointing outwards of the obstacle at the impact
location. As one can see in figure 4.10, an intersection will be considered as
valid if the velocity vector points towards the interior of the obstacle. If the
velocity vector points outside of the obstacle, then the next collision point is
just an artefact due to the finite machine precision. Due to this phenomenon
one needs to keep track of the closest and second closest intersection point.
If the closest point is invalid one has to take the second closest point as new
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Figure 4.10 The scalar product n̂ · v⃗1 with an erroneous intersection will always
be positive in contrast to the case where the velocity vector points to the interior
of the obstacles at the intersection point.

intersection point.
Other problems arise while using the Householder transformations as the

computed Householder matrix (see equation 4.15) is neither exactly orthog-
onal nor normed. To avoid an error propagation, it is crucial to normalise
the velocity vector of the trajectory after each multiplication with the trans-
formation matrix, as it induces a tiny error in the norm at each step. This
error can blow up such that the norm of the velocity vector diverges causing
undefined behaviour of the whole program. Even with the norm of the veloc-
ity vector stabilized, tiny angular errors are introduced by the Householder
transformation. These error are still big enough to destroy the retroreflection
in the wind-tree model at long times. The only way to solve this problem is
to set the orientation of the obstacles in such a way that no computations
are needed for the reflections of the trajectories. For squares and crosses as
obstacles, this can be done by orienting them such that all segments have an
angle of 0 or π/2 with the x-axis. Consequently, one just needs to swap the
signs of the velocity components according to which edge of the obstacle they
collide with (figure 4.11). One could also orient the obstacles so that their
edges form angles of k · π/4 with the x-axis. Then one would also swap the
velocity components of the trajectories as shown in figure 4.11 (right panel).

Subtraction and addition of floating point numbers are also prone to
errors. Subtracting two floating point numbers with a similar magnitude will
lead to the cancellation of the most significant digits [86]. This is worse in
expressions like a2 − b2, as an additional rounding error is introduced due
to the squaring of the numbers1. Therefore, all the expressions containing

1As an example if we considere a = 1 + 2−29 then a2 = 1 + 2−28 + 2−58 and the last
term is not captured due to the machine precision.
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Figure 4.11 Two possible orientations of the square obstacles in order to avoid the
computation of the reflection matrix. In the left case the velocity component vx is
replaced by −vx if the collision happens on the edged 1 and 3, else vy is replaced
by −vy. On the right side if the tracer particles collides with sides 1 and 3 one
replaces (vx, vy) with (vy,−vx), and by (vy, vx), if the collision occurs with sides 2
and 4

terms of the form a2− b2 are rewritten as (a+ b)(a− b) which minimizes the
error.

One also needs to choose the random number generator with care. As
stated earlier, we keep track of the closest two collision points from the last
collision in order to filter out invalid intersections. If two identical oriented
obstacles are overlapping and one of the x- or y-coordinates are identical,
the segments of two obstacles can overlap at the intersection point. This
will result in duplicated intersection points and one might get two identical
erroneous intersection coordinates with the third coordinate being the valid
one. This causes the simulation to get stuck as the same intersection point
is computed again and again. Therefore, one must relay on the fact that
this case is very unlikely. This leads us to the birthday paradox. As an
example, if the underlying random number generator has a bit width of 24
bits, meaning it has 224 different internal states, then drawing 5000 obstacles
coordinates will lead to a probability of p ≈ 0.59 that two or more obstacles
share the same coordinate. Therefore, some obstacles might overlap, and
while averaging over 105 different containers, at least one simulation did
not terminate due to this error. In the case of parallel tasks waiting for the
termination of all tasks, this is not acceptable. This problem was solved using
the C++ 64-bit Mersenne twister engine std::mt19937_64 as the underling
random number generator.

4.1.5 Periodic Boundary Conditions

One way of performing the simulation is to place the start position of the
tracer particle at the centre of a huge container and abort the program once
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the particle has left the container. This approach is inefficient in terms of
memory consumption. The second approach that was preferred in this work
is to use periodic boundary conditions. Thus, a particle leaving the con-
tainer will reenter the container on the opposite side. This method is less
memory consuming and more efficient, but needs a more careful implemen-
tation and is prone to finite size effects if the box size is chosen too small.
With periodic boundaries, care must be taken at the edges of the simulation
box. If an obstacle protrudes an edge of the simulation box, a copy of it
must also be placed at the opposite side of the container. Else, a particle
leaving the container can find itself trapped in an obstacle after re-entering
the box because the collision with its periodic image was ignored. To de-

Figure 4.12
Obstacle I is the
ghost obstacle of
an original ob-
stacle trespassing
the right edge
of the container.
Obstacle II will
have its ghost ob-
stacle at position
(xII − Lx, yII).
The radius robs is
represented by the
orange circle.

tect which obstacles could cross the container boundaries, one considers the
radius robs = max {|r⃗i − r⃗| : r⃗ ∈ {O}} defined as the distance from the co-
ordinate position of the obstacle ri = (xi, yi) (in our case also its centre of
mass), to the outermost point of the obstacle Oi in the set of all obstacles O
(see figure 4.12). Any obstacle closer as rmax (or 2 × rmax in case of Monte
Carlo annealing) to any border must have a ghost image on the other side.

With periodic boundary conditions, the behaviour of the tracer particle
for linear trajectories is straightforward. If no intersections are found inside
the simulation box, the starting point of the last trajectory segment is trans-
lated by ±Lx or ±Ly according to the side that the particle is leaving the
container. In the case of circular trajectories, the situation is more involved
if the trajectory radius is of the same order of magnitude as the container
length. Valid collisions will be detected that would only come into play in
the periodic image of the container as shown in figure 4.13. Therefore, we
need to discriminate between collisions before and after the trajectory has
"left" the container. In previous simulations, it has been shown to be prob-
lematic if one considers the particle intersections with the container walls
as real intersections and then shifts the coordinates by one box length and
setting it as new starting point of the trajectory. Due to the finite precision,
if an obstacle happens to be close to the edge of the container, problems like
trapped particles on the boundaries or particles landing inside of obstacles on
the other side of the container arise. To avoid those complications a solution
is to shift only the trajectory’s centre and its starting point. The intersec-
tions between the tracer particle and the container edges are only computed
to detect if the trajectory can leave the container (see figure 4.13).
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Figure 4.13 As on can see on the left in step I, after the last collision (point A) the
trajectory leaves the container at point c1, hence collision B should be disregarded
for now. We keep track of the two angles of the intersections of the trajectory with
the container θ1 and θ2 relative to the point A. The angles are reordered so that θ1
is the smallest of the two angles. If the trajectory has not left the container, only
intersections with angles smaller than θ1 are considered (blue coloured sector). As
no intersection is found the centre of the particle is moved by −lx and one gets case
II. Here, as the particle has re-entered the box, one only considers intersections
with θ < θ2. If no intersections are found the same procedure is applied in the
other quadrants. In case V the particle has now re-entered his original quadrant. If
one still requires θ < θ2, no intersection would be found. To differentiate between
case I and V a "ratchet" angle θr = 1

2(θ̃1 + θ̃2), between the two last container
intersections was introduced. It is initialised as θr = 0 in the first case and then
computed in all the other cases. Now, if θ1 is smaller than θr (as in case V),
we set θ1 = θ1 + 2π. Reordering swaps the angles and the requirement becomes
θ < θ2 ≡ θ < θ1 + 2π (blue sector) and therefore intersection B is now the next
valid intersection.
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Figure 4.15 Schematic representation of the simply connected list: each list entry
points to the next obstacle number in the same cell. If there is no next obstacle,
the entry is −1.

´

4.2 Accelerating the Simulation

4.2.1 Cell Lists

To accelerate numerical simulations, one can decompose the spatial domain
into smaller regions, in order to pick only the relevant subdomains for the
computation of particle interactions. The data structure used in many sce-

Figure 4.14 All
the obstacles in
the blue square are
associated to the
cell with coordi-
nates (cx, cy). We
can consider the
cells as a grid of
vertices Gc ∈ Z2

narios is the so-called cell list. Its purpose is to reduce the amount of ob-
stacles to check for intersections with the tracer particle. This is done by
restricting the collision search to a cell stencil whose geometry is adapted to
the form of the trajectory. To this end, the simulation box is divided into
smaller quadratic cells of side length lcell. We will show that a good choice is
lcell ≥ 2

√
2robs, where robs = max {|r⃗i − r⃗| : r⃗ ∈ {O}} defined as the distance

from the coordinate position of the obstacle ri = (xi, yi) (in our case also its
centre of mass), to the outermost point of the obstacle Oi in the set of all
obstacles O.

The coordinates (cx, cy) of the cell containing the obstacle are then cx =
⌊xi/lcell⌋ and cy = ⌊yi/lcell⌋. Therefore, the cells form a regular quadratic
lattice Gc ⊂ Z2 with dimensions Ncells = nx × ny. Each cell has the number
nc = cy · nx + cx. Choosing the cells for the stencil is equivalent to the
rasterisation of a geometric shape on the points of the lattice Gc.

The cell list is stored as two arrays of integers, cell_head of length Ncells

and cell_list of length Nobstacles. For the latter we used a data structure
called "singly linked list": The indices i represent the number of the obstacle
i ∈ [0, Nobstacles], and the entries cell_list[i] contain the index of the next
obstacle in the same cell. If there is no next obstacle, the entry at the index is
−1 (see figure 4.15). In order to generate the cell list one proceeds according
to algorithm 3.
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Algorithm 3 Fill Cell List
for each cell number nc do

cell_head[nc] ← −1
end for
for each obstacle number i do

nc ← cell number of obstacle i
cell_list[i] ← cell_head[nc]
cell_head[nc] ← i

end for

4.2.2 Stencils

In order to calculate the next intersection of the trajectory with an obstacle,
we only pick cells that contain obstacles in reach of the trajectory. This
is done by traversing a stencil that contains only the cells relevant for the
search. There are four different types of stencils that are used in the simula-
tions depending on the presence of a magnetic field and the geometry of the
obstacles.

Vertical and Horizontal Stencils

The simplest version is implemented in the wind-tree model with no mag-
netic field. One simply takes all the cells horizontally or vertically in the
direction of the tracer particle, starting one cell behind the cell where the
last intersection has occurred until the edge of the container, adding the two
neighbouring rows or columns. As the stencil is filled in the direction of the
trajectory, one can abort the collision search once a valid intersection has
been found. Care has to be taken that a small tail of cells still needs to be
checked in order to detect all possible collisions (see figure 4.16).

Linear Stencils

More generally, in the absence of a magnetic field, all directions are allowed.
Therefore, the stencil is built by rasterizing a line on the lattice G between
two points A and B. This is done by using the algorithm proposed by
Bresenham [87], that we will describe now.

Without loss of generality, we only consider lines with slopes 0 ≤ m ≤ 1
where m = ∆y/∆x, with ∆x = Bx−Ax and ∆y = By−Ay. This corresponds
to the first octant if the starting point was at the origin of the coordinate
system. As we can see in figure 4.17, starting at P1, the closest point to the
line with abscissa x + 1 will have the ordinate y as m < 0.5 in this case.
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Figure 4.16 In this stencil (grey area) along the trajectory (red line) the collision
detection can be aborted one column after a valid collision has been found (green
dot). This saves computation time as the red area is not processed. Note that the
ordering of the collisions along the trajectory is not conserved between possible
collisions in the same cell or on the same obstacle. One can see that the first
detected collision (green dot) has been detected before the closest collision from
the trajectory’s origin (yellow dot).

Algorithm 4 Error Update
ϵ← m− 0.5
if ϵ ≤ 0 then

ϵ← ϵ+m
else

ϵ← ϵ− 1
end if

Therefore, the next point in our rasterized line has the coordinates (x+1, y).
The error ∆0 in the y-direction is the slope m. To choose the next point with
abscissa x+2, one considers the quantity ∆1 = ∆0+m. If ∆1 < 0.5, the next
point has still ordinate y else, as in our case, it has ordinate y+1. Depending
on this choice the error ∆2 or more generally ∆i+1 is calculated differently.
If we increment the ordinate, we need to account for that by subtracting
one from the error. One can resume the procedure of updating the errors as
shown in Algorithm 4. In order to avoid floating point operations, instead of
checking the sign of ∆i − 0.5 one can rescale the whole procedure by 2∆x as
∆x ≥ 0 and one obtains the Bresenham algorithm (Algorithm 5). In order
to draw lines in the other octants, only minor changes to the algorithm as
swapping ordinates and abscissas are needed. A table detailing those changes
is given in reference [87].

As not only the obstacles in the cells on the rasterized line can interfere
with the trajectory but also the obstacles in the surrounding cells, one needs
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Figure 4.17 Detail of the incrementation process: Starting from the point P1 with
ordinate y, the slope m is added at each step. If the value y +m is greater than
0.5 · ((y + 1)− y), then the next point with abscissa x+ 1 of the line has ordinate
y + 1, else the next point has ordinate y.

to determine the thickness of the cell stencil. The biggest distance in y-
direction between the trajectory and a cell coordinate is lcell/2. This is a
property of the algorithm. In the first octant, the trajectory can pass below
or above the cell with coordinates (cx, cy) (blue cells in figure 4.18). To
account for this one adds the cell with coordinates (cx, cy−1) and (cx, cy+1)
to the stencil (orange cells). Now in the worst case where the trajectory has
a slope m = 1, the closest point to the trajectory that is not in the stencil
is at a distance of l̃ = lcell

2
√
2
. Therefore, to avoid that an obstacle that is not

in the stencil reaches the trajectory, one must choose lcell > 2
√
2 × rmax.

One also needs to keep in mind that for a given starting cell A and ending
cell B every trajectory ab with a ∈ A and b ∈ B will be mapped into the
same stencil. As one sees in figure 4.18 (red dotted lines), the worst offset
in y-direction is then 1.5 × lcell. Therefore, the stencil is extended again by
two cells (hatched orange squares). This treatment can be generalized to the

Figure 4.18
Worse case off-
set (red lines)
between the ras-
terized cells (blue)
and the possible
trajectory. l̃ is the
smallest distance
that the center of
an obstacle can
come close to the
trajectory without
being listed in the
stencil.

first quadrant by noting that for |m| > 1, we only need to switch the x and
y-directions. Consequently, instead of adding extra cells in y-direction, the
cells are added in the x-direction. For the other quadrants, one simply maps
the situation to the first quadrant by interchanging the start and end points
as specified in table I of reference [87].

The end point of the stencil is the cell where the trajectory and the
container wall intersect. Here, two extra steps of the algorithm should be
performed in order to account for the stencil cells still reaching into the
container. Also, one row or column (depending on m), behind the starting
point is added to the stencil. The main advantage of this procedure is that
one selects the cells in the direction of the trajectory. Therefore, one has
a coarse ordering of the obstacles which allows to abort the collision search
before the whole stencil is processed. Once a valid intersection has been
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Algorithm 5 Bresenham algorithm first octant
Require: coordinates (Ax, Ay) and (Bx, By) as integers grid points.

∆x ← (Bx − Ax)
∆y ← (By − Ay)
ϵ← 2∆y −∆x

X ← Ax

Y ← Ay

while (X ≤ Bx) do
if ϵ ≤ 0 then

Y ← Y
ϵ← ϵ+ 2∆y

else
Y = Y + 1
ϵ← ϵ+ 2∆y − 2∆x

end if
end while

found in one cell (as shown in figure 4.16) and the neighbouring cells have
been processed, the collision search can be aborted. This has a major impact
on the efficiency of the programme.

4.2.3 Simple Circular Stencils

In the presence of a magnetic field, the trajectories become circular. For
stronger fields where the cyclotron radius rtr is much smaller than the side
length of the container L, one can use a circular stencil of radius rs = rtr+robs
around the centre of the trajectory. The stencil has the maximum extent
sx = sy = 2⌈rs/lcell⌉ + 1 in the x- and y-directions. As periodic boundary
conditions are implemented, we wrap the stencil around the resulting torus
and trim the stencil if sx > nx or sy > ny. If nx or ny are odd, the stencil in-
dices simply run from ⌊−nx/2⌋ to ⌊nx/2⌋ (or accordingly in the y-direction).
If nx or ny are even, then the stencil indices runs from −nx/2+1 to nx/2 (or
accordingly in the y-direction). The stencil offsets are computed only once by
checking the closest distance between a cell at the origin and each cell in the
index range defined above. If a cell is in the range rs, its offset coordinates
are added to the stencil, else they are discarded. Therefore, one traverses all
cells relevant to the collision search by simply adding the offsets of the stencil
to the cell containing the centre of the trajectory (see Figure 4.19). Also, to
calculate the shortest distance between two cells, one has to remember that
one needs to take the closest points of the two cells as shown in figure 4.19.
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Figure 4.19 Left panel: The grey cells are the cells in the stencil. The yellow point
is the starting point of the trajectory. The normalized central angle θm between the
starting point and each collision point is computed. The point with the smallest
angle is a candidate for the next collision point. Right panel: schematic of the cell
distance between a cell at the origin and different cells. One chooses the points
with the smallest distance between two cells as the cell distance dc.

4.2.4 Circular Stencils

For increasing trajectory radius, just taking a circular stencil becomes inef-
ficient as the amount of cells to consider increases proportionally to r2tr. For
small B-fields all the obstacles in the simulation box have to be checked for
collisions. The solution to this problem is to rasterize the cells into a circu-
lar arc that covers the trajectory. This can be done similarly to the linear
case by using an incremental drawing algorithm for circular arcs [88]. This
method has also the advantage that it induces an ordering of the cells in
the propagation direction of the tracer particle. This allows an early abort
of the collision detection. Here also, only integer multiplications, additions
and subtractions are needed. We restrict ourselves to the first quadrant to
outline the algorithm as explained in reference [88]. In the following upper
case coordinates (Xi, Yi) will represent integer numbers whereas lower case
symbols (xi, yi) represent a vector in R2.

Starting the rasterisation in the first quadrant and proceeding clockwise,
given the coordinates Pi = (Xi, Yi), there are three translations vectors to

69



CHAPTER 4. NUMERICAL SIMULATIONS

Figure 4.20 Three possible movements to the next pixel used to rasterize the circle
in the first quadrant.

attain the next point of the rasterized circle:

m⃗1 =

(︃
Xi

Yi

)︃
→
(︃
Xi + 1
Yi

)︃
=

(︃
1
0

)︃
, (4.16)

m⃗2 =

(︃
Xi

Yi

)︃
→
(︃
Xi + 1
Yi − 1

)︃
=

(︃
1
−1

)︃
, (4.17)

m⃗3 =

(︃
Xi

Yi

)︃
→
(︃

Xi

Yi − 1

)︃
=

(︃
0
−1

)︃
. (4.18)

The algorithm now chooses the point with the minimum absolute difference
between the squared radius R2 of the original circle, and the squared radii of
the 3 circles that have the same centres but passing through the candidate
points Pi + m⃗1,2,3. The sign of

∆i = (Pi + m⃗2)
2 −R2 (4.19)

is evaluated first. If the sign of ∆i is negative, the point (Xi + 1, Xi − 1) is
inside of the original circle, and one needs to decide between the translations
m⃗1 and m⃗2 by evaluating the sign of

δ = |(Pi + m⃗1)
2 −R2| − |(Pi + m⃗2)

2 −R2| = 2∆i + 2Yi − 1. (4.20)

If the sign of δ is positive then the point (Xi + 1, Yi − 1) is closer to the
original circle and translation m⃗2 is performed, otherwise the vector m⃗1 is
added to the coordinates of pi to obtain the next point. If the difference ∆i
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(a) Translations m⃗1, m⃗2, m⃗3 corresponding
to each quadrant in the counterclockwise
case. At each quadrant crossing the vectors
are replaced by their equivalent in the new
quadrant.

(b) Residues R corresponding to the four
corners of the cell with coordinates (X,Y ).
The point with the smallest residue is cho-
sen as starting or ending point of the circu-
lar arc to draw.

Figure 4.21

is positive then the point (Xi + 1, Yi − 1) is outside of the circle, and the
value

δ = |(Pi + m⃗3)
2 −R2| − |(Pi + m⃗2)

2 −R2| = 2∆i + 2Xi − 1 (4.21)

is evaluated to decide whether m⃗2 or m⃗3 lead to points closer to the real
circle. If δ is positive, then the vector m⃗2 is added to coordinates of the
point pi, else the translation m⃗3 is performed. The error term ∆i can also be
updated recursively depending on the last movement [88]:

∆i+1 =

⎧⎪⎨⎪⎩
∆i + 2Xi+1 + 1 after m⃗1,

∆i + 2Xi+1 − 2Yi+1 + 2 after m⃗2,

∆i + 2Xi+1 + 1 after m⃗3.

(4.22)

In general, to draw an arc between multiple quadrants, first the number of
quadrant crossings is computed. Then, the start and end points (Xs, Ys) and
(Xt, Yt) are mapped back to the first quadrant as per table I of reference [88]
to obtain the corresponding coordinates (X̂s, Ŷ s) and (X̂ t, Ŷ t), respectively.
Then, at each quadrant crossing the translation vectors mi⃗ are adjusted ac-
cordingly (see figure 4.21a). If no quadrant crossing is left, and X̂ t > X̂ i or
Ŷ t < Ŷ i, the algorithm terminates.
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To use this method for the cell stencil, one first computes the starting
point or cell Ps = (Xs, Ys). Given the coordinates (xc, yc) of the last col-
lision, and (rx, ry) the coordinates of the centre of the trajectory after the
last collision, one computes the initial error of each corner of the cell as in
reference [89] page 211: (︃

X
Y

)︃
=

(︃
⌊(cx − rx)/lcell⌋
⌊(cy − ry)/lcell⌋

)︃
and the four residuals

R00 = X2 + Y 2 − x2 − y2,
R10 = R00 + 2X + 1,

R11 = R01 + 2Y + 1,

R01 = R11 − 2X − 1.

The corner with the smallest error is chosen and the initial error is set. If
the trajectory does not intersect the container walls, then the end point is
set as the start point: (Xt, Yt) = Pt = Ps. If the trajectory intersects the
container, this point is taken as end point. The number of quadrant crossings
is computed. As the trajectory runs counterclockwise, for the same reason as
in the case of linear trajectories, one needs to start the stencil ahead of the
first cell. Consequently, a few steps are performed backwards in the clockwise
direction before the stencil cells are chosen. The same is done at the end of
the stencil where some extra steps are appended. We ha¸ve used a thickness
of 5 cells for the linear stencils. Here, there is an additional offset between
the real origin of the circle of the trajectory and the rounded origin of the
stencil circle. This offset has the maximal extent of ±lcell in each direction.
Therefore, we used a thickness of 7 cells for the circular stencils. One adds
three cells to the left and to the right if Xi > Yi, and 3 cells at the top
and the bottom if Xi < Yi. Also it is very important that no cells are added
twice as we want the list of potential collision coordinates to have only unique
elements without any further processing. Thus, care needs to be taken in the
cases close to Xi = Yi to avoid overlapping stencil cells.

4.3 Computing the Percolation Transition

4.3.1 The Union Find Data Structure

All the methods described above used for the propagation of tracer particles
can be also used with minor changes to calculate the percolation transition of
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Figure 4.22 Example of a parent pointer tree structure: Obstacles 1, 3, 7, 9 and 11
form a connected cluster of size 5. The root node or representative of the cluster
is obstacle number 3.

Figure 4.23 Example of path splitting: While traversing the tree, each node is
connected to its grand parent leading to a shorter path to the root R.

two-dimensional obstacles following the method of Mertens and Moore [55].
In this method, the main computational task is to add obstacles in a box
with periodic boundary conditions until a wrapping cluster is formed. The
number of added obstacles is then stored for further computations.

To keep track of the connected components, we used a data structure
called union-find data structure. It is implemented as a parent pointer tree,
where each node is an obstacle and each tree represents a connected cluster
of obstacles. If an obstacle is added that causes two clusters to overlap,
they are merged. The root of the bigger cluster is set as parent node of the
smaller cluster (see figure 4.24 for details). If the clusters have identical size,
the ordering is aleatory. The trees are implemented similarly to the cell list
as an integer array trees[](see figure 4.22). To each obstacle we attribute a
number. This number is simply the number of obstacles already inserted in
the system. To get the parent node of an obstacle i, one looks at the value
stored in trees[i] which is the number of the parent obstacle and also the
address of its grand parent. If the number stored is negative, then there is
no parent obstacle and one has reached the root node. The magnitude of the
number stored at the root returns the tree size.

As the tree sizes grow, traversing trees in order to find the roots becomes
expensive as the number of nodes increases. In order to reduce the path
length, one can use a technique called path splitting [55]. One can halve the
distance to traverse for the next search as shown in figure 4.23 by linking
each obstacle to its grand parent instead of its parent [81]. This can be done
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Figure 4.24 Merging procedure of two trees A and B. On the left side we show the
possible obstacle configuration and the corresponding trees on the right. In the
first step we have two separate clusters with roots A and B. In the second step, a
new obstacle C is added to the system. The new obstacle overlaps with the squares
b and A. In the third step, the new obstacle is merged with one of the trees of the
obstacles it overlaps with. In this case it is tree A. Obstacle C is now part of tree
A. As obstacle C also overlaps with tree B, the two trees are merged together. As
tree B is larger, the root of tree B is now set as child node of the root of tree A.
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Figure 4.26 Left panel: A wrapping cluster is detected. The horizontal distance
CA of obstacle C to the root of its tree (Obstacle A) is 1 cell (orange arrow).
The total distance passing through obstacle b is −3 cells, as the distance Cb from
obstacle C to obstacle b is −1 cell (blue arrow) and the distance from obstacle b to
obstacle A is −2 cells (red arrows). Right panel: Both distances from obstacle C to
the root (Obstacle A) are the same. The direct distance CA is 1 cell. The distance
Cb is −1 cell (blue arrow) and the distance bA is 2 cells (red arrow). Therefore,
passing through obstacle b the same distance is found and no wrapping cluster is
detected.

in the find(i) method, that returns the root of the tree of obstacle i as it
needs to traverse the tree anyway.

Figure 4.25
Wrapping clusters
types from top to
bottom: x-axis,
y-axis. The next
two show the
possibility of a
cluster wrapping
on both axes.

The stopping rules of the algorithm should be elucidated now. In order to
detect a wrapping cluster, the distance from each obstacle to the root of its
tree is computed. This is simply done by using the cell list and computing the
distance in integer multiples of the cell length. If an obstacle is added that
causes a cluster to wrap around the container, then there are two different
distances to the root as shown in figure 4.26. The exact computation of the
distances especially with periodic boundary conditions and ghost obstacles is
a little tedious and not well documented in references [55] and [90]. It shall be
explained here in more detail. Firstly, two extra arrays dist_to_parent_x
and dist_to_parent_y, containing the distances to the parent nodes in the
x- and y-directions, are needed. Each time a new obstacle i is added into the
container, the components of the signed distance are dp = cnew−cparent, where
cnew is the cell coordinate of the new obstacle and cparent is the coordinate
of the parent obstacle. If two clusters are merged, one needs to update
the distance to parent of the transplanted root as described in figure 4.27.
Finding the distance of a node to its root is straightforward, one only need to
sum up all entries of the arrays dist_to_parent_x and dist_to_parent_y
for each node while traversing the tree.

The handling of the periodic boundary conditions is straightforward. If
any obstacle is closer than 2× robs of any container edge, a ghost image must
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Figure 4.27 Detail of the distance update: Tree B is merged onto the bigger tree
A, because obstacles a and b overlap. Root B will become a child node of root A,
its distance to parent vector is updated naturally according to d⃗ = −d⃗rb− d⃗ab+ d⃗ra ,
where d⃗ab is the cell distance between the overlapping obstacles, vecdra and vecdra
their respective cell distances to the root of their trees.

be introduced on the corresponding opposite side. It must be set as child
node of the real obstacle but with no distance to parent. Each ghost image of
an obstacle must also be checked for overlap. Checking for obstacle overlap
is identical with the methods described earlier for the Monte Carlo equilibra-
tion for non-overlapping obstacles. To speed up the overlap detection and
compute the cell distances, a cell list with lcell = 2 × robs can be used and
one only needs to check the obstacles in the eight surrounding cells.

As stated earlier, the information needed in order to compute the per-
colation transition is an estimation of PL(a,N), the probability distribution
that a wrapping cluster exists on a quadratic surface of side length L with
N obstacles of area a. There are multiple possibilities for a wrapping clus-
ter to occur (see figure 4.25) and the relevant probabilities required for this
algorithm are [55, 90]:

1. P e
L(a,N): The probability that a cluster exists in either directions.

2. P b
L(a,N): The probability that a cluster exists in both directions.

To find the required probabilities2, in one "run", obstacles are inserted into
the container until a wrapping has occurred in both directions. Then one
extracts the number Ne of obstacles for the event "a wrapping cluster in any
direction has occurred" and Nb for the event "a wrapping cluster in both
direction has occurred". To get the probability distributions, two associa-
tive containers implemented as std::map<int, int> in the standard C++

2Here the letter e in P e
L(a,N) stands for "either" directions, and the letter b stands for

"both" directions
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library are used. They hold key-value pairs with unique keys. The key val-
ues are the different numbers Ne and Nb, and the associated values are the
number of occurrences of the numbers Ne and Nb after performing Nr runs.
Therefore, these maps contain the histograms for the probability densities
peL(a,N) and pbL(a,N). To retrieve the probability distributions P e

L(a,N),
and P b

L(a,N) one performs a cumulative sum of the corresponding probabil-
ity densities and divides by the total number of trials. Those distributions are
still discrete as they are a function of N . To obtain the continuous distribu-
tion Re

L(ρ) and Rb
L(ρ) the corresponding distributions P e

L(a,N) and P b
L(a,N)

are convoluted with the Poisson distribution with mean λnL2 = ρL2/a [̧55]:

RL(ρ) = e−λ

∞∑︂
N=0

λ

N !
PL(a,N). (4.23)

From Re
L(ρ) and Rb

L(ρ) one can now extract the percolation thresholds as
explained in chapter 3.4. We will give an example of the probability densi-
ties peL(a,N), pbL(a,N) and their corresponding probability distributions in
section 5.3.
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5
Results

In this chapter, we will first focus on the wind-tree model and test the ki-
netic theory of Hauge and Cohen [43, 44] for the normal and anomalous
transport in the EWTM. Numerical simulations have been undertaken by
Wood and Lado [25], but they have not settled the question of the discrep-
ancies between the predicted logarithmic divergence and the observed power
law behaviour in the case of overlapping obstacles. Also, in order to get
further insight about the nature of the anomalous diffusion, we look at the
van Hove correlation function and compare it to the well-known Gaussian
form in the case of normal diffusion. These results are presented in the first
section of this chapter. After investigating the system in the absence of a
magnetic field, the question of magnetotransport naturally arises. We have
seen that one of the most basic theory to explain the Hall effect is the Drude
theory whose predictions are retrieved at low densities in the Grad limit of
the Boltzmann equation. But those theories fail in the presence of a mag-
netic field. A non-Markovian description in terms of a generalised Boltzmann
equation has been derived by Bobylev et al. [47, 48]. Even this more involved
theory is not correct for higher densities. Still, the simple Drude model gives
a robust prediction of the Hall coefficient RH even at higher densities. In
the second part of this chapter, we will investigate this phenomenon. Fur-
thermore we address the question how the magnetotransport behaves for a
vanishing magnetic field if in the limit of B = 0, the transport is anomalous.
This question is investigated by considering the EWTM with overlapping
obstacles at small magnetic fields. In the last section, we turn our attention
to transport processes at the percolation transition. Here a non universal
behaviour has been observed by Schirmacher et al.[82] for the Lorentz gas
with circular scatterers. We shall investigate the EWTM in this regard.
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5.1 The Wind-tree Model

In the following we present the results of the numerical simulations of the
wind-tree model in the case of non-overlapping and overlapping obstacles. In
the non-overlapping case the diffusion is still normal. We have compared the
diffusion coefficients from our simulations to the predictions of Hauge and
Cohen [43, 44]. We have shown that their predictions are in good agreement
with the simulations at low densities. At higher densities, a transient sub-
linear regime emerges at intermediate times and seems to be associated with
the deviation from the theoretical predictions. In the case of overlapping
scatterers, we have settled the question of the asymptotic behaviour of the
MSD at long times. We have shown that the MSD grows1 as t1−2ρ/3 at long
times t. We show that this prediction by van Beyeren and Hauge [45] is
surprisingly robust as it seems still valid for densities as high as ρ = 0.9 (cf.
the percolation transition for oriented squares is at ρc = 1.09884280(9)[55]).
We have also proposed a model for the van Hove correlation function in the
wind tree model by generalising the the Gaussian function to an arbitrary
exponent β ≤ 2. We have shown that this exponent β is also dependent on
the density and takes the empirical form

β(ρ) =
2

1 + 4
3
ρ
. (5.1)

1Hauge and Cohen have chosen the diagonals of the square obstacles to have the lenght
l = 2a for convenience. In the following however we choose the side length of the obstacles
to be of length l = a. This results in a conversion factor of two for the reduced density ρ.
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In the rest of this section we reprint the results as published in refer-
ence [91]:

Benjamin A. Sanvee, René Lohmann, and Jürgen Horbach Phys. Rev. E
106, 024104 – Published 3 August 2022

(Copyright (2022) by the American Physical Society)

Copyright statement:
The author has the right to use the article or a portion of the article in a
thesis or dissertation without requesting permission from APS, provided the
bibliographic citation and the APS copyright credit line are given on the
appropriate pages.
Contribution:
I have written the simulation code. I have carried out the simulations and
evaluated the results. I have also participated in the preparation of the
manuscript

5.1.1 Non-overlapping Squares

Figure 5.1 Trajectory of a tracer particle
in the wind-tree model with non-overlapping
(nov) squares at the density ρ = 0.3. In this
case, small escape channels between the ob-
stacles (see zoomed-in region) are important
for the diffusive transport of the tracer.

First, we consider the motion of a tracer
particle in the wind-tree model with non-
overlapping squares. In this model, the
tracer particle exhibits a non-chaotic mi-
croscopic dynamics that is diffusive on long
time scales [92]. Figure 5.1 shows a typi-
cal trajectory of the tracer at the density
ρ = 0.3. From this snapshot, one can
infer the most important events that lead
to higher-order “corrections” to the simple
Boltzmann theory [69] where uncorrelated
collisions of the tracer with the obstacles are
assumed. The most important contribution
to those corrections is due to the motion
through small escape channels between the
obstacles (see zoomed-in region in Fig. 5.1).
To a lesser extent also ring collisions and
retracing events (in the following also called
retroreflections) contribute significantly to
the leading-order corrections to the Boltz-
mann theory (for details see Refs. [43, 44]).
For a detailed description of retracing events, we refer to the next section
5.1.2.

81



CHAPTER 5. RESULTS

10
0

10
1
10

2
10

3
10

4
10

5
10

-1
10

0
10

1
10

2
10

3
10

4

δ
r

2
(t

)/
λ

2

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

t

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

δ
r

2
(t

)

0.01
0.05
0.20
0.30
0.55

a) nov

t/t
0

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

t

0.8

1.0

1.2

1.4

1.6

1.8

2.0

γ
(t

)

0.01
0.05
0.20
0.30
0.55

10
-2
10

-1
10

0
10

1
10

2
10

3
10

4

t /t
0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

γ
(t

)

b) nov

Figure 5.2 a) MSD δr2(t) for the wind-tree model with non-overlapping (nov)
squares for different densities. The inset shows the MSD scaled with the squared
mean-free path λ2 as a function of t/t0 (with t0 the mean-free time). b) Exponent
parameter γ(t), as obtained from the MSDs in a) (for the definition of γ(t) see
text). The inset shows the same data as a function of t/t0.
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The central quantity, that we use to analyse the diffusion dynamics of the
tracer particle, is the mean-squared displacement (MSD), defined by

δr2(t) =
⟨︁
(r⃗tr(t)− r⃗tr(0))2

⟩︁
, (5.2)

with r⃗tr(t) the position of the tracer particle at time t and ⟨· · · ⟩ an ensem-
ble and time average over 105 independent trajectories. Formally, one can
introduce a time-dependent exponent γ(t) that can be obtained from the
derivative of log(δr2(t)) with respect to log(t),

γ(t) =
d log (δr2(t))

d log(t)
. (5.3)

For our analysis, the parameter γ(t) will be important to quantify deviations
from a linear behaviour of the MSD at intermediate and long times.

Figures 5.2a and 5.2b respectively show the MSD and the exponent γ(t)
for the system with non-overlapping obstacles for different densities. In all
cases, the MSD displays a ballistic regime at short times (γ = 2.0) that
crosses over to a diffusive regime in the long time limit (γ = 1.0). The time
scale around which the MSD changes from the ballistic to the diffusive regime
decreases with increasing density. This can be easily understood in terms of
estimates of the mean-free length between two collisions, λ = a/(

√
2ρ), and

the corresponding mean-free time t0 = a/(
√
2vρ). Although these expressions

for λ and t0 are expected to be only accurate in the dilute limit, the MSD
data indicates that they are also sensible at high densities. If one plots the
MSD scaled with the square of the mean-free length, δr2(t)/λ2, as a function
of t/t0, then the crossover to the diffusive regime starts around t/t0 = 1.0
(see insets of Fig. 5.2a and 5.2b).

As can be inferred from the behaviour of γ(t), from low to high densities
the dynamics changes qualitatively in that towards high densities (here for
ρ ≳ 0.2), a transient sublinear regime emerges on an intermediate time scale,
i.e. before the diffusive regime with γ = 1.0 is reached. With respect to the
reduced quantity δr2(t/t0)/λ

2, in the diffusive regime the dynamics slows
down approximately by a factor of 2.5 when increasing the density from
ρ = 0.01 to ρ = 0.55.

From the MSD, the self-diffusion coefficient D can be computed using the
relation

D = lim
t→∞

δr2(t)

4t
. (5.4)

According to the Boltzmann theory, the self-diffusion coefficient is given by
[44, 69]

DB =
1

2

λ2

t0
=

√
2av

4ρ
. (5.5)
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Figure 5.3 a) Reduced diffusion coefficient D∗ as a function of ρ, as obtained
from the simulation with obstacle configurations, generated by random sequential
adsorption (RSA, blue circles) and annealing via Monte Carlo (green diamonds),
in comparison to the theoretical prediction by Hauge and Cohen [44] (dashed line).
For the details on the fit function (red line) see text. The inset shows ∆f , as defined
by Eq. (5.8), as a function of ρ. Here, the horizontal dashed line marks value of
a3, as used in the fit (red line) in the main plot. b) Static structure factor S(q) of
the obstacles at ρ = 0.55 for the RSA and the annealed samples.
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5.1. THE WIND-TREE MODEL

For the wind-tree model with non-overlapping squares, Hauge and Cohen [44]
have calculated the self-diffusion coefficient up to the lowest order corrections
to the Boltzmann coefficient DB. In terms of the reduced quantity D⋆ =
D/DB, their result can be written as

D⋆ =
ρ

κ
(5.6)

with
κ = ρ+ a2ρ

2 + a3ρ
3 +O(ρ4) . (5.7)

In the framework of the theory of Hauge and Cohen [44], it has been only
possible to estimate the coefficient a2 which is given by a2 = 1.62525. We
have estimated the coefficient a3 from a fit of Eqs. (5.6) and (5.7) to our
numerical data of D⋆. To see over which density range a fit up to third order
in κ is sensible, we have first considered the quantity

∆f =
(D⋆)−1 − 1− a2ρ

ρ2
, (5.8)

which, according to Eqs. (5.6) and (5.7), is equal to a3 +O(ρ). The inset of
Fig. 5.3a shows ∆f as a function of density. As can be inferred from this plot,
a fit to D⋆ with Eqs. (5.6) and (5.7) should be sensible up to ρ ≈ 0.1 and the
value of a3 is about 2.38 (horizontal dashed line in the figure). The main part
of Fig. 5.3a shows the reduced self-diffusion coefficient D⋆ as a function of
the logarithm of the density. The theoretical result, i.e. the result including
the a2 term in Eq. (5.7), is in excellent agreement with the simulation up
to a density of about 0.05. It seems that the low-order kinetic theory starts
to fail in a density regime where a transient sublinear regime in the MSD
starts to emerge (cf. Fig. 5.2). As mentioned before, the reduced self-diffusion
coefficient D⋆ up to a density ρ ≈ 0.1 is well described, too, if one includes
the a3 term in Eq. (5.7). The corresponding result is the red solid line in
Fig. 5.3 where we have considered a3 as a fit parameter. We find the value
a3 = 2.37961 (note that we only give this number with this precision to allow
the interested reader to reproduce the fit in Fig. 5.3a).

Also included in Fig. 5.3a are results for D⋆, as obtained from the an-
nealed obstacle samples. While for low densities there is no significant dif-
ference between D⋆ from the annealed and the RSA samples, for ρ ≳ 0.5
the coefficient D⋆ for the annealed samples is larger than that for the RSA
samples. This effect becomes more pronounced with increasing density such
that at the highest considered density, ρ = 0.55, a deviation of about 10%
is observed. The difference between the annealed and the RSA structure of
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Figure 5.4 Non-Gaussian parameter α2(t) at different densities for the wind-tree
model with non-overlapping (nov) squares. The inset shows the same data as a
function of t/t0.

equally oriented squares can be quantified in terms of the static structure
factor [93], defined by

S(q) =

⟨︄
1

N

⃓⃓⃓⃓
⃓

N∑︂
i=1

exp (iq⃗ · r⃗i)

⃓⃓⃓⃓
⃓
2⟩︄

(5.9)

with ⟨. . . ⟩ an ensemble average, N the number of obstacles, q⃗ the wave vec-
tor, and r⃗i the position of the center of square i. Note that for a completely
random system such as the overlapping squares discussed below, the static
structure factor is equal to one for all values of q. Figure 5.3b displays the
S(q)’s for the highest considered density ρ = 0.55. The main difference be-
tween the S(q) for the RSA samples and that of the annealed samples is the
amplitude of the first peak at qm ≈ 5.1 (the so-called first sharp diffraction
peak), which is about 25% higher for the case of the annealed samples. The
peak at qm measures the ordering of the samples on the length scale of near-
est neighbours (i.e. on a length scale of the order of a). Our finding that
the more pronounced correlations on this length scale are associated with
a higher diffusion coefficient is an interesting feature and deserves further
investigations.

Further insight into the dynamics in the intermediate time regime be-
tween the ballistic and the diffusive regime is provided by the non-Gaussian
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5.1. THE WIND-TREE MODEL

parameter α2, defined by [58]

α2(t) =
δr4(t)

2 [δr2(t)]2
− 1 , (5.10)

with δr4(t) = ⟨(r⃗tr(t)−r⃗tr(0))4⟩. Figure 5.4 shows α2(t) for different densities,
using the RSA protocol for generating the obstacle configurations. At very
short times, the tracer particle moves ballistically with a constant velocity
v which implies δr2(t) = v2t2 and δr4(t) = v4t4. Thus, one expects that
initially α2 = −0.5 and, as can be seen in Fig. 5.4, this is indeed the case.
In the long-time diffusive regime, the non-Gaussian parameter vanishes. In
between the two latter regimes, the behavior of α2(t) changes qualitatively
with increasing density. While at the two low densities ρ = 0.01 and ρ = 0.05
this quantity is monotonously increasing towards zero, it exhibits a maximum
with a positive amplitude for ρ ≳ 0.2. For ρ = 0.55, this maximum is located
at t/t0 ≈ 75 (see inset of Fig. 5.4). Thus, the emergence of a sublinear
regime in the MSD is associated with a maximum in α2(t), the amplitude of
which is increasing with increasing density. These features are not captured
in the framework of the low-order kinetic theory by Hauge and Cohen [43,
44]. To go beyond their theory, valid approaches would be repeated-ring and
self-consistent ring kinetic theories [69, 94–96].

5.1.2 Overlapping Squares

The diffusive transport in the wind-tree model with overlapping squares is
very different from the one with non-overlapping squares. While in the latter
case the transport is diffusive in the long-time limit t → ∞, in the former
case, a subdiffusive transport is asymptotically seen at any finite obstacle
density and thus the diffusion coefficient is zero. In the following, we present a
detailed analysis of this subdiffusive transport, considering the MSD and the
distribution of particle displacement, i.e. the van Hove correlation function,
as obtained from our simulation.

Figure 5.5 shows trajectories of the wind-tree model with overlapping
squares for three different densities, each taken over a time of 105/t0. The
trajectories indicate that the spatial region that is explored by the tracer
particle over a given time (scaled by t0) decreases drastically with increasing
density. This is due to the fact that the tracer’s trajectories display a strong
intermittency. Regions where the particle is localized for a long time are fol-
lowed by regions where it quickly moves over a relatively large distance. The
latter parts of the trajectory appear to be the lighter regions in Fig. 5.5; the
length scale associated with these regions decreases with increasing density.
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Figure 5.5 Trajectories of the wind-tree model with overlapping (ov) squares at
the densities ρ = 0.2 (top), ρ = 0.4 (bottom left) and ρ = 0.6 (bottom right). The
three trajectories are obtained over a time of 105/t0. For ρ = 0.6, a small region
of the trajectory is magnified.

The dark regions of the trajectory where the particle is localized for a long
time are due to back and forth reflections between obstacles.

These retracing events or retroreflections require the presence of at least
one pair of overlapping squares such that a wedge-shaped free area is formed
where the trajectory is reflected (see upper panel of Fig. 5.6). As a result,
the particle almost returns to the point where it was before at an earlier
time. The lower panel of Fig. 5.6 shows local parts of a trajectory at ρ = 0.3.
Here, the zoomed-in regions display a high concentration of reflections and
indicate that retroreflections dominate the transport in the wind-tree model
with overlapping squares. We note that retracing events can also happen
due to a pair of non-overlapping squares. However, in this case one would
never get a high concentration of reflections as indicated by the trajectories
in Fig. 5.6. As a consequence, retracing events do not dominate the transport
in the case of non-overlapping squares (see Sec. IIIA).

The kinetic theory of Hauge and Cohen [43, 44] predicts that, as a con-
sequence of retroreflections in the overlapping square case, the MSD grows
asymptotically like t/ln t. In a later heuristic approach, Van Beyeren and
Hauge [45] found a different asymptotic behavior (i.e. in the limit t → ∞)
that can be written as

δr2(t) = A

(︃
t

t0

)︃2/dw

, (5.11)
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Figure 5.6 The upper panel illustrates a basic retracing (or retroreflective) path
in the wind-tree model with overlapping (ov) squares. Lower panel: Detailed view
on a trajectory at ρ = 0.3. The magnified regions indicate the occurrence of
retroreflections.

with A an amplitude, that will be further specified below, and dw the walk
dimension [77] which is given by

dw =
2

1− 2
3
ρ
. (5.12)

Thus, the walk dimension depends on density such that dw > 2 (note that
dw = 2, corresponding to normal diffusion, is obtained in the limit ρ→ 0).

Figure 5.7a shows the MSD scaled with the mean-free path, δr2(t)/λ2,
for different densities in the range 0.05 ≤ ρ ≤ 0.9. At long times, the MSD
follows a power law ∝ tγa with a density-dependent exponent γa. While this
exponent is close to one for small density, it significantly decreases below one
for higher densities. This can be clearly inferred from the “time-dependent
diffusion coefficient” D(t), defined by the time derivative of the MSD,

D(t) =
1

4

dδr2(t)

dt
, (5.13)

that is plotted in the inset of Fig. 5.7 a), scaled with the Boltzmann diffusion
coefficient DB, as given by Eq. (5.5). In the limit ρ→ 0, the ratio D(t)/DB

is expected to be equal to 1.0, and indeed at the lowest density, ρ = 0.05,
it is close to one and decreases by less than a factor of 2 from t/t0 ≈ 1.0
to t/t0 ≈ 108 (of course, also at this density, we expect D(t)/DB → 0 for
t → ∞). However, at the highest density, ρ = 0.9, the reduced quantity
D(t)/DB decreases by about 5 orders of magnitude in the same time window.
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Figure 5.7 a) Scaled MSD δr2(t)/λ2, for the windtree model with overlapping (ov)
squares at different densities, starting at ρ = 0.05 (top curve in red) and then in
density steps of 0.1 from ρ = 0.1 to ρ = 0.9 (lowest blue curve). The inset shows
D(t)/DB, calculated from the derivative of the MSDs with respect to time. b)
Exponent parameter γ(t), as obtained from the MSDs.

To determine the asymptotic exponent γa for the different densities, we have
determined the exponent parameter γ(t) (Fig. 5.7b). For all the considered
densities, one can read off a constant for long times which is the estimate
for the asymptotic exponent γa. From Fig. 5.7b, one can also infer that
with increasing density the regime at which one approaches the asymptotic
exponent γa shifts to longer and longer times. This is the reason why we only
consider densities ρ ≤ 0.9. Thus, for higher densities much longer runs would
be required and, by approaching the percolation transition at ρc = 1.09 . . . ,
also much larger system sizes have to be simulated to allow for a reasonable
finite-size scaling analysis. Both requirements, i.e. longer runs and larger
system sizes, are beyond the scope of the present study.

The values of γa(ρ), as estimated from the simulation, are shown in
Fig. 5.8 a) in comparison to the prediction according to Eqs. (5.11) and
(5.12), γa = 1− 2

3
ρ. Excellent agreement is found over the whole considered

density range. This is surprising because the linear dependence of γa on ρ is
only supposed to hold in the limit of low densities [45].

We now discuss the amplitude A in Eq. (5.11) for the MSD. In the limit
ρ→ 0, the amplitude should approach A0 = 4DBt0. Then, Eq. (5.11) reduces
to δr2(t) = 4DBt, as required. For the amplitude A, we make an ansatz that
is similar to the kinetic theory expression for the diffusion coefficient in the
non-overlapping case, cf. Eqs. (5.6) and (5.7),

A(ρ) = 4t0
av

2
√
2

1

κ
, (5.14)
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Figure 5.8 a) Asymptotic exponent γa = limt→∞ γ(t) as a function of ρ versus
the low-density prediction of kinetic theory, γa = 1 − 2

3ρ (red dashed line). b)
Amplitude ratio A/A0 as a function of density. The lines represent fits to Eq. (5.16)
with different values of n.

with

κ =
n∑︂

j=1

cjρ
j +O(ρn+1) . (5.15)

Here, c1 = 1.0 and the coefficients c2, . . . , cn are fit parameters. With
Eqs. (5.14) and (5.15), we obtain

A

A0

=
1

1 +
∑︁n

j=2 cjρ
n−1

. (5.16)

Using different values of n, this formula is employed in Fig. 5.8b as a fit
function to the estimates of the ratio A/A0, as obtained from the MSDs
of our simulation. For the coefficients, we find the values c2 = −0.79351,
c3 = −0.0355161, c4 = 0.328926, and c5 = 0.16285 (again, we give the
coefficients with 5 or more digits to allow for a reproduction of the fit in
Fig. 5.8). As indicated in the figure, the fit function with n = 5 is required
to describe the data up to the density ρ = 0.9.

Further insight into the transport properties is provided by the van Hove
correlation function,

G(r⃗, t) = ⟨δ (r⃗ − (r⃗tr(t)− r⃗tr(0))) ⟩ , (5.17)

which corresponds to the probability that the tracer particle has performed
a displacement r⃗ within a time t. Due to the isotropy of the transport in our
model, the van Hove correlation function only depends on the magnitude of
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Figure 5.9 Scaled van Hove correlation function G⋆(r⋆) of the wind-tree model
with overlapping squares at different densities, calculated from G(r, t) for times in
the asymptotic subdiffusive regime (see text).

r⃗, i.e. on r ≡ |r⃗|. In the case of normal diffusion, the function G(r, t) is a
Gaussian,

G(r, t) =
1

2πσ2(t)
exp

(︃
− r2

2σ2(t)

)︃
, (5.18)

where the standard deviation σ(t) is given by σ(t) =
√︁
δr2(t)/2. Note that

the MSD δr2(t) is the second moment of G(r, t). Obviously, in the case of a
Gaussian distribution the following relation holds:

G⋆(r⋆) = G(r, t)σ2(t) , (5.19)

where r⋆ = r/σ(t). Thus, the function G⋆(r⋆) only depends on r⋆ and not
explicitly on time t.

For the wind-tree model with overlapping squares, we do expect that,
in the asymptotic long-time regime, G(r, t) is not a Gaussian, since this
model exhibits asymptotically a density-dependent subdiffusive transport
that deviates more and more from diffusive transport with increasing den-
sity. Thus, we expect that asymptotically G(r, t) is a non-Gaussian function
that changes its functional form with increasing density. However, as Fig. 5.9
demonstrates, the function G⋆ for this model is consistent with the property
(5.19). Here, we have determined G⋆ for different densities, at each den-
sity based on G(r, t) at 10 equidistant times, taken from the time intervals
4 × 105 ≤ t ≤ 6.4 × 107 for ρ ≤ 0.4, 106 ≤ t ≤ 6.4 × 107 for ρ = 0.5 and
ρ = 0.6, 7 × 106 ≤ t ≤ 6.4 × 107 for ρ = 0.7, and 107 ≤ t ≤ 6.4 × 107 for
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Figure 5.10 Non-Gaussian parameter α2(t) for densities ρ = 0.1 (lowest curve)
to ρ = 0.9 (top curve) in density steps of 0.1. The dashed red lines mark the
asymptotic values of α2(t).

ρ = 0.8 and ρ = 0.9. For ρ ≤ 0.8, these time intervals correspond to the
asymptotic subdiffusive regime. At all the considered densities, the curves
for the different times fall onto a master curve and therefore we can conclude
that Eq. (5.19) holds. Note that in Fig. 5.9 we have used σ2(t) = δr2(t)/2 to
determine G⋆(r⋆). Below we compute G⋆ using a slightly different formula for
σ2(t) which, however, differs from the former expression only by a constant,
cf. Fig. 5.11 and Eq. (5.24).

To further specify the functional form of the van Hove correlation func-
tion, we now consider the non-Gaussian parameter α2, as defined by Eq. (5.10).
Figure 5.10 shows α2(t) for different densities. As can be inferred from the fig-
ure, α2 approaches a density-dependent constant, α(a)

2 , at long times (dashed
red lines).

What is the form of the van Hove correlation function in the long-time
regime by which the constant α(a)

2 and its density dependence could be de-
scribed? The non-Gaussian parameter is obtained from δr4(t) and δr2(t),
corresponding to the fourth and second moment of G(r, t), respectively. The
nth moment of G(r, t) is defined by

δrn(t) =

∫︂
d2r rnG(r, t) . (5.20)
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Figure 5.11 Averaged correlation function G⋆(r⋆) for densities from ρ = 0.1
to ρ = 0.8 in steps of 0.1. The dashed green line is the Gaussian function
exp
[︁
−(r⋆)2/2

]︁
/(2π). The inset shows the exponent β as a function of density.

Here, the solid black line is the function β(ρ) = 2/(1 + 4
3ρ).

Both the property (5.19) and the constant α(a)
2 , that are obtained at long

times, are reproduced by the following generalization of the Gaussian function
(5.18),

G(r, t) =
β

2π22/βσ2Γ(2/β)
exp

[︄
−1

2

(︃
r

σ(t)

)︃β
]︄
, (5.21)

with β < 2 an exponent that decreases with increasing density and Γ(x) =∫︁∞
0
dt tx−1e−t.
Using polar coordinates and Eq. (5.21) for G(r, t), one obtains

δrn(t) =
2πβ

2π22/βσ2Γ(2/β)

∫︂ ∞

0

rdr rn exp

[︄
−1

2

(︃
r

σ(t)

)︃β
]︄

= 2n/βσn
Γ
(︂

n+2
β

)︂
Γ
(︂

2
β

)︂ . (5.22)

Thus, with Eqs. (5.10) and (5.22) the non-Gaussian parameter is given by

α2 =
1

2

Γ
(︂

6
β

)︂
Γ
(︂

2
β

)︂
(︂
Γ
(︂

4
β

)︂)︂2 − 1 . (5.23)

This equation implies that α2 does not depend on σ. Therefore, at a given
density it is a constant with a density-dependent exponent β.
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Figure 5.11 shows G⋆(r⋆) for densities from ρ = 0.1 to ρ = 0.8 in steps of
0.1, as obtained from averages over different times in the asymptotic regime.
To obtain G⋆(r⋆), we have determined σ from the MSD δr2(t), using the
relationship between δr2(t) and σ(t) that follows from Eq. (5.22),

σ2 = 2−2/β
Γ
(︂

2
β

)︂
Γ
(︂

4
β

)︂ δr2(t) . (5.24)

The value of β is computed via Eq. (5.23), using for α2 the asymptotic value
α
(a)
2 (cf. Fig. 5.10). The resulting β as a function of density are displayed in

the inset of Fig. 5.11. Here, the black solid line represents the function

β(ρ) =
2

1 + 4
3
ρ
. (5.25)

It is not obvious how this function is related to the walk dimension dw. So
up to now we consider Eq. (5.25) as an empirical fit function that provides a
very good description of the estimated exponents β from the simulation.

For comparison the Gaussian function exp[−(r⋆)2/2]/(2π) is included in
Fig. 5.11 (dashed green line). The plot indicates that the measured G⋆(r⋆)
deviate more and more from a Gaussian function with increasing density.
The dashed red lines in Fig. 5.11 represent the function

G⋆(r⋆) =
1

π21+4ρ/3(1 + 4
3
ρ)Γ(1 + 4

3
ρ)
×

× exp

[︃
−1

2
(r⋆)2/(1+4ρ/3)

]︃
, (5.26)

which is obtained by combining Eqs. (5.19), (5.21), and (5.25). Keeping in
mind that Eq. (5.26) does not contain any fit parameters, one can conclude
that this formula provides a fair description of the scaled van Hove correlation
function G⋆(r⋆).

5.1.3 Summary and Conclusions

We have presented extensive event-driven molecular dynamics simulations
of the EWTM with random obstacle configurations of equally-oriented non-
overlapping or overlapping squares. For both cases, i.e. non-overlapping and
overlapping squares, a regime of obstacle densities has been considered that
goes well beyond the density regime O(ρ2) where the kinetic theory of Hauge
and Cohen (HC) [44] is expected to hold. For the case of overlapping squares,
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we have investigated the EWTM for densities up to ρ = 0.55 and for non-
overlapping squares densities up to ρ = 0.9 which is below the percolation
threshold at ρc = 1.09884280(9). For the overlapping squares, we have not
considered the regime of very high densities close to ρc, because this would
have required much longer runs to reach the asymptotic long-time regime
(already at ρ = 0.9, this regime is hardly reached on the considered time scale
of 109). Such runs go beyond the scope of the present study. However, apart
from the regime close to ρc for the overlapping squares, our study provides
reference data for future theoretical approaches to the EWTM beyond the
low-density regime.

For the EWTM with non-overlapping squares, the HC theory is in good
agreement with the simulation up to densities of the order of 0.05. In this
density regime, i.e. 0 ≤ ρ ≲ 0.05, the diffusion coefficient D decreases to
about 10% below the Boltzmann diffusion coefficient DB (cf. Fig. 5.3). For
densities up to about 0.1, one has to take into account the term O(ρ3) in the
expansion of the inverse diffusion coefficient. From our simulation, we have
estimated a3 ≈ 2.38, corresponding to the coefficient of this third-order term.
We have seen that the higher-order terms (i.e. O(ρn) with n ≥ 3) are asso-
ciated with the emergence of a maximum in the non-Gaussian parameter α2

and an emerging sublinear regime in the MSD. Furthermore, for ρ ≳ 0.5 the
reduced diffusion coefficient D⋆ starts to depend on the protocol with which
the obstacle samples are generated. Interestingly, the diffusion coefficient,
as obtained from the annealed samples, is higher than that from the RSA
samples. All these features could probably be described in the framework
of kinetic theories that are suited for dense systems such as repeated-ring
and mode-coupling approaches [94–96]. Whether these approaches would
also lead to an accurate quantitative description, is an interesting issue for
forthcoming studies.

The EWTM with overlapping squares is one of the rare examples of a sim-
ple model system that shows an asymptotic subdiffusive transport, i.e. the
MSD grows sublinearly, δr2(t) = At2/dw , with a density-dependent walk di-
mension dw. This subdiffusive behavior reflects the dominant contributions of
retroreflections to the long-time diffusive transport. Van Beyeren and Hauge
[45] have argued that the walk dimension is given by dw = 2/(1 − 2ρ/3)
in the low-density limit. Surprisingly, our simulation is consistent with this
prediction up to densities as high as ρ = 0.9. However, the amplitude A
of the MSD has a strong dependence on density and one has to take into
account terms up to O(ρ5) with respect to the expansion of A−1, in order to
fit the simulation data up to ρ = 0.9 (cf. Fig. 5.8b). An interesting theme
for forthcoming studies is to investigate how the anomalous transport due to
retroreflections is affected when approaching the percolation transition at ρc.
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A possible scenario might be as follows: When approaching ρc from below,
the prediction by van Beyeren und Hauge might still hold. However, the
time scale, where the subdiffusive behavior with dw = 2/(1 − 2ρ/3) starts
to emerge, increases with increasing density such that at ρc this time scale
diverges. It has to be seen whether this conjecture about the interplay be-
tween subdiffusion due to retroreflection and the anomalous transport due
to the percolation transition is correct.

We have also proposed a model for the long-time regime of the van Hove
correlation function G(r, t) for the EWTM with overlapping squares. Since,
at long times, the non-Gaussian parameter approaches a constant and the
scaling relation (5.19) holds, we have proposed that G(r, t) has the form of a
generalized Gaussian function, Eq. (5.21), with an exponent β that we have
directly determined from the long-time limit of α2. We find the empirical
function β(ρ) = 2/(1+4ρ/3) and thus a closed expression for G⋆(r⋆), given by
Eq. (5.26). We observe significant deviations of this function to the G⋆(r⋆), as
obtained from the simulation. This indicates that the generalized Gaussian
function (5.21) is only an approximation to the long-time behavior of the van
Hove correlation function G(r, t).

Due to its simplicity, the EWTM could be well suited for the further
development of kinetic theories for dense fluid systems. The results, presented
in this paper, provide a reference for a quantitative check of such theories.
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5.2 Magneto-transport

As we have seen in chapter 3.1, the Drude theory is only valid in the limit
of low densities and in the limit of vanishing magnetic fields. However the
prediction of the Hall coefficient is quite accurate even towards higher densi-
ties. In this section, we will investigate the origin of this robustness. Some of
the data published in reference [30] is reused in this thesis and a part of the
results presented here are to be published later. At the end of this section,
the magneto-transport in the EWTM shall be investigated, especially the
behaviour at low magnetic fields is interesting as at B = 0 we are faced with
a vanishing diffusion coefficient at all densities.

5.2.1 Magneto-transport in the Lorentz Gas with Circular Scat-
terers

In the framework of the Drude model one obtains a direct relation between
the longitudinal conductivity and the Hall conductivity if one divides equa-
tion (3.18) by (3.19):

σxy = ωcτσxx. (5.27)

The Drude time (or mean free time) between two collisions is assumed to
be independent of the magnetic field. We have seen in section 3.2 that this
assumption cannot be upheld and a more general Boltzmann equation with a
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Figure 5.12 Comparison between experiment (solid lines) and simulation (circles)
for the reduced conductivity σxx/σxx(B = 0) as a function of B̃ for different values
of ρ.
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Figure 5.14 Hall conductivity σxy (circles) and ωcτσxx (solid lines) as a function
of B̃ for different densities for a) the experiment and b) the simulation.

magnetic field dependent τD was presented (see equations (3.33) and (3.38)).
These theories are only valid in the low-density limit. However, we will see
that the predictions of the Hall coefficient in the simpler Drude model is still
accurate towards higher densities for sufficiently small magnetic fields. We
will see that this is linked to a similar density dependence of the Drude time
τ and the zero field conductivity σxx(B = 0).

Figure 5.13
Trajectories from
the simulation at
B̃ = 0.05 (red
lines) and B̃ = 0.5
(blue lines). From
top to bottom
the densities
are ρ = 0.1963,
0.3927, 0.5890 and
0.7853.

The measurements where done on systems with four different densities,
namely ρ = 0.1663, 0.3927, 0.5890 and 0.7853. The obstacles have an effective
radius of 1 µm. The same densities where also used in the simulations. For
each density, the components Dij of the diffusion tensor where computed for
different magnetic fields ranging from B = 5 × 10−3 to B = 8. In each run,
10000 obstacles of radius r = 0.5 where placed randomly into the simulation
box. We averaged over 2× 104 trajectories distributed across 2000 different
simulation boxes with independent obstacle configurations. The trajectories
where computed over a time of t = 106.

Figure 5.13 shows example trajectories from the simulations at these den-
sities. A juxtaposition of the reduced conductivities σxx/σxx(B = 0) ob-
tained from the experiments (solid lines) and from the simulations (circles)
is shown in figure 5.12. The results are plotted on a double-logarithmic scale
with B̃ = B/B0 on the x-axis. One can see that at low B-fields the val-
ues of σxx are very close to those of σxx(B = 0) for all densities. For low
densities, the conductivity decreases monotonically with increasing magnetic
field. For higher densities, the conductivity raises to a maximum before the
monotonous decrease. It has been conjectured in reference [54] that for higher
densities, trajectories with a certain radius can traverse the Lorentz gas more
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Figure 5.15 Reduced Drude time τ/t0 and reduced conductivity σxx(B̃ = 0)/σ0
as a function of ρ for a) the experiment and b) the simulation.

easily. Therefore, one observes a maximum of the conductivity at the corre-
sponding magnetic field. At low magnetic fields (B̃ < 1.0), the data shows a
good agreement between simulation and experiment. As one can see in the
experimental results, the conductivity decays slower than in the simulations.
One also observes Shubnikov-de Haas oscillations [97]. These oscillations are
due to the quantisation of the electron orbits into discrete Landau levels.
In the classical case, the density of states of the electrons is independent of
the magnetic field. Here, while the magnetic field is increased, the density
of electron states available for transport varies leading to oscillations in the
magnetoresistance. This is not captured by the simulations. For the high-
est density in the experiments (ρ = 0.7853), the experimental data shows a
strange behaviour. These artefacts can be caused by obstacles obstructing
the Ohmic contacts used for the measurements.

We can see in figure 5.14 that for sufficiently small magnetic fields, equa-
tion (5.27) describes the data fairly well for B̃ with ωcτ < 0.5 . The solid
lines corresponds to the quantity ωcτσxx. Here, τ is a fit parameter used
to obtain the best agreement between σxy and ωcτσxx. In figure 5.15, the
reduced Drude time τ scaled with the mean free time t0 = π/(2robsρ) and
the reduced conductivity σxx(B = 0)/σ0 are shown as a function of the re-
duced density ρ. We see that τ/t0 and σxx(B = 0)/σ0 decrease with ρ albeit
the dependence of the reduced Drude time on ρ is stronger than that of the
reduced conductivity. One can obtain the dependence of the magnetoresis-
tance ρxx and the Hall resistance ρxy on B̃ by inserting equation (5.27) in
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the respective formulas (3.20) and (3.21). One obtains

ρxx =
1

1 + ω2
cτ

2

1

σxx
, (5.28)

ρxy =
ωcτ

1 + ω2
cτ

2

1

σxx
. (5.29)

For B → 0, one has ωc → 0, and equation (5.29) can be approximated by

ρxy ≈
ωcτ

σxx(B = 0)
=

eτB

m⋆σxx(B = 0)
= RHB, (5.30)

where we have introduced the Hall coefficient

RH =
eτ

m⋆σxx(B = 0)
. (5.31)

Figure 5.16 a) shows the magnetoresistance ρxx obtained from the experi-
ment (solid lines). The dashed lines show the approximations calculated via
equation (5.28). In figure 5.16 b), the same is shown for the simulations. As
equation (5.27) holds up to values of B̃ with ωcτ ≈ 0.5, this is also valid for
equations (5.28) and (5.29). For low magnetic fields B̃, the approximations
of the magnetoresistance ρxx are in good agreement with the data. As τ
decreases with increasing density ρ (figure 5.15), we see a better agreement
between the actual data and the approximation of ρxx for higher magnetic
fields at higher densities.

Figures 5.17 and 5.18 show the Hall resistance as obtained from the exper-
iments and the simulations respectively. The solid lines represent the actual
data. The dashed lines are the approximations calculated via equation (5.29).
The black dotted lines show the linear approximation ρxy = RHB where the
Hall coefficient is given by equation (5.31).

We see that these approximations are robust in the limit B̃ → 0 for high
densities. As we can see in figure 5.15, the Drude time and the zero-field
conductivity exhibit a similar dependence on the density. Recalling equation
(3.5), one notes that the Drude time τ represents the time scale on which an
electron dissipates the energy gained by the applied E and B-fields. With
rising obstacle density, this time scale becomes smaller as in the dissipation
happens though collisions with the obstacles. On the other hand, with rising
density, the mobility of the electrons is impaired leading to a decrease of
the conductivity. This density dependence of both quantities cancels out in
equation (5.31) leading to a weaker dependence of RH on the density. This
explains the robustness of the prediction of RH towards higher densities.
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Figure 5.16 Magnetoresistance ρxx(B̃) at different densities, as obtained from a)
the experiment and b) the simulation. The solid lines correspond to the data while
the dashed lines are calculated via equation (5.28).

5.2.2 Magneto-transport in the Wind-tree Model

In contrast to the Lorentz gas with circular scatterers, the diffusion coeffi-
cient in the wind-tree model vanishes at all densities in the limit B → 0.
Thus we also expect that σxx(B) vanishes in the limit B → 0. Therefore,
the behaviour of ρxy according to equation (5.31) cannot be upheld as the
definition of the Hall coefficient involving σxx(B = 0) is not well defined in
the limit B → 0. Therefore, we await a non-linear response of ρxy to small
magnetic fields.

We have simulated three different densities ρ = 0.1, 0.2, and 0.3. The
simulation box sizes were L = 500 for ρ = 0.1 and ρ = 0.3. For ρ = 0.5 we
chose L = 200. For magnetic fields B < 0.1, the average was taken over 2×
106 trajectories and 2× 104 independent obstacles configurations. For lower
magnetic fields (B ≤ 0.1), the statistics of the Hall conductivity deteriorated
rapidly and averages over more than 108 trajectories where needed to extract
meaningful data.

Figure 5.19 a) shows the MSD at different magnetic fields plotted against
the time. The orange line represents the MSD with no magnetic field. The
MSDs with B-field follow exactly this "master" curve before deviating above
a time scale τ̃ . This effect can be better seen in figure 5.19 b) where the
derivative of the MSD with respect to time is shown. Due to the curvature
of the tracer trajectories in the presence of a magnetic field, the retroreflection
is destroyed for times larger than τ̃ and the system becomes diffusive again
in the long time limit. This leads to normal diffusion in the asymptotic limit.
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Figure 5.17 Hall resistance ρxy(B̃), as obtained from the experiment, at the densi-
ties a) ρ = 0.1963, b) ρ = 0.3927, c) ρ = 0.5890, and d) ρ = 0.7853. The blue solid
lines represent the data, while the blue dashed lines are calculated via equation
(5.29). The black dotted lines represent the expected behaviour at low magnetic
fields, ρxy = RHB with the Hall coefficient RH given by equation (5.31).
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Figure 5.18 Hall resistance ρxy(B̃), as obtained from the simulations, at the densi-
ties a) ρ = 0.1963, b) ρ = 0.3927, c) ρ = 0.5890, and d) ρ = 0.7853. The blue solid
lines represent the data, while the blue dashed lines are calculated via equation
(5.29). The black dotted lines represent the expected behaviour at low magnetic
fields, ρxy = RHB with the Hall coefficient RH given by equation (5.31).
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Figure 5.19 Simulation results for a system of oriented random overlapping squares
at a density of ρ = 0.3. a) MSDs at five different magnetic fields B = 0, 10−1, 10−2,
10−3, and 10−4. b) Shows dδr2(t)/dt for the same magnetic fields. c) Exponents
γ(t) of the MSD. The red line shows the expected value in the wind-tree model.
d) Non-Gaussian parameter α2(t)
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We can already infer from figures 5.19 a) and 5.19 b) that τ̃ increases if the
magnetic field becomes smaller. This is expected as for weaker magnetic
fields the curvature of the trajectory approaches zero and the retroreflection
survives on longer timescales. Figure 5.19 c) shows the exponent of the
MSD. In the case B = 0, we retrieve the asymptotic behaviour predicted
by van Beyeren and Hauge [45] for the wind-tree model already treated in
the previous section. For decreasing magnetic fields, a subdiffusive regime
emerges at intermediate times. It is also associated with the retroreflection
changing the dynamics of the particles at intermediate times scales. As we
can see in figure 5.19 d), the non-Gaussian parameter is a more sensitive
quantity with regard to anomalous diffusion. For small magnetic fields B <
10−2, the non-Gaussian parameter α2 shows that the dynamics of the tracer
particles are yet not completely diffusive, although the exponent of the MSDs
has already converged to one.

B δ δ/ρ
0.1 0.022 0.22
0.3 0.078 0.26
0.5 0.127 0.25

Table 5.1
Exponents δ
of the magneto-
ductivity at low
magnetic fields.
The ratio δ/B
seems to only
weakly depend
on the obstacle
density

In figure 5.20 a) we show the magnetoconductivity σxx as a function of
the magnetic field on a double logarithmic scale. For small magnetic fields
(B < 10−2) the data seems to exhibit a power law behaviour, i.e. σxx ∝ B−δ

towards B = 0. Although data for much smaller magnetic field needs to
be computed to get reliable data, we give an overview of the exponents
extracted so far in table 5.1. It might be interesting to further investigate
the relationship between δ and the reduced density. As we see in table 5.1,
the quantity δ/ρ seems to only weakly depend on the obstacle density.

In figure 5.20 b) the Hall conductivity is shown. Here, we observe a
negative Hall resistance for weak magnetic fields for the densities ρ = 0.3 and
ρ = 0.5. Figure 5.21 a) shows the magnetoresistance ρxx as a function of the
magnetic field. We observe a divergence for small magnetic fields as expected.
Here also, a power law behaviour is observed with the same exponents as for
σxx (but with a negative sign). In figure 5.21 b) we show the behaviour of
the Hall resistance for small magnetic fields. For comparison we have added
the data for the non-overlapping case at a density of ρ = 0.1, and for the
overlapping case an additional density (ρ = 0.05) was also computed. We
clearly see the linear response of the system with non-overlapping squares.
In the overlapping case the Hall resistance is not linear as a function of the
magnetic field. Looking at equation (5.31) we see that a σxx vanishes for
B = 0, the Hall coefficient has a singularity at B = 0. This seems to be the
origin of the non-linear behaviour or ρxy for B → 0. The Hall resistance even
becomes negative for higher densities. We have not found an explanation for
this phenomenon yet.
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Figure 5.20 a) Magnetoconductivity σxx(B) and b) Hall conductivity σxy(B) at
different densities, as obtained from the simulations. The inset in a) shows a
magnification of the data for ρ = 0.1 to emphasize the decrease of σxx at low B-
fields. The inset in b) shows the negative dip of ρxx for higher densities.
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Figure 5.21 a) Magnetoresistance ρxx(B) at different densities, as obtained from
the experiment. b) Hall resistances at low B-fields. We clearly see the linear
behaviour of ρxy in the case of non overlapping squares at low B-Fields (Black
dashed line). Even for small densities the Hall resistance is not linear and eventually
becomes negative for higher densities in the overlapping case.
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5.2.3 Summary and Conclusions

We have presented a direct comparison between the experimental measure-
ments on a 2DEG with circular scatterers and simulations of the system at
the same densities. We have seen that the robustness of the prediction for
the Hall coefficient in the Drude model is due to the cancellation of the den-
sity dependence in equation (5.31), leading to a weak density dependence
of RH . At higher densities and magnetic field the assumption of a constant
Drude time cannot be upheld. Thus, the linear relation between ρxy and the
magnetic field does not hold any more. This is shown in the experiments
and also in the simulations. Furthermore we have investigated the magneto
transport for random overlapping squares. In the case B = 0, we retrieve the
wind-tree model investigated in the previous section. We found a non-linear
Hall resistivity at low magnetic fields that becomes negative for sufficiently
high densities.
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5.3 Percolation Thresholds

It was conjectured by Schirmacher et al. [82] that the exponent of the MSD
at the percolation threshold of the magnetic-field-induced percolation tran-
sition exhibits a different universal behaviour. Their findings where based
on calculations of the Lorentz gas with circular scatterers. In this thesis we
will investigate this transition for the EWTM with overlapping obstacles.
Consequently we needed to compute the field-induced percolation threshold
for different densities. We have therefore computed the phase diagram for
the EWTM. In this section, we first present the results of the calculations of
the static percolation threshold of the EWTM and then we will investigate
the behaviour of the exponent of the MSD at the percolation thresholds for
the EWTM compared to the Lorentz gas with circular scatterers.

5.3.1 Static Percolation Thresholds in the Lorentz Gas

To validate the code, we compute the percolation threshold for oriented
squares and compare it with the results of Mertens et al. [55]. As explained
in section 4.3, the probabilities densities peL(a,N) and pbL(a,N) are computed
first by randomly inserting obstacles in containers of different sizes. Then,
the cumulative distributions P e

L(a,N) and P b
L(a,N) are derived from peL(a,N)

and pbL(a,N) respectively, by a simple cumulative sum. From those distri-
butions, one now obtains the distributions Re

L(ρ) and Rb
L(ρ) by convolution

with the Poisson distribution with parameter λ = ρL2/a.
We chose 25 different container sizes ranging from L = 30dobs to L =

1000dobs, where dobs is the diameter of the smallest covering circle of the
obstacle. In one "run" the obstacles are inserted until a wrapping cluster
in the x- and y-direction has been detected. As the computation time on
the cluster queues are limited, 10 trial runs are performed and the total wall
time is measured. Then, the maximum number of runs that can be performed
without trespassing the time limit on the queues is computed. This has the
advantage that it allows to work on heterogeneous clusters that have nodes
with different computational power without exceeding the time limit. The
simulations where performed on the central HPC system "HILBERT" at the
Heinrich-Heine University of Düsseldorf. The regular working queue of this
cluster has time limit of 72 Hours. The total runtime was chosen smaller
than this limit. 60 Hours of runtime where chosen as the individual runs
vary in wall time, especially for the bigger containers sizes. Between 5 · 109
and 2 · 108 runs were performed for system sizes between L = 30dobs and
L = 100dobs. Approximately 5 · 105 runs were performed for a container
size of L = 10000dobs. Examples of the distributions pL(a,N) (defined in
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Figure 5.22 (a) Histograms directly recovered from the simulations: the curves
represents the distributions of the number of obstacles at which a percolation clus-
ter occurs. The red curve represents the distribution for a cluster occurring in the
x or in the y-direction. The blue curve represents the distribution for the perco-
lation cluster to occur in both directions. (b) Wrapping probabilities P e

L(a,N) for
a cluster occurring in both directions for different container Length. The x-axis is
rescaled by Na/L2 and one can see the cross-over at Re

∞

section 4.3) directly extracted from the simulations are shown in figure 5.22
a). An example of the distributions P e

L(a,N) is shown in figure 5.22 b).
Once the distributionsRe

L(ρ) andRb
L(ρ) have been computed from P e

L(a,N)
and P b

L(a,N), we used a simple Newton-Raphson method [98] to find the root
of the functions Re

L(ρ)−Re
∞ and Rb

L(ρ)−Rb
∞. The roots are the critical filling

factors ρeL and ρbL. As the function RL(ρ) becomes steep for large L, an initial
guess for the Newton-Raphson method must be close to the root in order to
ensure convergence. The initial guess can be derived from the abscissa at
the maximum of pL(a,N) by dividing it by L2/a. Recalling the finite size
scaling relation (3.78), the values ρeL and ρbL must lie on a straight line if
plotted against L−11/4. Figure 5.23 shows the results of ρeL and ρbL plotted
against L−11/4. As one can see in figure 5.23, the data points for large L are
more scattered and therefore have a larger variance. To obtain better results,
the data points are fitted using a weighted linear regression [55]. This has
the advantage that data points with a higher variance are incorporated with
lighter weights. The errors used as weights are derived as [55]:

σρL =
1

N1/2L3/4
. (5.32)

One obtains two values ρec and ρbc by extrapolating the fitted lines to zero.
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Figure 5.23 ρeL and ρbL plotted against L−11/4. The dashed red lines show the
results from the weighted linear regression.

The final result is obtained by taking the average between the two values.
We have obtained a value of

ρ□c = 1.09884164± 9.64 · 10−7

= 1.09884(1)

in good agreement with the value ρ□c = 1.09884280(9) computed by Mertens
et al. considering the relative short simulation time.

With the validated code, the phase diagram for the EWTM in the pres-
ence of a magnetic field was computed. We have taken 45 values of the
magnetic field between B = 0.01 and Bc = 10000. A table with all the
computed values can be found in the appendix. Figure 5.24 shows the per-
colation thresholds for the EWTM in the presence of a magnetic field. The
inset shows the phase diagram with linear scales. The orange curve shows the
critical magnetic field of the field-induced percolation transition as a function
of the reduced density. The red line represents the percolation transition at
ρc = 1.09884280(9) [55]. The green line at B = 0 represents the EWTM,
therefore on the complete x-axis where ρ ≤ ρc, one has anomalous diffusion.
The red and orange lines do never touch, as for any density ρ < ρc there
exists a magnetic field Bc where the tracer particles are localized around iso-
lated clusters for B > Bc. An interesting point is the intersection of the blue
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Figure 5.24 Phase diagram for Lorentz gas with randomly distributed oriented
and overlapping square obstacles. The red line shows the percolation threshold as
computed in [55]. The inset shows the phase diagram with a linear x-axis. The
orange line represents the field-induced percolation threshold. The green line shows
the limiting case of B = 0 where the transport properties are that of the wind-tree
model. In the hatched area, the particles become localized.

and red line. Here, we are faced with anomalous diffusion due to two overlap-
ping phenomena. Firstly the diffusion is anomalous due to the retroreflection
in the EWTM, and secondly we are faced with anomalous diffusion at the
percolation threshold.

5.3.2 Universal Exponents at the Percolation Threshold

Now that the percolation thresholds for the wind-tree model have been com-
puted we can extract the critical exponents z and µ (see equations (3.76) and
(3.77)) and compare them with the known results for the Lorentz gas with
circular scatterers. We have used a system size of L = 104d0 at a density of
ρ = 0.1 where d0 = 1 corresponds to the diameter of the circular obstacles
and the side length of the square obstacles. This corresponds roughly to
12.8 × 106 circular obstacles and 107 square obstacles. For higher densities,
i.e. ρ = 0.8 and at the percolation threshold ρ = ρc, the same number of
obstacles was used and the size of the container rescaled accordingly.
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Figure 5.25 Exponents of the MSD for circles (left panel) and squares (right panel)
at different percolation thresholds (see text).

Figure 5.25 shows the exponents γ(t) as a function of time for circular
and square obstacles. The red curve corresponds to the exponent γ(t) for
both systems at the percolation threshold ρc as computed by Mertens et al.
[55]. The red dashed line shows the expected asymptotic exponent γ = 0.658
[55]. The blue curve shows γ(t) at the field-induced percolation threshold at
ρc = 0.1, with Bc = 0.8479 obtained from the formula given by Kuzmany and
Spohn [54]. For the square obstacles at ρ = 0.1 we have derived the value
of Bc = 0.7826 from the phase diagram computed previously. The value was
obtained by cubic interpolation of the data points listed in table A.1. The
blue curve shows γ(t) at a density of ρ = 0.8 corresponding to Bc = 10.6678
for the circular obstacles and Bc = 11.356 for the square obstacles. Here,
Bc was also obtained from the phase diagram as already explained. The
black dashed line shows the exponent γ at the B-field-induced transition as
computed in [82].

We can confirm and extend the results of Schirmacher et al. [82]: The
exponents γB of the B-field-induced transition seem to be independent of
the magnetic field. As one can see in figure 5.25, at high magnetic fields, a
shoulder emerges in the plots of γ(t). This is due to a change in the dynamics
of the particles: at high magnetic fields the particles start to move along the
edges of the obstacles in skipping orbits. On that time scale, the tracer par-
ticles exhibit a superdiffusive transport regime γ > 1. On longer timescales
the transport becomes subdiffusive again. Also, we see that the exponents
of the MSD at the B-field-induced percolation transition seem to differ from
those at the high density percolation transition. While the exponents of the
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Figure 5.26 Visualisation of the weak-link scenario of the B-field-induced perco-
lation transition for circles (left) and squares (right). If the yellow regions overlap
(red), then a tracer particle can jump from obstacle to obstacle. The red areas
represent the surface A where the two obstacles are closer as 2× rtr. For vanishing
width W, this area scales with A ∼W 3/2.

MSD for the static percolation threshold converge to γ = 2/z = 0.656, where
the universal exponent z = 3.0455 is given by equation (3.76), we have ob-
tained a value of γ = 2/z = 0.595. This corresponds to a value of z = 3.36
close to the value of z = 3.44 obtained in [82]. This difference between the
exponents at the two percolation thresholds was attributed to the fact that
at the field-induced percolation threshold, the diffusion is dominated by weak
links. These weak links correspond to obstacles just close enough for a tracer
particle to jump between them (see figure 5.26). It was shown that perco-
lation transitions dominated by the presence of weak links do not exhibit
universal behaviour [99]. Schirmacher et al. [82] have identified the area of
the red surfaces A (see figure 5.26) as transition rates of these weak links.
They showed that while approaching the percolation threshold, A vanishes
as A ∼ W 3/2 where W corresponds to the width of the area A, leading to an
exponent z = 3.18 according to the results in references [99] and [100]. This
is closer to the observed value but still not satisfactory. In the scenario of
the EWTM we have the same behaviour of the weak links. As one can see
in figure 5.26, the shape of the area A is identical for circles and for squares,
and therefore we await the same behaviour as W vanishes. But still, the
predicted values are not in perfect agreement with the simulation results and
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we consider the explanation of this discrepancy to be still an open question.

5.3.3 Summary and Conclusions

We have computed the phase diagram for the EWTM in the presence of a
magnetic field. The method used can easily be applied to any geometry.
Furthermore we have confirmed the findings of Schirmacher et al. [82] also
for the EWTM: The dynamic exponent z of the MSD at the field-induced
percolation transition does not depend on the magnetic field. Secondly, at
both transitions, the MSD exhibits different exponents. At the high density
percolation threshold , the exponents are in good agreement with the known
universal values. At the B-field-induced transition, the behaviour seems to
be correspond to another universality class. Although it was conjectured
by Schirmacher et al. that this difference is due to the presence of weak
links that dominate the transport at the percolation threshold, there is still
a discrepancy between the predicted exponents and the simulation data.
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Conclusion and Outlook

In this thesis, various aspects of transport phenomena in Lorentz gases were
investigated.

Ehrenfests’ Wind-Tree Model (EWTM) The EWTM serves as a model
system for testing kinetic theories in the low density limit. In comparison to
the Lorentz gas with circular scatterers, the density expansion up to the sec-
ond order is better behaved. In the case of circular obstacles, terms involving
collisions with two obstacle diverge as log(ρ) in the limit ρ→ 0. This is not
the case in the EWTM due to the discrete velocity space. The calculations of
Hauge and Cohen [1, 43] can be considered as a "tour de force", but their pre-
diction of the asymptotic behaviour of the EWTM with overlapping obstacles
seems to be erroneous. We could confirm the density-dependent exponent of
the MSD as proposed by van Beyeren and Hauge. Such a dependence for the
asymptotic exponent describing subdiffusion is unique and, to the best of our
knowledge, no other model system with such behaviour is known. It would
be interesting to investigate other geometries with a restricted velocity space
like crosses, or octagons in that regard. Further investigations should also be
carried out towards the percolation transition in the overlapping EWTM as
it is a rare, if not the only example of the overlap of two different processes
causing anomalous diffusion.

Magnetotransport We could explain the robustness of the prediction of
the Hall coefficient in the Drude model even at higher densities. This is due
to the weak dependence of RH on density. We also investigated the EWTM
at low magnetic fields. In the limit of low fields, the diffusion coefficient
vanishes, therefore the Hall coefficient RH = eτ/(m⋆σxx(B = 0)) diverges
for B = 0. We have observed a non-linear response of the magnetoresistance
at low magnetic fields. We have even observed a negative Hall resistance
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pointing to a reversal of the Hall current at low densities. Further investi-
gations to find an explanation of this phenomenon are needed. Especially
the behaviour of other geometries exhibiting anomalous diffusion in the limit
B = 0 [29] would need to be investigated in that regard.

Percolation It is still not clear why the the exponents of the field-induced
percolation transition differ from the universal exponents of the percolation
transition at high densities. This was associated with the non universal be-
haviour of resistor networks in the presence of weak links. Still, no satisfying
theory exists for the observed phenomenology in Lorentz gases. We have de-
vised a method to compute the magnetic-field-induced percolation transition,
but this method can be applied to compute the low-density percolation tran-
sition for any system where the maximal extent of the tracer particle from
the obstacles is restricted. It might therefore be interesting to construct such
a system with non-physical trajectories where the weak links vanish with
another exponent than in the case of circular trajectories. This might settle
the question whether the different behaviour at both transitions is due to the
weak links.
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A
Percolation Thresholds

A.1 Percolation Thresholds for Crosses

Percolation thresholds for the crosses used in the experiments of reference
[29]. The dimensions of the crosses are given in the sketch on the right.

Percolation threshold for oriented crosses:

ρ+ = 0.776645(9). (A.1)

Percolation threshold for non-oriented crosses:

ρ+ = 0.69767(4). (A.2)

A.1.1 Thresholds for the Magnetic-field-induced Percolation Tran-
sition

The magnetic-field-induced percolation thresholds in the EWTM used to
compute the phase diagram in figure 5.24 are given in table A.1 on the next
page.
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Table A.1 Percolation thresholds for the magnetic-field-induced percolation tran-
sition.

B ρ̃c
0.01 3.54555(9) · 10−5
0.03 0.00031119(4)
0.05 0.00084332(2)
0.07 0.0016131(3)
0.1 0.0031760(0)
0.3 0.022893(1)
0.5 0.052212(8)
0.7 0.085678(3)
1.0 0.13784(3)
1.5 0.22094(4)
2.0 0.29470(3)
2.5 0.35875(1)
3.0 0.41420(8)
3.5 0.46239(8)
4.0 0.50452(0)
4.5 0.54157(6)
5.0 0.57438(6)
6.0 0.62980(5)
7.0 0.67475(3)
8.0 0.71190(1)
9.0 0.74310(1)
10.0 0.76966(4)
13.0 0.82995(8)
15.0 0.85923(6)

B ρ̃c
15.0 0.85923(6)
17.0 0.88277(1)
20.0 0.91052(9)
23.0 0.93196(6)
25.0 0.94373(8)
27.0 0.95396(0)
30.0 0.96699(6)
40.0 0.99741(4)
50.0 1.01643(0)
60.0 1.02944(3)
70.0 1.03890(5)
80.0 1.04609(8)
90.0 1.05174(9)
100.0 1.05630(7)
200.0 1.07722(5)
500.0 1.09010(8)
700.0 1.09259(1)
1000.0 1.09445(9)
3000.0 1.09737(8)
5000.0 1.09796(1)
7000.0 1.09821(3)
10000.0 1.09840(0)
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