Dokument: Die Auswirkungen der transkraniellen Gleichstromstimulation über dem linken prämotorischen Kortex auf die Konsolidierung einer neu erlernten motorischen Sequenz

Titel:Die Auswirkungen der transkraniellen Gleichstromstimulation über dem linken prämotorischen Kortex auf die Konsolidierung einer neu erlernten motorischen Sequenz
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=55967
URN (NBN):urn:nbn:de:hbz:061-20210428-083145-6
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Göller, Stephanie [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]1,39 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 12.04.2021 / geändert 12.04.2021
Beitragende:Prof. Dr. med. Pollok, Bettina [Gutachter]
Dr. Wölwer, Wolfgang [Gutachter]
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:ZUSAMMENFASSUNG
Um erfolgreich mit der Umwelt zu interagieren, ist motorisches Lernen unabdingbar. Es basiert auf einem zentralen Netzwerk das insbesondere motorische Areale wie den primären motorischen Cortex (M1) und den prämotorischen Cortex (PMC) einschließt. Während der M1 eine entscheidende Rolle für die Akquisition und die frühe Konsolidierung einer neu erlernten motorischen Sequenz spielt, ist der genaue Beitrag des PMC für motorisches Sequenzlernen noch nicht abschließend geklärt. Die vorliegende Arbeit dient der genaueren Charakterisierung des funktionellen Beitrags des linken PMC für die Konsolidierung einer motorischen Sequenz.
In der vorliegenden Arbeit wurde mithilfe einer Seriellen Reaktionszeit Aufgabe (engl.: Serial Reaction Time Task; SRTT) implizites motorisches Lernen erzeugt. Bei dieser Aufgabe werden die Probanden/innen aufgefordert, auf einen sequenziell präsentierten visuellen Stimulus so schnell wie möglich zu reagieren. Durch die Veränderung der Reaktionszeiten im Vergleich zu einer randomisierten Abfolge des Stimulus lässt sich Lernerfolg messen. Die transkranielle Gleichstromstimula-tion (engl.: transcranial direct current stimulation; tDCS), eine non-invasive Stimulationsmethode, wurde zur Modulation der Erregbarkeit des linken PMC bei 18 gesunden, rechtshändigen und nicht-musikalischen Probanden/innen angewendet. Dabei wurde anodale, kathodale und Placebo-Stimulation über dem linken PMC 30 Minuten nach dem Ende des SRTT-Trainings mit der rechten Hand angewandt. Die Reaktionszeiten wurden vor dem SRTT Training (t1), nach dem Training (t2), direkt nach der tDCS (t3) und nach einer nächtlichen Schlafphase (t4) gemessen. Die Analyse der Daten zeigte nur nach anodaler tDCS eine signifikante Verminderung der Reaktionszeiten zum Messzeitpunkt t3 im Vergleich zu t2. Nach einer Schlafphase zum Zeitpunkt t4 zeigte sich kein signifikanter Unterschied der Reaktionszeiten zwischen den Stimulationsbedingungen, was auf eine Reaktionszeitbeschleunigung in den anderen beiden Bedingungen zurückgeführt werden kann. Die Ergebnisse unterstützen die Hypothese einer kausalen Beteiligung des PMC an der frühen Konsolidierung einer neu erlernten Bewegungssequenz. Insbesondere legen die Daten nahe, dass die anodale tDCS die frühe Konsolidierung einer motorischen Sequenz verbessern kann. Allerdings sind diese Effekte von kurzer Dauer und können durch eine Schlafphase und/oder das Verstreichen von Zeit ausgeglichen werden.

SUMMARY
Motor learning is a necessary ability to carry out daily tasks and interact with the environment. The term motor learning consists of the initial acquisition of a new motor pattern followed by its consolidation. While the primary motor cortex (M1) plays a crucial role in the acquisition and early consolidation of a newly learned motor sequence, the precise impact of the premotor cortex (PMC) on subsequent consolidation remains less clear. The present study aims at investigating the role of the left PMC for the consolidation of a motor sequence.
Training on a serial reaction time task (SRTT) was used to induce implicit motor learning. Within this task participants are asked to react as fast as possible to a sequentially presented visual stimulus. Progression of motor learning can be measured by the decrease of these reaction times in comparison to the reaction times to a randomly presented stimulus. Transcranial direct current stimulation, a non-invasive stimulation method, was used to modulate the excitability of the left PMC in 18 healthy, right-handed non-musicians. Anodal, cathodal tDCS and sham-stimulation were applied to the left PMC 30 minutes after SRTT training with the right hand. Reaction times were measured prior to SRTT training (t1), at the end of training (t2), directly after tDCS (t3) and after overnight sleep (t4). The analysis revealed a significant facilitation of reaction times in sequential trials after anodal tDCS at t3, whereas no further significant improvement was evident at t4 (after overnight sleep). Reaction times at t4 did not significantly differ between stimulation conditions due to faster reaction times in the other two stimulation conditions. The results support the hypothesis of a causal involvement of the PMC in early consolidation. In particular, the data imply that anodal tDCS can facilitate early motor sequence consolidation. Noteworthy, the impact of a single tDCS ap-plication is of short duration and remediated by progression of time and/or sleep.
Quelle:Ashe, James; Lungu, Ovidiu V.; Basford, Alexandra T.; Lu, Xiaofeng (2006): Cor-tical control of motor sequences. In: Current opinion in neurobiology 16 (2), S. 213–221. DOI: 10.1016/j.conb.2006.03.008.
Bear, Mark F.; Singer, Wolf (1986): Modulation of visual cortical plasticity by ace-tylcholine and noradrenaline. In: Nature 320 (6058), S. 172–176. DOI: 10.1038/320172a0.
Cabral, Maria E.; Baltar, Adriana; Borba, Rebeka; Galvão, Silvana; Santos, Luci-ana; Fregni, Felipe; Monte-Silva, Kátia (2015): Transcranial direct current stimula-tion. Before, during, or after motor training? In: Neuroreport 26 (11), S. 618–622. DOI: 10.1097/WNR.0000000000000397.
Censor, Nitzan; Cohen, Leonardo G. (2011): Using repetitive transcranial magnet-ic stimulation to study the underlying neural mechanisms of human motor learning and memory. In: The Journal of physiology 589 (Pt 1), S. 21–28. DOI: 10.1113/jphysiol.2010.198077.
Deiber, Marie-Pierre; Wise, Steven P.; Honda, Manabu; Catalan, Maria-Jose; Grafman, Jordan; Hallett, Mark (1997): Frontal and parietal networks for condi-tional motor learning: a positron emission tomography study. In: Journal of neuro-physiology 78 (2), S. 977–991. DOI: 10.1152/jn.1997.78.2.977.
Doyon, Julien; Bellec, Pierre; Amsel, Rhonda; Penhune, Virginia; Monchi, Oury; Carrier, Julie et al. (2009): Contributions of the basal ganglia and functionally re-lated brain structures to motor learning. In: Behavioural brain research 199 (1), S. 61–75. DOI: 10.1016/j.bbr.2008.11.012.
Doyon, Julien; Benali, Habib (2005): Reorganization and plasticity in the adult brain during learning of motor skills. In: Current opinion in neurobiology 15 (2), S. 161–167. DOI: 10.1016/j.conb.2005.03.004.
Elsner, Bernhard; Kugler, Joachim; Mehrholz, Jan (2018): Transcranial direct cur-rent stimulation (tDCS) for upper limb rehabilitation after stroke: future directions. In: Journal of neuroengineering and rehabilitation 15 (1), S. 106. DOI: 10.1186/s12984-018-0459-7.
Filmer, Hannah L.; Dux, Paul E.; Mattingley, Jason B. (2014): Applications of tran-scranial direct current stimulation for understanding brain function. In: Trends in neurosciences 37 (12), S. 742–753. DOI: 10.1016/j.tins.2014.08.003.
Focke, Jan; Kemmet, Sylvia; Krause, Vanessa; Keitel, Ariane; Pollok, Bettina (2017): Cathodal transcranial direct current stimulation (tDCS) applied to the left premotor cortex (PMC) stabilizes a newly learned motor sequence. In: Behaviour-al brain research 316, S. 87–93. DOI: 10.1016/j.bbr.2016.08.032.
George, Mark S.; Wassermann, Eric M.; Post, Robert M. (1996): Transcranial magnetic stimulation: a neuropsychiatric tool for the 21st century. In: The Journal of neuropsychiatry and clinical neurosciences 8 (4), S. 373–382. DOI: 10.1176/jnp.8.4.373.
Geyer, Stefan; Matelli, Massimo; Luppino, Giuseppe; Zilles, Karl (2000): Function-al neuroanatomy of the primate isocortical motor system. In: Anatomy and Em-bryology 202 (6), S. 443–474. DOI: 10.1007/s004290000127.
Ghosh, Soumya; Porter, Robert (1988): Morphology of pyramidal neurones in monkey motor cortex and the synaptic actions of their intracortical axon collat-erals. In: The Journal of physiology 400, S. 593–615. DOI: 10.1113/jphysiol.1988.sp017138.
Giacobbe, Viola; Krebs, Hermano I.; Volpe, Bruce T.; Pascual-Leone, Alvaro; Rykman, Avrielle.; Zeiarati, G. et al. (2013): Transcranial direct current stimulation (tDCS) and robotic practice in chronic stroke: the dimension of timing. In: Neu-rorehabilitation 33 (1), S. 49–56. DOI: 10.3233/NRE-130927.
Grafton, Scott T.; Hazeltine, Eliot; Ivry, Richard B. (1995): Functional mapping of sequence learning in normal humans. In: Journal of cognitive neuroscience 7 (4), S. 497–510. DOI: 10.1162/jocn.1995.7.4.497.
Grafton, Scott T.; Hazeltine, Eliot; Ivry, Richard B. (1998): Abstract and Effector-Specific Representations of Motor Sequences Identified with PET. In: J. Neurosci. 18 (22), S. 9420–9428. DOI: 10.1523/JNEUROSCI.18-22-09420.1998.
Grafton, Scott T.; Mazziotta, John C.; Presty, Sharon; Friston, Karl J.; Frackowi-ak, Richard S.; Phelps, Michael E. (1992): Functional anatomy of human proce-dural learning determined with regional cerebral blood flow and PET. In: J. Neuro-sci. 12 (7), S. 2542–2548. DOI: 10.1523/JNEUROSCI.12-07-02542.1992.
Halsband, Ulrike; Lange, Regine K. (2006): Motor learning in man. A review of functional and clinical studies. In: Journal of physiology, Paris 99 (4-6), S. 414–424. DOI: 10.1016/j.jphysparis.2006.03.007.
Hardwick, Robert M.; Rottschy, Claudia; Miall, R. Chris; Eickhoff, Simon B. (2013): A quantitative meta-analysis and review of motor learning in the human brain. In: NeuroImage 67, S. 283–297. DOI: 10.1016/j.neuroimage.2012.11.020.
Hashemirad, Fahimeh; Zoghi, Maryam; Fitzgerald, Paul B.; Jaberzadeh, Shapour (2016): The effect of anodal transcranial direct current stimulation on motor se-quence learning in healthy individuals. A systematic review and meta-analysis. In: Brain and cognition 102, S. 1–12. DOI: 10.1016/j.bandc.2015.11.005.
Hazeltine, Eliot; Grafton, Scott T.; Ivry, Richard B. (1997): Attention and stimulus characteristics determine the locus of motor-sequence encoding. A PET study. In: Brain : a journal of neurology 120 (Pt 1), S. 123–140. DOI: 10.1093/brain/120.1.123.
Hess, Grzegorz; Donoghue, John P. (1994): Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. In: Journal of neurophysiology 71 (6), S. 2543–2547. DOI: 10.1152/jn.1994.71.6.2543.
Holm, Sture (1979): A Simple Sequentially Rejective Multiple Test Procedure. In: Scandinavian Journal of Statistics, S. 65–70.
Honda, Manabu; Deiber, Marie-Pierre; Ibáñez, Vicente; Pascual-Leone, Alvaro; Zhuang, Ping; Hallett, Mark (1998): Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study. In: Brain : a journal of neurology 121 (Pt 11), S. 2159–2173. DOI: 10.1093/brain/121.11.2159.
Inoue, Kentaro; Kawashima, Ryuta; Satoh, Kazunori; Kinomura, Shigeo; Goto, Ryoi; Sugiura, Motoaki et al. (1997): Activity in the parietal area during visuomotor learning with optical rotation. In: Neuroreport 8 (18), S. 3979–3983. DOI: 10.1097/00001756-199712220-00026.
Jenkins, I. Harri; Brooks, David J.; Nixon, Philip D.; Frackowiak, Richard S.; Passingham, Richard E. (1994): Motor sequence learning: a study with positron emission tomography. In: J. Neurosci. 14 (6), S. 3775–3790. DOI: 10.1523/JNEUROSCI.14-06-03775.1994.
Kantak, Shailesh S.; Mummidisetty, Chaithanya K.; Stinear, James W. (2012): Primary motor and premotor cortex in implicit sequence learning--evidence for competition between implicit and explicit human motor memory systems. In: The European journal of neuroscience 36 (5), S. 2710–2715. DOI: 10.1111/j.1460-9568.2012.08175.x.
Karni, Avi; Meyer, Gundela; Jezzard, Peter; Adams, Michelle M.; Turner, Robert; Ungerleider, Leslie G. (1995): Functional MRI evidence for adult motor cortex plasticity during motor skill learning. In: Nature 377 (6545), S. 155–158. DOI: 10.1038/377155a0.
Karni, Avi; Tanne, David; Rubenstein, Barton S.; Askenasy, Jean J. M.; Sagi, Dov (1994): Dependence on REM sleep of overnight improvement of a perceptual skill. In: Science 265 (5172), S. 679–682. DOI: 10.1126/science.8036518.
Klinke, Rainer; Pape, Hans-Christian; Kurtz, Armin; Silbernagl, Stefan; Baumann, Rosemarie; Brenner, Bernhard et al. (Hg.) (2010): Physiologie. 6., vollständig überarb. Aufl. Stuttgart: Thieme. Online verfügbar unter http://ebooks.thieme.de/9783137960065.
Korpi, Esa R.; Gründer, Gerhard; Lüddens, Hartmut (2002): Drug interactions at GABAA receptors. In: Progress in neurobiology 67 (2), S. 113–159. DOI: 10.1016/S0301-0082(02)00013-8.
Krakauer, John W.; Shadmehr, Reza (2006): Consolidation of motor memory. In: Trends in neurosciences 29 (1), S. 58–64. DOI: 10.1016/j.tins.2005.10.003.
Lang, Nicolas; Siebner, Hartwig R.; Ward, Nick S.; Lee, Lucy; Nitsche, Michael A.; Paulus, Walter et al. (2005): How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? In: The European journal of neuroscience 22 (2), S. 495–504. DOI: 10.1111/j.1460-9568.2005.04233.x.
Lewis, Penny A.; Wing, Alan M.; Pope, Paul A.; Praamstra, Peter; Miall, R. Chris (2004): Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. In: Neuropsychologia 42 (10), S. 1301–1312. DOI: 10.1016/j.neuropsychologia.2004.03.001.
Llinás, Rodolfo R.; Paré, Denis (1991): Of dreaming and wakefulness. In: Neuro-science 44 (3), S. 521–535. DOI: 10.1016/0306-4522(91)90075-Y.
Lohse, Keith R.; Wadden, Katie; Boyd, Lara A.; Hodges, Nicola J. (2014): Motor skill acquisition across short and long time scales: a meta-analysis of neuroimag-ing data. In: Neuropsychologia 59, S. 130–141. DOI: 10.1016/j.neuropsychologia.2014.05.001.
Maquet, Pierre (2001): The role of sleep in learning and memory. In: Science 294 (5544), S. 1048–1052. DOI: 10.1126/science.1062856.
Maquet, Pierre; Laureys, Steven; Peigneux, Philippe; Fuchs, Sonia; Petiau, Chris-tophe; Phillips, Christophe et al. (2000): Experience-dependent changes in cere-bral activation during human REM sleep. In: Nature neuroscience 3 (8), S. 831–836. DOI: 10.1038/77744.
Maquet, Pierre; Schwartz, Sophie; Passingham, Richard; Frith, Christopher (2003): Sleep-Related Consolidation of a Visuomotor Skill: Brain Mechanisms as Assessed by Functional Magnetic Resonance Imaging. In: J. Neurosci. 23 (4), S. 1432–1440. DOI: 10.1523/JNEUROSCI.23-04-01432.2003.
Meehan, Sean K.; Zabukovec, Jeanie R.; Dao, Elizabeth; Cheung, Katharine L.; Linsdell, Meghan A.; Boyd, Lara A. (2013): One hertz repetitive transcranial mag-netic stimulation over dorsal premotor cortex enhances offline motor memory con-solidation for sequence-specific implicit learning. In: The European journal of neu-roscience 38 (7), S. 3071–3079. DOI: 10.1111/ejn.12291.
Miyachi, Shigehiro; Lu, Xiaofeng; Imanishi, Michiko; Sawada, Kaori; Nambu, Atsu-shi; Takada, Masahiko (2006): Somatotopically arranged inputs from putamen and subthalamic nucleus to primary motor cortex. In: Neuroscience research 56 (3), S. 300–308. DOI: 10.1016/j.neures.2006.07.012.
Möhler, Hanns; Fritschy, Jean-Marc; Crestani, Florence; Hensch, Takao; Rudolph, Uwe (2004): Specific GABA(A) circuits in brain development and therapy. In: Bio-chemical pharmacology 68 (8), S. 1685–1690. DOI: 10.1016/j.bcp.2004.07.025.
Muellbacher, Wolf; Ziemann, Ulf; Boroojerdi, Babak; Cohen, Leonardo G.; Hallett, Mark (2001): Role of the human motor cortex in rapid motor learning. In: Experi-mental brain research 136 (4), S. 431–438. DOI: 10.1007/s002210000614.
Muellbacher, Wolf; Ziemann, Ulf; Wissel, Joerg; Dang, Nguyet; Kofler, Markus; Facchini, Stefano et al. (2002): Early consolidation in human primary motor cortex. In: Nature 415 (6872), S. 640–644. DOI: 10.1038/nature712.
Nissen, Mary Jo; Bullemer, Peter (1987): Attentional requirements of learning: Evidence from performance measures. In: Cognitive Psychology 19 (1), S. 1–32. DOI: 10.1016/0010-0285(87)90002-8.
Nitsche, M. A.; Paulus, W. (2000): Excitability changes induced in the human mo-tor cortex by weak transcranial direct current stimulation. In: The Journal of physi-ology 527 Pt 3, S. 633–639. DOI: 10.1111/j.1469-7793.2000.t01-1-00633.x.
Nitsche, Michael A.; Doemkes, Stephanie; Karaköse, Tamer; Antal, Andrea; Lie-betanz, David; Lang, Nicolas et al. (2007): Shaping the effects of transcranial di-rect current stimulation of the human motor cortex. In: Journal of neurophysiology 97 (4), S. 3109–3117. DOI: 10.1152/jn.01312.2006.
Nitsche, Michael A.; Jakoubkova, Michaela; Thirugnanasambandam, Nivethida; Schmalfuss, Leonie; Hullemann, Sandra; Sonka, Karel et al. (2010): Contribution of the premotor cortex to consolidation of motor sequence learning in humans dur-ing sleep. In: Journal of neurophysiology 104 (5), S. 2603–2614. DOI: 10.1152/jn.00611.2010.
Nitsche, Michael A.; Schauenburg, Astrid; Lang, Nicolas; Liebetanz, David; Exner, Cornelia; Paulus, Walter; Tergau, Frithjof (2003): Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. In: Journal of cognitive neuroscience 15 (4), S. 619–626. DOI: 10.1162/089892903321662994.
Nitsche, Michael A.; Seeber, Antje; Frommann, Kai; Klein, Cornelia Carmen; Rochford, Christian; Nitsche, Maren S. et al. (2005): Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. In: The Journal of physiology 568 (Pt 1), S. 291–303. DOI: 10.1113/jphysiol.2005.092429.
Oldfield, R. C. (1971): The assessment and analysis of handedness: The Edin-burgh inventory. In: Neuropsychologia 9 (1), S. 97–113. DOI: 10.1016/0028-3932(71)90067-4.
Pascual-Leone, Alvaro; Grafman, Jordan; Hallett, Mark (1994): Modulation of cor-tical motor output maps during development of implicit and explicit knowledge. In: Science 263 (5151), S. 1287–1289. DOI: 10.1126/science.8122113.
Picard, Nathalie; Strick, Peter L. (1996): Motor areas of the medial wall: a review of their location and functional activation. In: Cerebral cortex (New York, N.Y. : 1991) 6 (3), S. 342–353. DOI: 10.1093/cercor/6.3.342.
Picard, Nathalie; Strick, Peter L. (2001): Imaging the premotor areas. In: Current opinion in neurobiology 11 (6), S. 663–672. DOI: 10.1016/S0959-4388(01)00266-5.
Reis, Janine; Robertson, Edwin M.; Krakauer, John W.; Rothwell, John; Marshall, Lisa; Gerloff, Christian et al. (2008): Consensus. Can transcranial direct current stimulation and transcranial magnetic stimulation enhance motor learning and memory formation? In: Brain Stimulation 1 (4), S. 363–369. DOI: 10.1016/j.brs.2008.08.001.
Reis, Janine; Schambra, Heidi M.; Cohen, Leonardo G.; Buch, Ethan R.; Fritsch, Brita; Zarahn, Eric et al. (2009): Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. In: Proceed-ings of the National Academy of Sciences of the United States of America 106 (5), S. 1590–1595. DOI: 10.1073/pnas.0805413106.
Reithler, Joel; Peters, Judith C.; Sack, Alexander T. (2011): Multimodal transcra-nial magnetic stimulation: using concurrent neuroimaging to reveal the neural net-work dynamics of noninvasive brain stimulation. In: Progress in neurobiology 94 (2), S. 149–165. DOI: 10.1016/j.pneurobio.2011.04.004.
Ridding, Michael C.; Rothwell, John C. (2007): Is there a future for therapeutic use of transcranial magnetic stimulation? In: Nature reviews. Neuroscience 8 (7), S. 559–567. DOI: 10.1038/nrn2169.
Rioult-Pedotti, Mengia-S.; Friedman, Daniel; Hess, Grzegorz; Donoghue, John P. (1998): Strengthening of horizontal cortical connections following skill learning. In: Nature neuroscience 1 (3), S. 230–234. DOI: 10.1038/678.
Robertson, Edwin M.; Pascual-Leone, Alvaro; Miall, R. Chris (2004a): Current concepts in procedural consolidation. In: Nature reviews. Neuroscience 5 (7), S. 576–582. DOI: 10.1038/nrn1426.
Robertson, Edwin M.; Pascual-Leone, Alvaro; Press, Daniel Z. (2004b): Aware-ness modifies the skill-learning benefits of sleep. In: Current biology : CB 14 (3), S. 208–212. DOI: 10.1016/j.cub.2004.01.027.
Robertson, Edwin M.; Press, Daniel Z.; Pascual-Leone, Alvaro (2005): Off-line learning and the primary motor cortex. In: The Journal of neuroscience : the offi-cial journal of the Society for Neuroscience 25 (27), S. 6372–6378. DOI: 10.1523/JNEUROSCI.1851-05.2005.
Sanes, J. N.; Donoghue, J. P. (2000): Plasticity and primary motor cortex. In: An-nual review of neuroscience 23, S. 393–415. DOI: 10.1146/annurev.neuro.23.1.393.
Sanes, Jerome (2003): Neocortical mechanisms in motor learning. In: Current opinion in neurobiology 13 (2), S. 225–231. DOI: 10.1016/S0959-4388(03)00046-1.
Saturnino, Guilherme B.; Antunes, André; Thielscher, Axel (2015): On the im-portance of electrode parameters for shaping electric field patterns generated by tDCS. In: NeuroImage 120, S. 25–35. DOI: 10.1016/j.neuroimage.2015.06.067.
Savic, Miroslav (2005): Memory Effects of Benzodiazepines: Memory Stage and Types versus Binding-Site Subtypes.
Seidler, Raphael D.; Purushotham, Arnie; Kim, Seong-Gi; Ugurbil, Kaamil; Willing-ham, Daniel; Ashe, James. (2005): Neural correlates of encoding and expression in implicit sequence learning. In: Experimental brain research 165 (1), S. 114–124. DOI: 10.1007/s00221-005-2284-z.
Shadmehr, Reza; Holocomb, Henry (1997): Neural Correlates of Motor Memory Consolidation. In: Science 277 (5327), S. 821–825. DOI: 10.1126/science.277.5327.821.
Silvanto, Juha; Muggleton, Neil; Walsh, Vincent (2008): State-dependency in brain stimulation studies of perception and cognition. In: Trends in cognitive sciences 12 (12), S. 447–454. DOI: 10.1016/j.tics.2008.09.004.
Squire, Larry; Zola, Stuart (1996): Structure and function of declarative and non-declarative memory systems. Colloquium Paper. In: Process.
Stagg, Charlotte J.; Bachtiar, Velicia; Johansen-Berg, Heidi (2011): The role of GABA in human motor learning. In: Current biology : CB 21 (6), S. 480–484. DOI: 10.1016/j.cub.2011.01.069.
Stickgold, Robert; James, LaTanya; Hobson, J. Allan (2000): Visual discrimination learning requires sleep after training. In: Nature neuroscience 3 (12), S. 1237–1238. DOI: 10.1038/81756.
Vidoni, Eric D.; Acerra, Nicole E.; Dao, Elizabeth; Meehan, Sean K.; Boyd, Lara A. (2010): Role of the primary somatosensory cortex in motor learning: An rTMS study. In: Neurobiology of Learning and Memory 93 (4), S. 532–539. DOI: 10.1016/j.nlm.2010.01.011.
Walker, Matthew; Brakefield, Tiffany; Hobson, Allan; Stickgold, Robert. (2003): Dissociable stages of human memory consolidation and reconsolidation. In: Na-ture 425 (6958), S. 614–616. DOI: 10.1038/nature01951.
Walker, Matthew P.; Brakefield, Tiffany; Morgan, Alexandra; Hobson, J.Allan; Stickgold, Robert (2002): Practice with Sleep Makes Perfect. In: Neuron 35 (1), S. 205–211. DOI: 10.1016/S0896-6273(02)00746-8.
Wilkinson, Leonora; Teo, James T.; Obeso, Ignacio; Rothwell, John C.; Ja-hanshahi, Marjan (2010): The contribution of primary motor cortex is essential for probabilistic implicit sequence learning: evidence from theta burst magnetic stimu-lation. In: Journal of cognitive neuroscience 22 (3), S. 427–436. DOI: 10.1162/jocn.2009.21208.
Willingham, Daniel B. (1998): A neuropsychological theory of motor skill learning. In: Psychological review 105 (3), S. 558–584. DOI: 10.1037/0033-295x.105.3.558.
Woods, Adam J.; Antal, Andrea; Bikson, Marom; Boggio, Paulo S.; Brunoni, Andre R.; Celnik, Pablo et al. (2016): A technical guide to tDCS, and related non-invasive brain stimulation tools. In: Clinical neurophysiology : official journal of the Interna-tional Federation of Clinical Neurophysiology 127 (2), S. 1031–1048. DOI: 10.1016/j.clinph.2015.11.012.
Lizenz:In Copyright
Urheberrechtsschutz
Bezug:2016 - 2021
Fachbereich / Einrichtung:Medizinische Fakultät » Institute » Institut für Medizinische Psychologie
Dokument erstellt am:28.04.2021
Dateien geändert am:28.04.2021
Promotionsantrag am:26.10.2020
Datum der Promotion:06.04.2021
english
Benutzer
Status: Gast
Aktionen