Dokument: The Stokes and Navier-Stokes Equations in Triebel-Lizorkin-Lorentz Spaces and on Uniform C^{2,1}-Domains
Titel: | The Stokes and Navier-Stokes Equations in Triebel-Lizorkin-Lorentz Spaces and on Uniform C^{2,1}-Domains | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=52595 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20200310-105927-8 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Hobus, Pascal [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Saal, Jürgen [Gutachter] Prof. Dr. Farwig, Reinhard [Gutachter] | |||||||
Stichwörter: | Navier-Stokes equations, Triebel-Lizorkin-Lorentz spaces | |||||||
Dewey Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik » 510 Mathematik | |||||||
Beschreibung: | The subject of this thesis is the mathematical Navier-Stokes equations in a domain on some fixed time interval and the Stokes equations that we receive by leaving out the nonlinear term.
We treat these equations subject to partial slip type boundary conditions. This class of boundary conditions contains Navier boundary conditions and the perfect slip boundary condition, which equals the vorticity condition in space dimension three. We prove well-posedness of the Stokes equations via analytic semigroup theory in the setting of Lebesgue spaces for a large class of domains with uniform C^{2,1}-boundary. This class particularly includes domains, where the classical Helmholtz decomposition fails to exist, e.g., sector-like domains with a smoothed vertex and an opening angle which is large enough. Further results on the Stokes resolvent problem and applications to the Navier-Stokes equations on domains are included in the presented outcomes. Moreover, for the case that the domain is the whole space, we prove existence and uniqueness of maximal strong solutions to the Navier-Stokes equations in the scale of Triebel-Lizorkin-Lorentz spaces. This scale contains many important function spaces such as Sobolev-Slobodeckii spaces, Bessel-potential spaces, Lorentz spaces and, in particular, Lebesgue spaces. Now the stated results concerning Triebel-Lizorkin-Lorentz spaces yield corresponding results simultaneously for all the spaces that one can find in this scale. | |||||||
Lizenz: | Urheberrechtsschutz | |||||||
Fachbereich / Einrichtung: | Mathematisch- Naturwissenschaftliche Fakultät » WE Mathematik » Angewandte Analysis | |||||||
Dokument erstellt am: | 10.03.2020 | |||||||
Dateien geändert am: | 10.03.2020 | |||||||
Promotionsantrag am: | 19.12.2019 | |||||||
Datum der Promotion: | 05.03.2020 |