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Introduction

In mathematical fluid dynamics the Navier-Stokes equations$&%
ρBtu ´ μΔu ` ∇p ` ρpu ¨ ∇qu “ ρf in p0, T q ˆ Ω

div u “ 0 in p0, T q ˆ Ω
u|t“0 “ u0 in Ω,

(0.1)

play a central role. They describe the behavior of a moving incompressible Newtonian
fluid with velocity field u and pressure p inside a domain Ω Ă Rn. The vector field f
is the external body force affecting the fluid and u0 is the observed velocity field at a
starting time t “ 0, while the interval p0, T q is the remaining (finite or infinite) timeframe
under consideration. The appearing constants are the density ρ and the viscosity μ.

From a physical point of view, the space dimensions n “ 2 and n “ 3 are of greatest
interest. In this case, the domain Ω may be seen as filled with a moving fluid, described by
the mentioned quantities. Depending on the choice of the domain Ω, it is further possible
to use the Navier-Stokes equations to describe the flow around a fixed body. This is the
case if Ω is an exterior domain, i.e., the complement of Ω is a compact nonempty set
(see [52]).

From a mathematical point of view it is convenient to reformulate (0.1) such that one
may concentrate on the nonconstant quantities. Dividing the first line of (0.1) by ρ ą 0
and considering ∇pp{ρq as the unknown gradient field instead of ∇p, yields that the
quotient μ{ρ is the only remaining quantity which is constant in the model. Now for
the mathematical theory the actual size of the quantity μ{ρ is not essential. Hence, for
simplicity in the notation, it is common to set μ{ρ “ 1 and we receive$&%

Btu ´ Δu ` ∇p ` pu ¨ ∇qu “ f in p0, T q ˆ Ω
div u “ 0 in p0, T q ˆ Ω
u|t“0 “ u0 in Ω.

(0.2)

Still, note that μ{ρ is physically not a dimensionless quantity so that, strictly spoken, the
physical unit is skipped by setting μ{ρ “ 1. Nevertheless, for the mathematical theory
the assumptions are made without loss of generality, the problem (0.2) is meaningful
and any obtained mathematical result can be reformulated as a statement with precise
physical meaning. Moreover, as this is common as well, we will call the quantity p in
(0.2), which now stands for the pressure divided by the (constant) density, the pressure
again. Since p in (0.2) is proportional to the physical pressure, it has the same behavior
in all aspects that we are going to consider in this thesis.

Note that uniqueness of solutions to the Stokes and Navier-Stokes equations can only
be achieved for a couple pu,∇pq of the velocity and the gradient of the pressure but not
for the pressure p itself, since for any solution pu, pq and an arbitrary constant C also
pu, p ` Cq is a solution.

We will further use 1 ă p ă 8 as a parameter, appearing in some function spaces, but
keep denoting the pressure in (0.2) by p as well, since it will appear as a gradient ∇p
only, so there will not be any notational confusion.
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Introduction

The linearized version of the Navier-Stokes equations,$&%
Btu ´ Δu ` ∇p “ f in p0, T q ˆ Ω

div u “ 0 in p0, T q ˆ Ω
u|t“0 “ u0 in Ω,

(0.3)

called the Stokes equations, is on the one hand of great interest itself in fluid dynamics.
On the other hand, a treatment of (0.3) is usually the starting point in order to obtain
properties of the Navier-Stokes equations, subject to certain boundary conditions, like
well-posedness, regularity or stability.

In case BΩ ‰ H one has to add conditions on the boundary to the equations. Inter-
preting the domain Ω as filled with a fluid gives that BΩ may be seen as a rigid wall
and the boundary conditions state the expected behavior of the fluid at this wall. One
reasonable condition is that the fluid may not penetrate the wall, i.e.,

ν ¨ u “ 0

shall hold at the boundary, where ν is the outward unit normal vector at BΩ. In this
thesis, we will consider the Stokes and Navier-Stokes equations subject to partial slip
type boundary conditions of the form"

Πτ pαu ` p∇uT ˘ ∇uqνq “ 0 on p0, T q ˆ BΩ
ν ¨ u “ 0 on p0, T q ˆ BΩ, (0.4)

where α P R and we write (0.4)` or (0.4)´, depending on whether ∇uT `∇u or ∇uT ´∇u
is considered. Here Πτ is the projection onto the tangent space at BΩ.

The case (0.4)` for α ą 0 is called Navier condition, describing the situation that the
fluid slips along the wall and is stressed in tangential direction, where α ą 0 is the related
friction parameter. If we (formally) let α Ñ 8 then we end up with the no slip boundary
condition (or Dirichlet boundary condition), i.e.,

u “ 0 on p0, T q ˆ BΩ,
meaning that the fluid does not slip along the wall. The case (0.4)´ for α “ 0 is called
perfect slip boundary condition (cf. [48]). In the physically interesting case n “ 3 this
equals the vorticity condition"

ν ˆ curlu “ 0 on p0, T q ˆ BΩ
ν ¨ u “ 0 on p0, T q ˆ BΩ.

In investigations of the Stokes equations the considered class of domains Ω Ă Rn mostly
consists of Helmholtz domains, i.e., for the Lebesgue space Lq, the classical Helmholtz
decomposition

LqpΩqn “ Lq,σpΩq ‘ GqpΩq (0.5)

holds for all 1 ă q ă 8. Here Lq,σpΩq Ă LqpΩqn is the closure of the space of smooth
functions with compact support and vanishing divergence in Ω and GqpΩq is the space
of gradient fields ∇p P LqpΩqn, where p P Lq,locpΩq.

For the no slip boundary condition on domains with compact boundary but also on
bent and perturbed half spaces it has been proved by Farwig and Sohr (see [25]) that
the boundary regularity C1,1 is sufficient for well-posedness in Lq (for 1 ă q ă 8) of
the Stokes equations, where analyticity of the Stokes semigroup has been established.
Geißert, Heck, Hieber and Sawada (see [30]) have proved that, on domains with
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uniform C3-boundary, validity of the Helmholtz decomposition (0.5) is sufficient for the
Stokes equations to be well-posed, where maximal Lq-regularity of the Stokes operator
has been proved. Nevertheless, Bolkart, Giga, Miura, Suzuki and Tsutsui have
shown that validity of the Helmholtz decomposition is not a necessary condition for
well-posedness of the Stokes equations (see [11]).

First mathematical approaches on the Stokes equations with first order boundary con-
ditions are due to Miyakawa and Giga (see [51], [32]; cf. [60]). Investigations concerning
Robin boundary conditions are due to Saal, Shibata and Shimada (see [58], [57], [59],
[61]). For further investigations on that topic we refer to [12], [19] and [31] and for a
general overview of the state of research for the Stokes equations in the Lp-setting see [37].

One aim in this thesis is to obtain results concerning the Stokes equations and the
Stokes resolvent problem subject to partial slip type boundary conditions on a large
class of domains including particularly

• domains with noncompact boundary and

• non-Helmholtz domains.

The localization technique that we are going to apply has already been utilized in a similar
way by Kunstmann for second order elliptic operators subject to no slip boundary
conditions (see [46]). It turned out that uniform C2,1-regularity of the boundary BΩ
is suitable for our purposes and our methods, due to the structure of the boundary
conditions (0.4).

Using the special structure of perfect slip boundary conditions, we first establish ex-
istence and Lq,σ-invariance of the Laplace resolvent (Theorem 6.5 and Proposition 8.1).
This feature was utilized in [50] already (cf. [48], [45]) to study the Stokes operator sub-
ject to Neumann type boundary conditions on domains with Lipschitz boundary. We
further make use of a suitable generalization of the Helmholtz decomposition, given by

LqpΩqn “ Lq,σpΩq ‘ GqpΩq (0.6)

(Lemma 4.1 and (4.1)), where GqpΩq is a proper subspace of GqpΩq in case the decompo-
sition (0.5) does not hold. Note that in case the intersection Lq,σpΩq X GqpΩq has finite
dimension the concept of generalized Helmholtz decompositions has already been estab-
lished by Farwig, Simader, Sohr and Varnhorn (see [24]). We apply the results for
the Laplace resolvent to obtain a unique solution to the Stokes resolvent problem"

λu ´ Δu ` ∇p “ f in Ω
div u “ 0 in Ω

subject to perfect slip boundary conditions as well as the corresponding resolvent esti-
mate, where ∇p is contained in the space GqpΩq (Theorem 9.1 and Theorem 9.2). In case
the gradient field ∇p is assumed to be contained in the space GqpΩq, we prove that solu-
tions of the Stokes resolvent problem are no longer unique if GqpΩq is a proper subspace
of GqpΩq. In spite of this fact, note that this can not occur in the ground space

rLqpΩq “
#
LqpΩq ` L2pΩq, 1 ă q ă 2

LqpΩq X L2pΩq, 2 ď q ă 8,

which has been utilized by Farwig, Kozono and Sohr and later also by Rosteck

(see [22], [23], [55]). A main difference to the Lq-approach is that for rLqpΩq the related
Helmholtz decomposition holds on arbitrary domains with uniform C2-boundary.
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We generalize the results about perfect slip boundary conditions to the boundary
conditions (0.4) by utilizing a perturbation argument (Theorem 10.2) and deduce that
the related Stokes operator is the generator of a strongly continuous analytic semigroup
(Theorem 11.3). Our results about the Stokes equations on uniform C2,1-domains are
finally applied to the Navier-Stokes equations to obtain corresponding local mild solutions
(Theorem 12.1).

Since there seem to be no results in the literature about the Stokes equations in Lq

(1 ă q ă 8) on a general class of non-Helmholtz domains (in the sense of (0.5)), the
main results on that topic, stated in this thesis, are new.

A second aim in this thesis is to develop the theory of maximal regularity for the Stokes
equations and to apply this to the Navier-Stokes equations in the whole space for the
scale of Triebel-Lizorkin-Lorentz spaces (TLL spaces) F s,r

p,q .
TLL spaces F s,r

p,q may be seen as a unification of Triebel-Lizorkin spaces F s
p,q and

Lorentz spaces Lp,r and were introduced by Cheng, Peng and Yang (see [14]) in 2005.
The admissible parameters are s P R, 1 ă p, q ă 8 and 1 ď r ď 8. Implicitly the
spaces F s,r

p,q appear in the pertinent monograph of Triebel (see [66], Sec. 2.4.2) already.
In 2011, Xiang and Yan (see [67]) already considered TLL spaces in the context of
partial differential equations and established local well-posedness of a quasi-geostrophic
equation.

Depending on the choice of the parameters s, r, p, q, the scale F s,r
p,q contains many

important function spaces, e.g.,

• Bessel-potential spaces Hs
p ,

• Sobolev-Slobodeckĭı spaces W s
p ,

• Lorentz spaces Lp,r and particularly

• Lebesgue spaces Lp.

Local well-posedness in Lp in the whole space under suitable conditions for the parameters
is due to Kato (see [44]). For mild solutions in Lp,r in the whole space see [68]. As
initiators for investigations in the subject, concerning classical function spaces, we should
mention Leray, Hopf, Fujita, Kato, Solonnikov and Giga. We refrain from trying
to give a complete list. Instead, we refer to the monographs [29] and [64] and the
references therein.

The main result (Theorem 14.7) gives existence and uniqueness of local strong solutions
on a maximal time interval in Ω “ Rn for (0.2) in TLL spaces. Since the result is valid
for general TLL spaces, this finally yields corresponding outcomes simultaneously in all
the function spaces listed above.

We will make use both of the analytic semigroup theory and the theory of sectorial
operators in this thesis. Considering the Stokes and Navier-Stokes equations in TLL
spaces, we will focus on sectoriality and maximal regularity while in classical Lebesgue
spaces on domains we will focus on analytic semigroups. Of course, for an operator
A : DpAq Ă X Ñ X it is well-known that generating a bounded analytic strongly
continuous semigroup is equivalent to ´A being pseudo-sectorial, if the spectral angle
is smaller than π

2 . Still, the approaches and notation are different: An operator A,
generating an analytic semigroup, usually relates to the Cauchy problem"

u1ptq ´ Auptq “ fptq, t P p0, T q
up0q “ 0

(0.7)
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and the focus is on the corresponding resolvent set, lying in a sector with angle θ. Here
the related result becomes stronger the bigger the angle θ can be chosen. A sectorial
operator A usually relates to"

u1ptq ` Auptq “ fptq, t P p0, T q
up0q “ 0,

(0.8)

the focus is on the corresponding spectrum and the related spectral angle ϕA shall be
preferably small. In the Chapters II and III, where the focus is on analytic semigroup
theory, we define the Laplace operator, including the related boundary conditions, via
the mapping u ÞÑ Δu. In Chapter IV, where the focus is on sectoriality, we define the
Laplace operator in TLL spaces via u ÞÑ ´Δu, for the sake of convenient notation in
that subject.

This thesis is organized as follows. In Chapter I we begin by introducing general
notation and basic function spaces. We proceed with some preliminary results about
domains with noncompact boundary, including related trace operators and the versions
of Gauß’s theorem and Green’s formula that we plan to make use of. In the common
literature, results of that kind for noncompact boundaries are hard to find. Therefore,
some of the proofs are adapted versions from results that one can find in the literature in a
more restrictive setting. We further state and discuss our main assumptions for the results
concerning Stokes and Navier-Stokes equations on uniform C2,1-domains. Eventually, we
present the main tools and notation in the context of maximal regularity and bounded
H8-calculus that we are going to make use of for the main results concerning Navier-
Stokes equations in TLL spaces.

In Chapter II we apply a localization method for domains with noncompact boundary
to the Laplace resolvent problem subject to perfect slip boundary conditions. We further
prove Lq,σ-invariance for the related resolvent, which serves as a main tool in our con-
siderations about the Stokes equations subject to partial slip type boundary conditions.

We state and prove our main results concerning the Stokes and Navier-Stokes equa-
tions on uniform C2,1-domains in Chapter III. For this purpose, we start with the Stokes
resolvent problem, where we make use of the results in Chapter II in order to treat perfect
slip boundary conditions. A perturbation argument is used subsequently to transfer the
obtained result to general partial slip type boundary conditions. Afterwards, we prove
existence and suitable Lp-Lq-estimates for the Stokes semigroup in order to obtain exis-
tence and uniqueness of local mild solutions for the Navier-Stokes equations on uniform
C2,1-domains.

In Chapter IV we begin by defining and investigating TLL spaces. We establish fun-
damental properties of TLL spaces, such as property pαq and their affiliation to the class
HT and we further prove a multiplier result of Mikhlin type. We prove that the Laplace
and the Stokes operator in TLL spaces admit a bounded H8-calculus. Finally, this
is applied to obtain unique maximal strong solutions of the Navier-Stokes equations in
TLL spaces. We further prove that for the obtained maximal solution we either have a
blow-up at finite time or the solution exists globally in time.
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I Preliminaries

1 Essentials

1.1 General Notation

For x P Rn we denote the components by xj , j “ 1, . . . , n and we write x1 for the vector
of the first n´ 1 components. We denote the components of a vector field u in Rn by uj ,
so u “ pu1, . . . , unqT . The identity matrix is I :“ pδijqi,j“1,...,n P Rnˆn. We also denote
the identity map between normed vector spaces by I if no confusion seems likely. The
transposed of some vector or matrix v is vT . We denote x ¨y :“ řn

i“1 xiyi for two vectors
and A ¨ B :“ řn

i,j“1AijBij for matrices, respectively.
For a linear continuous operator T : X Ñ Y and two normed spaces X,Y we write

RpT q for its range and N pT q for its kernel as well as }T }XÑY for the operator norm
in L pX,Y q, the space of continuous linear operators from X to Y . We further denote
L pXq :“ L pX,Xq. For any normed space X the related dual space is denoted by X 1
and the duality pairing is x¨, ¨yX,X 1 . We denote } ¨ } „ } ¨ }1 for two equivalent norms } ¨ }
and } ¨ }1, as well as } ¨ } À } ¨ }1 in case there is a constant C ą 0 such that } ¨ } ď C} ¨ }1.

The outward unit normal vector at the boundary of some sufficiently regular domain
Ω Ă Rn is ν : BΩ Ñ Rn. As usual, λn denotes the Lebesgue measure on the Lebesgue
σ-algebra (i.e., the completion of the Borel σ-algebra) of Rn and σ denotes the related
surface measure.

By the gradient of a function u we mean the column vector ∇u “ pB1u, . . . , BnuqT
and by the gradient ∇u of a vector field with m components we mean the matrix ∇u “
p∇u1, . . . ,∇umq, i.e., ∇uT is the Jacobian matrix of u. We further denote D˘puq :“
∇uT ˘ ∇u in case m “ n. The vector containing all partial derivatives of order k ě 2 of
a function u is ∇ku (with nk entries) and similarly we define ∇ku (with mnk entries) if
u is a vector field with m components.

Divergence and Laplace operator are denoted by div and Δ, respectively. For a matrix-
valued function v with components vi,j (i, j “ 1, . . . , n) we denote by div v the column
vector with entries divpvi,1, . . . , vi,nq for i “ 1, . . . , n.

The half space is Rn` “ tx P Rn : xn ą 0u and the bent half space is Hω :“ tx “
px1, xnqT P Rn : xn ą ωpx1qu for ω : Rn´1 Ñ R. For a function ω on Rn´1 its gradient
with respect to the n´1 components is ∇1ω and its matrix of second derivatives is ∇12ω.
Similarly we use the notation ∇1kω for higher derivatives k P N and we write Δ1 for the
Laplace operator with respect to the first n ´ 1 components.

Given any parameters a, b, c, . . . we write C “ Cpa, b, c, . . . q to express that C is a
constant depending on (and only on) these parameters. We further make use of the
index notation Ca,b,... to emphasize dependencies of the constant on certain parameters.
In general, C,C 1, C2, . . . are positive constants that may change from line to line. We
primarily denote constants by C and make use of C 1, C2, . . . where it is relevant to
emphasize that the constant is now a different one.

The natural numbers N do not contain zero and we put N0 :“ NY t0u. We denote the
Euclidean norm on Rn, Cn, Rnˆn or Cnˆn by | ¨ |. The ball with respect to the Euclidean
norm with radius r ą 0 and center a is always denoted by Brpaq. The sector in the
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I Preliminaries

complex plane with angle 0 ă θ ă π is Σθ :“ tλ P C : λ ‰ 0, | argpλq| ă θu.

1.2 The Functional Analytic Setting

As usual, CkpΩq is the space of k-times continuously differentiable functions on some
open subset Ω Ă Rn for k P N0 and Ck,1pΩq is the subspace of functions with a Lipschitz
continuous k-th derivative.

For 1 ď q ď 8, any open subset Ω Ă Rn and a Banach space X, the usual Lebesgue
space is denoted by LqpΩ, Xq, i.e., the space of measurable (i.e., also separable-valued)
functions f : Ω Ñ X satisfying ż

Ω
}f}qX dλn ă 8

if q ă 8 and
ess-sup

yPΩ
}fpyq}X ă 8 (1.1)

if q “ 8, where two functions are considered equal if they coincide except on a null set.
We further use the notation LqpΩ, Xq in case Ω is any measure space with some measure
μ and a related σ-algebra. We refer to [7] for the definition of X-valued measurable
functions and the Bochner-Lebesgue integral.

The Sobolev space W k
q pΩ, Xq on a domain Ω Ă Rn for some k P N0 consists of

those functions f P LqpΩ, Xq satisfying Bαu P LqpΩ, Xq for α P Nn
0 , |α| ď k. In case the

underlying domain Ω is clear from the context, we often write }¨}q for the Lebesgue norm
and } ¨ }k,q for the Sobolev norm. Otherwise, we write } ¨ }q,Ω and } ¨ }k,q,Ω, respectively.
The space of q-summable sequences for 1 ď q ă 8 in a Banach space X is lqpXq, i.e.,
the space of pxkqkPN0 Ă X such that

}pxkqkPN0}lqpXq “
´ ÿ

kPN0

}xk}qX
¯ 1

q

is finite and in case each element of the sequence shall be allowed to be contained in a
different Banach space Xi, where i P I comes from a countable index set I, we write
lqpÀ

iPI Xiq. Furthermore, in case Xi is a function space F pΩiq or F pBΩiq of functions
on some domain Ωi or on its boundary BΩi (e.g., F “ W k

q for k P N0 and 1 ď q ď 8), we
make use of the short form } ¨ }lqpF q for the norm in lqpÀ

iPI Xiq. In addition, for some
Banach space X and s P R let lsqpXq :“ lq

` À
kPN0

Xk

˘
, where Xk :“ pX, }2ks ¨ }Xq. In

case X “ R or X “ C we denote lsq “ lsqpXq.
The Sobolev-Slobodeckĭı space W s

q pΩq for s “ k ` λ, k P N0, 0 ă λ ă 1 can be defined
as the space of functions u P W k

q pΩq such that

}u}W s
q pΩq :“ }u}Wk

q pΩq `
ÿ

|α|“k

ˆż
Ω

ż
Ω

|Bαupyq ´ Bαupxq|q
|y ´ x|n`λq

dy dx

˙ 1
q

is finite (cf. [49]). We will further need Sobolev-Slobodeckĭı spaces on the boundary
W s

q pBΩq for s “ 1 ´ 1
q , constituted by the image of the trace operator

tr : W 1
q pΩq Ñ LqpBΩq, tru “ u|BΩ @u P C8

c pΩq.
For a treatment of the trace operator and a concrete definition of Sobolev-Slobodeckĭı
spaces on the boundary we refer to [49].a See also [66], Thm. 4.7.1 for the special case
of bounded smooth domains.

a Note that the Besov scale Bs
qpBΩq from [49] coincides with the Sobolev-Slobodeckĭı scale, since in our

considerations s never is an integer, except s “ 0.
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1 Essentials

On the whole space, via real and complex interpolation, we receive Sobolev-Slobodeckĭı
spaces

W s
q pRn, Xq “ `

LqpRn, Xq,W k
q pRn, Xq˘

s
k
,q

(in case s R N) and Bessel-potential spaces

Hs
q pRn, Xq “ “

LqpRn, Xq,W k
q pRn, Xq‰

s
k
,

respectively, where k P N, 1 ă q ă 8, 0 ă s ă k and X is a complex Banach space.
Moreover, W s

q pRn, Xq “ Hs
q pRn, Xq if s P N. For an introduction of the real interpolation

functor p¨, ¨qθ,q and the complex interpolation functor r¨, ¨sθ we refer to [9] and [66].
We set C8

c pΩq :“ tu P C8pΩq : sptpuq Ă Ω compactu and C8
c,σpΩq :“ tu P C8

c pΩqn :
div u “ 0u, where sptpuq is the support of some function u. The space of solenoidal func-
tions is Lq,σpΩq :“ C8

c,σpΩq, where the completion is taken in LqpΩqn. The homogeneous
Sobolev space xW 1

q pΩq :“ tp P Lq,locpΩq : ∇p P LqpΩqnu is endowed with the seminorm
|p|xW 1

q pΩq “ }∇p}q. We further define the space of gradient fields GqpΩq :“ t∇p : p PxW 1
q pΩqu, endowed with the Lq-norm (subspace topology of LqpΩqn). The dual exponent

of 1 ď q ď 8 is q1, i.e., 1
q ` 1

q1 “ 1. As usual, for some domain Ω and some 1 ă q ă 8,
we say that the Helmholtz decomposition holds if the direct decomposition

LqpΩqn “ Lq,σpΩq ‘ GqpΩq
is valid.

We denote xf, gyq,q1 :“ ş
Ω fg dλn for f P LqpΩq, g P Lq1pΩq and xf, gyq,q1 :“ ş

Ω f ¨g dλn

for f P LqpΩqn, g P Lq1pΩqn. Now xf, ϕy is the application of a distribution f P D 1pΩq to
a test function ϕ P C8

c pΩq, in particular xf, ϕy “ ş
Ω fϕ dλn in case f P L1

locpΩq (similar
for f P D 1pΩqn and ϕ P C8

c pΩqn).
The Laplace operator subject to partial slip type boundary conditions in LqpΩqn (for

a sufficiently regular boundary BΩ) is

Δᾰ,q : DpΔᾰ,qq Ă LqpΩqn Ñ LqpΩqn, u ÞÑ Δu

on DpΔᾰ,qq :“ tu P W 2
q pΩqn : Πτ pαu ` D˘puqνq “ 0 and ν ¨ u “ 0 on BΩu, where

1 ă q ă 8, α P R and Πτ is the projection onto the tangent space at some point on BΩ.
The Laplace operator subject to perfect slip boundary conditions is

ΔPS “ ΔPS,q : DpΔPS,qq Ă LqpΩqn Ñ LqpΩqn, u ÞÑ Δu (1.2)

on DpΔPS,qq :“ tu P W 2
q pΩqn : D´puqν “ 0 and ν ¨ u “ 0 on BΩu.

The space of Schwartz functions is denoted by S pRnq and thus S 1pRnq is the space of
tempered distributions. The corresponding space of X-valued Schwartz functions (where
X is a Banach space) is S pRn, Xq and we set S 1pRn, Xq “ L pS pRnq, Xq, i.e., the
space of continuous linear operators T : S pRnq Ñ X.

For a Banach space X and a measure space pΩ,A, μq let MpΩ, Xq be the space of
measurable (i.e., also separable-valued) functions f : Ω Ñ X. The Lorentz space
Lq,rpXq “ Lq,rpΩ, Xq Ă MpΩ, Xq with parameters 1 ď q, r ď 8 consists of those
functions whose Lorentz quasinorm

~f~Lq,rpΩ,Xq :“

$’’&’’%
ˆż 8

0

“
t
1
q f˚ptq‰r dt

t

˙ 1
r

, r ă 8

sup
tą0

t
1
q f˚ptq, r “ 8

13



I Preliminaries

is finite, where
f˚ptq “ inftα ě 0 : df pαq ď tu, t ě 0

is the decreasing rearrangement and

df pαq “ μptz P Ω : }fpzq} ą αuq, α ě 0

is the distribution function of f P MpΩ, Xq. Two functions in Lq,rpΩ, Xq are considered
equal if they are equal except on a null set (with respect to μ).

For 1 ă q0, q1, q ă 8, q0 ‰ q1, 1 ď r0, r1, r ď 8 and 0 ă θ ă 1 such that 1
q “ 1´θ

q0
` θ

q1
we have `

Lq0,r0pXq, Lq1,r1pXq˘
θ,r

“ Lq,rpXq
(see [66], Rem. 1.18.6/4). In view of the identity Lq,qpXq “ LqpXq the Lorentz spaces are
identified as real interpolation spaces of the Lebesgue spaces LqpXq. Note that Lq,rpΩ, Xq
is hence normable in case q ą 1. We denote the corresponding norm by } ¨ }Lq,rpXq for
X-valued functions and we denote } ¨ }Lq,r for the Lorentz norm of scalar functions.

In the following we assume that X is of class HT (we give one possible definition for
spaces of class HT in Section 5). In case s “ m P N0 the Bessel-potential spaces are
given by the Sobolev spaces, so Hm

q pRn, Xq “ Wm
q pRn, Xq. For s P R and 1 ă q ă 8 we

will also use the representation

Hs
q pRn, Xq “ �

u P S 1pRn, Xq : F ´1p1 ` |ξ|2q s
2 Fu P LqpRn, Xq(

,

where }F ´1p1 ` |ξ|2q s
2 F ¨ }LqpRn,Xq is an equivalent norm in Hs

q pRn, Xq and Fu “pu denotes the Fourier transform of some function u. We refer to [3] and [8] for the
Fourier transform of vector-valued functions. For the case of scalar functions see also [34].
Moreover, the continuous embeddings

Hs
q pRn, Xq Ă W s´ε

q pRn, Xq Ă Hs´2ε
q pRn, Xq

hold for any ε ą 0. We refer to [40] and [4] for a detailed treatise of Bessel-potential and
Sobolev-Slobodeckĭı spaces.

In general, if F pR, Xq is some normed function space (e.g., F “ Hs
p or F “ W s

p ) and
U Ă R open, then we denote by F pU,Xq the space of restrictions of functions u P F pR, Xq
to U , equipped with the norm }u}F pU,Xq “ inft}v}F pR,Xq : v P F pR, Xq, v|U “ uu.

2 Uniform C2,1-Boundaries

2.1 The Definition

Let n ě 2 and let Ω Ă Rn be a domain with C2,1-boundary, so we can cover Ω with open
balls Bl, l P Γ and a countable index set Γ such that, writing Γ0 :“ tl P Γ : Bl Ă Ωu and
Γ1 :“ tl P Γ : Bl X BΩ ‰ Hu, for each l P Γ1 we can find a compactly supported function
ωl P C2,1pRn´1q which describes the boundary locally in Bl after rotating and shifting
the coordinates. The latter precisely means that for l P Γ1 we can find a rotation matrix
Ql P Rnˆn and a translation vector τl P Rn so that

Ω X Bl “ Hl X Bl and BΩ X Bl “ BHl X Bl,

where Hl :“ QT
l Hωl

` τl is the rotation and translation of the bent half space Hωl
.
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2 Uniform C2,1-Boundaries

We say that Ω has a uniform C2,1-boundary (or Ω is a uniform C2,1-domain) if we can
choose the cover Bl, l P Γ in such a way that the radii are all bigger or equal to some
fixed ρ ą 0 and if there is a constant M ě 1 such that

}∇1ωl}8, }∇12ωl}8, }∇13ωl}8 ď M (2.1)

for all l P Γ1 (note that ωl P W 38pΩq).
Now, without loss of generality, we can assume that all of the balls Bl, l P Γ have

the same radius ρ ą 0 and that there is N̄ P N so that at most N̄ of the balls Bl have
nonempty intersection. Moreover, for arbitrary κ ą 0 we can assume that

}∇1ωl}8 ď κ (2.2)

holds for all l P Γ1. This can be achieved by choosing the radius ρ small enough and the
rotations Ql in such a way that the plane txn “ 0u is rotated into the tangent plane of
some point on BΩ X Bl.

For two indices l,m P Γ we write m „ l if Bm X Bl ‰ H and we write m « l if m „ l
and l,m P Γ1. Note that for any l P Γ we have #tm „ lu ď N̄ .

In order to handle uniform C2,1-domains on a local level, we introduce the following
partition of unity. Let pϕlqlPΓ Ă C8pRnq so that 0 ď ϕl ď 1, sptpϕlq Ă Bl andÿ

lPΓ
ϕ2
l “ 1. (2.3)

Since the Bl have a fixed radius ρ, we can choose pϕlqlPΓ in such a way that

sup
lPΓ

}∇ϕl}8 ă 8 and sup
lPΓ

}∇2ϕl}8 ă 8. (2.4)

2.2 Parametrization of the Boundary

Fix some l P Γ1. A C2,1-diffeomorphism between Hωl
and Rn` is given by

Φl : Hωl

–ÝÑ Rn`, x ÞÑ
ˆ

x1
xn ´ ωlpx1q

˙
with the inverse

Φ´1
l : Rn`

–ÝÑ Hωl
, x ÞÑ

ˆ
x1

xn ` ωlpx1q
˙
.

We obtain

∇Φl
T “

¨̊
˚̋̊̊ 1

. . .
. . .

´B1ωl . . . ´Bn´1ωl 1

‹̨‹‹‹‚, p∇Φl
T q´1 “

¨̊
˚̋̊̊ 1

. . .
. . .

B1ωl . . . Bn´1ωl 1

‹̨‹‹‹‚.

Now Ψlpxq :“ ΦlpQlpx ´ τlqq defines a C2,1-diffeomorphism Ψl : Hl
–ÝÑ Rn`. Using

the canonical extension of Φl to Rn and therefore of Ψl as well, we receive functions
Φl : R

n –ÝÑ Rn and Ψl : R
n –ÝÑ Rn, respectively. Restriction to Bl gives

Ψl : Bl
–ÝÑ Vl, x ÞÑ ΦlpQlpx ´ τlqq

15
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onto some open subset Vl Ă Rn and its inverse

Ψ´1
l : Vl

–ÝÑ Bl, x ÞÑ QT
l Φ

´1
l pxq ` τl.

The set of diffeomorphisms Ψl, l P Γ1 characterizes the C2,1-manifold BΩ. The related
parametrization is given by φlpξq :“ Ψ´1

l

`
ξ
0

˘
, i.e.,

φl : Ul ÝÑ BΩ X Bl, ξ ÞÑ QT
l Ψ

´1
l

ˆ
ξ
0

˙
` τl “ QT

l

ˆ
ξ

ωlpξq
˙

` τl, (2.5)

where Ul :“ tξ P Rn´1 :
`
ξ
0

˘ P Vlu (see [27]). We have

∇φl
T “ QT

l

¨̊
˚̋̊ 1

. . .
1

B1ωl . . . Bn´1ωl

‹̨‹‹‚ (2.6)

and therefore, since QlQ
T
l “ I,

p∇φlq∇φl
T “

¨̊
˝1 B1ωl

. . .
...

1 Bn´1ωl

‹̨‚
¨̊
˚̋̊ 1

. . .
1

B1ωl . . . Bn´1ωl

‹̨‹‹‚.

Using the theorem of Binet-Cauchy, we obtain det
`p∇φlq∇φl

T
˘ “ 1` |∇1ωl|2, in partic-

ular
}det `p∇φlq∇φl

T
˘}8 ě 1. (2.7)

Equation (2.6) further yields

}∇φl}8 ď C @l P Γ1 (2.8)

with a constant C “ Cpn,Mq ą 0 and M ą 0 from (2.1). Using Cramer’s rule, we obtain

pp∇φlq∇φl
T q´1 “ 1

det
`p∇φlq∇φl

T
˘`p´1qi`j detrp∇φlq∇φl

T si,j
˘T
i,j“1,...,n´1

“ 1

1 ` |∇1ωl|2
`p´1qi`j detrp∇φlq∇φl

T si,j
˘T
i,j“1,...,n´1

,

(2.9)

where rAsi,j means cancellation of the i-th row and j-th column of some matrix A.
Together with (2.7) and (2.6) this yields

}`p∇φlq∇φl
T

˘´1}8 ď C @l P Γ1

with a constant C “ Cpn,Mq ą 0. Since we can estimate

}∇1 1

1 ` |∇1ωl|2 }8 ď C}∇1ωl}8}∇12ωl}8

with C “ Cpnq ą 0, (2.9) together with (2.8) also yields

}`p∇φlq∇φl
T

˘´1}1,8 ď C @l P Γ1 (2.10)

where C “ Cpn,Mq ą 0.
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2 Uniform C2,1-Boundaries

2.3 The Outward Unit Normal Vector

Let Ω Ă Rn be a uniform C2,1-domain and n ě 2. The outward unit normal vector at
BΩ is denoted by ν : BΩ Ñ Rn. Let pνl : BHωl

Ñ Rn be the outward unit normal vector
at BHωl

for l P Γ1, which is given by

pνl “ 1a|∇1ωl|2 ` 1
pB1ωl, . . . , Bn´1ωl,´1qT , (2.11)

and let νl : BHl Ñ Rn be the outward unit normal vector at BHl, i.e., νl arises from
rotating and translating pνl. Then we have ν “ νl on BΩ X Bl “ BHl X Bl. The repre-
sentation (2.11) gives that we can extend pνl constantly to a function in W 28pHωl

qn and
therefore we can also extend νl to a function sνl P W 28pHlqn. This trivial extension yields
a constant C “ Cpn,Mq ą 0 so that

}sνl}2,8,Hl
ď C (2.12)

for all l P Γ1, where M is the constant from (2.1). Now

sν :“
ÿ
lPΓ1

ϕ2
l sνl P W 28pΩqn (2.13)

is an extension of ν, since we have

}sν}8 “ sup
mPΓ1

}XBm

ÿ
l«m

ϕ2
l sνl}8 ď sup

mPΓ1

ÿ
l«m

}sνl}8 ď N̄C

and the analogous estimates for }∇sν}8 and }∇2sν}8. In total we receive

}sν}2,8,Ω ď C (2.14)

for C “ Cpn,Mq ą 0.

2.4 Boundary Operators

For n ě 2 let Ω Ă Rn be a uniform C2,1-domain and ν : BΩ Ñ Rn its outward unit
normal vector. For a vector field u on Ω with n components the normal and tangential
projections of u on BΩ are given by

• Πνu :“ pννT qu and

• Πτu :“ pI ´ ννT qu,

respectively. We have Πνu “ pν ¨ uqν, in particular

Πνu “ 0 on BΩ ô ν ¨ u “ 0 on BΩ
and in dimension n “ 3 we also have Πτu “ ´ν ˆ pν ˆ uq as well as

Πτu “ 0 on BΩ ô ν ˆ u “ 0 on BΩ.
Consider the two boundary operators D˘puq “ ∇uT ˘ ∇u “ pBjui ˘ Biujqi,j“1,...,n. In
dimension n “ 3 we have D´puqν “ ´ν ˆ curlu on BΩ. Also note that ΠνD´puqν “
ννT p∇uT qν ´ ννT p∇uqν “ ννT p∇uqν ´ ννT p∇uqν “ 0 and therefore

ΠτD´puqν “ D´puqν on BΩ. (2.15)
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Lemma 2.1. Consider a scalar function ϕ on Ω and some vector fields u, v, w on Ω
with n components, respectively. We then have the following calculation rules (in case
the product rule for derivatives is applicable).

(i) divpD´puqvq “ p∇ div u ´ Δuq ¨ v ` p∇uT ´ ∇uq ¨ ∇v.

(ii) divpD´puq∇ϕq “ p∇ div u ´ Δuq ¨ ∇ϕ.

(iii) v ¨ D´puqw “ ´w ¨ D´puqv.
Proof. Simple computations yield (i) and (iii) while (ii) follows from (i), since v :“ ∇ϕ
implies p∇uT ´ ∇uq ¨ ∇v “ řn

i,j“1pBjui ´ BiujqBiBjϕ “ 0.

3 Traces and Gauß’s Theorem

Definition 3.1. Let 1 ă q ă 8, let Ω Ă Rn be a uniform C2,1-domain and n ě 2. We
define

EqpΩq :“ tf P LqpΩqn : div f P LqpΩqu
with norm }f}EqpΩq :“ }f}q ` }div f}q and

W
´ 1

q
q pBΩq :“ rW 1´ 1

q1
q1 pBΩqs1.

Lemma 3.2. Let 1 ă q ă 8, n ě 2 and let Ω Ă Rn be a domain satisfying the segment
property (cf. [2]). Then C8

c pΩqn Ă EqpΩq is dense.

Proof. Step 1. Let Jε P C8
c pRnq be the mollifier from [2], Sec. 2.17, i.e., Jεpxq :“ 1

εnJpxε q
for ε ą 0 and a function J P C8

c pRnq satisfying Jpxq ě 0 for all x P Rn, Jpxq “ 0 for
|x| ě 1 and

ş
Rn Jpxqdx “ 1. Following the arguments in the proof of [2], Lem. 3.15, we

aim to show that for u P EqpΩq and any subdomain Ω1 ĂĂ Ω (i.e., Ω1 is compact and
Ω1 Ă Ω)

Jε ˚ u
εŒ0ÝÝÑ u in EqpΩ1q (3.1)

holds, where Jε ˚ u means convolution of Jε with the trivial extension of u to Rn. Due
to [2], Lem. 2.18 (c) we have

}Jε ˚ v}q ď }v}q and Jε ˚ v
εŒ0ÝÝÑ v in LqpΩq @v P LqpΩq. (3.2)

Now let Ω1 ĂĂ Ω, u P EqpΩq and 0 ă ε ă distpΩ1, BΩq. Writing ũ for the trivial extension
of u to Rn, we have for any φ P C8

c pΩ1qż
Ω1

pJε ˚ uq ¨ ∇φ dλn “
ż
Rn

ż
Rn

ũpx ´ yqJεpyq ¨ ∇φpxq dx dy

“
nÿ

j“1

ż
Rn

ż
Rn

ũjpx ´ yqJεpyqBjφpxq dx dy

“ ´
nÿ

j“1

ż
Rn

ż
Rn

Bj ũjpx ´ yqJεpyqφpxq dx dy

“ ´
nÿ

j“1

ż
Ω1

pJε ˚ Bjujqφ dλn

“ ´
ż
Ω1

pJε ˚ div uqφ dλn,
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so divpJε ˚ uq “ Jε ˚ div u holds in the sense of distributions in Ω1. Therefore, (3.2) gives

}divpJε ˚ uq ´ div u}LqpΩ1q “ }Jε ˚ div u ´ div u}LqpΩ1q
εŒ0ÝÝÑ 0

and (3.1) is proved.
Step 2. Following the arguments in the proof of [2], Thm. 3.16, we establish density

and continuity of the embedding

W 1
q pΩqn X C8pΩqn Ă EqpΩq (3.3)

by using (3.1). Continuity of (3.3) is obvious, since we can estimate the Eq-norm directly
by the W 1

q -norm. Now let u P EqpΩq and δ ą 0. Set Ωk :“ tx P Ω : |x| ă k, distpx, BΩq ą
1
ku for k P N as well as Ω0 “ Ω´1 “ H and Uk :“ Ωk`1 X pΩk´1qc. Then the Uk, k P N

form an open cover of Ω. Let pψkqkPN be a related partition of unity, i.e., ψk P C8
c pUkq,

0 ď ψk ď 1 and
ř8

k“1 ψk “ 1 on Ω. For 0 ă ε ă 1
pk`1qpk`2q we have

sptpJε ˚ pψkuqq Ă Ωk`2 X pΩk´2qc “: Vk ĂĂ Ω.

We apply (3.1) to Ω1 “ Vk now: Starting with some k P N, let 0 ă εk ă 1
pk`1qpk`2q such

that
}Jεk ˚ pψkuq ´ ψku}EqpΩq “ }Jεk ˚ pψkuq ´ ψku}EqpVkq ă δ

2k
.

Set Φ :“ ř8
k“1 Jεk ˚ pψkuq and note that on any Ω1 ĂĂ Ω there is only a finite number

of nonzero summands. For x P Ωk we have

upxq “
k`2ÿ
j“1

ψjpxqupxq and Φpxq “
k`2ÿ
j“1

Jεj ˚ pψjuqpxq.

Hence Φ P C8pΩq and

}u ´ Φ}EqpΩkq ď
k`2ÿ
j“1

}Jεj ˚ pψjuq ´ ψju}EqpΩq ď δ.

By use of the monotone convergence theorem we conclude

}u ´ Φ}EqpΩq “ lim
kÑ8 }u ´ Φ}EqpΩkq ď δ,

so embedding (3.3) is dense.
Step 3. The embedding C8

c pΩq Ă W 1
q pΩq XC8pΩq is dense, due to [2], Thm. 3.18. So,

using the density and continuity of (3.3), we obtain the statement.

Lemma 3.3 (Trace). Let 1 ď q ă 8 and let Ω be a uniform C2,1-domain. Then the
trace

tr “ trBΩ : W 1
q pΩq Ñ W

1´ 1
q

q pBΩq, tru “ u|BΩ @u P C8
c pΩq

is continuous. For q ą 1 it is surjective with a continuous linear right inverse

RBΩ : W 1´1{q
q pBΩq Ñ W 1

q pΩq.
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Proof. In case 1 ă q ă 8 we refer to [49], Thm. 2, where the assumption is only
a uniform Lipschitz domain and the additional existence of a continuous linear right
inverse RBΩ : W

1´1{q
q pBΩq Ñ W 1

q pΩq is proved. In case q “ 1 we make use of the trace
for bounded C1-domains, constructed in [20], Thm. 5.5/1. Choosing for all parts of the
boundary BΩ X Bl, l P Γ1 a bounded C1-domain Ul such that BUl X Bl “ BΩ X Bl and
denoting by trl the trace operator for Ul, we can define the trace of u P W 1

q pΩq as

tru :“
ÿ
lPΓ1

trlpϕ2
l uq.b

Looking at the construction of trl in the proof of [20], Thm. 5.5/1, we observe that the
uniformity of the boundary BΩ yields that the continuity of trl is uniform in l P Γ1.
Therefore, we obtain a uniform estimate of the operators trl in their operator norm and
hence

} tru}L1pBΩq “
ż

BΩ

ˇ̌̌ ÿ
lPΓ1

trlpϕ2
l uq

ˇ̌̌
dσ

ď
ÿ
lPΓ1

ż
BΩXBl

| trlpϕ2
l uq| dσ

“
ÿ
lPΓ1

} trlpϕ2
l uq}L1pBΩXBlq

ď C
ÿ
lPΓ1

}ϕ2
l u}W 1

1 pΩXBlq

ď C 1}u}W 1
1 pΩq,

with constants C “ Cpn,Ωq ą 0 and C 1 “ C 1pn,Ωq ą 0, where in the last estimate we
made use of (2.1) and of the condition that N̄ of the balls Bl have nonempty intersection
at most.

We will write u|BΩ “ tru also for u P W 1
q pΩq. Furthermore, for the surface integral we

will write
ş

BΩ u dσ “ ş
BΩ u|BΩ dσ for u P W 1

1 pΩq if no confusion seems likely.

Lemma 3.4 (Gauß’s theorem in W 1
1 ). Let Ω be a uniform C2,1-domain, n ě 2 and

u P W 1
1 pΩqn. Then we have ż

Ω
div u dλn “

ż
BΩ

ν ¨ u dσ. (3.4)

Proof. In case u P C8
c pΩqn see, e.g., [7], Thm. XII.3.15. Since C8

c pΩq Ă W 1
1 pΩq is

dense (see [2], Thm. 3.18), starting with some u P W 1
1 pΩqn, we can find a sequence

pukqkPN Ă C8
c pΩqn converging to u in W 1

1 pΩqn. Now, replacing u in (3.4) by uk, we
see that the left-hand side converges to

ş
Ω div u dλn and, thanks to Lemma 3.3, the

right-hand side converges to
ş

BΩ ν ¨ u dσ.

Lemma 3.5 (Green’s formula in W 1
q ). Let Ω Ă Rn be uniform C2,1-domain, n ě 2 and

1 ă q ă 8. Then ż
Ω
updiv vq dλn “

ż
BΩ

upν ¨ vq dσ ´
ż
Ω
∇u ¨ v dλn

holds for all u P W 1
q pΩq and v P W 1

q1pΩqn.
b The trace still does not depend on the specific choice of the partition of unity pϕlqlPΓ. This is obvious

for u P C8
c pΩq and the continuity of the trace yields the same for u P W 1

q pΩq.
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Proof. Lemma 3.4 yields
ş
Ω divpuvq dλn “ ş

BΩ ν ¨ puvq dσ. Using the representation
divpuvq “ ∇u ¨ v ` updiv vq, we obtain the statement.

Lemma 3.6 (Trace of the normal component). Let Ω Ă Rn be a uniform C2,1-domain,
n ě 2 and 1 ă q ă 8. Then there exists a bounded linear operator

trν : Eq1pΩq ÝÑ W
´ 1

q1
q1 pBΩq

such that for any v P W 1
q1pΩqn we have trν v “ ν ¨ v|BΩ in W

´1{q1
q1 pBΩq, i.e.,

trν v “
”
W

1´ 1
q

q pBΩq Q g ÞÑ
ż

BΩ
gpν ¨ vq dσ

ı
.

For v P Eq1pΩq, we denote by xu, ν ¨vyBΩ :“ xtru, trν vyBΩ the application of trν v to some
g “ tru P W

1´1{q
q pBΩq, u P W 1

q pΩq.
Proof. We follow the arguments in [64], Sec. II.1.2 to construct the trace of the normal
component on uniform C2,1-domains. Let g P W

1´1{q
q pBΩq and v P W 1

q1pΩqn. Then we
have RBΩ g P W 1

q pΩq, so, using Lemma 3.5, we obtain

xRBΩ g, div vyq,q1 “ xg, ν ¨ vyBΩ ´ x∇RBΩ g, vyq,q1 .

Therefore, we can estimate

|xg, ν ¨ vyBΩ| ď |x∇RBΩ g, vyq,q1 | ` |xRBΩ g, div vyq,q1 |
ď }∇RBΩ g}q}v}q1 ` }RBΩ g}q}div v}q1

ď }RBΩ g}W 1
q pΩq}v}Eq1 pΩq

ď C}g}
W

1´1{q
q pBΩq}v}Eq1 pΩq,

where C “ Cpn, q,Ωq ą 0. We obtain

trν v :“
”
W

1´ 1
q

q pBΩq Q g ÞÑ xg, ν ¨ vyBΩ
ı

P W
´ 1

q1
q1 pBΩq

with } trν v}
W

´1{q1
q1 pBΩq ď C}v}Eq1 pΩq. Consequently,

trν :
`
W 1

q1pΩqn, } ¨ }Eq1 pΩq
˘ ÝÑ W

´ 1
q1

q1 pBΩq, trν v “ “
g ÞÑ

ż
BΩ

gpν ¨ vq dσ‰
is continuous. Since W 1

q1pΩqn Ă Eq1pΩq is dense (see Lemma 3.2), there exists a unique
continuous extension

trν : Eq1pΩq ÝÑ W
´ 1

q1
q1 pBΩq.

Lemma 3.7 (Green’s formula in Eq). Let Ω Ă Rn be a uniform C2,1-domain, n ě 2 and
1 ă q ă 8. Then we have for u P W 1

q pΩq and v P Eq1pΩqż
Ω
updiv vq dλn “ xu, ν ¨ vyBΩ ´

ż
Ω
∇u ¨ v dλn. (3.5)
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Proof. Due to Lemma 3.2 we can choose a sequence pvkqkPN Ă W 1
q1pΩqn converging to v

in Eq1pΩq. Now Lemma 3.5 gives that (3.5) is true for vk instead of v. It is not hard
to see that, for k Ñ 8, the two terms

ş
Ω updiv vkq dλn and

ş
Ω∇u ¨ vk dλn converge toş

Ω updiv vq dλn and
ş
Ω∇u ¨ v dλn, respectively. Using the continuity of tr : W 1

q pΩq Ñ
W

1´1{q
q pBΩq and trν : Eq1pΩq Ñ W

´1{q1
q1 pBΩq, we obtain the third term xu, ν ¨ vkyBΩ

converging to xu, ν ¨ vyBΩ as well, for k Ñ 8.

Lemma 3.8 (Extended Gauß theorem). Let Ω Ă Rn be a uniform C2,1-domain, n ě 2
and 1 ă q ă 8. Then for u P W 1

q pΩq and v P Eq1pΩq we haveż
Ω
divpuvq dλn “ xu, ν ¨ vyBΩ.

Proof. The conditions for u and v give that divpuvq “ ∇u ¨ v ` updiv vq is a function
in L1pΩq, so the left-hand side of the formula is well-defined. Lemma 3.7 yields the
statement.

4 The Spaces Lq,σpΩq and GqpΩq
4.1 Main Assumptions

The following abstract statement is the starting point for the methods that we are going
to apply in Chapter III.

Lemma 4.1. Let E be a normed vector space and let E1, E2 Ă E be subspaces with
E “ E1 ` E2 such that U :“ E1 X E2 is a complemented subspace of E, i.e., there is
a continuous linear projection Q : E Ñ E with RpQq “ U . Let rE1 :“ pI ´ QqE1 andrE2 :“ pI ´ QqE2. Then we have the following.

(i) For j P t1, 2u, rEj is a closed subspace of E in case Ej Ă E is closed.

(ii) E1 “ rE1 ‘ U and E2 “ rE2 ‘ U .

(iii) E “ rE1 ‘ E2 “ E1 ‘ rE2 “ rE1 ‘ rE2 ‘ U .

Note that the algebraic decompositions in (ii) and (iii) are topological ones in case the
appearing subspaces of E are closed.

Proof. First, note that rE1 Ă E1 and rE2 Ă E2. Since rEj is a closed subspace of Ej for
j “ 0, 1, we obtain (i).

In order to prove (ii), note that the definition of Q yields U “ QE1 “ QE2, since any
x P U fulfills x “ Qx P QEj for j “ 1, 2. Therefore, Ej “ QEj ‘ pI ´ QqEj “ U ‘ rEj

holds for j “ 1, 2.
It remains to verify (iii). We have rE1 X rE2 Ă E1 X E2 “ RpQq and on the other handrE1 X rE2 Ă rE1 “ pI ´ QqE1 Ă pI ´ QqE “ N pQq. Thus rE1 X rE2 “ t0u. Now let x P E.

Writing x “ x1 `x2 with x1 P E1 and x2 P E2 (using the assumption that E “ E1 `E2),
we obtain x “ pI ´Qqx1 `pI ´Qqx2 `Qpx1 `x2q P rE1 ` rE2 `U . Thus, E “ rE1 ‘ rE2 ‘U
holds. The remaining equalities in (iii) are consequences of (ii).

For any domain Ω Ă Rn, n ě 2 and 1 ă q ă 8 consider the following assumptions
about the spaces Lq,σpΩq and GqpΩq. These assumptions will be in the focus of our main
results in Chapter III.
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Assumption 4.2.

(i) UqpΩq :“ Lq,σpΩq X GqpΩq is a complemented subspace of LqpΩqn.

(ii) Lq,σpΩq ` GqpΩq is a closed subspace of LqpΩqn.

Assumption 4.3. LqpΩqn “ Lq,σpΩq ` GqpΩq.
Assumption 4.4. C8

c pΩq Ă xW 1
q1pΩq is dense.

In case Assumption 4.2(i) is valid, we denote the continuous linear projection onto
UqpΩq by Qq : LqpΩqn Ñ LqpΩqn and we can define a closed subspace of GqpΩq by
setting GqpΩq :“ pI ´ QqqGqpΩq. If Assumptions 4.2(i) and 4.3 are both valid, we have
the decomposition

LqpΩqn “ Lq,σpΩq ‘ GqpΩq (4.1)

(see Lemma 4.1) and we denote the related continuous linear projection onto Lq,σpΩq byrP “ rPq. If only Assumption 4.2(i) is valid, we still have

Lq,σpΩq ` GqpΩq “ Lq,σpΩq ‘ GqpΩq, c (4.2)

but note that the direct decomposition (4.2) may not be a topological one. This can only
be guaranteed if additionally Assumption 4.2(ii) holds.

Decomposition (4.1) may be seen as a generalized Helmholtz decomposition. In case
UqpΩq is finite-dimensional we refer to [24] for an abstract setting of generalized Helmholtz
decompositions.

4.2 The Space Lq,σpΩq
Lemma 4.5. For an arbitrary domain Ω Ă Rn, n ě 2 and 1 ă q ă 8 we have

Lq,σpΩq “ tf P LqpΩqn : xf,∇ϕyq,q1 “ 0 @ϕ P xW 1
q1pΩqu. (4.3)

Proof. See [29], Lem. III.1.1.

Lemma 4.6. Let Ω Ă Rn be a uniform C2,1-domain, n ě 2 and 1 ă q ă 8. Then we
have

Lq,σpΩq Ă tf P LqpΩqn : div f “ 0, ν ¨ f |BΩ “ 0u, (4.4)

where ν ¨ f |BΩ “ trν f P W
´1{q
q pBΩq is the trace of the normal component (see Lemma

3.6). If additionally Assumption 4.4 is valid, then we have

Lq,σpΩq “ tf P LqpΩqn : div f “ 0, ν ¨ f |BΩ “ 0u. (4.5)

Proof. Let f P Lq,σpΩq. For any ϕ P C8
c pΩq we have xdiv f, ϕy “ ´xf,∇ϕy “ 0, due to

(4.3), and therefore div f “ 0 in the sense of distributions. We now aim to show that
xg, trν fyBΩ “ 0 holds for g P W

1´1{q1
q1 pBΩq. We can write g “ tru with some u P W 1

q1pΩq,
since the trace is surjective from W 1

q1pΩq to W
1´1{q1
q1 pBΩq. We use Lemma 3.8 (note that

f P EqpΩq) and (4.3) to obtain

xg, trν fyBΩ “ xu, ν ¨ fyBΩ “
ż
Ω
divpufq dλn “

ż
Ω
∇u ¨ f dλn “ 0.

c The inclusion "Ą" as well as directness of the sum are obvious but also any function f “ f0 ` ∇π P
Lq,σpΩq ` GqpΩq can be written as f “ f0 ` Qq∇π ` pI ´ Qqq∇π so that pI ´ Qqq∇π P GqpΩq and
f0 ` Qq∇π P Lq,σpΩq.
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Let now conversely f P LqpΩqn with div f “ 0 and ν ¨f |BΩ “ 0 and additionally assume
that Assumption 4.4 is valid. For ϕ P C8

c pΩq we have, using Lemma 3.8,

xf,∇ϕyq,q1 “
ż
Ω
divpϕfq dλn “ xϕ, ν ¨ fyBΩ “ 0.

Since C8
c pΩq Ă xW 1

q1pΩq is dense, this holds for ϕ P xW 1
q1pΩq as well. Hence, (4.3) gives

that f P Lq,σpΩq.
Remark 4.7. Note that without Assumption 4.4 the right-hand side of (4.4) can in
fact be larger than Lq,σpΩq. An aperture domain as considered in [26] and [21] is an
example of a Helmholtz domain with uniform C2,1-boundary for which (4.5) does not
hold if q ą n

n´1 . Here we have

Lq,σpΩq “ tf P LqpΩqn : div f “ 0, ν ¨ f |BΩ “ 0, Φpfq “ 0u,
where Φpfq “ ş

M ν ¨ f dσ denotes the flux of a function f through the aperture of the
domain and M is an pn ´ 1q-dimensional manifold shutting the aperture.

4.3 Discussion of the Main Assumptions

Since the Assumptions 4.2, 4.3 and 4.4 will be essential for the main results in Chapter III,
we first show that there is in fact a large class of (Helmholtz and non-Helmholtz) domains,
satisfying these assumptions.

Definition 4.8. For n ě 2 we call a domain Ω Ă Rn, satisfying the segment property
(cf. [2]), a perturbed cone if there exists a (convex or concave) cone ΩC Ă Rn (where we
assume the apex to be at the origin, w.l.o.g.) and R ą 0 so that ΩzBRp0q “ ΩCzBRp0q,
where the maximal cone ΩC “ Rn and the minimal cone ΩC “ H are admitted.

We now prove that domains in the class of perturbed cones, which contains also non-
Helmholtz domains as we will discuss in Remark 4.10, satisfy Asspumption 4.4.

Lemma 4.9. Let n ě 2 and let Ω Ă Rn be a perturbed cone. Then C8
c pΩq Ă xW 1

q pΩq is
dense for all 1 ď q ă 8. Hence, Assumption 4.4 is valid for Ω and for all 1 ă q ă 8.

Proof. We first convince ourselves that it is sufficient to prove that xW 1
c,qpΩq, consisting

of those functions in xW 1
q pΩq having compact support in Ω, is a dense subspace of xW 1

q pΩq.
In fact, the (algebraic) inclusion xW 1

c,qpΩq Ă W 1
q pΩq and the density of C8

c pΩq Ă W 1
q pΩq

(see [2], Thm. 3.18; Ω is assumed to have the segment property) yield that C8
c pΩq ĂxW 1

c,qpΩq is dense. Hence, for some given function p P xW 1
q pΩq it remains to find a sequence

pψkqkPN in xW 1
c,qpΩq such that }∇ψk ´ ∇p}q kÑ8ÝÝÝÑ 0.

Let X P C8pRnq so that X “ 1 in sB1{2p0q, X “ 0 in RnzB1p0q and 0 ď X ď 1. Let
Xkpxq :“ X pxk q for x P Rn and k P N. Then we have Xk “ 1 in sBk{2p0q, X “ 0 in
RnzBkp0q and 0 ď X ď 1. Setting M :“ }∇X }8, we further have

}∇Xk}8 ď M

k
. (4.6)

Let Rk :“ Bkp0qz sBk{2p0q be the k-th annulus. Due to the assumption on Ω there exists
N P N so that for the scaling φk : Ω X RN Ñ Ω X RkN , x ÞÑ kx we have

φkpΩ X RN q “ Ω X RkN (4.7)
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for all k P N.
Now for p P xW 1

q pΩq we define ψk :“ XkN

`
p ´ 1

λnpΩXRkN q
ş
ΩXRkN

p dλn

˘
. Then ψk is a

function in xW 1
c,qpΩq for all k P N and we have

}∇ψk ´ ∇p}q ď }∇XkN}8
›››p ´ 1

λnpΩ X RkN q
ż
ΩXRkN

p dλn

›››
q,ΩXRkN

` }1 ´ XkN}8}∇p}q,ΩzBkN{2p0q.
(4.8)

Now, using (4.6), we can estimate }1 ´ XkN}8 ď 1 and }∇XkN}8 ď M
kN as well as›››p ´ 1

λnpΩ X RkN q
ż
ΩXRkN

p dλn

›››q
q,ΩXRkN

“ kn
ż
ΩXRN

ˇ̌̌
p ˝ φk ´ kn

λnpΩ X RkN q
ż
ΩXRN

p ˝ φk dλn

ˇ̌̌q
dλn

“ kn
›››p ˝ φk ´ kn

λnpΩ X RkN q
ż
ΩXRN

p ˝ φk dλn

›››q
q,ΩXRN

ď knCq}∇pp ˝ φkq}qq,ΩXRN

“ knCq

ż
ΩXRN

|kp∇p ˝ φkq|q dλn

“ knkq
1

kn
Cq

ż
ΩXRkN

|∇p|q dλn

“ kqCq}∇p}qq,ΩXRkN
,

using (4.7), were C “ Cpn, q,Ω X RN q ą 0 is the constant from the Poincaré inequality
(see [29], Thm. II.5.4). In total we have

}∇ψk ´ ∇p}q ď MC

N
}∇p}q,ΩXRkN

` }∇p}q,ΩzBkN{2
kÑ8ÝÝÝÑ 0,

since ∇p P LqpΩqn.

We gather some remarks about our main assumptions.

Remark 4.10.

(a) Obviously any Helmholtz domain in the classical sense fulfills the Assumptions 4.2
and 4.3 with UqpΩq “ t0u and Lq,σpΩq ` GqpΩq “ LqpΩqn.

(b) For domains Ω Ă Rn with uniform C2,1-boundary, Assumption 4.4 is known to be
valid for

• Ω “ Rn, Ω “ Rn` and perturbed half spaces, i.e., there exists some R ą 0 such
that ΩzBRp0q “ Rn`zBRp0q (Lemma 4.9; cf. [29], Thm. II.7.8 for the half space),

• bent half spaces Ω “ Hω (see [25], Lem. 5.1; alternatively one could check that
bent half spaces are pε,8q-domains, see the definition in Lemma 4.11),

• bounded domains (Lemma 4.9: choose R ą 0 such that Ω Ă BRp0q; cf. [29],
Thm. II.7.2, Def. II.1.1),

• exterior domains, i.e., Ω is the complement of some compact set in Rn (Lem-
ma 4.9: choose R ą 0 such that ΩzBRp0q “ RnzBRp0q; cf. [25], Lem. 5.1
and [29], Thm. II.7.2, Def. II.1.1),
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• asymptotically flat domains, i.e., Ω is a layer-like domain Ω “ tx P Rn :
γ´px1q ă xn ă γ`px1qu which is delimited by two functions γ`, γ´ P C2,1pRn´1q
with the asymptotic behavior lim|x1|Ñ8 γ˘px1q “ c˘, where c´ ă c` and
lim|x1|Ñ8 ∇γ˘px1q “ 0 (see [1], Lem. 2.6 and Cor. 6.4), and

• pε,8q-domains, as treated in [15] and [42] (see Lemma 4.11 below).

With the exception of general pε,8q-domains, all of the mentioned domains are
Helmholtz domains in the classical sense and therefore satisfy the Assumptions 4.2
and 4.3 as well. We refer to [28] and [52] for perturbed half spaces, bounded domains
and exterior domains and we refer to [1] for asymptotically flat domains. See also [62]
for bent half spaces and [29] for the whole space and the half space.

(c) Assumption 4.4 will be an important tool for all our results regarding the Stokes
equations. Even for the key statement concerning our main results, Proposition 8.1
in Chapter II, finding a proof without this condition seems hopeless. Note that, e.g.,
the natural identity

Lq,σpΩq “ tf P LqpΩqn : div f “ 0, ν ¨ f “ 0 on BΩu (4.9)

is a consequence of Assumption 4.4 (see Lemma 4.6). An aperture domain, as treated
in [26] and [21], is an example of a domain for which Assumption 4.4 does not hold for
all 1 ă q ă 8. The identity (4.9) is not satisfied in this case as well (as mentioned in
Remark 4.7). An approach to circumvent this problem and to include also domains
not satisfying Assumption 4.4 might be to define the space GqpΩq as the closure of
C8
c psΩqn in xW 1

q1pΩq instead. Then Proposition 8.1 had to be proved for a larger spacesLq,σpΩq such that sLq,σpΩq ‘ GqpΩq “ LqpΩqn holds but there seems to be no reason
for Proposition 8.1 to hold in general.

(d) In case 1 ă q ď 2 we have UqpΩq “ Lq,σpΩq X GqpΩq “ t0u for any uniform C2,1-
domain Ω so Assumption 4.2(i) holds and we have GqpΩq “ GqpΩq. This is due
to [23], Thm. 1.2 (see also [22], Thm. 2.1 for the 3-dimensional case), from which we
receive the direct decomposition

LqpΩqn ` L2pΩqn “ rLq,σpΩq ` L2,σpΩqs ‘ rGqpΩq ` G2pΩqs
and therefore Lq,σpΩq X GqpΩq Ă rLq,σpΩq ` L2,σpΩqs X rGqpΩq ` G2pΩqs “ t0u.

(e) Obviously, in case UqpΩq has finite dimension, Assumption 4.2(i) is valid and, in case
Lq,σpΩq `GqpΩq has finite codimension, Assumption 4.2(ii) is valid. We refer to [24]
for an elaboration of generalized Helmholtz decompositions in this situation.

(f) A sector-like domain with opening angle β ą π and a smoothed vertex, as con-
sidered by Bogovskĭı and Maslennikova (see [10]), is an example of a non-
Helmholtz domain (for q either small or large enough) to which our main theorems
in Chapter III apply: Lemma 4.9 gives that Assumption 4.4 is valid for sector-
like domains. For these domains Assumptions 4.2 and 4.3 are valid if q ą 2

1´π{β .
We have dimUqpΩq “ 1 in this case. If 2

1`π{β ă q ă 2
1´π{β , Assumptions 4.2

and 4.3 hold and we have GqpΩq “ GqpΩq. If q ă 2
1`π{β , Assumption 4.2 holds,

but 4.3 does not. We have codimpLq,σpΩq ` GqpΩqq “ 1 in this case. In the spe-
cial cases q “ 2

1˘π{β , Assumption 4.2(i) is still valid, but 4.2(ii) is not. Hence,
Theorem 9.1 is applicable to these domains for any q P p1,8qzt 2

1˘π{β u (merely the
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assertion (iv) is not known to hold for the special cases q “ 2
1˘π{β ). Theorems 9.2

and 10.2 are applicable for q P p 2
1`π{β ,8qzt 2

1´π{β u and Theorem 12.1 is applicable
for q P p 4

1`π{β ,8qzt 2
1´π{β ,

4
1´π{β u.

Lemma 4.11. Let n ě 2, 1 ď q ă 8 and let Ω Ă Rn be an pε,8q-domain for some ε ą 0,
i.e., for all x, y P Ω there exists a rectifiable curve γ in Ω with length lpγq, connecting x
and y, such that

lpγq ă |x ´ y|
ε

(4.10)

and
distpz, BΩq ą ε|x ´ z||y ´ z|

|x ´ y| @z P γ. (4.11)

Condition (4.11) says that there is a tube around γ, lying in Ω, such that in some point
z P γ the tube’s width is of the order of mint|x ´ z|, |y ´ z|u (cf. [15] and [42]). Then
C8
c pΩq Ă xW 1

q pΩq is dense.

Proof. Due to [15], Thm. 1.2, the conditions on Ω yield a continuous extension operator
Λ : xW 1

q pΩq ÝÑ xW 1
q pRnq, where we choose the weight w “ 1. Now, using the density of

C8
c pRnq Ă xW 1

q pRnq, we obtain the statement.

5 R-boundedness, Maximal Regularity and H8-Calculus

In order to deal with operator-valued Fourier multipliers we employ the following concept.
Let X,Y be complex Banach spaces. Let EP denote the set of families of random variables
pεiqiPI on a probability space P “ pΩ,A, μq (i.e., μ is a probability measure, defined on
the σ-algebra A of all possible events, and Ω is the underlying sample space) with values
in t˘1u, which are independent and symmetrically distributed. We say that a family of
continuous linear operators T Ă L pX,Y q is R-bounded if there is a probability space
P “ pΩ,A, μq with EP ‰ H, p P r1,8q and a constant C ą 0 such that for all N P N,
pε1, . . . , εN q P EP , Ti P T and xi P X (for 1 ď i ď N)››››› Nÿ

i“1

εiTixi

›››››
LppΩ,Y q

ď C

››››› Nÿ
i“1

εixi

›››››
LppΩ,Xq

. (5.1)

In this case we call RppT q :“ inftC ą 0 : (5.1) holdsu the R-bound or the Rp-bound. Note
that R-boundedness implies boundedness of T Ă L pX,Y q. If a family T Ă L pX,Y q
is Rp-bounded for some p P r1,8q then it is also Rq-bounded for any q P p1,8q (see,
e.g., [47]). In this case (5.1) also holds for a (possibly different) constant C ą 0 if we
replace P by an arbitrary probability space Q with EQ ‰ H. Also note that, in view of
Lebesgue’s dominated convergence theorem, it is sufficient to claim (5.1) for xi in a dense
subspace of X. The following result is useful to extend boundedness to R-boundedness
in some concrete cases (see [17], Lem. 3.5).

Theorem 5.1 (Kahane’s contraction principle). Let X be a Banach space over F P
tR,Cu, P “ pΩ,A, μq a probability space and 1 ď p ă 8. Let N P N and aj , bj P F with
|aj | ď |bj | for j “ 1, . . . , N . Then we have for all x1, . . . , xN P X and ε1, . . . , εN P EP››› Nÿ

i“1

aiεixi

›››
LppΩ,Xq

ď CF

››› Nÿ
i“1

biεixi

›››
LppΩ,Xq

,

where CR “ 1 and CC “ 2.
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We call a linear and densely defined operator A : DpAq Ă X Ñ X pseudo-sectorial if
its spectrum σpAq is contained in a closed sector Σϕ with angle ϕ P p0, πq and the family
tλpλ ` Aq´1 : λ P Σπ´ϕu Ă L pXq is bounded. If tλpλ ` Aq´1 : λ P Σπ´ϕu Ă L pXq is
even R-bounded, A is called pseudo-R-sectorial. We omit the prefix “pseudo-” if the range
RpAq Ă X is dense and so we receive a sectorial or R-sectorial operator, respectively.
We denote the infimum over all ϕ P p0, πq such that σpAq Ă Σϕ and such that the
family tλpλ ` Aq´1 : λ P Σπ´ϕu Ă L pXq is bounded, by ϕA (spectral angle) if A is a
(pseudo-)sectorial operator and likewise ϕR

A is the infimum over all ϕ P p0, πq such that
this family is R-bounded if A is a (pseudo-)R-sectorial operator.

For a pseudo-sectorial operator A and a fixed angle ϕ ă ϕA we will make use of the
Dunford calculus

f ÞÝÑ fpAq,
which maps a function f P H0pΣϕq “ Ť

α,βă0 Hα,βpΣϕq to a bounded operator on X, as
well as of its extension to HppΣϕq “ Ť

αPR Hα,αpΣϕq if A is sectorial. Here Hα,βpΣϕq is
the space of holomorphic functions f : Σϕ Ñ C such that

}f}ϕ,α,β “ sup
|z|ď1

|zαfpzq| ` sup
|z|ą1

|z´βfpzq|

is finite. We refer to [17] and [36] for a precise definition and treatise of this functional
calculus. Note that for a function f P Hα,αpΣϕq we receive a bounded operator fpAq in
case α ă 0 but in general only a closed operator on the domain

DpfpAqq “ tx P X : pgkfqpAqx P DpAkq X RpAkqu. (5.2)

Here k ą α is a nonnegative integer and g P H0pΣϕq is the function gpzq :“ z
p1`zq2 , which

leads to a bijective mapping gpAq´k : DpAkq X RpAkq ÝÑ X. A slight modification of
this functional calculus leads to the following well-known characterization of sectorial
operators (see [36], Prop. 3.4.4).

Proposition 5.2. An operator A : DpAq Ă X Ñ X is pseudo-sectorial with angle
ϕA ă π

2 if and only if ´A is the generator of a bounded analytic strongly continuous
semigroup.

The functional calculus is also used to describe the following important property of an
operator A. Let A : DpAq Ă X Ñ X be a sectorial operator. Then A has a bounded
H8-calculus in X if for some ϕ P pϕA, πq there is a constant Cϕ ą 0 such that for any
f P H0pΣϕq we have

}fpAq}XÑX ď Cϕ}f}8,Σϕ . (5.3)

In this case (5.3) also holds for all bounded holomorphic functions f on Σϕ. The infimum
over all angles ϕ P pϕA, πq, such that (5.3) holds with a constant Cϕ ą 0, is called H8-
angle and is denoted by ϕ8

A . Likewise we say that A has an R-bounded H8-calculus in
X if the set

tfpAq : f P H0pΣϕq, }f}8,Σϕ ď 1u Ă L pXq
is R-bounded and the related RH8-angle is denoted by ϕR,8

A . If A has a bounded
H8-calculus, then

DpAαq “ rX,DpAqsα (5.4)

holds for all 0 ă α ă 1 (see [17]), where the fractional power Aα : DpAαq Ă X ÝÑ X is
defined via the functional calculus above with the function z ÞÑ zα.

We recall the following two assertions that frequently occur in the context of the H8-
calculus. A proof can be found in [18] (see the proofs of [18], Prop. 2.9 and [18], Prop. 2.7,
respectively).
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Lemma 5.3. (i) Let 0 ă ϕ ă π. Then for all α P Nn
0 there is a constant Cα,ϕ ą 0 so

that for every holomorphic and bounded function h : Σϕ Ñ C we have

sup
ξPRnzt0u

|ξ||α||Bαhp|ξ|2q| ď Cα,ϕ}h}8,Σϕ .

(ii) Let π
2 ă ϕ ă π. Then for k “ 0, 1 there is a constant Cϕ ą 0 so that for every

h P H0pΣϕq we have

sup
ξPRzt0u

|ξ|k|Bkhpiξq| ď Cϕ}h}8,Σϕ .

Next, we give the definition of maximal regularity (due to [47]) for an operator A :
DpAq Ă X Ñ X, which is the generator of a bounded analytic strongly continuous
semigroup petAqtě0 on a complex Banach space X. Therefore, we fix 1 ă p ă 8 and 0 ă
T ď 8. The operator A has maximal Lp-regularity on p0, T q if for all f P Lppp0, T q, Xq
the solution

uptq “
ż t

0
ept´sqAfpsqds

of the Cauchy problem "
u1ptq ´ Auptq “ fptq, t P p0, T q

up0q “ 0

is Fréchet differentiable a.e., takes its values in DpAq a.e., and we have

u1, Au P Lppp0, T q, Xq.
In this case we receive

}u1}Lppp0,T q,Xq ` }Au}Lppp0,T q,Xq ď C}f}Lppp0,T q,Xq (5.5)

by an application of the closed graph theorem. We write A P MRpX,Cq if A has maximal
Lp-regularity for one (or equivalently for all; see [63]) 1 ă p ă 8 on some p0, T q so that
(5.5) holds with a constant C “ CpT q ą 0. If A P MRpX,Cq and C does not depend on
T (i.e., (5.5) holds for T “ 8), we write A P MRpXq.

Now we take a look at the advantages of maximal regularity. Again for a complex
Banach space X, let A : DpAq Ă X Ñ X be the generator of a bounded analytic
strongly continuous semigroup. For 1 ă p ă 8 and T P p0,8s we set

ET :“ H1
p pp0, T q, Xq X Lppp0, T q,DpAqq

(the solution space of the related Cauchy problem) and

FT ˆ I :“ Lppp0, T q, Xq ˆ �
x “ up0q : u P ET

(
(5.6)

(the data space). Note that I is a Banach space, where }x}I “ infup0q“x }u}ET
is the

related norm, I is independent of T and we have

I “ `
X,DpAq˘

1´ 1
p
,p

(5.7)

(see [54], Prop. 3.4.4). If A has maximal Lp-regularity on a finite interval p0, T q, then
the solution operator L´1, where

L : ET ÝÑ FT ˆ I, u ÞÝÑ
´´ d

dt
´ A

¯
u, up0q

¯
, (5.8)
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exists and is an isomorphism. This leads to the estimate

}u}H1
ppp0,T q,XqXLppp0,T q,DpAqq ď CpT q`}f}Lppp0,T q,Xq ` }x}I

˘
,

when u :“ L´1pf, xq is the solution to pf, xq P FT ˆ I.

Lemma 5.4. Let X be a Banach space, 1 ă p ă 8, 0 ă T0 ă 8 and let A P
MRpX,CpT0qq. Then there exists a constant C 1 “ C 1pT0q ą 0 such that

}L´1pf, 0q}H1
ppp0,T q,XqXLppp0,T q,DpAqq ď C 1pT0q}f}Lppp0,T q,Xq

holds for all T P p0, T0s and for all f P Lppp0, T q, Xq, where L´1 is the solution operator,
i.e., the inverse of L given in (5.8).

Proof. By the trivial extension of f P Lppp0, T q, Xq to p0, T0q we obtain the estimate
(5.5) with a constant independent of T P p0, T0s. Now the assertion follows from the
fact that the Poincaré inequality }u}Lppp0,T q,Xq ď K}u1}Lppp0,T q,Xq holds with a constant
K ą 0, which is independent of T P p0, T0s as well.

Lemma 5.5. Let 1 ă p ă 8 and T P p0,8s. Then, with the notation above, we have
the continuous embedding

ET Ă BUCpr0, T q, Iq
(where BUC, as usual, means bounded and uniformly continuous). Here the operator
A : DpAq Ă X Ñ X only needs to be closed and densely defined in a Banach space X.

Proof. The case T “ 8 follows essentially from the strong continuity of the translation
semigroup. Then, by a standard extension and retraction argument we obtain the case
T ă 8 as a consequence. See [3], Prop. 1.4.2 for details.

In the theory of partial differential equations, the notions of class HT and property pαq
for Banach spaces turned out to be significant. A Banach space X is of class HT if the
Hilbert transform

H : S pR, Xq ÝÑ MpR, Xq, Hfptq “ lim
εŒ0

ż
|s|ąε

fpt ´ sq
s

ds

has an extension H P L pLppR, Xqq for one (or equivalently for all; see [3]) 1 ă p ă 8.
A complex Banach space X has property pαq if there exist 1 ď p ă 8, two probability
spaces P “ pΩ,A, μq, P 1 “ pΩ1,A1, μ1q with EP , EP 1 ‰ H and a constant α ą 0 such that
for all N P N, xij P X, aij P C, |aij | ď 1 pi, j “ 1, . . . , Nq and for all pε1, . . . , εN q P EP ,
pε1

1, . . . , ε
1
N q P EP 1 we have››››› Nÿ

i,j“1

εiε
1
jaijxij

›››››
LppΩˆΩ1,Xq

ď α

››››› Nÿ
i,j“1

εiε
1
jxij

›››››
LppΩˆΩ1,Xq

.

A useful application of property pαq is the following one, which is a direct consequence
of the Kalton-Weis theorem (see [54], Thm. 4.5.6).

Theorem 5.6. Let X be a Banach space with property pαq and let A : DpAq Ă X Ñ X
be an operator with a bounded H8-calculus. Then A has an R-bounded H8-calculus with
ϕ8
A “ ϕR,8

A .
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The following operator-valued version of Mikhlin’s theorem is important for our pur-
poses as well as the subsequent characterization of maximal Lp-regularity. The results
are due to Girardi and Weis (see [33] or [54], Thm. 4.3.9, Thm. 4.4.4).

Theorem 5.7. Let X and Y be complex Banach spaces of class HT having property pαq
and let 1 ă p ă 8. For mλ P CnpRnzt0u,L pX,Y qq, λ P Λ, assume that κα :“
RptξαBαmλpξq : ξ P Rnzt0u, λ P Λu ă 8 for each α P t0, 1un, where Λ is some index set.
Then the operator

F ´1mλF : S pRn, Xq ÝÑ S 1pRn, Y q
has a unique extension Tλ P L pLppRn, Xq, LppRn, Y qq for every λ P Λ and we have

RptTλ : λ P Λu ď Cp,n

ÿ
αPt0,1un

κα “: C.

In particular, we have }F ´1mλFf}LppY q ď C}f}LppXq for f P S pRn, Xq, λ P Λ.

Theorem 5.8. Let X be a Banach space of class HT , 1 ă p ă 8 and let A : DpAq Ă
X Ñ X be the generator of a bounded analytic strongly continuous semigroup. Then the
following conditions are equivalent.

(i) A has maximal Lp-regularity on p0,8q.
(ii) ´A is pseudo-R-sectorial with ϕR

A ă π
2 .
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II The Laplace Resolvent on Uniform
C2,1-Domains

We aim to obtain unique solvability of the resolvent problem$&%
λu ´ Δu “ f in Ω
D´puqν “ Πτg on BΩ

Πνu “ Πνh on BΩ
as well as certain properties of the resolvent that will allow us to carry over the result
to the Stokes resolvent problem. A starting point for this investigation is a localization
technique with an infinite number of local neighborhoods under consideration.

The basic idea is in principle from [46], where a localization method for domains with
noncompact boundary is applied. For the (countably many) parameters l P Γ we multiply
the resolvent problem by the smooth cut-off functions ϕl in order to receive a system of
local equations (one equation for each of the l P Γ) where now a sequence pulqlPΓ of the
form ul “ ϕlu is the potential solution. Introducing a suitable Banach space X for the
sequence pulqlPΓ as well as a Banach space Y containing the right-hand side functions of
the local equations, the purpose is to obtain unique solvability on a local level in space
and finally to carry over this result to the original problem. In comparison to [46], where
Dirichlet boundary conditions have been investigated, the localization of the boundary
conditions here is somewhat more intricate.

6 Perfect Slip Boundary Conditions for the Laplace

Resolvent

We begin by treating the half space Rn` and, via perturbation arguments, bent rotated
and shifted versions of the half space. These special domains in turn, serve as auxiliary
domains that occur when the general domain Ω is considered on a local level.

6.1 The Half Space

Proposition 6.1. Let n ě 2, 1 ă q ă 8 and 0 ă θ ă π. Then for f P LqpRn`qn,
g P W 1

q pRn`qn, h P W 2
q pRn`qn and any λ P Σθ there exists a unique solution u P W 2

q pRn`qn
of $&%

λu ´ Δu “ f in Rn`
D´puqν “ Πτg on BRn`

Πνu “ Πνh on BRn`
(6.1)

and this solution fulfills the resolvent estimate

}pλu,?
λ∇u,∇2uq}q ď C}pf,?

λg,∇g, λh,
?
λ∇h,∇2hq}q (6.2)

where C “ Cpn, q, θq ą 0.
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Proof. In the half space the outward unit normal vector is ν “ p0, . . . , 0,´1qT , and the
tangential and normal projections are given by Πτg “ pg1, . . . , gn´1, 0qT and Πνh “
p0, . . . , 0, hnqT , respectively. Then (6.1) reads$’’’’’’’&’’’’’’’%

λu ´ Δu “ f in Rn`
B1un ´ Bnu1 “ g1 on BRn`
B2un ´ Bnu2 “ g2 on BRn`

...
Bn´1u

n ´ Bnun´1 “ gn´1 on BRn`
un “ hn on BRn`.

Hence we can solve the inhomogeneous Dirichlet boundary problem"
λun ´ Δun “ fn in Rn`

un “ hn on BRn`
first and then, after inserting the solution un P W 2

q pRn`q, solve the decoupled Neumann
boundary problems "

λuj ´ Δuj “ f j in Rn`
´Bnuj “ gj ´ Bjun on BRn`

for j “ 1, . . . , n ´ 1. See [47], Thm. 7.7 and Sec. 7.18 for a detailed treatment of the
problems with Dirichlet and Neumann boundary conditions. Thus, we obtain unique
solvability of (6.1) as well as estimate (6.2).

6.2 The Bent Half Space

Theorem 6.2. Let ω P W 38pRn´1q, n ě 2, 1 ă q ă 8 and 0 ă θ ă π. Choose some
M ě 1 such that

}∇1ω}8, }∇12ω}8, }∇13ω}8 ď M (6.3)

holds. Then there exist κ “ κpn, q, θq ą 0 and λ0 “ λ0pn, q, κ,Mq ą 0 such that in case
}∇1ω}8 ď κ, λ P Σθ, |λ| ě λ0 for f P LqpHωqn, g P W 1

q pHωqn and h P W 2
q pHωqn there

exists a unique solution u P W 2
q pHωqn of$&%
λu ´ Δu “ f in Hω

D´puqν “ Πτg on BHω

Πνu “ Πνh on BHω

(6.4)

and this solution fulfills the resolvent estimate

}pλu,?
λ∇u,∇2uq}q ď C}pf,?

λg,∇g, λh,
?
λ∇h,∇2hq}q (6.5)

where C “ Cpn, q, θ,Mq ą 0.

In order to prove Theorem 6.2 we use the change of coordinates from x P Hω to rx P Rn`,
given by

Φ : Hω
–ÝÑ Rn`, x ÞÑ

ˆ
x1

xn ´ ωpx1q
˙

“: rx,
and we write u ˝ Φ´1 “: J´1

ω u “: ru for a function u on Hω. For the partial derivatives
we have the following behavior under the change of coordinates, from which we obtain
particularly that

Jω : W k
q pRn`q –ÝÑ W k

q pHωq, ru ÞÑ u (6.6)

is an isomorphism for k “ 0, 1, 2 such that the continuity constants of Jω and J´1
ω only

depend on M from (2.1) and on n.
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• ĂBiu “ Biru ´ pBiωqBnru for i “ 1, . . . , n ´ 1.

• ĄBnu “ Bnru.

• ĆBjBiu “ BjBiru ´ pBjωqBiBnru ´ pBjBiωqBnru ´ pBiωqBjBnru ` pBiωqpBjωqB2
nru for i, j “

1, . . . , n ´ 1.

• ČBnBiu “ BiBnru ` pBiωqB2
nru for i “ 1, . . . , n ´ 1.

• ĄB2
nu “ B2

nru.

• ĂΔu “ Δru´ 2p∇1ωT , 0q ¨∇Bnru´ pΔ1ωqBnru` |∇1ω|2B2
nru when u is a scalar function.

• Ć∇uT “ ∇ruT ´ p∇1ωT , 0qBnru when u is a scalar function.

• Ć∇uT “ ∇ruT ´
¨̋ pB1ωqBnru1 ... pBn´1ωqBnru1 0

...
...

...
pB1ωqBnrun ... pBn´1ωqBnrun 0

‚̨“: ∇ruT ´Epruq when u is a vector field.

Setting Bnω :“ 0, we can write Epruq “ `pBjωqBnrui˘
i,j“1,...,n

.

Hence, we can write Čpλ ´ Δqu “ pλ ´ Δqru ` Bru, (6.7)

where
Bru :“ 2p∇1ωT , 0q ¨ ∇Bnru ` pΔ1ωqBnru ´ |∇1ω|2B2

nru (6.8)

for a scalar function ru and we define Bru componentwise if ru is a vector field. For the
boundary condition operator we further have

ČD´puqν “ D´pruqrν ` pEpruqT ´ Epruqqrν. (6.9)

Now (6.9) gives that (2.15) holds for ČD´puqν instead of D´puqν as well, i.e., pI ´rνrνT q ČD´puqν “ ČD´puqν. Also note that transporting the normal vector ν : BHω Ñ Rn of
the bent half space via a change of coordinates to rν : BRn` Ñ Rn does not yield the nor-
mal vector of the half space. In fact, since νpxq does not depend on the last component
xn, which can be seen in the concrete representation

rν “ 1a|∇1ω|2 ` 1
pB1ω, . . . , Bn´1ω,´1qT , (6.10)

we can identify ν “ rν and even consider it as a function on the whole space, i.e.,

ν “ rν : Rn Ñ Rn.

In this case (6.10) gives that

}ν}2,8 ď Cn}p∇1ω,∇12ω,∇13ωq}8 (6.11)

holds with a constant Cn ą 0 depending only on the space dimension n. We denote the
outward unit normal vector of the half space by ν` :“ p0, . . . , 0,´1qT .

The boundary condition "
D´puqν “ Πτg on BHω

Πνu “ Πνh on BHω
(6.12)
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can be written equivalently as

D´puqν ` Πνu “ Πτg ` Πνh on BHω

due to separation of the tangential and the normal part in (6.12) and utilizing (2.15).
Now (6.7) and (6.9) give that a change of coordinates in (6.4) yields the equivalenta

problem #
λru ´ Δru ` Bru “ rf in Rn`

D´pruqrν ` pEpruqT ´ Epruqqrν ` Πνru “ Πτrg ` Πν
rh on BRn`

(6.13)

with rf P LqpRn`qn, rg P W 1
q pRn`qn and rh P W 2

q pRn`qn.
We apply the matrix

∇ΦT “

¨̊
˚̊̊̊
˝

1
1

. . .
1

´B1ω ´B2ω . . . ´Bn´1ω 1

‹̨‹‹‹‹‚
to the boundary condition of (6.13). The matrix ∇ΦT satisfies det∇ΦT “ 1, p∇ΦT q´1 “
2I ´ ∇ΦT and it maps the tangent space at any point x P BHω into the tangent space
at BRn`.b Therefore we have:

• p∇ΦT qD´pruqν “ pI ´ ν`νT`qp∇ΦT qD´pruqν
“ pI´ν`νT`qD´pruqν``pI´ν`νT`qp∇ΦT ´IqD´pruqν``pI´ν`νT`qp∇ΦT qD´pruqpν´
ν`q
“ D´pruqν` ` pI ´ ν`νT`qp∇ΦT ´ IqD´pruqν` ` pI ´ ν`νT`qp∇ΦT qD´pruqpν ´ ν`q.

• p∇ΦT qΠνru “ ν`νT`ru`pI´ν`νT`qpp∇ΦT qννT ´ν`νT`qru`ν`νT`pp∇ΦT qννT ´ν`νT`qru.

• p∇ΦT qpEpruqT ´ Epruqqν “ pI ´ ν`νT`qp∇ΦT qpEpruqT ´ Epruqqν.c

• p∇ΦT qΠτrg “ pI ´ ν`νT`qp∇ΦT qpI ´ ννT qrg.
• p∇ΦT qΠν

rh “ ν`νT`p∇ΦT qννTrh ` pI ´ ν`νT`qp∇ΦT qννTrh.

Hence, (6.13) becomes#
λru ´ Δru ` Bru “ rf in Rn`

D´pruqν` ` ν`νT`ru ` B1ru “ pI ´ ν`νT`q rG ` ν`νT` rH on BRn`
(6.14)

where

B1ru :“pI ´ ν`νT`qrp∇ΦT ´ IqD´pruqν` ` p∇ΦT qD´pruqpν ´ ν`q
` pp∇ΦT qννT ´ ν`νT`qru ` p∇ΦT qpEpruqT ´ Epruqqνs
` ν`νT`pp∇ΦT qννT ´ ν`νT`qru (6.15)

a Since the change of coordinates u ÞÑ ru is an isomorphism W k
q pHωq Ñ W k

q pRn`q for k “ 0, 1, 2 (see
(6.6)), this problem is in fact an equivalent one.

b The normal and tangential projections in the half space are given by ν`νT` and I´ν`νT` , respectively.
A vector in the tangent space at some point x P BHω can be written as pI ´ ννT qu. Now we have
ν`νT`∇ΦT “ a|∇1ω|2 ` 1ν`νT and therefore ν`νT`p∇ΦT qpI ´ ννT qu “ 0, since νT ν “ 1.

c pEpruqT ´ Epruqqν is contained in the tangent space at BHω.
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and rG :“ p∇ΦT qpI ´ ννT qrg ` p∇ΦT qννTrh P W 1
q pRn`qn,rH :“ p∇ΦT qννTrh P W 2

q pRn`qn. (6.16)

Now rG and rH are the new right-hand side functions in the boundary condition. Re-
garding (6.16), we observe that the invertible matrix ∇ΦT is exactly the right matrix to
receive the intended regularity for rG and rH. Consequently, the proof of Theorem 6.2 is
reduced to the following perturbed version of Proposition 6.1.

Proposition 6.3. Let n ě 2, 1 ă q ă 8, 0 ă θ ă π, ω P W 38pRn´1q and let M ą 0
such that (6.3) holds. Then there exist κ “ κpn, q, θq ą 0 and λ0 “ λ0pn, q, κ,Mq ą 0
such that in case }∇1ω}8 ď κ, λ P Σθ, |λ| ě λ0 for rf P LqpRn`qn, rG P W 1

q pRn`qn andrH P W 2
q pRn`qn there exists a unique solution ru P W 2

q pRn`qn of (6.14) and this solution
fulfills the resolvent estimate

}pλru,?
λ∇ru,∇2ruq}q ď C}p rf,?

λ rG,∇ rG, λ rH,
?
λ∇ rH,∇2 rHq}q (6.17)

where C “ Cpn, q, θ,Mq ą 0.

Proof. We prove the statement using a perturbation argument via the Neumann series,
where the version we make use of is [47], Lem. 7.10. Therefore, we define the spaces

X :“ W 2
q pRn`qn,

Y :“ LqpRn`qn ˆ �pI ´ ν`νT`q rG ` ν`νT` rH : rG P W 1
q pRn`qn, rH P W 2

q pRn`qn(
“ LqpRn`qn ˆ �p rG1, . . . , rGn´1, rHnqT : rG P W 1

q pRn`qn, rH P W 2
q pRn`qn(

,

Z :“ LqpRn`qn ˆ LqpBRn`qn

with norms (depending on λ P Σθ)

}ru}X :“ }pλru,?
λ∇ru,∇2ruq}q,

}p rf, pI ´ ν`νT`q rG ` ν`νT` rHq}Y :“ }p rf,?
λ rG1, . . . ,

?
λ rGn´1,

∇ rG1, . . . ,∇ rGn´1, λ rHn,
?
λ∇ rHn,∇2 rHnq}q,

} ¨ }Z :“ } ¨ }LqpRn`qnˆLqpBRn`qn

as well as the continuous linear operators

S : X ÝÑ Y, ru ÞÑ ppλ ´ Δqru,D´pruqν` ` ν`νT`ruq,
P : X ÝÑ Y, ru ÞÑ pBru,B1ruq,
Q : Y ÝÑ Z, p rf,rkq ÞÑ p rf, trBRn`

rkq
(where B and B1 are the operators from (6.8) and (6.15)). By standard arguments
we obtain that the space Y is complete so X, Y and Z are Banach spaces. Due to
Proposition 6.1, for any p rf,rkq P Y there exists a unique ru P X satisfying

QSru “ Qp rf,rkq
and there exists C “ Cpn, q, θq ą 0 such that

}ru}X ď C}p rf,rkq}Y .
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We now aim to show that we can choose λ0 “ λ0pn, q, κ,Mq ą 0 and a constant C 1 “
C 1pn,Mq ą 0 such that for λ P Σθ, |λ| ě λ0 and }∇1ω}8 ď κ ă 1 we have

}P ru}Y ď C 1κ}ru}X (6.18)

for all ru P X. Then, prescribing κ ă 1
2CC1 , we deduce

}P }XÑY ď 1

2C

and as a consequence (see [47], Lem. 7.10) we receive: For any p rf,rkq P Y there exists a
unique ru P X satisfying

QpS ` P qru “ Qp rf,rkq
and we have

}ru}X ď 2C}p rf,rkq}Y .
This is exactly the claim of the proposition.

It remains to prove (6.18). For this purpose, we assume M ě 1, κ ă 1 and λ0 ě M2

κ2 .
Let λ P Σθ, |λ| ě λ0, }∇1ω}8 ď κ and ru P X. Then, for the operator B, we have

}Bru}q “
››› `

2p∇1ωT , 0q ¨ ∇Bnruj ` pΔ1ωqBnruj ´ |∇1ω|2B2
nruj˘

j“1,...,n

›››
q

ď C
´
κ}∇2ru}q ` Ma|λ| }?

λ∇ru}q ` κ2}∇2ru}q
¯

ď C 1κ}ru}X
with some constants C “ Cpnq ą 0 and C 1 “ C 1pn,Mq ą 0. For the operator B1 we
have (denoting Y “ Y1 ˆ Y2)

}B1ru}Y2 ď
›››?

λ
“p∇ΦT ´ IqD´pruqν` ` p∇ΦT qD´pruqpν ´ ν`q

` pp∇ΦT qννT ´ ν`νT`qru ` p∇ΦT qpEpruqT ´ Epruqqν‰›››
q

`
›››∇“p∇ΦT ´ IqD´pruqν` ` p∇ΦT qD´pruqpν ´ ν`q
` pp∇ΦT qννT ´ ν`νT`qru ` p∇ΦT qpEpruqT ´ Epruqqν‰›››

q

`
›››λ“pp∇ΦT qννT ´ ν`νT`qru‰›››

q

`
›››?

λ∇
“pp∇ΦT qννT ´ ν`νT`qru‰›››

q

`
›››∇2

“pp∇ΦT qννT ´ ν`νT`qru‰›››
q
.

(6.19)

Via the triangle inequality we receive eleven different summands in (6.19). Now each of
the summands can be estimated by C 1κ}ru}X with a constant C 1 “ C 1pn,Mq ą 0, where
all of the estimates can be done in a similar way. One essentially needs that }ν ´ ν`}8
and }∇ΦT ´ I}8 may be estimated by κ up to a constant depending only on n, as well
as (6.3) and the condition λ0 ě M2

κ2 . Then (6.18) is verified. We exemplarily treat three
of the terms in (6.19):›››?

λpp∇ΦT qννT ´ ν`νT`qru›››
q

ď 1a|λ| p}∇Φ}8}ν}28 ` 1q}λru}q
ď C 1pn,Mqκ}λru}q
ď C 1pn,Mqκ}ru}X ,
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6 Perfect Slip Boundary Conditions for the Laplace Resolvent›››∇“p∇ΦT qpEpruqT ´ Epruqqν‰›››
q

ď C 1pnq
´

}p∇2ΦqpEpruqT ´ Epruqqν}q

`
nÿ

k“1

}p∇ΦT qrBkpEpruqT ´ Epruqqsν}q

` }p∇ΦT qpEpruqT ´ Epruqq∇ν}q
¯

ď C 1pn,Mq
´
κ}∇ru}q ` κ}∇2ru}q ` }∇ru}q ` κ}∇ru}q

¯
ď C 1pn,Mq

´ 1a|λ| }?
λ∇ru}q ` κ}∇2ru}q

¯
ď C 1pn,Mqκ

´
}?

λ∇ru}q ` }∇2ru}q
¯

ď C 1pn,Mqκ}ru}X ,›››∇2
“pp∇ΦT qννT ´ ν`νT`qru‰›››

q
ď C 1pnq

´ 1

|λ| }∇2pp∇ΦT qννT ´ ν`νT`q}8}λru}q

` 1a|λ| }∇pp∇ΦT qννT ´ ν`νT`q}8}?
λ∇ru}q

` }p∇ΦT qpννT ´ ν`νT`q}8}∇2ru}q
` }p∇ΦT ´ Iqν`νT`}8}∇2ru}q

¯
ď C 1pn,Mqκ}ru}X .

Proof of Theorem 6.2. For f P LqpHωqn, g P W 1
q pHωqn and h P W 2

q pHωqn we haverf P LqpRn`qn, rg P W 1
q pRn`qn and rh P W 2

q pRn`qn and we define rG P W 1
q pRn`qn and rH P

W 2
q pRn`qn as in (6.16). Choose κ and λ0 as in Proposition 6.3. Then for λ P Σθ, |λ| ě λ0

and }∇1ω}8 ď κ there exists a unique solution ru P W 2
q pRn`qn of (6.14), satisfying (6.17).

The calculations above give that u “ Jωru is the unique solution of (6.4).
Now, assuming |λ| ě 1, the isomorphism (6.6) gives that u “ Jωru fulfills

}pλu,?
λ∇u,∇2uq}q,Hω ď C}pλru,?

λ∇ru,∇2ruq}q,Rn` , (6.20)

where C “ Cpn,Mq ą 0 and on the other hand

}p rf,?
λrg,∇rg, λrh,?

λ∇rh,∇2rhq}q,Rn` ď C}pf,?
λg,∇g, λh,

?
λ∇h,∇2hq}q,Hω . (6.21)

Using (6.11) and (6.6) and assuming |λ| ě 1 again, we further obtain

}p rf,?
λ rG,∇ rG, λ rH,

?
λ∇ rH,∇2 rHq}q,Rn` ď C}p rf,?

λrg,∇rg, λrh,?
λ∇rh,∇2rhq}q,Rn` , (6.22)

where C “ Cpn,Mq ą 0. Now (6.17), (6.20), (6.21) and (6.22) yield (6.5).

6.3 The Bent, Rotated and Shifted Half Space

Theorem 6.4. Let QTHω ` τ be a bent, rotated and shifted half space, i.e., Q P Rnˆn

is a rotation matrix (QTQ “ 1 and detQ “ 1) and τ P Rn is some shifting vector. Let
ω P W 38pRn´1q, n ě 2, 1 ă q ă 8 and 0 ă θ ă π. Fix M ě 1 such that

}∇1ω}8, }∇12ω}8, }∇13ω}8 ď M (6.23)

holds. Then there exist κ “ κpn, q, θq ą 0 and λ0 “ λ0pn, q, κ,Mq ą 0 such that in
case }∇1ω}8 ď κ, λ P Σθ, |λ| ě λ0 for f P LqpQTHω ` τqn, g P W 1

q pQTHω ` τqn and
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h P W 2
q pQTHω ` τqn there exists a unique solution u P W 2

q pQTHω ` τqn of$&%
λu ´ Δu “ f in QTHω ` τ
D´puqν “ Πτg on BpQTHω ` τq

Πνu “ Πνh on BpQTHω ` τq
(6.24)

and this solution fulfills the resolvent estimate

}pλu,?
λ∇u,∇2uq}q ď C}pf,?

λg,∇g, λh,
?
λ∇h,∇2hq}q (6.25)

where C “ Cpn, q, θ,Mq ą 0.

Proof. We begin by observing that shifting the problem in direction of some vector
τ P Rn does not cause any extra difficulties: Using the coordinate shifting xτ :“ x ´ τ
for x P QTHω ` τ and uτ pxτ q :“ upxτ ` τq for functions u on QTHω ` τ we obtain that
x ÞÑ xτ commutes with arbitrary derivative operators and that

}u}k,q,QTHω`τ “ }uτ }k,q,QTHω

holds for k P N0. In addition, ντ is the outward unit normal vector at the boundary of
QTHω when ν is the outward unit normal vector at the boundary of QTHω ` τ . Hence,
applying u ÞÑ uτ to (6.24), the resulting problem is an equivalent one. We therefore may
assume τ “ 0 in (6.24) without loss of generality.

It remains to treat $&%
λu ´ Δu “ f in QTHω

D´puqν “ Πτg on BpQTHωq
Πνu “ Πνh on BpQTHωq.

(6.26)

For a vector field u on QTHω and x P Hω the chain rule gives

B
Bxj u

kpQTxq “ ∇ukpQTxq ¨ qj

for j, k “ 1, . . . , n, where qj is the j-th column vector of QT “ pq1, . . . , qnq. Consequently

B
Bxj upQTxq “ ∇upQTxqT qj

for j “ 1, . . . , n and therefore, writing uQpxq :“ upQTxq, we have

∇uQpxqT “ p∇upQTxqT q1, . . . ,∇upQTxqT qnq “ ∇upQTxqTQT ,

i.e.,
`
∇uQ

˘T “ `r∇usQ˘T
QT and hence

∇uQ “ Qr∇usQ. (6.27)

Besides, we have
∇pQuQqT “ Q

`
∇uQ

˘T
. (6.28)

Moreover, when ν is the outward unit normal vector at the boundary of QTHω, then
QνQ is the outward unit normal vector at the boundary of Hω. Thus, the normal and
tangential projections of a vector field uQ on BHω are given by

• ΠQ
ν uQ :“ QpνQqpνQqTQTuQ and
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• ΠQ
τ uQ :“ Q

`
I ´ pνQqpνQqT ˘

QTuQ,

respectively. Applying u ÞÑ uQ to the boundary term

D´puqν “ ΠτD´puqν “ pI ´ ννT qp∇uT ´ ∇uqν
in (6.26), we obtain, using (6.27),

rD´puqνsQ “ rpI ´ ννT qp∇uT ´ ∇uqνsQ
“ QTΠQ

τ Qp`r∇usQ˘T ´ r∇usQqνQ
“ QTΠQ

τ Q
`p∇uQqTQ ´ pp∇uQqTQqT ˘

QTQνQ.

Now (6.28) gives that we can write

p∇uQqT “ QT∇pQuQqT ,
so we receive

rD´puqνsQ “ QTΠQ
τ

`
∇pQuQqT ´ ∇pQuQq˘

QνQ.

Applying u ÞÑ uQ to the boundary term Πνu in (6.26) gives

rΠνusQ “ rννTusQ “ QTΠQ
ν QuQ.

Furthermore, the orthogonality of Q yields

rΔusQ “ ΔuQ.

In total, application of u ÞÑ uQ and Q to (6.26) yields the equivalent problem$’&’%
λpQuQq ´ ΔpQuQq “ QfQ in Hω

ΠQ
τ

`
∇pQuQqT ´ ∇pQuQq˘

QνQ “ ΠQ
τ QgQ on BHω

ΠQ
ν QuQ “ ΠQ

ν QhQ on BHω.

(6.29)

Theorem 6.2 yields some κ “ κpn, q, θq ą 0 and λ0 “ λ0pn, q, κ,Mq ą 0 such that
for λ P Σθ, |λ| ě λ0 and }∇1ω}8 ď κ, problem (6.29) has a unique solution QuQ P
W 2

q pHωqn satisfying the related resolvent estimate. Now the transformation u ÞÑ QuQ is
an isomorphism W k

q pQTHωqn –ÝÑ W k
q pHωqn for k “ 0, 1, 2, where the related continuity

constants only depend on n, since we need an upper bound for powers of }Q}8 only.
Consequently, u P W 2

q pQTHωqn is the unique solution of (6.26) and (6.25) holds.

6.4 The General Case

Theorem 6.5. Let Ω Ă Rn be a domain whose boundary is uniformly C2,1, n ě 2, 1 ă
q ă 8 and 0 ă θ ă π. Then there exist λ0 “ λ0pn, q, θ,Ωq ą 0 and C “ Cpn, q, θ,Ωq ą 0
such that for λ P Σθ, |λ| ě λ0 the problem$&%

λu ´ Δu “ f in Ω
D´puqν “ Πτg on BΩ

Πνu “ Πνh on BΩ
(6.30)

has a unique solution u P W 2
q pΩqn for any f P LqpΩqn, g P W 1

q pΩqn and h P W 2
q pΩqn and

this solution fulfills the resolvent estimate

}pλu,?
λ∇u,∇2uq}q ď C}pf,?

λg,∇g, λh,
?
λ∇h,∇2hq}q. (6.31)

In particular, the operator ΔPS, defined in (1.2), is the generator of a strongly continuous
analytic semigroup on LqpΩqn.
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Proof. Due to separation of tangential and normal part on the boundary, we can rewrite
(6.30), using (2.15), as"

λu ´ Δu “ f in Ω
D´puqν ` Πνu “ Πτg ` Πνh on BΩ. (6.32)

Moreover, we introduce the Banach space for the boundary functions in (6.32),

BFqpBΩq “ BFq,λpBΩq
:“ �

a P LqpBΩqn : a “ Πτ tr g ` Πν trh, g P W 1
q pΩqn, h P W 2

q pΩqn(
,

with norm

}a}BFq,λpBΩq :“ inf
g,h

}p?
λg,∇g, λh,

?
λ∇h,∇2hq}q,

where the infimum runs over all g P W 1
q pΩqn, h P W 2

q pΩqn such that a “ Πτ tr g`Πν trh.
For λ “ 1 the space BFqpBΩq is therefore equipped with the natural norm for the range
of the continuous linear operator T : W 1

q pΩqn ˆ W 2
q pΩqn Ñ LqpBΩqn, pg, hq ÞÑ Πτ tr g `

Πν trh. We allow arbitrary λ P Σθ in the definition of } ¨ }BFq,λpBΩq, since we will need
this for a perturbation argument later on.

Step 1: Local coordinates. For the sake of consistent notation we denote

Ωl :“
#
Hl, l P Γ1

Rn, l P Γ0

and hence by the space BFqpBΩlq we mean BFqpBΩlq “ BFqpBHlq for l P Γ1 and
BFqpBΩlq :“ t0u for l P Γ0. We introduce the Banach spaces

X :“ lqpà
lPΓ

W 2
q pΩlqnq,

Y :“ lqpà
lPΓ

LqpΩlqnq ˆ lqpà
lPΓ

BFqpBΩlqq

with norms (depending on λ P Σθ)

}pulqlPΓ}X :“ }pλul,
?
λ∇ul,∇2ulqlPΓ}lqpLqq,

}pfl, alqlPΓ}Y :“ }pflqlPΓ}lqpLqq ` }palqlPΓ}lqpBFq,λq

as well as the linear and continuous operator

S : X ÞÝÑ Y, pulqlPΓ ÞÝÑ `pλ ´ Δqul, trBΩl
D´pulqνl ` νlν

T
l trBΩl

ul
˘
lPΓ,

where we set trBΩl
D´pulqνl ` νlν

T
l trBΩl

ul :“ 0 in case l P Γ0.
For the bent, rotated and shifted half space Hl “ QT

l Hωl
` τl, l P Γ1 and the related

constant M ě 1 from (2.1), let initially κ “ κpn, q, θq ą 0 and λ0 “ λ0pn, q, κ,Mq ą 0
such that the conditions of Theorem 6.4 are satisfied. We further assume κ ă 1 and
λ0 ě M2

κ2 . Let λ P Σθ, |λ| ě λ0 and note that (2.2) gives }∇1ωl}8 ď κ for all l P Γ1.
Now we can deduce from Theorem 6.4 that we have an isomorphism

S : X
–ÝÑ Y (6.33)

and the continuity constants of S and S´1 depend on q, n, θ and M only. For this purpose,
fix some pfl, alqlPΓ P Y . Then, for all l P Γ1, Theorem 6.4 yields a unique ul P W 2

q pHlqn,
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such that pλ´Δqul “ fl and trBHl
D´pulqνl`νlν

T
l trBHl

ul “ al. For l P Γ0, existence and
uniqueness of the solution ul P W 2

q pRnqn to pλ ´ Δqul “ fl is due to the heat equation
admitting a strongly continuous bounded analytic semigroup in the whole space (see,
e.g., [47]). In addition, we have a constant C “ Cpn, q, θ,Mq ą 0 such that

}pλul,
?
λ∇ul,∇2ulq}q,Hl

ď C}pfl,
?
λgl,∇gl, λhl,

?
λ∇hl,∇2hlq}q,Hl

(6.34)

holds for all l P Γ1 and arbitrary gl P W 1
q pHlqn, hl P W 2

q pHlqn such that al “ Πτ trBHl
gl`

Πν trBHl
hl as well as for all l P Γ0 by putting gl “ hl “ 0. Consequently, for l P Γ, we

have
}pλul,

?
λ∇ul,∇2ulq}q,Ωl

ď C
`}fl}q,Ωl

` }al}BFq,λpBΩlq
˘
. (6.35)

Thus

}pulqlPΓ}qX “
ÿ
lPΓ

}pλul,
?
λ∇ul,∇2ulq}qq,Ωl

ď Cq
ÿ
lPΓ

`}fl}q,Ωl
` }al}BFq,λpBΩlq

˘q
ď Cq

S}pfl, alqlPΓ}qY ,

(6.36)

where CS “ CSpn, q, θ,Mq ą 0. On the other hand, it is not hard to see that

}SpulqlPΓ}Y ď C 1}pulqlPΓ}X
holds for arbitrary pulqlPΓ P X, where C 1 “ C 1pn, qq ą 0. Hence, (6.33) is verified.

Step 2: Localizing (6.30). We now multiply (6.32) by the functions ϕl, l P Γ in order
to receive corresponding local equations. If ϕ is a scalar function and u is a vector field,
then the product rule yields the matrix identityd

∇pϕuqT “ u∇ϕT ` ϕ∇uT (6.37)

and the vector identity

Δpϕuq “ pΔϕqu ` 2p∇uT q∇ϕ ` ϕΔu. (6.38)

Thus, writing um “ ϕmu and using (2.3), we have

ϕlpλ ´ Δqu
“ pλ ´ Δqpϕluq ` 2p∇uT q∇ϕl ` pΔϕlqu
“ pλ ´ Δqpϕluq ` 2

´
∇

ÿ
mPΓ

ϕ2
mu

¯T
∇ϕl ` pΔϕlq

ÿ
mPΓ

ϕ2
mu

“ pλ ´ Δqul `
ÿ
m„l

“
2ump∇ϕm

T q∇ϕl ` 2ϕmp∇um
T q∇ϕl ` pΔϕlqϕmum

‰
.

For the tangential boundary condition in (6.32) we have (note that ν “ νl on sptpϕlq for
l P Γ1), using (2.3), (6.37) and writing um “ ϕmu again,

ϕlD´puqν “ pϕl∇uT ´ ϕl∇uqνl
“ p∇ul

T ´ ∇ulqνl ´ up∇ϕl
T qνl ` p∇ϕlquT νl

“ D´pulqνl ´
ÿ
mPΓ

ϕ2
mup∇ϕl

T qνl `
ÿ
mPΓ

ϕ2
mp∇ϕlquT νl

“ D´pulqνl ´
ÿ
m„l

“
ϕmump∇ϕl

T qνl ´ ϕmp∇ϕlquTmνl
‰

“ D´pulqνl ´
ÿ
m„l

ϕm

“
um∇ϕl

T ´ pum∇ϕl
T qT ‰

νl

d ∇pϕuqT “ `Bjpϕuiq˘
i,j“1,...,n

“ `
uiBjϕ ` ϕBju

i
˘
i,j“1,...,n

“ u∇ϕT ` ϕ∇uT
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and for the normal boundary condition we have

ϕlΠνu “ ϕlνlν
T
l u “ νlν

T
l ul

for l P Γ1. In total, multiplying (6.32) by ϕl for l P Γ and writing um “ ϕmu yields the
local equations$’’’’&’’’’%

λul ´ Δul ` ř
m„l

“
2ump∇ϕm

T q∇ϕl ` 2ϕmp∇um
T q∇ϕl ` pΔϕlqϕmum

‰
“ fl in Ωl for all l P Γ,

D´pulqνl ` νlν
T
l ul ´ ř

m«l ϕm

“
um∇ϕl

T ´ pum∇ϕl
T qT ‰

νl

“ pI ´ νlν
T
l qgl ` νlν

T
l hl on BΩl for all l P Γ1.

(6.39)

Therefore, we define the perturbation operator P : X ÝÑ Y by

pulqlPΓ ÞÝÑ
´ ÿ

m„l

“
2ump∇ϕm

T q∇ϕl ` 2ϕmp∇um
T q∇ϕl ` pΔϕlqϕmum

‰
,

´ trBΩl

ÿ
m«l

ϕm

“
um∇ϕl

T ´ pum∇ϕl
T qT ‰

νl

¯
lPΓ

,

where in case l P Γ0 we set trBΩl

ř
m«l ϕm

“
um∇ϕl

T ´ pum∇ϕl
T qT ‰

νl :“ 0 again.
Step 3: Well-posedness of local equations. We now aim to verify that there exists

CP “ CP pn, q,Ωq ą 0 such that

}P pulqlPΓ}Y ď CPa|λ| }pulqlPΓ}X (6.40)

holds for all pulqlPΓ P X and for λ P Σθ, |λ| ě λ0. For this purpose, let pulqlPΓ P X. Then
for all l P Γ we have, using (2.4),››› ÿ

m„l

2ump∇ϕm
T q∇ϕl

›››q
q,Ωl

“
ż
Ωl

ˇ̌̌ ÿ
m„l

2ump∇ϕm
T q∇ϕl

ˇ̌̌q
dλn

ď C
ÿ
m„l

ż
ΩlXBlXBm

ˇ̌̌
ump∇ϕm

T q∇ϕl

ˇ̌̌q
dλn

“ C
ÿ
m„l

ż
ΩmXBlXBm

ˇ̌̌
ump∇ϕm

T q∇ϕl

ˇ̌̌q
dλn

ď C 1 ÿ
m„l

ż
ΩmXBm

|um|q dλn

“ C 1 ÿ
m„l

}um}qq,ΩmXBm

(6.41)

with constants C “ Cpn, qq ą 0 and C 1 “ C 1pn, q,Ωq ą 0, where we also used (2.4) and
that the support of the function ump∇ϕm

T q∇ϕl is contained in Bm X Bl. Since at most
N̄ of the balls Bl have nonempty intersection, we deduce›››´ ÿ

m„l

2ump∇ϕm
T q∇ϕl

¯
lPΓ

›››q
lqpLqq

ď C 1 ÿ
lPΓ

ÿ
m„l

}um}qq,ΩmXBm

ď C2 ÿ
lPΓ

}ul}qq,ΩlXBl

ď C2 ÿ
lPΓ

}ul}qq,Ωl
,
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6 Perfect Slip Boundary Conditions for the Laplace Resolvent

where C2 “ C2pn, q,Ωq ą 0. In the same way we obtain›››´ ÿ
m„l

pΔϕlqϕmum

¯
lPΓ

›››q
lqpLqq

ď C2 ÿ
lPΓ

}ul}qq,Ωl

and ›››´ ÿ
m„l

2ϕmp∇um
T q∇ϕl

¯
lPΓ

›››q
lqpLqq

ď C2 ÿ
lPΓ

}∇ul}qq,Ωl
.

In total, by the definition of the norm in X, we have a constant CP “ CP pn, q,Ωq ą 0
such that›››´ ÿ

m„l

“
2ump∇ϕm

T q∇ϕl ` 2ϕmp∇um
T q∇ϕl ` pΔϕlqϕmum

‰¯
lPΓ

›››
lqpLqq

ď CP }pul,∇ulqlPΓ}lqpLqq
ď CP }p?

λul,∇ulqlPΓ}lqpLqq

ď CPa|λ| }pulqlPΓ}X

(note that the condition λ0 ě M2

κ2 yields |λ| ě 1). In order to treat the boundary
term of P , we make use of the extension sνl P W 28pHlqn of the outward unit normal
vector νl for Hl, which satisfies (2.12): For l P Γ1, a function gl P W 1

q pHlqn satisfying
trBHl

gl “ trBHl

ř
m«l ϕm

“
um∇ϕl

T ´pum∇ϕl
T qT ‰

νl is given by gl :“ ř
m«l ϕm

“
um∇ϕl

T ´
pum∇ϕl

T qT ‰sνl. Note that trBHl
gl is contained in the tangent space at BHl, since

νlν
T
l trBHl

gl “ 0.

We further obtain, similar to (6.41) but additionally using (2.12),

}p?
λgl,∇glq}qq,Hl

ď C
ÿ
m«l

ż
HmXBm

p|?λum|q ` |∇um|qq dλn,

where again C “ Cpn, q,Ωq ą 0. Consequently, we receive›››´
trBΩl

ÿ
m«l

ϕm

“
um∇ϕl

T ´ pum∇ϕl
T qT ‰

νl

¯
lPΓ

›››q
lqpBFq,λq

“
ÿ
lPΓ1

››› trBHl

ÿ
m«l

ϕm

“
um∇ϕl

T ´ pum∇ϕl
T qT ‰

νl

›››q
BFq,λpBHlq

ď
ÿ
lPΓ1

}p?
λgl,∇glq}qq,Hl

ď C
ÿ
lPΓ1

ÿ
m«l

ż
HmXBm

p|?λum|q ` |∇um|qq dλn

ď C 1 ÿ
lPΓ1

ż
HlXBl

p|?λul|q ` |∇ul|qq dλn

(6.42)

with some constant C 1 “ C 1pn, q,Ωq ą 0 and therefore›››´
trBΩl

ÿ
m«l

ϕm

“
um∇ϕl

T ´ pum∇ϕl
T qT ‰

νl

¯
lPΓ

›››
lqpBFq,λq

ď CPa|λ| }pulqlPΓ}X ,

where CP “ CP pn, q,Ωq ą 0. Hence (6.40) is proved.
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We now increase λ0 “ λ0pn, q, θ,Ωqe such that λ0 ě p2CSCP q2, where CP is the
constant from (6.40) and CS is the constant from (6.36). Then we have

}P }XÑY ď 1

2CS
(6.43)

so the Neumann series gives that we have an isomorphism

S ` P : X
–ÝÑ Y (6.44)

so that
}pS ` P q´1}Y ÑX ď CS

1

1 ´ CS}P }XÑY
ď 2CS . (6.45)

Now (6.44) gives that (6.39) is uniquely solvable for any right-hand side functions
fl P LqpΩlqn, gl P W 1

q pΩqn and hl P W 2
q pΩqn such that pflqlPΓ P lqpÀ

lPΓ LqpΩlqnq and
palqlPΓ P lqpÀ

lPΓ BFqpBΩlqq for al :“ pI´νlν
T
l q trBHl

gl`νlν
T
l trBHl

hl (l P Γ1) and al :“ 0
(l P Γ0), respectively. Moreover, (6.45) yields the related resolvent estimate.

Step 4: Uniqueness and resolvent estimate. We briefly convince ourselves that we
have proved uniqueness for (6.30) as well as the related resolvent estimate (6.31). For
any solution u P W 2

q pΩq of (6.30) we have seen that pulqlPΓ :“ pϕluqlPΓ solves the local
equations (6.39) with right-hand side functions pflqlPΓ :“ pϕlfqlPΓ, pglqlPΓ1 :“ pϕlgqlPΓ1

and phlqlPΓ1 :“ pϕlhqlPΓ1 . Now (6.39) is uniquely solvable, so we have uniqueness for
(6.30). For al :“ pI ´ νlν

T
l q trBHl

gl ` νlν
T
l trBHl

hl if l P Γ1 and al :“ 0 if l P Γ0, we have
pS ` P qpulqlPΓ “ pfl, alqlPΓ. Estimate (6.45) therefore implies

}pulqlPΓ}X ď 2CS}pfl, alqlPΓ}Y ď 2CS}pfl,
?
λgl,∇gl, λhl,

?
λ∇hl,∇2hlqlPΓ}lqpLqq.

(6.46)

It remains to prove existence of some constant C “ Cpn, q,Ωq ą 0 so that

}pλu,?
λ∇u,∇2uq}q,Ω ď C}pulqlPΓ}X (6.47)

and

}pfl,
?
λgl,∇gl, λhl,

?
λ∇hl,∇2hlqlPΓ}lqpLqq ď C}pf,?

λg,∇g, λh,
?
λ∇h,∇2hq}q,Ω.

(6.48)
For u P W 2

q pΩqn and um :“ ϕmu we have

}λu}qq,Ω “ |λ|q
ż
Ω

ˇ̌̌ ÿ
mPΓ

ϕmum

ˇ̌̌q
dλn

“ |λ|q
ż
Ω

ÿ
lPΓ

ϕ2
l

ˇ̌̌ ÿ
m„l

ϕmum

ˇ̌̌q
dλn

ď C|λ|q
ż
Ω

ÿ
lPΓ

ÿ
m„l

|ϕmum|q dλn

ď C 1|λ|q
ż
Ω

ÿ
lPΓ

|ϕlul|q dλn

“ C 1|λ|q
ÿ
lPΓ

ż
ΩlXBl

|ϕlul|q dλn

ď C 1|λ|q
ÿ
lPΓ

ż
Ωl

|ul|q dλn

“ C 1}pλulqlPΓ}qlqpLqq,

(6.49)

e The constants M and κ only depend on the domain Ω so we do not need to specify the dependence
of λ0 on M and κ.
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6 Perfect Slip Boundary Conditions for the Laplace Resolvent

where C “ Cpn, q,Ωq ą 0 and C 1 “ C 1pn, q,Ωq ą 0. Similarly, using (2.4), we obtain

}?
λ∇u}qq,Ω ď C}p?

λul,
?
λ∇ulqlPΓ}qlqpLqq

and
}∇2u}qq,Ω ď C}pul,∇ul,∇2ulqlPΓ}qlqpLqq

with some constant C “ Cpn, q,Ωq ą 0. In total we obtain (6.47), since |λ| ě 1.
For f P LqpΩqn and fl :“ ϕlf we have

}pflqlPΓ}qlqpLqq “
ÿ
lPΓ

ż
Ωl

|ϕlf |q dλn

ď
ÿ
lPΓ

ż
ΩlXBl

|f |q dλn

“
ÿ
lPΓ

ż
ΩXBl

|f |q dλn

ď C}f}qq,Ω,
where C “ Cpn, q,Ωq ą 0. Using |λ| ě 1 and (2.4) again, we obtain similarly

}p?
λgl,∇gl, λhl,

?
λ∇hl,∇2hlqlPΓ}qlqpLqq ď C}p?

λg,∇g, λh,
?
λ∇h,∇2hq}qq,Ω

with some constant C “ Cpn, q,Ωq ą 0. Hence (6.48) is proved. In total, (6.46), (6.47)
and (6.48) imply (6.31).

Step 5: Existence. As a last step we need to prove existence of a solution to (6.30).
For this purpose we introduce the notation sDv :“ pϕlvqlPΓ for functions v on Ω andsCpvlqlPΓ :“ ř

lPΓ ϕlvl for sequences pvlqlPΓ of functions vl on Ωl. If v is a function on BΩ,
then we still write ϕlv for the restriction pϕl|BΩqv so that sDv is a sequence of functions
on BΩ and similarly, if vl, l P Γ are functions on BΩl (in particular vl “ 0 for l P Γ0),
then sCpvlqlPΓ is a function on BΩ. We further denote RΩu :“ trBΩD´puqν ` Πν trBΩ u.

Note that there is no way to deduce existence of a solution to (6.30) from the verified
unique solvability of the local equations (6.39) by abstract means. In fact we have proved
that for any solution u P W 2

q pΩqn of (6.30) the representation

pf,Πτ tr g ` Πν trhq “ sCpS ` P q sDu (6.50)

holds and S ` P is invertible. Still, at this point, the lack of invertibility for sC makes it
untransparent to decide whether it is possible to invert sCpS`P q sD. The identity sC sDv “ v
holds for arbitrary functions v on Ω but, conversely, the identity sD sCpvlqlPΓ “ pvlqlPΓ can
only be guaranteed if the sequence pvlqlPΓ is of the form vl “ ϕlv for some function v on Ω.
Unfortunately, for u P W 2

q pΩq, we do not know the sequence pfl, alqlPΓ :“ pS ` P q sDu to
be of the form pfl, alq “ pϕlf, ϕlaq. Hence, the ansatz sCpS `P q´1 sDpf,Πτ tr g `Πν trhq
might not lead to a solution. Instead, we have to find a substitute P 1 for P such that
the converse identity for (6.50), i.e.,

u “ sCpS ` P 1q´1 sDpf,Πτ tr g ` Πν trhq (6.51)

holds. In order to find such a perturbation P 1 : X Ñ Y , we assume for a moment that
the (unknown) operator S ` P 1 : X Ñ Y is an isomorphism. Then our purpose (6.51)
gives

pλ ´ Δ, RΩq sCpS ` P 1q´1 sDpf,Πτ tr g ` Πν trhq
“ pf,Πτ tr g ` Πν trhq
“ sCpS ` P 1qpS ` P 1q´1 sDpf,Πτ tr g ` Πν trhq,
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II The Laplace Resolvent on Uniform C2,1-Domains

so that consequently
pλ ´ Δ, RΩq sC “ sCpS ` P 1q (6.52)

must be satisfied. We therefore compute sCS ´ ppλ ´ Δq, RΩq sC now: For pulqlPΓ P X we
have, using (6.38),ÿ

lPΓ
ϕlpλ ´ Δqul ´ pλ ´ Δq

ÿ
lPΓ

ϕlul “
ÿ
lPΓ

“
ϕlpλ ´ Δqul ´ pλ ´ Δqpϕlulq

‰
“

ÿ
lPΓ

“pΔϕlqul ` 2p∇ulq∇ϕT
l

‰
“

ÿ
mPΓ

ϕ2
m

ÿ
l„m

“pΔϕlqul ` 2p∇ul
T q∇ϕl

‰
“ sC´

ϕl

ÿ
m„l

“pΔϕmqum ` 2p∇um
T q∇ϕm

‰¯
lPΓ

and the identity ν “ νl on BΩ X Bl as well as (6.37) yieldÿ
lPΓ

“
trBΩl

ϕlD´pulqνl ` νlν
T
l trBΩl

ϕlul
‰ ´ “

trBΩD´
´ ÿ

lPΓ
ϕlul

¯
ν ` ννT trBΩ

ÿ
lPΓ

ϕlul
‰

“
ÿ
lPΓ

trBΩl
ϕlD´pulqνl ´ trBΩD´

´ ÿ
lPΓ

ϕlul

¯
ν

“
ÿ
lPΓ1

“
trBΩl

ϕlp∇ul
T ´ ∇ulqνl ´ trBΩp∇pϕlulqT ´ ∇pϕlulqqν‰

“ ´
ÿ
lPΓ1

trBΩl
pul∇ϕl

T ´ pul∇ϕl
T qT qνl

“ ´
ÿ
mPΓ

ÿ
l«m

trBΩl
ϕ2
mpul∇ϕl

T ´ pul∇ϕl
T qT qνl

“ sC´
´

ÿ
m«l

trBΩm ϕlpum∇ϕm
T ´ pum∇ϕm

T qT qνm
¯
lPΓ

“ sC´
´ trBΩl

ÿ
m«l

ϕlpum∇ϕm
T ´ pum∇ϕm

T qT qνm
¯
lPΓ

.

Therefore, we define P 1 : X ÝÑ Y by

pulqlPΓ ÞÝÑ
´

´ ϕl

ÿ
m„l

“pΔϕmqum ` 2p∇um
T q∇ϕm

‰
,

trBΩl

ÿ
m«l

ϕlpum∇ϕm
T ´ pum∇ϕm

T qT qνm
¯
lPΓ

.

Then (6.52) is true and consequently (6.51) must be the solution of (6.30) in case pS `
P 1q´1 exists. Therefore, it remains to verify that P 1 is a perturbation of S so that
S ` P 1 : X ÝÑ Y is an isomorphism.

In the same way as in (6.40) we obtain existence of some CP 1 “ CP 1pn, q,Ωq ą 0 such
that

}P 1pulqlPΓ}Y ď CP 1a|λ| }pulqlPΓ}X (6.53)

holds for all pulqlPΓ P X and for λ P Σθ, |λ| ě λ0 (Note that trBHl

ř
m«l ϕlpum∇ϕm

T ´
pum∇ϕm

T qT qνm is contained in the tangent space at BHl for every l P Γ1 again). Thus,
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7 Neumann Boundary Conditions for the Laplace Resolvent

by increasing λ0 “ λ0pn, q, θ,Ωq such that λ0 ě p2CSCP 1q2, where CS and CP 1 are the
constants from (6.36) and (6.53), we achieve as in (6.43) that

}P 1}XÑY ď 1

2CS

holds, so again the Neumann series yields that we have an isomorphism

S ` P 1 : X –ÝÑ Y.

7 Neumann Boundary Conditions for the Laplace Resolvent

Theorem 7.1. Let Ω Ă Rn be a uniform C1,1-domain, n ě 2, 1 ă q ă 8 and 0 ă θ ă π.
Then there exist λ0 “ λ0pn, q, θ,Ωq ą 0 and C “ Cpn, q, θ,Ωq ą 0 such that for λ P Σθ,
|λ| ě λ0 the problem "

λu ´ Δu “ f in Ω
Bνu “ g on BΩ (7.1)

for all f P LqpΩq and g P W 1
q pΩq has a unique solution u P W 2

q pΩq and this solution
fulfills the resolvent estimate

}pλu,?
λ∇u,∇2uq}q ď C}pf,?

λg,∇gq}q. (7.2)

Proof. The proof is very similar to the proof of Theorem 6.5 but a little simpler, since
the Neumann boundary condition is a condition only for scalar functions instead of
vector fields. One could also take vector fields with componentwise Neumann boundary
conditions into account but this would not cause any extra difficulties. In particular,
there is no distinction between boundary conditions in tangential and normal direction.
Consequently there is no necessity to include a strategy for the components of u like an
additional application of the matrix ∇ΦT in the proof of Theorem 6.2 to the boundary
terms to be able to apply a perturbation argument. Therefore, we only sketch the main
differences from the proof of Theorem 6.5.

First, we obtain that Theorem 7.1 is true for the half space Ω “ Rn` (with λ0 “ 0).
This is due to [47], Thm. 7.7, since (7.1) satisfies the Lopatinski-Shapiro condition.

Next, let Ω “ Hω be a bent half space, where ω P W 28pRn´1q such that

}∇1ω}8, }∇12ω}8 ď M (7.3)

holds for some M ą 0. Application of the change of coordinates x ÞÑ rx (we use the same
notation as in the proof of Theorem 6.2) to (7.1) yields the equivalent problem"

λru ´ Δru ` Bru “ rf in Rn`
ν` ¨ ∇ru ` B1ru “ rg on BRn`

(7.4)

where B is the same operator as in the proof of Theorem 6.2 and

B1ru :“ pν ´ ν`q ¨ ∇ru ´ ν ¨ p∇1ωT , 0qBnru.
Again, we can apply [47], Lem. 7.10, defining the Banach spaces

X :“ W 2
q pRn`q,

Y :“ LqpRn`q ˆ W 1
q pRn`q,

Z :“ LqpRn`q ˆ LqpBRn`q
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II The Laplace Resolvent on Uniform C2,1-Domains

with norms

}ru}X :“ }pλru,?
λ∇ru,∇2ruq}q,

}p rf, rgq}Y :“ }p rf,?
λrg,∇rgq}q,

} ¨ }Z :“ } ¨ }LqpRn`qˆLqpBRn`q

and the operators

S : X ÝÑ Y, ru ÞÑ ppλ ´ Δqru, ν` ¨ ∇ruq,
P : X ÝÑ Y, ru ÞÑ pBru,B1ruq,
Q : Y ÝÑ Z, p rf, rgq ÞÑ p rf, trBRn` rgq

this time. Comparing the definition of the space Y to the related definition in the proof
of Theorem 6.2, we observe that only zero and first order derivatives are needed for the
Neumann boundary conditions. Therefore, uniform C1,1-regularity of the boundary is
sufficient in order to receive the same result that we have proved for perfect slip boundary
conditions. We obtain that for sufficiently small κ “ κpn, q, θq ą 0 and for sufficiently
large λ0 “ λ0pn, q, κ,Mq ą 0, the problem (7.1) for Ω “ Hω is uniquely solvable if
λ P Σθ, |λ| ě λ0 and }∇1ω}8 ď κ and also (7.2) holds with some C “ Cpn, q, θ,Mq ą 0.
Hence, Theorem 7.1 holds for bent half spaces.

We easily transfer the latter result to the bent, rotated and shifted half space by using
similar arguments as in the proof of Theorem 6.4.

As a last step we apply the localization procedure to (7.1) for arbitrary C2,1-domains
Ω, where we use the same notation as in the proof of Theorem 6.5. Multiplication of
(7.1) by ϕl for l P Γ1 yields the local equations$’’’’&’’’’%

λul ´ Δul ` ř
m„l

“
2ump∇ϕm

T q∇ϕl ` 2ϕmp∇um
T q∇ϕl ` pΔϕlqϕmum

‰
“ fl in Ωl for all l P Γ,

νl ¨ ∇ul ´ νl ¨ ř
m«lp∇ϕlqϕmum

“ gl on BΩl for all l P Γ1

(7.5)

for um “ ϕmu. Similar to the proof of Theorem 6.5 we obtain that (7.5) is uniquely solv-
able, where we apply the same perturbation argument, defining BFqpBΩq “ BFq,λpBΩq
as the trace of W 1

q pΩq (i.e., as W
1´1{q
q pBΩq) with norm

}a}BFq,λpBΩq “ inf
gPW 1

q pΩq, tr g“a
}p?

λg,∇gq}q

and defining the Banach spaces

X :“ lqpà
lPΓ

W 2
q pΩlqq,

Y :“ lqpà
lPΓ

LqpΩlqq ˆ lqpà
lPΓ

BFqpBΩlqq

with norms

}pulqlPΓ}X :“ }pλul,
?
λ∇ul,∇2ulqlPΓ}lqpLqq,

}pfl, alqlPΓ}Y :“ }pflqlPΓ}lqpLqq ` }palqlPΓ}lqpBFq,λq
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and the operators

S : X ÝÑ Y, pulqlPΓ ÞÝÑ `pλ ´ Δqul, νl ¨ trBΩl
∇ul

˘
lPΓ,

P : X ÝÑ Y, pulqlPΓ ÞÝÑ
´ ÿ

m„l

“
2ump∇ϕm

T q∇ϕl ` 2ϕmp∇um
T q∇ϕl ` pΔϕlqϕmum

‰
,

´ νl ¨ trBΩl

ÿ
m«l

p∇ϕlqϕmum

¯
lPΓ

this time. This gives uniqueness for solutions of (7.1) and the resolvent estimate (7.2).
In order to obtain existence of a solution to (7.1), we use a representation

u “ sCpS ` P 1q´1 sDpf, tr gq
as in the proof of Theorem 6.5, where in this case we have to consider

P 1 : X ÝÑ Y, pulqlPΓ ÞÝÑ
´

´ ϕl

ÿ
m„l

“pΔϕmqum ` 2p∇um
T q∇ϕm

‰
,

νl ¨ trBΩl

ÿ
m«l

ϕlp∇ϕmqum
¯
lPΓ

.

Proposition 7.2. Let Ω Ă Rn be a uniform C1,1-domain, n ě 2, 1 ă q ă 8 and
0 ă θ ă π. Let λ0 ą 0 such that for λ P Σθ, |λ| ě λ0 the conditions of Theorem 7.1 are
satisfied for q and q1. Let w P W 2

q pΩqn such that" pλ ´ Δqdivw “ 0 in Ω
Bν divw “ 0 on BΩ. (7.6)

Then divw “ 0.f

Proof. Let ΔN,q : DpΔN,qq Ă LqpΩq Ñ LqpΩq, u ÞÑ Δu be the Neumann-Laplace opera-
tor, i.e., DpΔN,qq “ tu P W 2

q pΩq : Bνu “ 0 on BΩu, and let ΔN̊,q : Lq1pΩq Ñ DpΔN,qq1 be
the continuous dual operator (endowing DpΔN,qq with the graph norm). Note that we
can regard Lq1pΩq as a subspace of DpΔN,qq1, since DpΔN,qq Ă LqpΩq is dense.

We aim to prove that pλ ´ ΔN̊,q1qdivw “ 0. For this purpose, fix some ϕ P DpΔN,q1q.
Then the Neumann boundary conditions ν ¨ ∇ϕ “ 0 and ν ¨ ∇ divw “ 0 on BΩ yield

xpλ ´ ΔN̊,q1qdivw,ϕyDpΔN,q1 q1,DpΔN,q1 q
“ xdivw, pλ ´ Δqϕyq,q1

“ xdivw, λϕyq,q1 ´ xdivw, div∇ϕyq,q1

“ xdivw, λϕyq,q1 `
ż
Ω
∇ divw ¨ ∇ϕdλn ´ xdivw, ν ¨ ∇ϕyBΩ

“ xdivw, λϕyq,q1 ´
ż
Ω

pΔdivwqϕdλn ` xϕ, ν ¨ ∇ divwyBΩ

“ xpλ ´ Δqdivw,ϕyq,q1

“ 0,

where we made use of Lemma 3.7, one time with ∇ϕ P Eq1pΩq and divw P W 1
q pΩq as well

as a second time with ∇ divw P EqpΩq and ϕ P W 1
q1pΩq. Therefore pλ´ΔN̊,q1qdivw “ 0.

Now λ ´ ΔN,q1 : DpΔN,q1q –ÝÑ Lq1pΩq is an isomorphism, due to Theorem 7.1, so its
continuous dual operator, λ ´ ΔN̊,q1 , is injective. Hence divw “ 0.

f By divw solving (7.6) we mean pλ ´ Δqdivw “ 0 in the sense of distributions and trν ∇ divw “ 0

in W
´1{q
q pBΩq. Note that pλ ´ Δqdivw “ 0 implies div∇ divw “ Δdivw “ λ divw P LqpΩq and

therefore ∇ divw P EqpΩq.
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8 Lq,σ-Invariance of the Laplace Resolvent

An important property of the Laplace resolvent for our purposes is the following, which
is a special feature of the perfect slip boundary conditions.

Proposition 8.1. Let Ω Ă Rn be a uniform C2,1-domain, n ě 2 and 1 ă q ă 8 such
that Assumption 4.4 is valid. Let 0 ă θ ă π, choose λ0 “ λ0pn, q, θ,Ωq ą 0 so that the
conditions of Theorem 6.5 and Proposition 7.2 are satisfied and let λ P Σθ, |λ| ě λ0.
Then the following implications hold.

(i) u P DpΔPSq X Lq,σpΩq ñ Δu P Lq,σpΩq.
(ii) f P Lq,σpΩq ñ pλ ´ ΔPS,qq´1f P Lq,σpΩq.

Proof. We will make use of both the Lq,σpΩq-representations in Lemmas 4.5 and 4.6. Let
u P DpΔPSq X Lq,σpΩq and ϕ P C8

c pΩq. Then we have

xΔu,∇ϕyq,q1 “ ´
ż
Ω

p∇ div u ´ Δuq ¨ ∇ϕdλn

“ ´
ż
Ω
divpD´puq∇ϕq dλn

“ ´
ż

BΩ
ν ¨ D´puq∇ϕdσ

“
ż

BΩ
∇ϕ ¨ D´puqν dσ

“ 0,

where we made use of Lemma 3.4 and of Lemma 2.1(ii) and (iii). Now this holds for
ϕ P xW 1

q1pΩq as well, since C8
c pΩq Ă xW 1

q1pΩq is dense. Hence (i) is true.
In order to see (ii), let f P Lq,σpΩq. The function u :“ pλ ´ ΔPS,qq´1f P W 2

q pΩqn is
the solution of $&%

λu ´ Δu “ f in Ω
D´puqν “ 0 on BΩ

ν ¨ u “ 0 on BΩ,
(8.1)

so, applying trν to the first line of (8.1), we receive

trν Δu “ 0. (8.2)

Furthermore, we obtain pλ ´ Δq div u “ 0 in the sense of distributions, applying div to
the first line of (8.1). Now we aim to show that the boundary condition Bν div u “ 0 on
BΩ holds: Let k P W

1´1{q1
q1 pBΩq and choose w P W 1

q1pΩq so that trw “ k. First note that
∇ div u P EqpΩq, so trν ∇ div u is well defined. We have@

k, trν ∇ div u
D

BΩ “ @
w, ν ¨ p∇ div u ´ ΔuqD

BΩ
“

ż
Ω
divpwp∇ div u ´ Δuqq dλn

“
ż
Ω
∇w ¨ p∇ div u ´ Δuq dλn,

(8.3)
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8 Lq,σ-Invariance of the Laplace Resolvent

using (8.2), Lemma 3.8 and divp∇ div u ´ Δuq “ 0. In case w P C8
c pΩq, we obtain for

the last term of (8.3) thatż
Ω
∇w ¨ p∇ div u ´ Δuq dλn “

ż
Ω
divpD´puq∇wq dλn

“
ż

BΩ
ν ¨ D´puq∇w dσ

“ ´
ż

BΩ
∇w ¨ D´puqν dσ

“ 0,

(8.4)

using Lemma 2.1(ii), (iii) and Lemma 3.4. The density of C8
c pΩq Ă W 1

q1pΩq gives that
(8.4) holds for w P W 1

q1pΩq as well. Therefore, (8.3) and (8.4) yield Bν div u “ 0 on BΩ.
We have in total " pλ ´ Δqdiv u “ 0 in Ω

Bν div u “ 0 on BΩ.
Consequently div u “ 0, due to Proposition 7.2. Lemma 4.6 yields u P Lq,σpΩq.
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III Stokes and Navier-Stokes Equations
on Uniform C2,1-Domains

The main results concerning Stokes and Navier-Stokes equations on general domains
are presented and proved in this chapter. For this purpose, we will take the Assump-
tions 4.2, 4.3 and 4.4 into consideration. A starting point will be the perfect slip boundary
conditions, for which we have the useful properties of the Laplace resolvent from Chap-
ter II available.

9 The Stokes Resolvent Problem: Perfect Slip Boundary

Conditions

9.1 Homogeneous Boundary Conditions

Theorem 9.1. Let Ω Ă Rn be a domain with uniform C2,1-boundary, n ě 2 and 1 ă q ă
8 such that Assumption 4.4 holds. Let 0 ă θ ă π and denote UqpΩq “ Lq,σpΩq X GqpΩq
again. Then there exist λ0 “ λ0pn, q, θ,Ωq ą 0 and C “ Cpn, q, θ,Ωq ą 0 such that for
λ P Σθ, |λ| ě λ0 we have the following, concerning$’’&’’%

λu ´ Δu ` ∇p “ f in Ω
div u “ 0 in Ω

D´puqν “ 0 on BΩ
ν ¨ u “ 0 on BΩ.

(9.1)

(i) Provided that f P LqpΩqn, problem (9.1) has a solution

pu,∇pq P rW 2
q pΩqn X Lq,σpΩqs ˆ GqpΩq

if and only if f P Lq,σpΩq ` GqpΩq. In particular, there exists a solution of (9.1)
for any f P LqpΩqn in case Assumption 4.3 is valid.

(ii) The solution space Shom Ă rW 2
q pΩqnXLq,σpΩqsˆGqpΩq of the homogeneous problem

(9.1) (i.e., f “ 0) is

Shom “
!`pλ ´ ΔPS,qq´1∇π,´∇π

˘
: ∇π P UqpΩq

)
.

In particular, we obtain dimShom “ dimUqpΩq.
(iii) In case Assumption 4.2(i) is valid, we obtain: For f P LqpΩqn there exists a unique

solution
pu,∇pq P rW 2

q pΩqn X Lq,σpΩqs ˆ GqpΩq
of (9.1) if and only if f P Lq,σpΩq`GqpΩq. In particular, in case Assumption 4.3 is
valid as well, there exists a unique solution of (9.1) in rW 2

q pΩqn XLq,σpΩqs ˆGqpΩq
for any f P LqpΩqn.
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(iv) In case Assumption 4.2 (i.e., 4.2(i) and 4.2(ii)) is valid, the solution in (iii) satisfies
the resolvent estimate

}pλu,?
λ∇u,∇2u,∇pq}q ď C}f}q (9.2)

for any f P Lq,σpΩq ` GqpΩq.
Proof. Choose λ0 “ λ0pn, q, θ,Ωq and C “ Cpn, q, θ,Ωq such that the conditions of
Theorem 6.5 and Proposition 7.2 are satisfied and let λ P Σθ, |λ| ě λ0.

In order to prove (i), we decompose a given function f P Lq,σpΩq ` GqpΩq into f0 P
Lq,σpΩq and ∇π P GqpΩq. Setting

pu,∇pq :“ ppλ ´ ΔPS,qq´1f0,∇πq,
we obtain a solution of (9.1), due to Proposition 8.1(ii). Conversely, if there exists a
solution pu,∇pq of (9.1) with right-hand side f P LqpΩqn, then Proposition 8.1(i) gives
that f P Lq,σpΩq ` GqpΩq.

A solution of the homogeneous problem (9.1) is given by
`pλ ´ ΔPS,qq´1∇π,´∇π

˘
with some ∇π P UqpΩq, due to Proposition 8.1(ii). If, conversely, pu,∇pq P rW 2

q pΩqn X
Lq,σpΩqsˆGqpΩq solves (9.1) with f “ 0 then we have pλ´Δqu “ ´∇p P GqpΩq. On the
other hand Proposition 8.1(i) yields pλ ´ Δqu P Lq,σpΩq. Therefore, ∇p “ ´pλ ´ Δqu P
UqpΩq, so we have in total

pu,∇pq “ ppλ ´ ΔPS,qq´1∇π,´∇πq
with ∇π :“ ´∇p P UqpΩq. This proves (ii).

Now let Assumption 4.2(i) be valid and f P Lq,σpΩq `GqpΩq. Using the direct decom-
position (4.2), we can decompose f “ f0 ` ∇p into f0 P Lq,σpΩq and ∇p P GqpΩq. The
solution

pu,∇pq :“ `pλ ´ ΔPS,qq´1f0,∇p
˘

of (9.1) is contained in rW 2
q pΩqn XLq,σpΩqs ˆGqpΩq, thanks to Proposition 8.1(ii), so we

only have to prove that there is at most one solution in this space to obtain uniqueness.
Therefore, let pv,∇πq P rW 2

q pΩqn X Lq,σpΩqs ˆ GqpΩq be a solution of the homogeneous
problem (9.1). Proposition 8.1(i) then yields pλ ´ Δqv P Lq,σpΩq, but on the other hand
we have

pλ ´ Δqv “ ´∇π P GqpΩq.
Since GqpΩq XLq,σpΩq “ t0u, we deduce ∇π “ 0 and v “ ´pλ´ΔPS,qq´1∇π “ 0. Hence,
solutions of (9.1) in rW 2

q pΩqn X Lq,σpΩqs ˆ GqpΩq are unique. Therefore, the sufficiency
in (iii) is proved. Conversely, for any right-hand side function f P LqpΩqn the condition
f P Lq,σpΩq ` GqpΩq is also necessary to obtain existence of the solution in (iii), since
rW 2

q pΩqn X Lq,σpΩqs ˆ GqpΩq is a subspace of rW 2
q pΩqn X Lq,σpΩqs ˆ GqpΩq and for the

latter space we have seen necessity in (i) already. Hence, (iii) is proved.
Now let Assumption 4.2 be valid. Then the right-hand side of (4.2) is a Banach space,

yielding a constant C 1 “ C 1pn, q,Ωq ą 0 so that for the decomposition f “ f0 ` ∇p we
have

}pf0,∇pq}q ď C 1}f}q. (9.3)

Hence, the functions u “ pλ´ΔPS,qq´1f0 and ∇p fulfill the resolvent estimate (9.2), due
to (9.3) and Theorem 6.5.
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9 The Stokes Resolvent Problem: Perfect Slip Boundary Conditions

9.2 Inhomogeneous Boundary Conditions

In case of inhomogeneous boundary conditions the problem is a little more intricate.
Nevertheless, in order to be able to make use of perturbation theory, an inhomogeneous
version of Theorem 9.1 is needed.

Theorem 9.2. Let Ω Ă Rn be a uniform C2,1-domain, n ě 2 and 1 ă q ă 8 such that
Assumption 4.4 is valid and let 0 ă θ ă π. Then there exist λ0 “ λ0pn, q, θ,Ωq ą 0 and
C “ Cpn, q, θ,Ωq ą 0 such that for λ P Σθ, |λ| ě λ0 we have the following, concerning$’’&’’%

λu ´ Δu ` ∇p “ f in Ω
div u “ 0 in Ω

D´puqν “ Πτg on BΩ
ν ¨ u “ 0 on BΩ.

(9.4)

(i) If Assumption 4.3 is valid, then for all f P LqpΩqn and g P W 1
q pΩqn there exists a

solution
pu,∇pq P rW 2

q pΩqn X Lq,σpΩqs ˆ GqpΩq
of (9.4) (which may not be unique; see Theorem 9.1(ii)).

(ii) If Assumptions 4.2 and 4.3 are valid, then for all f P LqpΩqn and g P W 1
q pΩqn there

exists a unique solution

pu,∇pq P rW 2
q pΩqn X Lq,σpΩqs ˆ GqpΩq

of (9.4) and the resolvent estimate

}pλu,?
λ∇u,∇2u,∇pq}q ď C}pf,?

λg,∇gq}q (9.5)

holds.

Proof. Fix λ0 “ λ0pn, q, θ,Ωq such that the conditions of Theorem 6.5 and Proposition 7.2
are satisfied and let λ P Σθ, |λ| ě λ0.

Let g P W 1
q pΩqn and assume initially f P Lq,σpΩq. Denote by ũ P W 2

q pΩqn the unique
solution of $&%

λũ ´ Δũ “ 0 in Ω
D´pũqν “ Πτg on BΩ

ν ¨ ũ “ 0 on BΩ
(see Theorem 6.5). Let ∇p P GqpΩq be a solution of

x´∇p,∇ϕyq,q1 “ x∇ div ũ ´ Δũ,∇ϕyq,q1 @ϕ P xW 1
q1pΩq (9.6)

(Assumption 4.3 yields existence of such a solution). Using Theorem 6.5 again, we define
u P W 2

q pΩqn as the unique solution of$&%
λu ´ Δu “ f ´ ∇p in Ω
D´puqν “ Πτg on BΩ

ν ¨ u “ 0 on BΩ.
(9.7)

We now aim to prove that u P Lq,σpΩq, where we use the representation of Lq,σpΩq from
Lemma 4.6. Applying trν to the first line of (9.7) gives

trν Δu “ trν ∇p, (9.8)
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where trν ∇p is well-defined, since div∇p “ ´divp∇ div ũ ´ Δũq “ 0 in the sense of
distributions, due to (9.6). Also trν ∇ div u is well-defined, since (9.7) yields div∇ div u “
divΔu “ λ div u P LqpΩqn. In order to obtain that trν ∇ div u “ 0, let k P W

1´1{q1
q1 pBΩq

and fix any w P W 1
q1pΩq so that trw “ k. Then we have, using (9.8), Lemma 3.8 and

div∇p “ 0,

xk, trν ∇ div uyBΩ “ xw, ν ¨ p∇p ` ∇ div u ´ ΔuqyBΩ

“
ż
Ω
divpwp∇p ` ∇ div u ´ Δuqq dλn

“
ż
Ω
∇w ¨ p∇p ` ∇ div u ´ Δuq dλn

(9.9)

as in (8.3). Now, in the last term of (9.9), we can replace ∇ div u´Δu by ∇ div ũ´Δũ.
In fact, using Lemma 2.1(ii) and (iii) and Lemma 3.4, we obtain for w P C8

c pΩqż
Ω
∇w ¨ p∇ div u ´ Δuq dλn “

ż
Ω
divpD´puq∇wq dλn

“
ż

BΩ
ν ¨ pD´puq∇wq dσ

“ ´
ż

BΩ
∇w ¨ pD´puqνq dσ

“ ´
ż

BΩ
∇w ¨ pΠτgq dσ

and the same for ũ instead of u, so we haveż
Ω
∇w ¨ p∇ div u ´ Δuq dλn “

ż
Ω
∇w ¨ p∇ div ũ ´ Δũq dλn (9.10)

for w P C8
c pΩq. The density of C8

c pΩq Ă W 1
q1pΩq yields that (9.10) holds for w P W 1

q1pΩq
as well and therefore (9.6) gives that the right-hand side of (9.9) vanishes. Consequently
we have trν ∇ div u “ 0 in total. Moreover, applying div to the first line of (9.7), we
obtain pλ ´ Δqdiv u “ 0. Hence" pλ ´ Δqdiv u “ 0 in Ω

Bν div u “ 0 on BΩ
holds. Proposition 7.2 then yields div u “ 0, so we receive u P Lq,σpΩq and pu,∇pq P
rW 2

q pΩqn X Lq,σpΩqs ˆ GqpΩq is a solution of (9.4).
Now, in the general case f P LqpΩqn, we can decompose f “ f0 ` ∇π, where f0 P

Lq,σpΩq and ∇π P GqpΩq (Assumption 4.3). We have shown that there exists a solution
pu,∇pq P rW 2

q pΩqn X Lq,σpΩqs ˆ GqpΩq of (9.4) with right-hand side function f0, so
pu,∇p ` ∇πq solves (9.4) with right-hand side function f . Thus, (i) is proved.

Let now Assumptions 4.2 and 4.3 be valid. Again, let initially f P Lq,σpΩq. As in the
proof of (i) let ũ P W 2

q pΩqn be the unique solution of$&%
λũ ´ Δũ “ 0 in Ω
D´pũqν “ Πτg on BΩ

ν ¨ ũ “ 0 on BΩ.
Theorem 6.5 then yields

}pλũ,?
λ∇ũ,∇2ũq}q ď C}p?

λg,∇gq}q (9.11)
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with a constant C “ Cpn, q, θ,Ωq ą 0. The direct decomposition (4.1) gives that

x´∇p,∇ϕyq,q1 “ x∇ div ũ ´ Δũ,∇ϕyq,q1 @ϕ P xW 1
q1pΩq

has a unique solution ∇p P GqpΩq, which relates to the decomposition of the function
∇ div ũ ´ Δũ “ v0 ´ ∇p into v0 P Lq,σpΩq and ´∇p P GqpΩq. Furthermore, (4.1) yields
a constant C 1 “ C 1pn, q,Ωq ą 0 so that

}∇p}q ď C 1}∇ div ũ ´ Δũ}q. (9.12)

Again, we define u P W 2
q pΩqn as the unique solution of$&%

λu ´ Δu “ f ´ ∇p in Ω
D´puqν “ Πτg on BΩ

ν ¨ u “ 0 on BΩ
and obtain u P Lq,σpΩq in the same way as in the proof of (i). Hence, pu,∇pq P rW 2

q pΩqnX
Lq,σpΩqs ˆ GqpΩq is the unique solution of (9.4). Moreover, Theorem 6.5 yields

}pλu,?
λ∇u,∇2uq}q ď C}pf ´ ∇p,

?
λg,∇gq}q (9.13)

with a constant C “ Cpn, q, θ,Ωq ą 0. The estimates (9.11), (9.12) and (9.13) imply
(9.5).

Now, let f P LqpΩqn. Decomposition (4.1) gives f “ f0`∇π with two unique functions
f0 P Lq,σpΩq and ∇π P GqpΩq as well as a constant C 1 “ C 1pn, q,Ωq ą 0 so that

}pf0,∇πq}q ď C 1}f}q. (9.14)

We have proved that (9.4) with right-hand side function f0 admits a unique solution
pu,∇pq P rW 2

q pΩqn X Lq,σpΩqs ˆ GqpΩq satisfying (9.5) with f0 instead of f . Thus,
pu,∇p ` ∇πq P rW 2

q pΩqn X Lq,σpΩqs ˆ GqpΩq is the unique solution of (9.4) with right-
hand side function f and (9.14) yields the related resolvent estimate (9.5) with ∇p`∇π
instead of ∇p. Hence (ii) is proved.

10 The Stokes Resolvent Problem: Partial Slip Type

Boundary Conditions

In order to receive results similar to Theorem 9.1 and Theorem 9.2 subject to a more
general class of boundary conditions, we first obtain that it is possible to perturb the
perfect slip boundary conditions in such a way that we receive partial slip type boundary
conditions.

Lemma 10.1. Let Ω Ă Rn be a uniform C2,1-domain, n ě 2 and 1 ă q ă 8. Then
there exists a matrix A P W 18pΩqnˆn such that for all u P W 2

q pΩqn with ν ¨ u “ 0 on BΩ
we have

ΠτD`puqν “ D´puqν ` ΠτAu on BΩ.
Proof. Let TxBΩ Ă Rn´1 be the tangent space at some fixed point x P BΩ. Let
τ1, . . . , τn´1 be a basis of TxBΩ. Then, with the outer unit normal τn :“ ν “ νpxq,
let τ1, . . . , τn be the dual basis of τ1, . . . , τn in Rn (i.e., τi ¨ τ j “ δij for i, j “ 1, . . . , n).
Then we have τn “ ν, since τn ¨ τj “ 0 for j “ 1, . . . , n ´ 1 implies τn “ βν for some
β P R but then 1 “ τn ¨ ν “ βν ¨ ν “ β.

We first observe for the tangential projection Πτu “ pI ´ ννT qu, the change of basis
matrix S :“ pτ1, . . . , τn´1, νqT and the vector rus1,...,n of covariant components rusi :“
u ¨ τi “ pSuqi that
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(a) Πτu “ řn´1
k“1pu ¨ τkqτk,

(b) S´1 “ pτ1, . . . , τn´1, νq and

(c) ΠτS
´1rus1,...,n “ ΠτS

´1prus1, . . . , rusn´1, 0qT .

It is obvious that pτ1, . . . , τn´1, νq is a right inverse of S but S also has full rank, so
pτ1, . . . , τn´1, νq must be the left inverse as well. Thus (b) is true. We receive from (b),
using the representation u “ S´1rus1,...,n, that

Πτu “ pI ´ ννT qpτ1, . . . , τn´1, νqrus1,...,n “ pτ1, . . . , τn´1, 0qrus1,...,n “
n´1ÿ
k“1

pu ¨ τkqτk,

so (a) is true. Now, using (a) and (b), we obtain (c), since

ΠτS
´1prus1, . . . , rusn´1, 0qT “ pτ1, . . . , τn´1, 0qprus1, . . . , rusn´1, 0qT

“
n´1ÿ
k“1

pu ¨ τkqτk

“ Πτu

“ ΠτS
´1rus1,...,n.

We now choose a concrete basis of TxBΩ in an arbitrary point x P BΩ. For this
purpose, let φl, l P Γ1 be the parametrization of the boundary BΩ chosen in (2.5). If,
for some l P Γ1, the point x P BΩ is contained in the part BΩ X Bl of the boundary,
the functions Biφl, i “ 1, . . . , n ´ 1 form a basis of TxBΩ. More precisely, we can define
τi “ τipxq :“ Biφlpφ´1

l pxqq for i “ 1, . . . , n ´ 1. Let l P Γ1 be fixed now. For a function v
on BΩ X Bl and i “ 1, . . . , n ´ 1 we define the i-th tangential derivative as

Bτiv :“ Bipv ˝ φlq ˝ φ´1
l

and if v is a vector field, then Bτiv is defined componentwise. If v P W 1
q pΩ X Blq, the

chain rule gives Bτiv “ ∇v ¨ pBiφl ˝ φ´1
l q “ ∇v ¨ τi, so the tangential derivative is exactly

the directional derivative in direction of the tangential vector. In case v P W 1
q pΩ X Blqn,

we have Bτiv “ p∇vT qτi. Therefore, for u P W 2
q pΩqn we have

rp∇uqνsi “ τi ¨ p∇uqν “ ν ¨ p∇uT qτi “ ν ¨ Bτiu on BΩ X Bl, (10.1)

where i “ 1, . . . , n ´ 1. For u P W 2
q pΩqn satisfying ν ¨ u “ 0 on BΩ we obtain

0 “ Bτipν ¨ uq “ u ¨ Bτiν ` ν ¨ Bτiu on BΩ X Bl. (10.2)

Utilizing (10.1) and (10.2) and writing p∇uT qν “ Bνu, we receive

rD˘puqνsi “ rBνusi ¯ pBτiνq ¨ u on BΩ X Bl for i “ 1, . . . , n ´ 1. (10.3)

Now (c) and (10.3) yield

ΠτD˘puqν “ ΠτS
´1rD˘puqνs1,...,n

“ ΠτS
´1

`rD˘puqνs1, . . . , rD˘puqνsn´1, 0
˘T

“ ΠτS
´1

``rBνus1, . . . , rBνusn´1, 0
˘T ¯ `pBτ1νq ¨ u, . . . , pBτn´1νq ¨ u, 0˘T ˘

“ Πτ pBνu ¯ S´1Ruq on BΩ X Bl,
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where R :“ pBτ1ν, . . . , Bτn´1ν, 0q. Hence, for u P W 2
q pΩqn satisfying ν ¨ u “ 0 on BΩ, we

obtain (using (2.15))

ΠτD`puqν “ D´puqν ´ 2ΠτS
´1Ru on BΩ.

It remains to prove that there exists an extension A P W 18pΩqnˆn of ´2S´1R. There-
fore, we first consider the entries of S´1. We have shown in (2.13) that there exists an
extension sν P W 28pΩqn of ν. In the same way we can establish an extension sτi P W 28pΩqn
of τi for i “ 1, . . . , n ´ 1 and the corresponding extension Bsτi of the tangential derivative
operator Bτi .

A representation of τ i is given by τ i “ řn´1
k“1 g

ikτk, where pgjkqj,k“1,...,n´1 :“ G´1 is the
inverse of the Gram matrix G :“ pτj ¨τkqj,k“1,...,n´1 (cf. [54]). In (2.10) we have established
a uniform upper bound for }G´1}1,8, so we also have an extension sτ i P W 28pΩqn of τ i for
i “ 1, . . . , n´1. Now, considering the entries of R, we obtain that Bτiν for i “ 1, . . . , n´1
can be written as the directional derivative of the extension sν in direction of τi. Sincesν P W 28pΩqn, we receive Bsτisν P W 18pΩqn. Summarizing, we have extensions of S´1 and
R, hence also of ´2S´1R, in W 18pΩqnˆn.

Now we are able to take general partial slip type boundary conditions into considera-
tion. The result reads the following.

Theorem 10.2. Let Ω Ă Rn be a domain with uniform C2,1-boundary, n ě 2, 1 ă q ă 8
such that Assumptions 4.3 and 4.4 are valid. Let 0 ă θ ă π and α P R. Then there exist
λ0 “ λ0pn, q, θ,Ω, αq ą 0 and C “ Cpn, q, θ,Ωq ą 0 such that for λ P Σθ, |λ| ě λ0 we
have the following with regard to$’’&’’%

λu ´ Δu ` ∇p “ f in Ω
div u “ 0 in Ω

Πτ pαu ` D˘puqνq “ Πτg on BΩ
ν ¨ u “ 0 on BΩ,

(10.4)

where we denote (10.4)` and (10.4)´ for the respective boundary terms D˘ again.

(i) There exists ε “ εpn, q,Ω, λq ą 0 so that in case |α| ă ε for any f P LqpΩqn and
g P W 1

q pΩqn there exists a solution

pu,∇pq P rW 2
q pΩqn X Lq,σpΩqs ˆ GqpΩq

of (10.4)´.

(ii) Additionally, let Assumption 4.2 be valid. For any f P LqpΩqn and g P W 1
q pΩqn

there exists a unique solution

pu,∇pq P rW 2
q pΩqn X Lq,σpΩqs ˆ GqpΩq

of (10.4)` and of (10.4)´, respectively, and the estimate

}pλu,?
λ∇u,∇2u,∇pq}q ď C}pf,?

λg,∇gq}q (10.5)

holds in each case.
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Remark 10.3. Note that Theorem 10.2(ii) yields that solutions pu,∇pq of (10.4) in the
class rW 2

q pΩqn XLq,σpΩqs ˆGqpΩq are not unique in case rW 2
q pΩqn XLq,σpΩqs ˆ GqpΩq is

a proper subspace. In fact, if ∇π P UqpΩq “ Lq,σpΩq XGqpΩq is a nonzero function, then
Theorem 10.2(ii) yields a solution pu,∇pq P rW 2

q pΩqn X Lq,σpΩqs ˆ GqpΩq of (10.4) with
f “ ∇π and g “ 0, so pu,∇p ´ ∇πq P rW 2

q pΩqn X Lq,σpΩqs ˆ GqpΩq is a solution of the
homogeneous problem (10.2). This solution is nonzero, since ∇p ´ ∇π “ 0 would yield
∇π “ 0, due to the definition of GqpΩq.
Proof. We start with proving (ii). Let initially f P Lq,σpΩq, choose λ0 “ λ0pn, q, θ,Ωq
and C “ Cpn, q, θ,Ωq such that the conditions of Theorem 9.2(ii) are satisfied and let
λ P Σθ, |λ| ě λ0. Let A P W 18pΩqnˆn be the matrix from Lemma 10.1.

We define the Banach spaces

X :“ �pu,∇pq P rW 2
q pΩqn X Lq,σpΩqs ˆ GqpΩq : pλ ´ Δqu ` ∇p P Lq,σpΩq(

,

Y :“ Lq,σpΩq ˆ �
Πτ tr g : g P W 1

q pΩqn(
with norms (depending on λ)

}pu,∇pq}X :“ }pλu,?
λ∇u,∇2u,∇pq}q,

}pf, aq}Y :“ }f}q ` inft}p?
λg,∇gq}q : g P W 1

q pΩqn, a “ Πτ tr gu.
We further define the operators

S : X ÝÑ Y, pu,∇pq ÞÝÑ ppλ ´ Δqu ` ∇p, trD´puqνq,
P´ : X ÝÑ Y, pu,∇pq ÞÝÑ p0,Πτ trαuq,
P` : X ÝÑ Y, pu,∇pq ÞÝÑ p0,Πτ trpAu ` αuqq.

The statement for f P Lq,σpΩq, g P W 1
q pΩqn now means that

S ` P˘ : X ÝÑ Y (10.6)

is bijective such that pS `P˘q´1 is bounded, uniformly in λ. More precisely, the related
continuity constant of (10.6) is only allowed to depend on n, q, θ,Ω and we prescribe |λ| ě
λ0. Besides, in (10.6) the operator S ` P´ relates to (10.4)´ while S ` P` corresponds
to (10.4)`.

Theorem 9.2(ii) gives that S is bijective and for pf, aq P Y , pu,∇pq :“ S´1pf, aq and
any g P W 1

q pΩqn satisfying a “ Πτ tr g we have

}pλu,?
λ∇u,∇2u,∇pq}q ď C}pf,?

λg,∇gq}q.
Consequently

}pu,∇pq}X ď C}pf, aq}Y . (10.7)

Next, we prove that the two operators P˘ are continuous with

}P˘}XÑY ď C 1 ` |α|a|λ| , (10.8)

where C 1 “ C 1pn, q,Ωq ą 0. The definition of the norm in Y directly gives

}P´pu,∇pq}Y ď |α|}p?
λu,∇uq}q, (10.9)
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for all pu,∇pq P X. We obtain the same for the second part of P`, i.e.,

}p0,Πτ trαuq}Y ď |α|}p?
λu,∇uq}q.

Lemma 10.1 yields for the first part

}p0,Πτ trAuq}Y ď }A}1,8}p?
λu,∇uq}q

if |λ| ě 1. In total we obtain (10.8).
We now increase the constant λ0 “ λ0pn, q, θ,Ωq to some λ0 “ λ0pn, q, θ,Ω, αq so that

λ0 ě 1 and λ0 ě p2Cq2pC 1 ` |α|q2, where C and C 1 are the constants from (10.7) and
(10.8). Then (10.8) yields for |λ| ě λ0

}P˘}XÑY ď 1

2C
.

Consequently, by use of the Neumann series, we receive that S ` P˘ is bijective and

}pu,∇pq}X ď C
1

1 ´ C}P˘}XÑY
}pf, aq}Y ď 2C}pf, aq}Y (10.10)

for all pf, aq P Y and pu,∇pq “ pS`P˘q´1pf, aq. For any g P W 1
q pΩqn we have pf, aq P Y ,

where a :“ Πτ tr g P, so (10.10) implies (10.5) in the special case f P Lq,σpΩq.
Now let f P LqpΩqn. Using (4.1), we decompose f “ f0`∇π, f0 P Lq,σpΩq, ∇π P GqpΩq,

where we additionally have a constant C2 “ C2pn, q,Ωq ą 0 so that

}pf0,∇πq}q ď C2}f}q. (10.11)

Problem (10.4)˘ with right-hand side function f0 admits a unique solution pu,∇pq P
rW 2

q pΩqn XLq,σpΩqsˆGqpΩq satisfying (10.5) with f0 instead of f . Hence, pu,∇p`∇πq P
rW 2

q pΩqnXLq,σpΩqsˆGqpΩq is the unique solution of (10.4)˘ with right-hand side function
f and (10.11) yields the resolvent estimate (10.5) with ∇p ` ∇π instead of ∇p.

In order to prove (i), similar to the proof of (ii), consider the Banach spaces

X 1 :“ rW 2
q pΩqn X Lq,σpΩqs ˆ GqpΩq,

Y 1 :“ LqpΩqn ˆ tΠτ tr g : g P W 1
q pΩqnu (10.12)

with the same norms as for X and Y and the operators S : X 1 Ñ Y 1 and P´ : X 1 Ñ Y 1
as defined above. Then estimate (10.9) is still valid for X 1, Y 1 instead of X,Y , so we
have

}P´}X 1ÑY 1 ď |α| (10.13)

if λ0 ě 1. Theorem 9.2(i) yields that S : X 1 Ñ Y 1 is surjective. Hence, there exists
ε “ εpn, q,Ω, λq ą 0 so that in case }P´}X 1ÑY 1 ă ε the operator S ` P´ : X 1 Ñ Y 1 is
surjective as well. Now (10.13) yields the statement.

Corollary 10.4. Let Ω Ă Rn be a domain with uniform C2,1-boundary, n ě 2 and
1 ă q ă 8 such that the Helmholtz decomposition

LqpΩqn “ Lq,σpΩq ‘ GqpΩq (10.14)

holds and such that Assumption 4.4 is valid. Let 0 ă θ ă π. Then there exist λ0 “
λ0pn, q, θ,Ω, αq ą 0 and C “ Cpn, q, θ,Ωq ą 0 such that for λ P Σθ, |λ| ě λ0, problem
(10.4)´ and (10.4)`, respectively, has a unique solution

pu,∇pq P rW 2
q pΩqn X Lq,σpΩqs ˆ GqpΩq

for any f P LqpΩqn, g P W 1
q pΩqn and this solution fulfills the resolvent estimate

}pλu,?
λ∇u,∇2u,∇pq}q ď C}pf,?

λg,∇gq}q.
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Remark 10.5. Corollary 10.4 shows that we can recover the main result in [30] (con-
cerning the Stokes resolvent problem) for partial slip type boundary conditions instead
of no slip. Still, note that in [30] the Assumption 4.4 is not required.

Remark 10.6. As the proof of Theorem 10.2 shows, we could further add another zero
order boundary term of the form Au with some matrix A P W 18pΩqnˆn to the partial slip
type boundary conditions, i.e.,"

Πτ pαu ` D˘puqν ` Auq “ Πτg on BΩ
ν ¨ u “ 0 on BΩ

and the assertion is still valid (where the quantities now may additionally depend on the
matrix A, of course).

11 The Stokes Operator

We aim to define a suitable Stokes operator such that solving the related Cauchy problem
leads to well-posedness of the Stokes equations$’’’’&’’’’%

Btu ´ Δu ` ∇p “ f in p0, T q ˆ Ω
div u “ 0 in p0, T q ˆ Ω

Πτ pαu ` D˘puqνq “ 0 on p0, T q ˆ BΩ
ν ¨ u “ 0 on p0, T q ˆ BΩ
u|t“0 “ u0 in Ω.

(11.1)

We begin by stating some auxiliary results, showing that the definition given afterwards
is meaningful.

11.1 Projected and Non-Projected Equations

Under Assumptions 4.2 and 4.3 we can use the decomposition (4.1) to reformulate (11.1)`
and (11.1)´, respectively, with f : p0, T q Ñ LqpΩqn and u0 P Lq,σpΩq as the equivalent
problems $’’’’&’’’’%

Btu ´ rPΔu “ f0 in p0, T q ˆ Ω
div u “ 0 in p0, T q ˆ Ω

Πτ pαu ` D˘puqνq “ 0 on p0, T q ˆ BΩ
ν ¨ u “ 0 on p0, T q ˆ BΩ
u|t“0 “ u0 in Ω

(11.2)

with f0 : p0, T q Ñ Lq,σpΩq and u0 P Lq,σpΩq, where we denote the continuous linear
projection onto Lq,σpΩq, related to decomposition (4.1), by rP “ rPq : LqpΩqn Ñ LqpΩqn.
We obtain this reformulation by the following equivalence of the corresponding resolvent
problems which is a direct consequence of the continuity of the projection rP.

Lemma 11.1. Let Ω Ă Rn be a domain with uniform C2,1-boundary, n ě 2 and 1 ă q ă
8 such that Assumptions 4.2 and 4.3 are valid and let 0 ă θ ă π and α P R. Then for
any λ P Σθ and f P LqpΩqn a couple

pu,∇pq P rLq,σpΩq X DpΔᾰ,qqs ˆ GqpΩq
solves $’’&’’%

λu ´ Δu ` ∇p “ f in Ω
div u “ 0 in Ω

Πτ pαu ` D˘puqνq “ 0 on BΩ
ν ¨ u “ 0 on BΩ

(11.3)
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if and only if u P Lq,σpΩq X DpΔᾰ,qq solves$’’&’’%
λu ´ rPΔu “ rPf in Ω

div u “ 0 in Ω
Πτ pαu ` D˘puqνq “ 0 on BΩ

ν ¨ u “ 0 on BΩ
(11.4)

and ∇p “ pI ´ rPqpf ´ λu ` Δuq. In this case, for a fixed λ0 ą 0, the validity of

}pλu,?
λ∇u,∇2u,∇pq}q ď C}f}q (11.5)

for all |λ| ą λ0 with some C “ Cpn, q, θ,Ωq ą 0 is equivalent to the validity of

}pλu,?
λ∇u,∇2uq}q ď C 1}f}q (11.6)

for all |λ| ą λ0 with some C 1 “ C 1pn, q, θ,Ωq ą 0.

Definition 11.2 (Stokes operator). Let Ω Ă Rn be a uniform C2,1-domain, n ě 2 and
1 ă q ă 8 such that Assumptions 4.2 and 4.3 are valid and let α P R. We define the
Stokes operator as

A˘
S,α “ A˘

S,α,q : DpA˘
S,αq Ă Lq,σpΩq Ñ Lq,σpΩq, u ÞÝÑ rPqΔu

on DpA˘
S,α,qq :“ DpΔᾰ,qq X Lq,σpΩq.

11.2 Stokes Semigroup

Proposition 11.3. Let Ω Ă Rn be a uniform C2,1-domain, n ě 2 and 1 ă q ă 8 such
that Assumptions 4.2, 4.3 and 4.4 are valid and let α P R. Then the Stokes operator A˘

S,α

is the generator of a strongly continuous analytic semigroup

petA˘
S,αqtě0

on Lq,σpΩq. For arbitrary ω P p0, π2 q we can find d ě 0 such that the semigroup, gen-
erated by the shifted Stokes operator A˘

S,α ´ d, is a bounded analytic strongly continuous
semigroup with angle ω.

Proof. For θ :“ ω ` π
2 , Theorem 10.2 and Lemma 11.1 yield some constants λ0 “

λ0pn, q, θ,Ω, αq and C “ Cpn, q, θ,Ωq so that for λ P Σθ, |λ| ě λ0 the resolvent pλ ´
A˘

S,αq´1 : Lq,σpΩq Ñ Lq,σpΩq exists and fulfills the resolvent estimate

}λpλ ´ A˘
S,αq´1f}q ď C}f}q.

Let δ “ δpθq P p0, 1q so that |a ` b| ě δp|a| ` bq for all a P Σθ and b ą 0. Existence of
such a constant δ can be deduced from a compactness argument by employing θ ă π.
Then for any λ P Σθ we have |λ ` 1

δλ0| ě λ0 and λ ` 1
δλ0 P Σθ and consequently for

f P Lq,σpΩq›››λ´
λ ` 1

δ
λ0 ´ A˘

S,α

¯´1
f

›››
q

ď
›››´

λ ` 1

δ
λ0

¯´
λ ` 1

δ
λ0 ´ A˘

S,α

¯´1
f

›››
q

`
1
δλ0

|λ ` 1
δλ0|

›››´
λ ` 1

δ
λ0

¯´
λ ` 1

δ
λ0 ´ A˘

S,α

¯´1
f

›››
q

“
ˆ
1 `

1
δλ0

|λ ` 1
δλ0|

˙›››´
λ ` 1

δ
λ0

¯´
λ ` 1

δ
λ0 ´ A˘

S,α

¯´1
f

›››
q

ď
´
1 ` 1

δ

¯
C}f}q.
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Hence, A˘
S,α ´ 1

δλ0 is the generator of a strongly continuous bounded analytic semigroup
with angle ω.

Lemma 11.4. Let Ω Ă Rn be a uniform C0,1-domain (i.e., a uniform Lipschitz domain)
and n ě 2. Then there exists a linear operator E, mapping functions on Ω to functions on
Rn, such that Ef |Ω “ f holds for any function f on Ω (i.e., E is an extension operator)
and such that

E : W k
q pΩq ÝÑ W k

q pRnq (11.7)

is continuous for all 1 ď q ď 8 and all k P N0.

Proof. See [65], Thm. VI.3.1/5. The condition for Ω to be a uniform C0,1-domain is
exactly the condition in [65] for BΩ to be minimally smooth.

The following semigroup estimates are the essential tools for application of a fixed-point
argument to the Navier-Stokes equations in order to receive local well-posedness.

Proposition 11.5. Let 1 ă p ď q ă 8, n ě 2 and let Ω Ă Rn be a uniform C2,1-
domain such that Assumptions 4.2, 4.3 and 4.4 are valid for p and for q. Let α P R

and T ą 0. Then for the semigroup of the Stokes operator A˘
S,α,p there exists a constant

C “ Cpn, q, p,Ω, α, T q ą 0 such that for all t P p0, T q and any f P Lp,σpΩq the following
inequalities hold.

(i) }etA˘
S,α,pf}q ď Ct

´n
2

p 1
p

´ 1
q

q}f}p if 1
p ´ 1

q ă 2
n .

(ii) }∇etA
˘
S,α,pf}q ď Ct

´ 1
2

´n
2

p 1
p

´ 1
q

q}f}p if 1
p ´ 1

q ă 1
n .

Proof. Let β :“ np1p ´ 1
q q P r0, 2q. Then for the Bessel-potential space

Hβ
p pRnq “ rLppRnq,W 2

p pRnqsβ
2

(11.8)

we have the Sobolev embedding Hβ
p pRnq Ă LqpRnq (see, e.g., [66]) with some embedding

constant Ce “ Cepn, q, pq ą 0 since the condition p ď q, n
p ´ β ď n

q is satisfied. Let
t P p0, T q and f P Lp,σpΩq and denote by E the extension operator from Lemma 11.4
(where, in case of a vector field v, by Ev we mean componentwise application of the
operator E). Then we conclude

}etA˘
S,α,pf}LqpΩqn ď }EetA

˘
S,α,pf}LqpRnqn

ď Ce}EetA
˘
S,α,pf}

Hβ
p pRnqn

ď Ce}EetA
˘
S,α,pf}1´β

2

LppRnqn}EetA
˘
S,α,pf}

β
2

H2
ppRnqn

ď Ce}E}}etA˘
S,α,pf}1´β

2

LppΩqn}etA˘
S,α,pf}

β
2

H2
ppΩqn

(11.9)

where }E} denotes the maximum of the operator norms of (11.7) for k P t0, 2u. If
ω “ ωpn, p,Ω, αq P R denotes the growth bound of petA˘

S,α,pqtě0 then for ω :“ |ω| ` 1 and
some M “ Mpn, p,Ω, αq ą 0 we have

}etA˘
S,α,pf}LppΩqn ď Meωt}f}LppΩqn ď MeωT }f}LppΩqn . (11.10)

Since petA˘
S,α,pqtě0 is an analytic semigroup, we have etA

˘
S,α,pf P DpA˘

S,α,pq. Fix any
0 ă θ ă π and choose λ0 “ λ0pn, p, θ,Ω, αq ě 1 and C “ Cpn, p, θ,Ωq ą 0 such that
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the conditions of Theorem 10.2 are satisfied. In the proof of Proposition 11.3 we have
seen that for some appropriate δ “ δpθq P p0, 1q the strongly continuous semigroup
petpA˘

S,α,p´ 1
δ
λ0qqtě0, generated by A˘

S,α,p ´ 1
δλ0, is analytic and bounded. We receive from

Theorem 10.2 and Lemma 11.1 that›››´1

δ
λ0 ´ A˘

S,α,p

¯́ 1›››
LppΩqnÑH2

ppΩqn
ď C

(since 1
δλ0 ě λ0 ě 1). Consequently,

}etA˘
S,α,pf}H2

ppΩqn “
›››´1

δ
λ0 ´ A˘

S,α,p

¯́ 1´1

δ
λ0 ´ A˘

S,α,p

¯
etA

˘
S,α,pf

›››
H2

ppΩqn

ď Ce
1
δ
λ0T

›››´1

δ
λ0 ´ A˘

S,α,p

¯
etpA

˘
S,α,p´ 1

δ
λ0qf

›››
LppΩqn

ď CC 1e
1
δ
λ0T 1

t
}f}LppΩqn ,

(11.11)

where

C 1 “ C 1pn, p, θ,Ω, αq “ sup
tą0

›››t´1

δ
λ0 ´ A˘

S,α,p

¯
etpA

˘
S,α,p´ 1

δ
λ0q›››

Lp,σpΩqÑLp,σpΩq

is a finite constant, since petpA˘
S,α,p´ 1

δ
λ0qqtě0 is bounded and analytic. Now (11.9), (11.10)

and (11.11) yield

}etA˘
S,α,pf}LqpΩqn ď Ce}E}pMeωT q1´β

2 pCC 1e
1
δ
λ0T qβ

2 t´β
2 }f}LppΩqn .

Hence (i) is proved.
In order to prove (ii), let t P p0, T q and f P Lp,σpΩq again, where we have β “ np1p´ 1

q q P
r0, 1q this time. The condition p ď q, n

p ´β ď n
q for Sobolev’s embedding is still satisfied,

so we have Hβ`1
p pRnq Ă H1

q pRnq with some embedding constant Ce “ Cepn, q, pq ą 0 as
above. Furthermore, the condition β ă 1 gives that (11.8) holds with β ` 1 instead of β.
Therefore we have

}∇etA
˘
S,α,pf}

LqpΩqn2 ď }etA˘
S,α,pf}H1

q pΩqn

ď }EetA
˘
S,α,pf}H1

q pRnqn

ď Ce}EetA
˘
S,α,pf}

Hβ`1
p pRnqn

ď Ce}EetA
˘
S,α,pf}1´β`1

2

LppRnqn}EetA
˘
S,α,pf}

β`1
2

H2
ppRnqn

ď Ce}E}}etA˘
S,α,pf}1´β`1

2

LppΩqn}etA˘
S,α,pf}

β`1
2

H2
ppΩqn .

Applying (11.10) and (11.11) again, we conclude

}∇etA
˘
S,α,pf}

LqpΩqn2 ď Ce}E}pMeωT }f}LppΩqnq1´β`1
2 pCC 1e

1
δ
λ0T 1

t
}f}LppΩqnqβ`1

2

“ Ce}E}pMeωT q1´β`1
2 pCC 1e

1
δ
λ0T qβ`1

2 t´β`1
2 }f}LppΩqn .
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12 The Navier-Stokes Equations

We consider the Navier-Stokes equations subject to partial slip type boundary conditions$’’’’&’’’’%
Btu ´ Δu ` ∇p ` pu ¨ ∇qu “ 0 in p0, T q ˆ Ω

div u “ 0 in p0, T q ˆ Ω
Πτ pαu ` D˘puqνq “ 0 on p0, T q ˆ BΩ

ν ¨ u “ 0 on p0, T q ˆ BΩ
u|t“0 “ u0 in Ω,

(12.1)

where pu ¨ ∇qu “ řn
j“1 u

jBju. We denote (12.1)` and (12.1)´ for the Navier-Stokes
equations subject to boundary conditions with the related boundary operator D` and
D´, respectively. With the assumption div u “ 0 we also have pu ¨ ∇qu “ řn

j“1 Bjpujuq.
Theorem 12.1. Let Ω Ă Rn be a domain with uniform C2,1-boundary, n ě 2 and
n ă q ă 8 such that Assumptions 4.2, 4.3 and 4.4 are valid for q and also for q

2 . Again
we denote the projections related to decomposition (4.1) by rPq and rPq{2, respectively.
Let 0 ă θ ă π, α P R and u0 P Lq,σpΩq. Then there exists T ą 0 such that the
Navier-Stokes equations (12.1)` and (12.1)´, respectively, admit a unique mild solution
depending continuously on u0, i.e., the integral equation

uptq “ etA
˘
S,α,qu0 ´

ż t

0
e

pt´sqA˘
S,α,q{2rPq{2

nÿ
j“1

Bjpujpsqupsqqds, t P r0, T s, (12.2)

related to the projected Navier-Stokes equations$’’’’&’’’’%
Btu ´ rPqΔu ` rPq{2pu ¨ ∇qu “ 0 in p0, T q ˆ Ω

div u “ 0 in p0, T q ˆ Ω
Πτ pαu ` D˘puqνq “ 0 on p0, T q ˆ BΩ

ν ¨ u “ 0 on p0, T q ˆ BΩ
u|t“0 “ u0 in Ω

(12.3)

admits a unique solution

u P BC
`r0, T s, Lq,σpΩq˘

with rt ÞÑ ?
t∇uptqs P BC

`r0, T s, LqpΩqnˆn
˘
. (12.4)

Proof. Let u0 P Lq,σpΩq. For M ą 0 and T ą 0 we define XM,T as the space of
functions u satisfying (12.4) and }u}T ď M}u0}q, where }u}T :“ suptPr0,T s }uptq}q `
suptPr0,T s

?
t}∇uptq}q and we set

Hpuqptq :“ etA
˘
S,α,qu0 ´

ż t

0
e

pt´sqA˘
S,α,q{2rPq{2

nÿ
j“1

Bjpujpsqupsqq ds

for u P XM,T and t P r0, T s. We aim to prove that H is a contraction. Assuming T ă 1,
we can apply Proposition 11.5(i) with T “ 1 and p “ q

2 (and with p “ q for the first
term) to receive a constant C “ Cpn, q,Ω, αq ą 0 so that

}Hpuqptq}q ď C
´

}u0}q `
nÿ

j“1

ż t

0
pt ´ sq´ n

2q }rPq{2Bjpujpsqupsqq} q
2
ds

¯
. (12.5)
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12 The Navier-Stokes Equations

The continuity of rPq{2 on Lq{2pΩqn and Hölder’s estimate yield some C 1 “ C 1pn, q,Ωq ą 0
so that

nÿ
j“1

ż t

0
pt ´ sq´ n

2q }rPq{2Bjpujpsqupsqq} q
2
ds

ď C 1
ż t

0
pt ´ sq´ n

2q }∇upsq}q}upsq}q ds

ď C 1
ˆ

sup
τPr0,T s

}upτq}q
˙ˆ

sup
τPr0,T s

?
τ}∇upτq}q

˙ ż t

0

pt ´ sq´ n
2q?

s
ds

ď C 1
ˆ

sup
τPr0,T s

}upτq}q ` sup
τPr0,T s

?
τ}∇upτq}q

˙2 ż t

0

pt ´ sq´ n
2q?

s
ds

“ C 1}u}2T
ż t

0

pt ´ sq´ n
2q?

s
ds

ď C 1Cn,q}u}2T t
1
2

´ n
2q

ď C 1Cn,q}u}2TT
1
2

´ n
2q

ď C 1Cn,qM
2}u0}2qT

1
2

´ n
2q ,

(12.6)

since n
2q ă 1 gives that

ż t

0

pt ´ sq´ n
2q?

s
ds “

ż t{2

0

1?
s

1

pt ´ sq n
2q

ds `
ż t

t{2
1?
s

1

pt ´ sq n
2q

ds

ď
ż t{2

0

1?
s

1

pt ´ t
2q n

2q

ds `
ż t

t{2
1b
t
2

1

pt ´ sq n
2q

ds

“
ˆ
2

n
2q

` 1
2 ` 1

1 ´ n
2q

2
n
2q

´ 1
2

˙
t
1
2

´ n
2q

“: Cn,qt
1
2

´ n
2q .

Therefore
}Hpuqptq}q ď C}u0}q ` CC 1Cn,qM

2T
1
2

´ n
2q }u0}2q (12.7)

for M ą 0, 0 ă T ă 1, u P XM,T and t P r0, T s.
Now we aim to receive a similar estimate for

∇Hpuqptq “ ∇etA
˘
S,α,qu0 ´

ż t

0
∇e

pt´sqA˘
S,α,q{2rPq{2

nÿ
j“1

Bjpujpsqupsqq dsa

for u P XM,T and t P r0, T s. We assume T ă 1 again and apply Proposition 11.5(ii)
with T “ 1 and p “ q

2 (and with p “ q for the first term) to receive a constant C “

a We can interchange the integral
şt
0

and the gradient: Pairing with some test function ϕ P C8
c pΩqn

yields that the gradient of
şt
0
e

pt´sqA˘
S,α,q{2f0 ds (where f0 :“ rPřn

j“1 Bjpujpsqupsqq P Lq{2,σpΩq) in the

distributional sense is in fact given by
şt
0
∇e

pt´sqA˘
S,α,q{2f0 ds.
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Cpn, q,Ω, αq ą 0 so that

?
t}∇Hpuqptq}q ď ?

tC
´
t´ 1

2 }u0}q `
nÿ

j“1

ż t

0
pt ´ sq´ n

2q
´ 1

2 }rPq{2Bjpujpsqupsqq} q
2
ds

¯
“ C

´
}u0}q `

nÿ
j“1

ż t

0

?
tpt ´ sq´ n

2q
´ 1

2 }rPq{2Bjpujpsqupsqq} q
2
ds

¯
.

(12.8)

Again, using the continuity of rPq{2 on Lq{2pΩqn and Hölder’s estimate, we receive a
constant C2 “ C2pn, q,Ωq ą 0 so that

nÿ
j“1

ż t

0

?
tpt ´ sq´ n

2q
´ 1

2 }rPq{2Bjpujpsqupsqq} q
2
ds

ď C2
ż t

0

?
tpt ´ sq´ n

2q
´ 1

2 }∇upsq}q}upsq}q ds

ď C2
ˆ

sup
τPr0,T s

}upτq}q
˙ˆ

sup
τPr0,T s

?
τ}∇upτq}q

˙ ż t

0

?
t
pt ´ sq´ n

2q
´ 1

2?
s

ds

ď C2
ˆ

sup
τPr0,T s

}upτq}q ` sup
τPr0,T s

?
τ}∇upτq}q

˙2 ż t

0

?
t
pt ´ sq´ n

2q
´ 1

2?
s

ds

ď C2C 1
n,q}u}2T t

1
2

´ n
2q

ď C2C 1
n,q}u}2TT

1
2

´ n
2q

ď C2C 1
n,qM

2}u0}2qT
1
2

´ n
2q ,

since n
2q ă 1

2 gives that

ż t

0

?
t
pt ´ sq´ n

2q
´ 1

2?
s

ds “
ż t{2

0

?
t
pt ´ sq´ n

2q
´ 1

2?
s

ds `
ż t

t{2

?
t
pt ´ sq´ n

2q
´ 1

2?
s

ds

ď
ż t{2

0

?
t
pt ´ t

2q´ n
2q

´ 1
2?

s
ds `

ż t

t{2

?
t
pt ´ sq´ n

2q
´ 1

2b
t
2

ds

“
ˆ
2

n
2q

`1 ` 1

1 ´ n
q

2
n
2q

`1

˙
t
1
2

´ n
2q

“: C 1
n,qt

1
2

´ n
2q .

Therefore ?
t}∇Hpuqptq}q ď C}u0}q ` CC2C 1

n,qM
2T

1
2

´ n
2q }u0}2q (12.9)

for M ą 0, 0 ă T ă 1, u P XM,T and t P r0, T s.
We further receive for fixed t0 P r0, T s and u P XM,T that }Hupt0q ´ Huptq}q tÑt0ÝÝÝÑ 0

and }?
t0∇Hupt0q ´ ?

t∇Huptq}q tÑt0ÝÝÝÑ 0 hold, by establishing analogous estimates.
Hence, for arbitrary u P XM,T , the functions Hu and t ÞÑ ?

t∇Huptq are continuous.

Now let 0 ă T ă T 1, where T 1 :“ min

"
1,

´
1

4C2C1Cn,q}u0}q
¯ 2

1´ n
q ,

´
1

4C2C2C1
n,q}u0}q

¯ 2
1´ n

q

*
and M ě 2C. Then (12.7) and (12.9) yield

H : XM,T Ñ XM,T , (12.10)
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12 The Navier-Stokes Equations

i.e., H maps XM,T into itself.
We proceed to prove that H : XM,T Ñ XM,T satisfies a contraction estimate for

M ě 2C and T ą 0 small enough. Let u, v P XM,T and t P r0, T s. Then we have

Hpuqptq ´ Hpvqptq “
ż t

0
e

pt´sqA˘
S,α,q{2rPq{2

nÿ
j“1

Bjpujpsqupsq ´ vjpsqvpsqq ds.

As in (12.5) we obtain

}Hpuqptq ´ Hpvqptq}q ď C
nÿ

j“1

ż t

0
pt ´ sq´ n

2q }rPq{2Bjpujpsqupsq ´ vjpsqvpsqq} q
2
ds

and as in (12.8) we receive

}?
t∇

`
Hpuqptq´Hpvqptq˘}q ď C

nÿ
j“1

ż t

0

?
tpt´sq´ n

2q
´ 1

2 }rPq{2Bjpujpsqupsq´vjpsqvpsqq} q
2
ds.

Now for 0 ď s ď t we can estimate

}Bj
`
ujpsqupsq ´ vjpsqvpsq˘} q

2

“ }Bj
`
ujpsqrupsq ´ vpsqs ` rujpsq ´ vjpsqsvpsq˘} q

2

ď p}upsq}q ` }vpsq}qq}∇`
upsq ´ vpsq˘}q ` p}∇upsq}q ` }∇vpsq}qq}upsq ´ vpsq}q

ď p}u}T ` }v}T q 1?
s

}u ´ v}T ` 1?
s

p}u}T ` }v}T q}u ´ v}T

ď 4M?
s

}u0}q}u ´ v}T .
(12.11)

The continuity of rPq{2 on Lq{2pΩqn and (12.11) yield some C3 “ C3pn, q,Ωq ą 0 so that

}Hpuqptq ´ Hpvqptq}q ď CC3M}u0}q}u ´ v}T
ż t

0

pt ´ sq´ n
2q?

s
ds

ď CC3Cn,qMT
1
2

´ n
2q }u0}q}u ´ v}T

and
}?

t∇
`
Hpuqptq ´ Hpvqptq˘}q ď CC3C 1

n,qMT
1
2

´ n
2q }u0}q}u ´ v}T .

Thus, we have

}Hpuq ´ Hpvq}T ď 1

2
}u ´ v}T (12.12)

if 0 ă T ă T 2, where T 2 :“ min

"
1,

´
1

4C2C3Cn,q}u0}q
¯ 2

1´ n
q ,

´
1

4C2C3C1
n,q}u0}q

¯ 2
1´ n

q

*
and

M ě 2C.
In total, for M ě 2C and 0 ă T ă T0, where T0 :“ mintT 1, T 2u, (12.10) and (12.12)

yield that H : XM,T Ñ XM,T is a contraction and therefore has a unique fixed point.

Remark 12.2. Rewriting (12.3) as the original Navier-Stokes equations (12.1) might
be not possible in case the projections rPq and rPq{2 fail to coincide on LqpΩq X Lq{2pΩq.
In fact, we do not know the projection rPq to be consistent with respect to 1 ă q ă 8
in general. Nevertheless, we can not replace rPq{2 in (12.2) by rPq and guarantee that
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III Stokes and Navier-Stokes Equations on Uniform C2,1-Domains

(12.2) is meaningful, since the nonlinear term is not contained in LqpΩqn in general but
in Lq{2pΩqn. Still, when applying Theorem 12.1 to a common setting, e.g., bent half
spaces or domains with a compact boundary, then the obtained mild solution of (12.3)
always conincides with the usual meaning of a mild solution of (12.1) (cf. [30]). In this
case, rPq equals the standard Helmholtz projection.
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IV Stokes and Navier-Stokes Equations
in TLL Spaces

The subject of this chapter, on the one hand, is the scale of Triebel-Lizorkin-Lorentz
spaces (TLL spaces) F s,r

p,q and their properties. On the other hand, we apply these
properties to solve the Stokes and Navier-Stokes equations in this scale. The obtained
results are consequently valid for all function spaces that are included in the scale of TLL
spaces F s,r

p,q : By setting r “ p, we obtain the Bessel-potential spaces Hs
p for q “ 2 as well

as the Sobolev-Slobodeckĭı spaces W s
p for q “ p in case s R Z and q “ 2 in case s P Z.

In particular, we obtain the Lebesgue spaces Lp by setting s “ 0 as well as the Lorentz
spaces Lp,r “ F 0,r

p,2 .
Concerning the Stokes equations we aim to prove that the Stokes operator in TLL

spaces admits a bounded H8-calculus. Finally, we apply this to prove existence of
unique maximal strong solutions of the Navier-Stokes equations$&%

Btu ´ Δu ` ∇p ` pu ¨ ∇qu “ f in p0, T q ˆ Rn

div u “ 0 in p0, T q ˆ Rn

u|t“0 “ u0 in Rn

in TLL ground spaces, i.e., the solution is supposed to exist on a time interval p0, T ˚q
which is not possible to be increased. This can be either the whole time line p0, T ˚q “
p0,8q or we have a blow-up of the solution at finite time T ˚ ă 8.

13 TLL Spaces

13.1 Definition and Properties

For parameters s P R, 1 ă p, q ă 8, 1 ď r ď 8 we call

F s,r
p,q :“ �

u P S 1pRnq : }u}F s,r
p,q

ă 8(
Triebel-Lizorkin-Lorentz space (as defined in [14]). The norm is given by

}u}F s,r
p,q

:“ }pϕk ˚ uqkPN0}Lp,rplsqq “
››››´ ÿ

kPN0

r2sk|ϕk ˚ u|sq
¯1

q

››››
Lp,r

where p pϕkqkPN0 is a dyadic decomposition defined as follows (cf. [66], Def. 2.3.1/2).

Definition 13.1. Let ΦN (for N P N) denote the set of systems of functions pϕkqkPN0 Ă
S pRnq with the following properties.

• pϕk ě 0 for all k P N0.

• sptp pϕkq Ă t2k´N ď |x| ď 2k`Nu for k P N and sptp pϕ0q Ă t|x| ď 2Nu.
• There exist D1, D2 ą 0 such that for all ξ P Rn

D1 ď
8ÿ

k“0

pϕkpξq ď D2. (13.1)
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IV Stokes and Navier-Stokes Equations in TLL Spaces

• For any α P Nn
0 , there is Cα ą 0 such that for all k P N0 and ξ P Rn

|ξ||α||Bα pϕkpξq| ď Cα. (13.2)

Additionally, we set Φ :“ Ť
NPNΦN and call each family p pϕkqkPN0 with pϕkqkPN0 P Φ a

dyadic decomposition.

Note that the constant Cα in (13.2) does not depend on the index k but on the selected
N P N, i.e., on the radius 2N of the dyadic decomposition. Also note that the existence
of D2 in (13.1) can be deduced from (13.2) with α “ 0 and the properties of sptp pϕkq.
We will often use the following more specific dyadic decomposition.

Example 13.2. Let φ P C8pRnq be radially symmetric with sptpφq Ă t|x| ď 1u, φ “ 1
on t|x| ď 1

2u and 0 ď φ ď 1. We set pψpξq :“ φp ξ2q´φpξq and pψkpξq :“ pψp2´kξq for ξ P Rn

and k P Z. Now we set ϕk :“ ψk for k ě 1 and define ϕ0 P S pRnq by

pϕ0pξq “
$’&’%

ÿ
jď0

pψjpξq, if ξ ‰ 0

1, if ξ “ 0.

This implies pϕkqkPN0 P Φ1 with
ř

kPN0
ϕkpξq “ 1 for all ξ P Rn. In addition, we have

the following (easy to verify) properties:

(a) }ϕk}1 “ }ψ}1 for all k P N.

(b)
řN

k“1 pϕk
NÑ8ÝÝÝÝÑ 1 locally uniformly on Rn.

(c)
řN

j“0 ϕj ˚ f
NÑ8ÝÝÝÝÑ f in S pRnq for all f P S pRnq.

(d)
řN

j“0 ϕj ˚ u
NÑ8ÝÝÝÝÑ u in S 1pRnq for all u P S 1pRnq.

If we replace the Lorentz-norm } ¨ }Lp,rplsqq by } ¨ }Lpplsqq, then we receive the well-known
Triebel-Lizorkin spaces F s

p,q. More precisely we have F s,p
p,q “ F s

p,q. One can find the
following result as [66], Rem. 2.4.2/1.

Proposition 13.3. The TLL spaces are independent of the choice of the dyadic decom-
position.

The following result is due to Yang, Cheng and Peng (see [14]), where their proof
is based on wavelet theory. We notice that it is possible to derive this property by
Lp-interpolation and retraction and coretraction techniques as developed in [66], as well.

Theorem 13.4. For s P R, 1 ă p0, p1, q ă 8, 1 ď r0, r1, r ď 8, p0 ‰ p1 and 0 ă θ ă 1
such that 1

p “ 1´θ
p0

` θ
p1

we have `
F s,r0
p0,q , F

s,r1
p1,q

˘
θ,r

“ F s,r
p,q .

In particular, if r0 “ p0 and r1 “ p1, we have
`
F s
p0,q, F

s
p1,q

˘
θ,r

“ F s,r
p,q .

Lemma 13.5. Let s P R, 1 ă p, q ă 8 and 1 ď r ď 8. Then we have the following
continuous embeddings.

(i) S pRnq Ă F s,r
p,q Ă S 1pRnq and the first embedding is dense in case r ă 8.
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13 TLL Spaces

(ii) F s`τ,r
p,q Ă F s,r

p,q for τ ě 0.

(iii) F s,r
p,q Ă Lp,r if s ą 0.

Proof. Assertion (i) follows from the corresponding fact for Triebel-Lizorkin spaces, since

S pRnq Ă F s
p0,q X F s

p1,q Ă F s,r
p,q Ă F s

p0,q ` F s
p1,q Ă S 1pRnq

and since the intersection of an interpolation couple of Banach spaces is dense in their
real interpolation space. Assertion (ii) is a consequence of ls`τ

q Ă lsq.
In order to prove (iii), we use the dyadic decomposition p pϕkqkPN0 given in Example 13.2.

First we consider the estimate››› 8ÿ
k“0

|ϕk ˚ u|
›››
Lp,r

ď C
›››´ 1

2sk

¯
kPN0

›››
lq1

}u}F s,r
p,q

(13.3)

that we receive from Hölder’s inequality with 1
q1 ` 1

q “ 1 and some C “ Cpp, r, nq ą 0.
Since s ą 0, the right-hand side is finite for u P F s,r

p,q . Applying Example 13.2(d) we have
u “ ř8

k“0 ϕk ˚ u where the convergence is in S 1pRnq. Now (13.3) gives that the series
even converges pointwise a.e. and thus u is a measurable function. On the other hand
(13.3) gives }u}Lp,r ď C 1}u}F s,r

p,q
with some C 1 “ C 1pp, r, nq ą 0.

Proposition 13.6. F s,r
p,q is of class HT for s P R and 1 ă p, q, r ă 8.

Proof. We need to show that the Hilbert transform

H : S pR, F s,r
p,q q ÝÑ MpR, F s,r

p,q q, Hfptq “ lim
εŒ0

ż
|s|ąε

fpt ´ sq
s

ds

has an extension H P L pLppR, F s,r
p,q qq. For any s P R and 1 ă q ă 8, Tonelli’s theorem

implies that LqpRn, lsqq is a space of class HT and so is LppRn, lsqq for arbitrary 1 ă p ă 8.
Since the Triebel-Lizorkin space F s

p,q is a retract of LppRn, lsqq we can transfer the HT -
property to F s

p,q for any s P R and 1 ă p, q ă 8.
Now for fixed parameters s, p, q, r as in the assertion we can use Theorem 13.4 to

complete the proof. As a direct consequence of the interpolation property

LrpR, pX0, X1qθ,rq “ pLrpR, X0q, LrpR, X1qqθ,r
we obtain that for an interpolation couple X0, X1 of spaces of class HT the real interpo-
lation space pX0, X1qθ,r is also of class HT . Thus, F s,r

p,q is of class HT .

Corollary 13.7. F s,r
p,q is reflexive for s P R and 1 ă p, q, r ă 8 (due to [56]).

Corollary 13.7 could also be obtained in a direct way, regarding the following result
which is a conclusion of the corresponding result for Triebel-Lizorkin spaces (see [66],
Thm. 2.6.2) and Theorem 13.4.

Proposition 13.8. The dual space to F s,r
p,q is given by F´s,r1

p1,q1 for s P R and 1 ă p, q, r ă
8, where 1 ă p1, q1, r1 ă 8 are given by 1

p ` 1
p1 “ 1, 1

q ` 1
q1 “ 1 and 1

r ` 1
r1 “ 1.

Proposition 13.9. F s,r
p,q has property pαq for s P R and 1 ă p, q, r ă 8.

Proof. The Triebel-Lizorkin spaces F s
p,q have property pαq, since there exists an isomor-

phism to a closed subspace of LppRn, lsqq. This implies the assertion, since property pαq
is preserved under real interpolation (see [43], Thm. 4.5).
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Theorem 13.10 (Multiplier theorem for TLL spaces). Let s P R, 1 ă p, q ă 8 and
1 ď r ă 8. Let pmλqλPΛ Ă CnpRnzt0uq such that

Cα :“ sup
ξPRnzt0u,λPΛ

|ξαBαmλpξq| ă 8

for all α P t0, 1un. Then for every λ P Λ

F ´1mλF : S pRnq ÝÑ S 1pRnq
has a (unique) continuous extension Tλ : F s,r

p,q ÝÑ F s,r
p,q such that

}Tλ}F s,r
p,q ÑF s,r

p,q
ď C max

αPt0,1un
Cα,

where C “ Cpn, s, r, p, qq ą 0. Furthermore, pTλqλPΛ Ă L pF s,r
p,q q is R-bounded in case

1 ă r ă 8.

Proof. We define Mλ P L8pRn,L plsqqq by setting Mλpξqx :“ pmλpξqxkqkPN0 for ξ P
Rnzt0u, x “ pxkqkPN0 P lsq and λ P Λ. By Kahane’s contraction principle (see Theo-
rem 5.1) we see that the assumption Cα ă 8 implies R-boundedness of tξαBαMλpξq :
ξ P Rnzt0u, λ P Λu Ă L plsqq and the Rq-bound does not exceed 2maxαPt0,1un Cα. Since
lsq is of class HT (note that 1 ă q ă 8) and has property pαq, Theorem 5.7 gives that
Mλ is a Fourier multiplier, i.e.,

F ´1MλF : S pRn, lsqq ÝÑ S 1pRn, lsqq
has a (unique) continuous extension Sλ : Lpplsqq ÝÑ Lpplsqq such that

RqptSλ : λ P Λuq ď C max
αPt0,1un

Cα “: K (13.4)

for all λ P Λ, where C “ Cpn, s, r, p, qq. From the identity

pϕk ˚ F ´1mλFfqkPN0 “ F ´1MλF pϕk ˚ fqkPN0 (13.5)

we receive }F ´1mλFf}F s
p,q

ď K}f}F s
p,q

for f P S pRnq and consequently we have a
continuous extension Tλ : F s

p,q ÝÑ F s
p,q of F ´1mλF : S pRnq ÝÑ S 1pRnq. Now (13.4)

and (13.5) imply RqptTλ : λ P Λuq ď K. Hence, the assertion is proved in case p “ r.
In order to generalize the result, we select 1 ă p0 ă p ă p1 ă 8 and 0 ă θ ă 1 such

that 1
p “ 1´θ

p0
` θ

p1
and receive F s,r

p,q “ pF s
p0,q, F

s
p1,qqθ,r. Thus, for

Tλ : pF s
p0,q, F

s
p1,qqθ,r ÝÑ pF s

p0,q, F
s
p1,qqθ,r

we obtain the estimate }Tλ}F s,r
p,q ÑF s,r

p,q
ď C 1 maxαPt0,1un Cα, since the real interpolation

method is exact of type θ, where C 1 “ C 1pn, s, r, p, qq ą 0.
Since F s

pj ,q ist of class HT for j “ 0, 1 we receive R-boundedness of

Tλ : pF s
p0,q, F

s
p1,qqθ,r ÝÑ pF s

p0,q, F
s
p1,qqθ,r

for 1 ă r ă 8 as a consequence of the case p “ r proved above (see [43], Thm. 3.19).

Proposition 13.11. For s P R, 1 ă p, q ă 8 and 1 ď r ď 8 the following representa-
tions hold.

(i) F s`σ,r
p,q “ �

u P S 1pRnq : F ´1p1 ` |ξ|2qσ
2 Fu P F s,r

p,q u for σ P R.
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(ii) F s`k,r
p,q “ �

u P S 1pRnq : Bαu P F s,r
p,q @α P Nn

0 , |α| ď k
(

for k P N0 and r ă 8.

(iii) F s`2m,r
p,q “ �

u P S 1pRnq : Δju P F s,r
p,q @j P N0, j ď m

(
for m P N0 and r ă 8.

The corresponding norms are eqivalent, where the norm of the space on the right-hand
side is given by }F ´1p1 ` |ξ|2qσ

2 Fu}F s,r
p,q

in (i), by
ř

|α|ďk }Bαu}F s,r
p,q

in (ii) and byř
0ďjďm }Δju}F s,r

p,q
in (iii).

Proof. We consider the Bessel-potential operator Bσu :“ F ´1p1 ` |ξ|2qσ
2 Fu for u P

S 1pRnq and σ P R. If we fix pϕkqkPN0 P Φ and σ P R, then by setting pψkpξq “
2kσ

p1`|ξ|2qσ
2

pϕkpξq we obtain pψkqkPN0 P Φ (cf. proof of [66], Thm. 2.3.4). Hence,

}u}F s,r
p,q

„ }Bσu}F s´σ,r
p,q

(13.6)

and (i) is proved.
Now the special case σ “ 2m in (13.6) leads to F s`2m,r

p,q “ �
u P S 1pRnq : pI ´ Δqmu P

F s,r
p,q

(
together with the equivalence }u}

F s`2m,r
p,q

„ }pI ´ Δqmu}F s,r
p,q

. Hence, for (iii) it
remains to show

ř
0ďjďm }Δju}F s,r

p,q
ď C}pI ´ Δqmu}F s,r

p,q
, since the converse estimate is

obvious. For this purpose we write

p´Δqju “ F ´1 |ξ|2j
p1 ` |ξ|2qk F pI ´ Δqku.

The associated symbol |ξ|2j
p1`|ξ|2qk fulfills the conditions of Theorem 13.10. Therefore, we

receive (iii).
In order to verify (ii) we write

Bαu “ i|α|F ´1 ξα

p1 ` |ξ|q |α|
2

FB|α|u for |α| ď k (13.7)

and
Bku “ F ´1

ÿ
|α|ďk

k!

α!pk ´ |α|q!ξ
α ξα

p1 ` |ξ|2q k
2

Fu (13.8)

(cf. [35], Sec. 1.3.1). Applying Theorem 13.10 and (13.6) again, we receive }u}
F s`k,r
p,q

„ř
|α|ďk }Bαu}F s,r

p,q
, where (13.8) gives the estimate “ď” and (13.7) gives “ě”.

13.2 The Laplace Operator in TLL Spaces

The Laplace operator in F s,r
p,q for s P R, 1 ă p, q ă 8 and 1 ď r ď 8 is defined as

AL “ As,r
L,p,q : DpALq Ă F s,r

p,q ÝÑ F s,r
p,q , u ÞÝÑ ´Δu,

where the domain is DpALq “ F s`2,r
p,q . We will use the same notation, i.e., AL, for the

Laplace operator defined in pF s,r
p,q qn, which is then understood to be applied component-

wise.

Proposition 13.12. The operator AL is R-sectorial with ϕR
AL

“ 0 for s P R and 1 ă
p, q, r ă 8 and we have pAs,r

L,p,qq1 “ A´s,r1
L,p1,q1 . In particular, AL is injective.
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Proof. Lemma 13.5(i) implies that AL is densely defined. For λ P Czp´8, 0s we aim to
show λ P ρp´ALq with

pλ ` ALq´1 “ F ´1 1

λ ` |ξ|2F .

Therefore, we consider the symbols 1
λ`|ξ|2 and |ξ|2

λ`|ξ|2 , which are smooth and fulfill the
conditions of Theorem 13.10. Considering the first symbol we obtain that F ´1 1

λ`|ξ|2 F

defines a bounded operator on F s,r
p,q . Considering the second symbol and using Proposi-

tion 13.11 we obtain that this operator in fact takes values in F s`2,r
p,q and hence must be

the inverse operator of λ ` AL.
In order to prove the claimed R-boundedness of tλpλ`ALq´1 : λ P Σπ´ϕu Ă L pF s,r

p,q q
we show the uniform estimate

sup
ξPRn, λPΣϕ

|ξαBαmλpξq| ă 8

for all α P Nn
0 and ϕ ą 0, where mλpξq :“ λ

λ`|ξ|2 . This is a consequence of Lemma 5.3(i),
so we can apply Theorem 13.10. Summarizing, AL is pseudo-R-sectorial with ϕR

AL
“ 0.

Let now initially s ą ´2. Then we obtain in an elementary way that AL is injective:
For u P N pALq we have sptppuq Ă t0u and thus u is a polynomial (see [34], Cor. 2.4.2).
Lemma 13.5 gives that F s`2,r

p,q Ă Lp,8 and it is not hard to show that Lp,8 does not
contain any nontrivial polynomials. Hence u “ 0. Now we consider the decomposition
F s,r
p,q “ N pALq ‘ RpALq, which is a consequence of the pseudo-R-sectoriality proved

above and of the reflexivity of F s,r
p,q obtained in Corollary 13.7 (see, e.g., [36], Prop. 2.1.1).

The injectivity of AL then gives that RpALq Ă F s,r
p,q is dense.

By integration by parts we easily obtain A´s,r1
L,p1,q1 Ă pAs,r

L,p,qq1. The fact that ´1 P
ρpAs,r

L,p,qq for all s P R and 1 ă p, q, r ă 8 then gives A´s,r1
L,p1,q1 “ pAs,r

L,p,qq1. Since pF s,r
p,q q1 “

F´s,r1
p1,q1 , the R-sectoriality with ϕR

AL
“ 0 for s ď ´2 now follows by standard permanence

properties of R-sectorial operators.

Remark 13.13. The proof of Proposition 13.12 shows that for r “ 1 we still have that
AL is pseudo-sectorial with ϕAL

“ 0 and, in case s ą ´2, AL is injective.

Proposition 13.14. Let s P R and 1 ă p, q, r ă 8. Then AL has an R-bounded
H8-calculus with ϕR,8

AL
“ 0.

Proof. Thanks to Proposition 13.9 and Theorem 5.6 it is sufficient to prove that AL has
a bounded H8-calculus with ϕ8

AL
“ 0. Let ϕ P p0, πq and f P H0pΣϕq. The operator

AL is sectorial due to Proposition 13.12. Using Cauchy’s integral formula we receive
fpALqu “ F ´1fp|ξ|2qFu for all u P S pRnq. Now the symbol fp|ξ|2q fulfills the condition
of Theorem 13.10 (due to Lemma 5.3(i)) which yields

}fpALq}F s,r
p,q ÑF s,r

p,q
ď Cϕ}f}8,Σϕ

with some Cϕ ą 0 independent of f .

Note that Proposition 13.14 implies Proposition 13.12 if we only knew the sectoriality
of AL. But, as the proof of Proposition 13.12 shows, R-sectoriality can be obtained in a
direct way at essentially the same cost.

Now, we consider an alternative representation for TLL spaces. We prove that F s`2α,r
p,q

is the domain of pI ´ Δqα in F s,r
p,q , where α P r0, 1s.
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13 TLL Spaces

Proposition 13.15. Let s P R, 1 ă p, q ă 8 and 1 ď r ă 8. Then

A : DpAq “ DpALq Ă F s,r
p,q ÝÑ F s,r

p,q , u ÞÝÑ pI ´ Δqu
is sectorial with angle ϕA “ 0 and for α P r0, 1s

DpAαq “ �
u P F s,r

p,q : F ´1p1 ` |ξ|2qαFu P F s,r
p,q

( “ F s`2α,r
p,q (13.9)

holds with equivalent norms, i.e., }u}DpAαq „ }F ´1p1` |ξ|2qαFu}F s,r
p,q

for all u P DpAαq.
Moreover, we have

Aαu “ F ´1p1 ` |ξ|2qαFu (13.10)

for all u P DpAαq.
Proof. The second equality in (13.9) is Proposition 13.11(i). The Laplace operator AL

is pseudo-sectorial with angle ϕAL
“ 0 and so is A. Now ´1 P ρpALq, so A is bijective

and thus sectorial.
We now assume α P p0, 1q, since the cases α “ 0 and α “ 1 are obvious (due to

Proposition 13.11). We set gpzq :“ z
p1`zq2 and hαpzq :“ zα. Using Cauchy’s integral

formula, we obtain

pghαqpAqf “ F ´1 p1 ` |ξ|2qα`1

p2 ` |ξ|2q2 Ff (13.11)

for all f P S pRnq. Theorem 13.10 gives that (13.11) even holds for all f P F s,r
p,q . Now

A : DpAq Ñ F s,r
p,q is bijective with A´1f “ F ´1 1

1`|ξ|2 Ff for f P F s,r
p,q and thus we obtain

gpAq´1f “ p1 ` Aq2A´1f “ F ´1 p2 ` |ξ|2q2
1 ` |ξ|2 Ff (13.12)

for all f P DpAq. Relations (13.11) and (13.12) yield (13.10) by the fact that Aα is given
by gpAq´1pghαqpAq.

Now we verify (13.9) together with equivalence of the norms. For this purpose, let
first u P F s,r

p,q so that F ´1p1` |ξ|2qαFu P F s,r
p,q . Then, using (13.11) and Theorem 13.10,

we obtain p2 ´ ΔqpghαqpAqu P F s,r
p,q . Consequently, we have pghαqpAqu P DpAq. Now

we also know pghαqpAqu P RpAq “ F s,r
p,q , so we obtain u P DpAαq. Hence, we have�

u P F s,r
p,q : F ´1p1`|ξ|2qαFu P F s,r

p,q

( Ă DpAαq, so we can restrict ourselves to u P DpAαq
to show the equivalence

}u}DpAαq “ }u}F s,r
p,q

` }Aαu}F s,r
p,q

„ }F ´1p1 ` |ξ|2qαFu}F s,r
p,q

. (13.13)

For u P DpAαq we can apply (13.10), so we directly receive “ě” in (13.13). Applying
Theorem 13.10 to the symbol 1

p1`|ξ|2qα and using (13.10) again, we receive the estimate
}u}F s,r

p,q
ď C}F ´1p1` |ξ|2qαFu}F s,r

p,q
and consequently the converse inequality in (13.13).

Hence, we have proved the equivalence (13.13) and this also shows

DpAαq Ă �
u P F s,r

p,q : F ´1p1 ` |ξ|2qαFu P F s,r
p,q

(
.

As a consequence of Propositions 13.14 and 13.15 and of (5.4) we infer the following
result on complex interpolation of TLL spaces.

Corollary 13.16. Let ´8 ă s0 ď s1 ă 8 and 1 ă p, q, r ă 8. Then for η P p0, 1q we
have

rF s0,r
p,q , F s1,r

p,q sη “ F p1´ηqs0`ηs1,r
p,q .
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IV Stokes and Navier-Stokes Equations in TLL Spaces

Proof. For s P R we receive

rF s,r
p,q , F

s`2kθ,r
p,q sη “ F s`2kθη,r

p,q (13.14)

in case k “ 1, θ “ 1 from (5.4) and from Propositions 13.14 and 13.15. Since for any
β ě 0 we can write Aβ “ AmAα for some m P N0 and α P r0, 1s, (13.14) holds for all
k P N0 and θ “ 1. An application of the reiteration theorem now gives (13.14) for all
θ P r0, 1s and k P N0. This proves the claim.

13.3 The Stokes Operator in TLL Spaces

We first introduce the Helmholtz projection P on pF s,r
p,q qn. Again n P N is the dimension

and s P R, 1 ă p, q ă 8, 1 ď r ă 8. For u P S pRnqn we set

Pu :“ F ´1

„
I ´ ξξT

|ξ|2
j
Fu “ u ´

ˆ nÿ
j“1

F ´1 ξiξj
|ξ|2 Fuj

˙
1ďiďn

. (13.15)

By virtue of Theorem 13.10 we obtain P P L ppF s,r
p,q qnq. The space of solenoidal functions

is
pF s,r

p,q qnσ :“ �
u P pF s,r

p,q qn : div u “ 0
(

and the space of gradient fields in pF s,r
p,q qn is

G :“ �
∇p : p P D 1pRnq,∇p P pF s,r

p,q qn(
.

Proposition 13.17. Similar to the definition of the space of gradient fields we set

G ˚ :“ �
∇p : p P S 1pRnq,∇p P pF s,r

p,q qn(
.

Let 1 ă p, q, r ă 8 and n ě 2. If s ą ´2, we additionally admit r “ 1. Then
the range and the kernel of the Helmholtz projection are given by RpPq “ pF s,r

p,q qnσ and
N pPq “ G “ G ˚. In particular, we have the Helmholtz decomposition

pF s,r
p,q qn “ pF s,r

p,q qnσ ‘ G .

Proof. We prove the claim in three steps and start with some general observations that
we will make use of. First we remark that one can obtain the inclusion RpPq Ă pF s,r

p,q qnσ by
direct computation (and approximation). Second the injectivity of the Laplace operator
(see Proposition 13.12 and Remark 13.13) yields

pF s,r
p,q qnσ X G “ t0u. (13.16)

Furthermore, de Rham’s theorem (see [16]; cf. [29] and the references therein) gives
that G is a closed subspace of pF s,r

p,q qn.
Step 1. We show N pPq Ă G in the special case that F s,r

p,q is a Lebesgue space. So, we
fix 1 ă η ă 2 and set Gη̊ :“ �

∇p : p P S 1pRnq,∇p P LηpRnqn(
. Furthermore, let Pη

denote the Helmholtz projection on LηpRnqn. Then the Hausdorff-Young theorem gives
that Pηu “ F ´1

“
I´ ξξT

|ξ|2
‰
Fu (which is a priori valid for Schwartz functions) is meaningful

for all u P LηpRnqn. Thus, for u P N pPηq we have pu “ ξ ξT

|ξ|2 pu with ξT

|ξ|2 pu P S 1pRnq (since
n ě 2) and receive N pPηq Ă Gη̊ .

Step 2. We use the first step to show the inclusions N pPq Ă G ˚ Ă G Ă N pPq (in
the stated order). For a fixed 1 ă η ă 2 we receive pI ´ PqppF s,r

p,q qn X LηpRnqnq Ă G ˚
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from the first step. Since pF s,r
p,q qn X LηpRnqn is dense in pF s,r

p,q qn we obtain N pPq “
pI ´PqppF s,r

p,q qnq Ă G ˚ as a consequence. The second inclusion G ˚ Ă G is valid, since G is
closed. For the third inclusion we fix u P G . Since we have already shown N pPq Ă G ˚ Ă
G , we obtain Pu “ u ´ pI ´ Pqu P G . On the other hand, we have Pu P RpPq Ă pF s,r

p,q qnσ.
Consequently, (13.16) implies Pu “ 0.

Step 3. It remains to prove RpPq “ pF s,r
p,q qnσ. In view of what we have already seen

we obtain pF s,r
p,q qn “ RpPq ‘ N pPq “ RpPq ‘ G Ă pF s,r

p,q qnσ ` G . Now the last inclusion
must be an equality, since the converse inclusion is obvious. Besides, (13.16) yields
directness of the sum, so RpPq ‘ G “ pF s,r

p,q qnσ ‘ G together with RpPq Ă pF s,r
p,q qnσ gives

RpPq “ pF s,r
p,q qnσ.

Remark 13.18. The space pF s,r
p,q qnσ is of class HT for 1 ă p, q, r ă 8 and s P R. This is

a consequence of Proposition 13.6: F s,r
p,q is of class HT , so is pF s,r

p,q qn and hence pF s,r
p,q qnσ

as a closed subspace.

Now we are able to define the Stokes operator as

AS “ As,r
S,p,q : DpASq Ă pF s,r

p,q qnσ ÝÑ pF s,r
p,q qnσ, u ÞÝÑ ´PΔu

on the domain DpASq “ pF s`2,r
p,q qnσ.

Proposition 13.19. For s P R and 1 ă p, q, r ă 8 we have AS “ AL|DpASq. Besides,
we have ρpALq Ă ρpASq with pλ ´ ASq´1 “ pλ ´ ALq´1|pF s,r

p,q qnσ for all λ P ρpALq.
Proof. For u P DpASq we have u P N pI ´ Pq, since P is a projection and thus Pu “ u.
By Proposition 13.11 and the continuity of Δ : S 1pRnq Ñ S 1pRnq we receive PΔ “ ΔP

on pF s`2,r
p,q qn. This gives ASu “ ALu for u P DpASq.

Now let λ P ρpALq and set Tλv :“ pλ ´ ALq´1v for v P pF s,r
p,q qnσ. Again we can use

PΔ “ ΔP and receive PTλ “ Tλ by injectivity of λ ´ AL, i.e Tλ maps into pF s,r
p,q qnσ.

Consequently, Tλ “ pλ ´ ASq´1 on pF s,r
p,q qnσ.

Proposition 13.20. Let s P R and 1 ă p, q, r ă 8. Then AS is R-sectorial with
ϕAS

“ 0. Hence ´AS P MRppF s,r
p,q qnσq. Furthermore, we have pAs,r

S,p,qq1 “ A´s,r1
S,p1,q1 .

Proof. Let 0 ă ϕ ă π. Then we receive R-boundedness of tλpλ ` ASq´1 : λ P Σϕu Ă
L ppF s,r

p,q qnσq as a direct consequence of Propositions 13.12 and 13.19. The space pF s,r
p,q qnσ

is reflexive (see Corollary 13.7). Consequently, we obtain density of DpASq Ă pF s,r
p,q qnσ

(see, e.g., [36], Prop. 2.1.1). The Laplace operator AL is injective and so is AS . The
remaining proof is thus completely analogous to the proof of Proposition 13.12.

14 The Navier-Stokes Equations in TLL Spaces

14.1 The Time Derivative Operator

We consider the operator

B : DpBq “ H1
η pR, Xq Ă LηpR, Xq ÝÑ LηpR, Xq, u ÞÝÑ

´
1 ` d

dt

¯
u.

The proofs of the following two assertions work very similar to the proofs of Proposi-
tions 13.15 and 13.14, respectively. In addition, one can find a similar result in [18].
Therefore, we only sketch the main steps.
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Proposition 14.1. Let 1 ă η ă 8 and let X be a Banach space of class HT with
property pαq. Then B is sectorial with angle ϕB ď π

2 and we have

DpBαq “ Hα
η pR, Xq

for α P r0, 1s. The related norms are equivalent. Furthermore, we have

Bαu “ F ´1p1 ` iξqαFu @u P DpBαq.
Proof. First note that the Bessel-potential spaces have the representations

Hα
η pR, Xq “ �

u P S 1pR, Xq : F ´1p1 ` ξ2qα
2 Fu P LηpR, Xq(

“ �
u P S 1pR, Xq : F ´1p1 ` iξqαFu P LηpR, Xq(

.

This is a consequence of Theorem 5.7, where the symbols p1`|ξ|2qα{2
p1`iξqα and p1`iξqα

p1`|ξ|2qα{2 need
to be considered.

Now, using Theorem 5.7 several times, it is straightforward to see that the inverse
operator of λ ´ B for Repλq ă 0 is given by Tλ :“ F ´1 1

λ´1´iξF and to obtain the
estimate }λpλ ´ Bq´1}LηpR,XqÑLηpR,Xq ď Cϕ for all ´λ P Σϕ and ϕ ă π

2 . Here we also
need Lemma 5.3(ii) together with Kahane’s contraction principle. Thus B is pseudo-
sectorial with ϕB ď π

2 . Since those computations also work in case λ “ 0, B is bijective
and in particular sectorial.

Cauchy’s integral formula yields a formula for pghαqpBq just as in (13.11). Now likewise
the rest of the proof works in the same way as in Proposition 13.15 by using Theorem 5.7
instead of Theorem 13.10.

Proposition 14.2. Let X be a Banach space of class HT with property pαq and 1 ă η ă
8. Then B has an R-bounded H8-calculus in LηpR, Xq with ϕR,8

B ď π
2 .

Proof. Let ϕ P p0, π2 q and f P H0pΣϕq. We already know from Proposition 14.1 that B
is sectorial. Cauchy’s integral formula gives that

fpBqu “ F ´1fpiξqFu (14.1)

holds for all u P S pRn, Xq. From Lemma 5.3(ii) and Kahane’s contraction principle
we receive that fpiξq fulfills the condition of Theorem 5.7, so (14.1) even holds for all
u P LηpR, Xq and we have

}fpBq}LηpR,XqÑLηpR,Xq ď C}f}8,Σϕ .

14.2 Continuous Embeddings and Multiplication Results

Lemma 14.3. Let s P R, 1 ă p, q ă 8 and 1 ď r ď 8 such that p ą n
2 . Let δ ą 0 such

that n
2p ` δ ă 1. Then there exists ε ą 0 s.t. for all 0 ď ε ă ε we have the continuous

embedding
F s`2´δ,r
p,q Ă F s`1,r

2p´ε,q.

Proof. We use an embedding theorem for Triebel-Lizorkin spaces and deduce the result
via interpolation. Select 1 ă p0 ă p ă p1 ă 8 such that n

2pj
` δ ă 1 for j “ 0, 1 and let

θ P p0, 1q such that 1
p “ 1´θ

p0
` θ

p1
. Then, setting εj :“ p1´θqp1`θp0

p1´j
ε for j “ 0, 1, we have

1
2p´ε “ 1´θ

2p0´ε0
` θ

2p1´ε1
. Using [66], Thm. 2.8.1, we obtain for small ε ě 0

F s
pj ,q Ă F

s´ n
2pj

2pj´εj ,q
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14 The Navier-Stokes Equations in TLL Spaces

and hence, using Theorem 13.4,

F s`2´δ,r
p,q “ `

F s`2´δ
p0,q , F s`2´δ

p1,q

˘
θ,r

Ă `
F s`1
2p0´ε0,q

, F s`1
2p1´ε1,q

˘
θ,r

“ F s`1,r
2p´ε,q.

Lemma 14.4. Let s ą 0, 1 ă p, q ă 8 and 1 ď r ď 8. Then there exists ε ą 0 s.t. for
all 0 ă ε ă ε the product π : F s,r

2p´ε,q ˆ F s,r
2p´ε,q Ñ F s,r

p,q , pu, vq ÞÑ πpu, vq “ uv, induced by
pointwise multiplication, is continuous.

Proof. Again we make use of a corresponding fact for Triebel-Lizorkin spaces (which is
included in [41]) and extend this to TLL spaces via interpolation. We fix parameters
1 ă p0 ă p ă p1 ă 8 such that 1

p “ 1
2p0

` 1
2p1

. For some small ε ą 0 and εj :“ εp0`p1
2p1´j

for
j “ 0, 1 we then have 1

2p2p0´ε0q ` 1
2p2p1´ε1q “ 1

2p´ε . Choosing ε and |p0 ´p1| small enough
we obtain

F s,r
2p´ε,q “ `

F s
2p0´ε0 , F

s
2p1´ε1

˘
1
2
,r

(14.2)

(due to Theorem 13.4) as well as 1
2pi´εi

ă 1
pj

ď 1
2pj´εj

` 1
2pi´εi

which is, due to [41],
Thm. 6.1, a sufficient condition for the product

π : F s
2pj´εj ,q ˆ F s

2pi´εi,q Ñ F s
pj ,q

to be continuous for i “ 0, 1 and j “ 0, 1. Hence πp ¨ , uq : F s
2pj´εj ,q

Ñ F s
pj ,q is continuous

for each u P F s
2pi´εi,q

for i “ 0, 1 and j “ 0, 1 and so is πp ¨ , uq : F s,r
2p´ε,q Ñ F s,r

p,q , using
(14.2). Thus, the whole product

π : F s,r
2p´ε,q ˆ F s

2pi´εi,q Ñ F s,r
p,q

is continuous for i “ 0, 1.
Now by repeating an analogue argument with πpv, ¨ q : F s

2pi´εi,q
Ñ F s,r

p,q for i “ 0, 1 we
obtain continuity of π : F s,r

2p´ε,q ˆF s,r
2p´ε,q Ñ F s,r

p,q , where we made use of (14.2) again and
the (simpler) fact that we receive F s,r

p,q by real interpolation with itself.

Consider a function space F of time-dependent functions on some time interval p0, T q
(or in other words on r0, T s, since we usually identify two functions differing on a null set).
If F contains the smooth functions with compact support on p0, T s, then we denote their
closure in F by 0F . Observe that for the function spaces of time-dependent functions
that appear in the sequel, 0F consists of those functions u P F with u|t“0 “ 0 if the
trace in time exists in terms of a standard trace operator on F . Further, note that we
usually have 0F “ F in case the trace in time does not exist in that sense (cf. [66],
Thm. 4.3.2/1(a)).

Lemma 14.5. Let s P R, 1 ă p, q, r ă 8, 1 ă η ă 8 and α P r0, 1s. Then for T P p0,8s
we have the continuous embeddings

H1
η

`
R, F s,r

p,q

˘ X Lη

`
R, F s`2,r

p,q

˘ Ă Hα
η pR, F s`2p1´αq,r

p,q q (14.3)

and
H1

η

`p0, T q, F s,r
p,q

˘ X Lη

`p0, T q, F s`2,r
p,q

˘ Ă Hα
η pp0, T q, F s`2p1´αq,r

p,q q. (14.4)

For T P p0,8q we also have the continuous embedding

0H
1
η

`p0, T q, F s,r
p,q

˘ X Lη

`p0, T q, F s`2,r
p,q

˘ Ă 0H
α
η pp0, T q, F s`2p1´αq,r

p,q q (14.5)

locally uniformly in time, i.e., for every T0 ą 0 there exists an embedding constant C ą 0
for (14.5), which is independent of T P p0, T0s.
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Proof. Let A “ I ´ Δ in F s,r
p,q be the operator from Proposition 13.15 and B “ 1 ` d

dt in
LηpR, F s,r

p,q q the operator from Proposition 14.1. Propositions 14.2 and 13.14 give that A
and B admit a bounded H8-calculus with ϕ8

A `ϕ8
B ă π. Note that A can be interpreted

as an operator in LηpR, F s,r
p,q q instead of F s,r

p,q in a trivial way, where it still admits a
bounded H8-calculus with the same angle ϕ8

A “ 0. Obviously A and B are resolvent
commuting operators. So all conditions of the mixed derivative theorem (in the version
of [18], Lem. 4.1) are fulfilled. This yields that

}A1´αBαu}LηpR,F s,r
p,q q ď C}Au ` Bu}LηpR,F s,r

p,q q

holds for all u P DpAq X DpBq and all α P r0, 1s. Now we use Propositions 14.1, 13.15
and 13.11 and receive for all u P S pR, F s`2,r

p,q q Ă H1
η pR, F s,r

p,q q X LηpR, F s`2,r
p,q q

}u}
Hα

η pR,F s`2p1´αq,r
p,q q „ }Bαu}

LηpR,F s`2p1´αq,r
p,q q

„ }Bαu}LηpR,DpA1´αqq
„ }A1´αBαu}LηpR,F s,r

p,q q
À }Au ` Bu}LηpR,F s,r

p,q q
À }u}

H1
ηpR,F s,r

p,q qXLηpR,F s`2,r
p,q q.

This proves (14.3).
We obtain (14.4) as a consequence of (14.3) by suitable retraction and extension. More

precisely, we make use of (A.1), which yields an extension operator simultaneously on
H1

η pp0, T q, F s,r
p,q q and on Lηpp0, T q, F s`2,r

p,q q.
In order to prove (14.5), we make use of the extension operator (A.3) in case β “ 1.

For a fixed T0 ą 0 we receive

}u}
Hα

η pp0,T q,F s`2p1´αq,r
p,q q ď }E8,1ETu}

Hα
η pR,F s`2p1´αq,r

p,q q
ď C}E8,1ETu}

H1
ηpR,F s,r

p,q qXLηpR,F s`2,r
p,q q

ď C 1}u}
H1

ηpp0,T q,F s,r
p,q qXLηpp0,T q,F s`2,r

p,q q

for all u P 0H
1
η

`p0, T q, F s,r
p,q

˘ X Lη

`p0, T q, F s`2,r
p,q

˘
with a constant C 1 ą 0, independent of

T P p0, T0s.
We will additionally need the following embeddings for Bessel-potential spaces on a

time-interval.

Lemma 14.6. Let 1 ă η ă 8 and let X be a Banach space of class HT . Then for
s ą 1

2η and T P p0,8s we have the continuous embedding

Hs
ηpp0, T q, Xq Ă L2ηpp0, T q, Xq. (14.6)

For α ą 1
2η and T0 ą 0 the continuous embedding

0H
α
η pp0, T q, Xq Ă L2ηpp0, T q, Xq (14.7)

holds with an embedding constant C ą 0, which is independent of T P p0, T0s.
Proof. For (14.7) let first α P p 1η , 1s. We select ε ą 0 such that α ´ 2ε ą 1

η . The
embedding constant of Hα

η pp0, T q, Xq Ă Wα´ε
η pp0, T q, Xq does not depend on T P p0,8s

and for the extension operator

E8,1ET : 0W
α´ε
η pp0, T q, Xq ÝÑ 0W

α´ε
η pR, Xq
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14 The Navier-Stokes Equations in TLL Spaces

from (A.3) there exists a continuity constant independent of T P p0, T0s. Consequently,
for u P 0H

α
η pp0, T q, Xq we conclude

}u}L2ηpp0,T q,Xq ď }E8,1ETu}L2ηpR,Xq
ď C}E8,1ETu}Hα´2ε

η pR,Xq
ď C 1}E8,1ETu}Wα´ε

η pR,Xq
ď C2}u}Wα´ε

η pp0,T q,Xq
ď C3}u}Hα

η pp0,T q,Xq,

where C3 ą 0 is a constant independent of T P p0, T0s.
Now let α P p 1

2η ,
1
η s. In this case we have 0H

α
η pp0, T q, Xq “ Hα

η pp0, T q, Xq (see [66],
Thm. 4.3.2/1(a)), so we can make use of an extension argument as well, where we have
the trivial extension available this time. The case α ą 1 is an obvious consequence.

Relation (14.6) is a well-known Sobolev embedding. It can be obtained by an analogous
extension argument as above, where we make use of (A.2) instead of (A.3). For R instead
of p0, T q see, e.g., [5], Thm. 3.7.5.

14.3 Maximal Strong Solutions

Our main result reads the following.

Theorem 14.7. Let n P N, n ě 2, s ą ´1 and let 1 ă p, q, r ă 8 and 1 ă η ă 8
such that n

2p ` 1
η ă 1. Then for every f P Lηpp0,8q, pF s,r

p,q qnq and every initial value
u0 P `

F s,r
p,q , F

s`2,r
p,q

˘n
1´1{η with div f “ 0 and div u0 “ 0 there is a maximal time T ˚ ą 0

such that the Navier-Stokes equations$&%
Btu ´ Δu ` ∇p ` pu ¨ ∇qu “ f in p0, T q ˆ Rn

div u “ 0 in p0, T q ˆ Rn

u|t“0 “ u0 in Rn
(14.8)

have a unique maximal strong solution pu,∇pq on p0, T ˚q satisfying

u P H1
η

`p0, T q, pF s,r
p,q qn˘ X Lη

`p0, T q, pF s`2,r
p,q qn˘

,

∇p P Lηpp0, T q, pF s,r
p,q qnq

for every T P p0, T ˚q. If additionally n
2p ` 2

η ă 1, then u is either a global solution or we
have

T ˚ ă 8 and limsup
tÕT˚

}uptq}`
F s,r
p,q ,F

s`2,r
p,q

˘n

1´1{η,η
“ 8. (14.9)

Remark 14.8. The constraints on the parameters p, η, especially the more restrictive
one for the additional property that u is either a global solution or (14.9) holds, rely on
the use of the multiplication result for F s,r

p,q -spaces given in Lemma 14.4. They might
be improved to the standard contraints in classical function spaces such as Lp. This,
however, requires optimal results on multiplication for F s,r

p,q -spaces which by now are not
available and would go beyond the scope of this thesis.

In order to give a proof, we consider the usual operatorial formulation relying on the use
of Helmholtz projection and Stokes operator. We fix s P R, 1 ă p, q, r ă 8, 1 ă η ă 8
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and Xσ :“ pF s,r
p,q qnσ with n ě 2. As above, AS is the Stokes operator in Xσ. The space of

maximal regularity for the Stokes equations is

ET :“ H1
η

`p0, T q, Xσ

˘ X Lη

`p0, T q,DpASq˘
,

where T P p0,8s. Next, as in (5.6), we set

FT :“ Lηpp0, T q, Xσq and I :“ tu0 “ up0q : u P ET u,
equipped with the norm }u0}I “ infup0q“u0

}u}ET
, so FT ˆ I is the data space with right-

hand side functions f P FT and initial values u0 P I. Note that by (5.7), Proposition 13.17,
and [66], Thm. 1.9.3/1 we obtain

I “ pXσ,DpASqq1´ 1
η
,η “ P

`
F s,r
p,q , F

s`2,r
p,q

˘n
1´ 1

η
,η
,

where P P L ppF s,r
p,q qnq denotes the Helmholtz projection introduced in (13.15).

The solution operator L´1 for the Stokes equation is an isomorphism if T ă 8, due
to Proposition 13.20, where

L : ET
–ÝÝÑ FT ˆ I, u ÞÝÑ

´´ d

dt
` AS

¯
u, up0q

¯
.

The nonlinear term is

Gpuq :“ ´Ppu ¨ ∇qu “ ´P divpuuT q, u P pF s,r
p,q qnσ.

Now, our main theorem concerning the Navier-Stokes equations in TLL spaces can be
formulated as the following.

Theorem 14.9. Let n P N, n ě 2, s ą ´1 and let 1 ă p, q, r ă 8 and 1 ă η ă 8 such
that n

2p ` 1
η ă 1. Then for all pf, u0q P F8 ˆ I" Btu ´ Δu ` Ppu ¨ ∇qu “ f in p0, T q ˆ Rn,

up0q “ u0 in Rn (14.10)

has a unique maximal strong solution u : r0, T ˚q ÝÑ I with T ˚ P p0,8s and u P ET for
all T P p0, T ˚q. If additionally n

2p ` 2
η ă 1, then u is either a global solution or we have

T ˚ ă 8 and limsuptÕT˚}uptq}I “ 8.

We first convince ourselves that the two systems (14.8) and (14.10) are equivalent.
This particularly shows that Theorem 14.9 implies Theorem 14.7. Indeed, when u is the
solution of (14.10) given by Theorem 14.9, we receive the solution pu,∇pq of (14.8) as
claimed in Theorem 14.7 by setting ∇p “ ´pI´Pqpu ¨∇qu. On the other hand, if pu,∇pq
is a solution of (14.8), then u solves (14.10) and consequently ∇p “ ´pI ´ Pqpu ¨ ∇qu.

The proof of the additional statement in Theorem 14.9 will essentially make use of the
following embedding for the space of initial values.

Lemma 14.10. Let s P R, 1 ă p, q, r ă 8 and 1 ă η ă 8 such that n
2p ` 2

η ă 1. Then
there exists ε ą 0 so that for all 0 ď ε ă ε we have the continuous embedding

I Ă pF s`1,r
2p´ε,qqn.
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14 The Navier-Stokes Equations in TLL Spaces

Proof. Select 0 ă ε1 ă min
�
η ´ 1, η2 r1 ´ p n

2p ` 2
η qs( and T P p0,8q. Then we have the

continuous embeddings

ET Ă H
1`ε1
η

η

´
p0, T q,

´
F

s`2p1´ 1`ε1
η

q,r
p,q

n̄¯
Ă C

´
r0, T s,

´
F

s`2p1´ 1`ε1
η

q,r
p,q

n̄¯
,

where the first embedding follows from Lemma 14.5 and the second one can be deduced
from standard Sobolev embedding in the same way as in the proof of Lemma 14.6. Now,
setting δ :“ 2p1`ε1q

η , we deduce n
2p`δ ă 1, so Lemma 14.3 yields the continuous embedding

´
F

s`2p1´ 1`ε1
η

q,r
p,q

n̄ Ă `
F s`1,r
2p´ε,q

n̆

for small ε ě 0. This leads to }u0}pF s`1,r
2p´ε,qqn ď C}u}ET

for u0 P I and any u P ET with
up0q “ u0 so the assertion is proved.

Proof of Theorem 14.9. Let pf, u0q P F8 ˆ I. We start with local existence and unique-
ness, so we need to show that there is a unique solution u P ET of

Lu “ `
f ` Gpuq, u0

˘
on some time interval. First of all we note that it is possible to restrict ourselves to those
solutions with up0q “ 0. In fact, by setting u˚ :“ L´1pf, u0q, we can always consider
ū “ u´u˚ P 0ET for u P ET , so for any T P p0,8q the following assertions are equivalent:

(a) Lu “ pf ` Gpuq, u0q has a unique solution u P ET .

(b) Lū “ pGpū ` u˚q, 0q has a unique solution ū P 0ET .

Before we are able to verify (b), it is necessary to have the continuous embedding

GpET q Ă FT (14.11)

for T P p0,8q. For u P ET , using Proposition 13.11, we have

}Gpuq}FT
“ }Ppu ¨ ∇qu}Lηpp0,T q,pF s,r

p,q qnq
ď C}divpuuT q}Lηpp0,T q,pF s,r

p,q qnq
ď C 1}uuT }

Lηpp0,T q,pF s`1,r
p,q qnˆnq

ď C2}u}2
L2ηpp0,T q,pF s`1,r

2p´ε,qqnq,

where we applied Hölder’s inequality together with Lemma 14.4 (note that s ` 1 ą 0 is
assumed) to obtain the last inequality. Here we choose ε ą 0 small enough such that Lem-
mas 14.3 and 14.4 can be applied. Now it remains to prove ET Ă L2η

`p0, T q, pF s`1,r
2p´ε,qqn˘

to obtain (14.11). Due to the condition n
2p ` 1

η ă 1, we can select δ ą 1
η such that

n
2p ` δ ă 1. Then we have F s`2´δ,r

p,q Ă F s`1,r
2p´ε,q according to Lemma 14.3. By setting

α :“ δ
2 we receive the continuous embeddings

ET Ă Hα
η

`p0, T q, pF s`2p1´αq,r
p,q qn˘

Ă L2η

`p0, T q, pF s`2p1´αq,r
p,q qn˘

Ă L2η

`p0, T q, pF s`1,r
2p´ε,qqn˘

,

(14.12)
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where we used Lemma 14.5 for the first embedding, Lemma 14.6 for the second embedding
and Lemma 14.3 for the last embedding. This yields (14.11).

In order to obtain (b), we define

N : 0ET ÝÑ FT ˆ t0u, ū ÞÝÑ Lū ´ `
Gpū ` u˚q, 0˘

for T P p0,8q. The embedding (14.11) gives that N is well-defined, i.e., we have indeed
Npūq P FT ˆ t0u for all ū P 0ET . Furthermore, N is continuously Fréchet-differentiable,
where

DNp0qv “ Lv ´ `
DGpu˚qv, 0˘ “ Lv ` `

Ppu˚ ¨ ∇qv ` Ppv ¨ ∇qu˚, 0
˘ @v P 0ET

is the derivative at the origin. Our aim is to verify that there exists a unique ū P 0ET

such that Npūq “ 0 for small time intervals p0, T q.
As a first step to see this, we prove that DNp0q : 0ET Ñ FT ˆ t0u is an isomorphism

when T ą 0 is small enough. Similar to the verification of (14.11) we obtain for T ą 0
and v P 0ET that››`

DGpu˚qv, 0˘››
FT ˆt0u “ }P divpu˚vT q ` P divpvpu˚qT q}Lηpp0,T q,pF s,r

p,q qnq
ď C}divpu˚vT q ` divpvpu˚qT q}Lηpp0,T q,pF s,r

p,q qnq
ď C 1}u˚vT ` vpu˚qT }

Lηpp0,T q,pF s`1,r
p,q qnˆnq

ď C2}u˚}
L2ηpp0,T q,pF s`1,r

2p´ε,qqnq}v}
L2ηpp0,T q,pF s`1,r

2p´ε,qqnq,

(14.13)

in view of Proposition 13.11, Lemma 14.4 and Hölder’s inequality, where the constant
C2 ą 0 is independent of T P p0,8q and ε ą 0 is small enough. Again let δ ą 1

η such
that n

2p ` δ ă 1 and set α :“ δ
2 . Then we have F s`2´δ,r

p,q Ă F s`1,r
2p´ε,q and, since α ą 1

2η , we
obtain for any fixed T0 ą 0

0ET Ă 0H
α
η

`p0, T q, pF s`2p1´αq,r
p,q qn˘

Ă L2η

`p0, T q, pF s`2p1´αq,r
p,q qn˘

Ă L2η

`p0, T q, pF s`1,r
2p´ε,qqn˘

,

(14.14)

where the embeddings are continuous with an embedding constant independent of T P
p0, T0s, due to Lemmas 14.5 and 14.6. Hence, we have in total››`

DGpu˚qv, 0˘››
FT ˆt0u ď C1}u˚}

L2ηpp0,T q,pF s`1,r
2p´ε,qqnq}v}ET

(14.15)

for all v P 0ET and for all T P p0, T0s with some C1 ą 0. Thanks to Lemma 5.4 there is
also a constant C2 ą 0 such that }L´1}FT ˆt0uÑ0ET

ď C2 for all T P p0, T0s.
The size of the finite time interval p0, T0q was arbitrary up to this point. Proceeding

from any finite T0 ą 0, we will shrink the interval p0, T0q in the following to receive a
unique local solution. The constants C1 and C2 found above can be assumed to be fixed,
so they do not change by shrinking p0, T0q. First, let p0, T0q be small enough, so that

}u˚}
L2ηpp0,T0q,pF s`1,r

2p´ε,qqnq ď 1

2C1C2
(14.16)

holds. Then we obtain from (14.15) and (14.16)››`
DGpu˚q, 0˘››

0ET ÑFT ˆt0u ă 1

}L´1}FT ˆt0uÑ0ET
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for all T P p0, T0s. Hence, by use of the Neumann series, we obtain that DNp0q :

0ET Ñ FT ˆ t0u is an isomorphism for all T P p0, T0s.
We apply the inverse function theorem (see, e.g., [6], Thm. VII.7.3) and receive open

neighborhoods 0 P UT Ă 0ET and Np0q P VT Ă FT ˆ t0u such that N : UT Ñ VT is
bijective. Following the idea in [13], we fix T P p0, T0s and define for 0 ă T 1 ă T a
function FT 1 P FT by

FT 1ptq :“
#
0, if t P p0, T 1q
Gpu˚qptq, if t P rT 1, T q.

Then we have››`
FT 1 , 0

˘ ´ `
Gpu˚q, 0˘››η

FT ˆt0u “
ż T

0
}FT 1ptq ´ Gpu˚qptq}ηXσ

dt

“
ż T 1

0
}Gpu˚qptq}ηXσ

dt
T 1Œ0ÝÝÝÑ 0

and thus pFT 1 , 0q T 1Œ0ÝÝÝÑ Np0q in FT ˆt0u. Since VT is a neighborhood of Np0q, this yields
pFT 1 , 0q P VT if T 1 P p0, T q is small enough and consequently for ū :“ N´1pFT 1 , 0q P UT

we have Npūq “ pFT 1 , 0q “ p0, 0q on p0, T 1q. Hence, by restriction of ū to p0, T 1q, we
obtain a solution ū P 0ET 1 of (b). Since N : UT Ñ VT is bijective, this solution is unique.

Having established local existence and uniqueness of a solution for (14.10), we now
extend the solution to a maximal time interval r0, T ˚q. First we note that uniqueness
holds on any time interval: Considering two solutions u, v P ET of (14.10) on r0, T q for
given data f, u0 and some T P p0,8s, we know from the established local uniqueness
that u “ v holds on some r0, T 1q Ă r0, T q. We assume that u and v do not coincide on
r0, T q. Then Lemma 5.5 allows us to apply a continuity argument, which provides some
0 ă t1 ă t2 ă T so that uptq “ vptq for all t P r0, t1s and uptq ‰ vptq for all t P pt1, t2q.
Now, setting u1 :“ upt1q and f1 :“ fpt1`¨q, we can apply local uniqueness of the solution
of (14.10) with data f1, u1 and receive upt1`¨q “ vpt1`¨q on some r0, T 2q, a contradiction
to uptq ‰ vptq for all t P pt1, t2q.

In order to obtain a maximal time interval r0, T ˚q for the solution of (14.10), we define
for fixed data f, u0

M :“ �pJT , uT q : T P p0,8q, D solution uT P ET of (14.10) on JT “ r0, T q(
,

J˚ :“
ď �

JT : pJT , uT q P M
( “: r0, T ˚q

and u : r0, T ˚q Ñ I, uptq :“ uT ptq for t P JT . Due to the uniqueness proved above, u is
well-defined and consequently the desired maximal solution.

Now, let additionally n
2p ` 2

η ă 1. We assume T ˚ ă 8 and

limsuptÕT˚}uptq}I ă 8
for the maximal solution u. Then we have u P BCpr0, T ˚q, Iq (i.e., bounded and contin-
uous). For T P p0, T ˚s and v P ET we define the linear operator

Bv :“ `
P divpuvT q, 0˘

.

Then we have pL ` Bqu “ pf, u0q. As in (14.13) we obtain

}Bv}FT ˆI ď C}u}
L2ηpp0,T q,pF s`1,r

2p´ε,qqnq}v}
L2ηpp0,T q,pF s`1,r

2p´ε,qqnq @v P ET (14.17)
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with a constant C ą 0 independent of T and ε ą 0 small enough such that Lem-
mas 14.3, 14.4 and 14.10 can be applied. Concerning (14.14) and Lemma 14.10 we
obtain

}Bv}FT ˆI ď C 1
ˆż T

0
}uptq}2ηpF s`1,r

2p´ε,qqnq

˙ 1
2η

}v}ET
ď C2T

1
2η }u}BCpr0,T˚q,Iq}v}ET

for all v P 0ET with a constant C2 ą 0 independent of T P p0, T ˚s. Due to (14.12) we can
also deduce B P L pET ,FT ˆ Iq from (14.17). Furthermore, Lemma 5.4 yields a constant
K ą 0, such that }L´1}FT ˆt0uÑ0ET

ď K holds for all T P p0, T ˚s. Consequently, we
obtain for sufficiently small T P p0, T ˚s that

}B}
0ET ÑFT ˆt0u ă 1

}L´1}FT ˆt0uÑ0ET

,

which yields that L ` B : 0ET Ñ FT ˆ t0u is an isomorphism. More precisely, we need
to choose

T ď 1

p2C2K}u}BCpr0,T˚q,Iqq2η . (14.18)

Now, for T as in (14.18), we can select T1 P p0, T ˚q and repeat the argument on pT1, T `
T1q instead of p0, T q. This yields that L ` B : 0EpT1,T`T1q Ñ FpT1,T`T1q ˆ t0u is an
isomorphism, where 0EpT1,T`T1q (and FpT1,T`T1q, respectively) consists of the translations
of functions in 0ET (and FT , respectively) by T1. We repeat this argument k times on
the interval pkT1, T ` kT1q X p0, T ˚q until we reach T ` kT1 ě T ˚. Finally we have that
L ` B : 0ET˚ Ñ FT˚ ˆ t0u is an isomorphism. Now it is not hard to deduce that

L ` B : ET˚ –ÝÑ FT˚ ˆ I (14.19)

is an isomorphism: Continuity and injectivity are obvious while we receive the surjectivity
by setting v˚ :“ L´1p0, v0q and v :“ pL ` Bq´1pg ´ P divpv˚uT q, 0q ` v˚ P ET˚ for
pg, v0q P FT ˆ I. As a consequence of (14.19) and Lemma 5.5 we can achieve

u “ pL ` Bq´1pf, u0q P ET˚ Ă BUCpr0, T ˚q, Iq
and hence upT ˚q “ limtÕT˚ uptq P I. Application of the local existence and uniqueness
now gives a solution of (14.10) for data fp¨ ` T ˚q, upT ˚q on some time interval r0, T 2q,
which yields an extension of u to a solution of (14.10) with data f, u0 on r0, T ˚ ` T 2q,
in contradiction to the maximality of u.
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A Extension Operators

Let 1 ă η ă 8. For fixed m P N and T P p0,8s there exists a mapping

u ÞÝÑ ET,mu

for functions u (defined on p0, T q with values in any vector space) such that for all
k P t0, 1, . . . ,mu and any Banach space X we have an extension operator

ET,m : W k
η pp0, T q, Xq ÝÑ W k

η pR, Xq. (A.1)

A precise proof can be found in [2], Thm. 4.26 for the case of scalar-valued functions,
but the given proof can be directly transferred to the vector-valued case. The operator
ET,m is the coretraction of

R : W k
η pR, Xq ÝÑ W k

η pp0, T q, Xq, u ÞÝÑ u|p0,T q,

so, by the interpolation W s
η pR, Xq “ `

LηpR, Xq,W k
η pR, Xq˘

s
k
,η

for 0 ă s ă k, s R N, we
obtain

W s
η pp0, T q, Xq “ `

Lηpp0, T q, Xq,W k
η pp0, T q, Xq˘

s
k
,η

and the extension operator

ET,m : W s
η pp0, T q, Xq ÝÑ W s

η pR, Xq (A.2)

(see [66], Thm. 1.2.4).
Now let T P p0,8q, 1 ă η ă 8, and let X be a Banach space. For a function u defined

on p0, T q with values in any vector space we set

ETupτq :“
$’&’%
upτq, if 0 ă τ ă T

up2T ´ τq, if T ď τ ă 2T

0, if 2T ď τ

(cf. [53]). Then, due to [53], Prop. 6.1, this leads to an extension operator

ET : 0W
β
η

`p0, T q, X˘ ÝÑ 0W
β
η

`p0,8q, X˘
for β P p 1η , 1s such that for any fixed T0 P p0,8q there is a constant C ą 0 with }ET } ď C
for all T P p0, T0s. Now we use (A.2) in case T “ 8 and m “ 1 and receive the extension
operator

E8,1ET : 0W
β
η

`p0, T q, X˘ ÝÑ 0W
β
η

`
R, X

˘
(A.3)

(for β P p 1η , 1s), whose operator norms }E8,1ET }, T P p0, T0s are bounded above for a
fixed T0 ą 0 as well. The structure of ET also gives that

}ETu}Lηpp0,8q,Xq ď 2}u}Lηpp0,T q,Xq.
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B An Alternative Proof of
Proposition 8.1(ii)

If we knew the solution u in Theorem 6.5 to be consistent in q P p1,8q and if we assume
that C8

c pΩq Ă xW 1
s pΩq is dense for s “ q1 (Assumption 4.4) but also for s “ 2, then

for Proposition 8.1(ii), which is the key to the proof of our main results regarding the
Stokes equations on uniform C2,1-domains, we can give an alternative proof. This proof
needs some further properties about ΔPS,q (which makes it a little longer), but these
are also of interest themselves and then the proof gets along with abstract functional
analytic duality arguments. Therefore, we consider the following additional statement to
Theorem 6.5.

Lemma B.1 (Consistency). Under the conditions of Theorem 6.5, if f P LqpΩqn X
LrpΩqn, g P W 1

q pΩqn X W 1
r pΩqn and h P W 2

q pΩqn X W 2
r pΩqn for some 1 ă q, r ă 8,

then for λ0 :“ maxtλ0pn, q, θ,Ωq, λ0pn, r, θ,Ωqu and λ P Σθ, |λ| ě λ0 the solution of
(6.30) fulfills u P W 2

q pΩqn X W 2
r pΩqn. In particular, ΔPS is the generator of a strongly

continuous analytic semigroup with consistent resolvent pλ ´ ΔPS,qq´1 “ pλ ´ ΔPS,rq´1

on LqpΩqn X LrpΩqn for 1 ă q, r ă 8.

Proof. Following the proof of Theorem 6.5, we similarly deduce the statement for general
uniform C2,1-domains from the statement for bent half spaces and this in turn from the
half space Rn`. We only sketch the main steps. In order to distinguish between the
exponents q and r, we denote Xq :“ lqpÀ

lPΓW 2
q pΩlqnq instead of X and similarly denote

Yq, Zq instead of Y , Z as well as Sq, Pq, P 1
q, sCq, sDq for the operators S, P , P 1, sC, sD

defined in the proof of Theorem 6.5.
As we have seen, the solution u P W 2

q pΩqn of (6.30) for f P LqpΩqn, g P W 1
q pΩqn,

h P W 2
q pΩqn satisfies the representation

u “ sCqpSq ` P 1
qq´1 sDqpf, aq,

where a “ Πτ tr g`Πν trh. For the operator sDq we directly observe that sDq “ sDr holds
on pLqpΩqn ˆBFq,λpBΩqq X pLrpΩqn ˆBFr,λpBΩqq and the same is true for sCq. Therefore,
it remains to see pSq ` P 1

qq´1 “ pSr ` P 1
rq´1 on Yq X Yr.

Now pSq`P 1
qq´1 is defined via the Neumann series, i.e., writing Sq`P 1

q “ SqpI`S´1
q P 1

qq,
we receive

pSq ` P 1
qq´1 “ pI ` S´1

q P 1
qq´1S´1

q “
ˆ 8ÿ

k“0

p´1qkpS´1
q P 1

qqk
˙
S´1
q .

The identity P 1
q “ P 1

r on Xq X Xr is obvious. Hence, it remains to see that S´1
q “ S´1

r

holds on Yq X Yr, since convergence of the Neumann series in the operator norm on
Xq X Xr is eventually a consequence.

For this purpose, fix some pfl, alqlPΓ P Yq X Yr. Setting pulqlPΓ “ S´1
q pfl, alqlPΓ we

receive that for all l P Γ the function ul is the unique solution of pλ ´ Δqul “ fl,
ΠτD´pulqνl ` Πνul “ al on BΩl in W 2

q pΩlqn. Therefore, it remains to obtain that
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ul P W 2
r pΩqn holds for all l P Γ. In fact, the unique solvability of pλ ´ Δqul “ fl,

ΠτD´pulqνl ` Πνul “ al on BΩl in W 2
r pΩlqn then implies the resolvent estimate

}pλul,
?
λ∇ul,∇2ulq}r,Ωl

ď Cp}fl}r,Ωl
` }al}BFr,λpBΩlqq

for all l P Γ and consequently pulqlPΓ P Xr, as in the proof of Theorem 6.5.
In total, it remains to prove consistency for domains of the type Ωl, i.e., the whole

space Rn and bent, rotated and shifted half spaces. For the whole space we have a
representation of the solution via Fourier transformation (cf. Proposition 13.12) which
directly yields consistency. For the bent, rotated and shifted half spaces we can repeat
the argument from above: Since unique solvability of (6.24) can be reduced to the half
space (see the proof of Theorem 6.4), mainly via the Neumann series, we obtain the
statement for bent rotated and shifted half spaces, in case constistency holds for the half
space.

In order to obtain the statement for the half space Ω “ Rn`, consider the proof of
Proposition 6.1. We have seen that for the half space we can separate the boundary con-
ditions such that we receive a remaining Dirichlet boundary problem and n´1 Neumann
boundary problems. These problems in turn fulfill the consistency condition, since there
is a representation of the respective solution via Fourier transformation (in the whole
space) and a reflection principle, which does not depend on the parameter q.

Proposition 8.1(ii) under the mentioned additional assumption reads the following.

Proposition B.2. Let Ω Ă Rn be a uniform C2,1-domain, n ě 2, 1 ă q ă 8, 0 ă θ ă π
such that C8

c pΩq Ă xW 1
s pΩq is dense for s P tq1, 2u. Choose λ0 “ λ0pn, q, θ,Ωq ą 0 so that

the conditions of Theorem 6.5 and Proposition 7.2 are satisfied and let λ P Σθ, |λ| ě λ0.
Then we have the implication

f P Lq,σpΩq ñ pλ ´ ΔPS,qq´1f P Lq,σpΩq.
Lemma B.3. Let Ω Ă Rn be a domain with uniform C2,1-boundary, n ě 2 and 1 ă q ă
8. The operator ΔPS,q is symmetric, i.e., for the dual operator

Δ1
PS,q : DpΔ1

PS,qq Ă Lq1pΩqn Ñ Lq1pΩqn,
defined on

DpΔ1
PS,qq “ tv P Lq1pΩqn :

D Δ1
PS,qv P Lq1pΩqn : xΔPS,qu, vyq,q1 “ xu,Δ1

PS,qvyq,q1 @u P DpΔPS,qqu,
we have ΔPS,q1 Ă Δ1

PS,q.

Proof. Let u P DpΔPS,qq and v P DpΔPS,q1q. Then we have

xΔPS,qu, vyq,q1 “
ż
Ω

p∇ div uq ¨ v dλn ´
ż
Ω

p∇ div u ´ Δuq ¨ v dλn. (B.1)

Regarding the first term, we write p∇ div uq ¨ v “ divpv div uq ´ pdiv vqpdiv uq and obtainż
Ω

p∇ div uq ¨ v dλn “
ż

BΩ
ν ¨ v div u dσ ´

ż
Ω

pdiv vqpdiv uq dλn “
ż
Ω

pdiv vqpdiv uq dλn,

where we made use of Gauß’s theorem (Lemma 3.4; note that v div u P W 1
1 pΩqn). By

interchanging u and v we concludeż
Ω

p∇ div uq ¨ v dλn “
ż
Ω

p∇ div vq ¨ u dλn.
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Regarding the second term, we make use of Lemma 2.1(i) to write p∇ div u ´ Δuq ¨ v “
divpD´puqvq ´ p∇uT ´ ∇uq ¨ ∇v and obtainż

Ω
p∇ div u ´ Δuq ¨ v dλn “

ż
BΩ

ν ¨ D´puqv dσ ´
ż
Ω

p∇uT ´ ∇uq ¨ ∇v dλn,

where we made use of Gauß’s theorem again (Lemma 3.4; note that D´puqv P W 1
1 pΩqn).

For the first integrand we have ν ¨ D´puqv “ 0 on BΩ (Lemma 2.1(iii)) and the second
integrand, p∇uT ´∇uq ¨∇v, is symmetric in u and v. Hence, interchanging u and v givesż

Ω
p∇ div u ´ Δuq ¨ v dλn “

ż
Ω

p∇ div v ´ Δvq ¨ u dλn.

Summarizing, we are able to continue (B.1) and receive xΔPS,qu, vyq,q1 “ xu,ΔPS,q1vyq,q1 .

Lemma B.4. Let Ω Ă Rn be a domain with uniform C2,1-boundary, n ě 2 and 1 ă
q ă 8 such that the Helmholtz projection Pq : LqpΩqn Ñ LqpΩqn with range Lq,σpΩq and
kernel GqpΩq exists. Consequently the Helmholtz projection exists for q1 as well and we
have P1

q “ Pq1 . Moreover we require that C8
c pΩq Ă xW 1

s pΩq is dense for s P tq, q1u. Let
Δ1

PS,q be the dual operator of ΔPS,q as in Lemma B.3 and let

ΔP̊S,q : Lq1pΩqn Ñ DpΔPS,qq1

be the continuous dual operator of ΔPS,q P L pDpΔPS,qq, LqpΩqnq, where DpΔPS,qq is
endowed with the graph norm. Then we have

PqΔP̊S,q1u “ ΔP̊S,q1Pqu

for all u P DpΔPS,qq. In particular, ΔP̊S,q1 maps Lq,σpΩq into LqpΩqn.
Proof. We have Δ1

PS,q1 Ă ΔP̊S,q1 and due to Lemma B.3 we also have ΔPS,q Ă Δ1
PS,q1 .

Therefore ΔPS,q Ă ΔP̊S,q1 . In particular, the expression PqΔP̊S,q1u p“ PqΔuq is meaning-
ful. Also note that the density and continuity of the embedding DpΔPS,qq Ă LqpΩqn give
that we can interpret Lq1pΩqn as a subspace of DpΔPS,qq1. Now let u P DpΔPS,qq and
v P DpΔPS,q1q. Then we have

xΔP̊S,q1Pqu, vyDpΔPS,q1 q1,DpΔPS,q1 q “ xPqu,ΔPS,q1vyq,q1

“ xu,Pq1Δvyq,q1

“ ´xu,Pq1p∇ div v ´ Δvqyq,q1 .

(B.2)

Now we obtain

∇ div v ´ Δv P Lq1,σpΩq, ∇ div u ´ Δu P Lq,σpΩq. (B.3)

Indeed, using Lemma 2.1(ii) and (iii), we see thatż
Ω

p∇ div v ´ Δvq ¨ ∇ϕdλn “
ż
Ω
divpD´pvq∇ϕq dλn

“
ż

BΩ
ν ¨ pD´pvq∇ϕq dσ

“ ´
ż

BΩ
∇ϕ ¨ pD´pvqνq dσ

“ 0
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holds for all ϕ P C8
c pΩq (Gauß’s theorem, i.e., Lemma 3.4, is applicable) and thus for all

ϕ P xW 1
q pΩq as well, due to the density of C8

c pΩq Ă xW 1
q pΩq. Since C8

c pΩq Ă xW 1
q1pΩq is

dense, we can do the same for ∇ div u ´ Δu. Besides, we haveż
Ω
u ¨ p∇ div v ´ Δvq dλn “

ż
Ω
v ¨ p∇ div u ´ Δuq dλn, (B.4)

since application of Lemma 3.4 and Lemma 2.1(i) and 2.1(iii) givesż
Ω
u ¨ p∇ div v ´ Δvq dλn “

ż
Ω
divpD´pvquq dλn ´

ż
Ω

p∇vT ´ ∇vq ¨ ∇u dλn

“ ´
ż

BΩ
u ¨ pD´pvqνq dσ ´

ż
Ω

p∇vT ´ ∇vq ¨ ∇u dλn

“
ż
Ω

p∇v ´ ∇vT q ¨ ∇u dλn

and the same for
ş
Ω v ¨ p∇ div u ´ Δuq dλn. Now, continuing (B.2), we obtain

´xu,Pq1p∇ div v ´ Δvqyq,q1 “ ´xu,∇ div v ´ Δvyq,q1

“ ´x∇ div u ´ Δu, vyq,q1

“ ´xPqp∇ div u ´ Δuq, vyq,q1

“ xPqΔu, vyq,q1

“ xPqΔP̊S,q1u, vyq,q1

by use of (B.3) and (B.4), so we have in total

xΔP̊S,q1Pqu, vyDpΔPS,q1 q1,DpΔPS,q1 q “ xPqΔP̊S,q1u, vyq,q1 .

Lemma B.5. Let Ω Ă Rn be a domain with uniform C2,1-boundary, n ě 2 and 1 ă
q ă 8 such that the Helmholtz projection Pq : LqpΩqn Ñ LqpΩqn exists and we require
that C8

c pΩq Ă xW 1
s pΩq is dense for s P tq, q1u. Let 0 ă θ ă π, λ0 :“ maxtλ0pΩ, q, θ, nq,

λ0pΩ, q1, θ, nqu with λ0 from Theorem 6.5 and let λ P Σθ, |λ| ě λ0. Then we have the
implication

f P Lq,σpΩq ùñ pλ ´ ΔPS,qq´1f P Lq,σpΩq.
Proof. We have ΔPS,q Ă ΔP̊S,q1 again, since we know that ΔPS,q Ă Δ1

PS,q1 (due to
Lemma B.3) and Δ1

PS,q1 Ă ΔP̊S,q1 are valid. Hence, for u :“ pλ ´ ΔPS,qq´1f we have

pλ ´ ΔP̊S,q1qu “ pλ ´ Δqu “ Pqpλ ´ Δqu “ Pqpλ ´ ΔP̊S,q1qu.
Due to Lemma B.4, we conclude

pλ ´ ΔP̊S,q1qu “ pλ ´ ΔP̊S,q1qPqu.

Now λ ´ ΔPS,q1 : DpΔPS,q1q Ñ Lq1pΩqn is an isomorphism and therefore λ ´ ΔP̊S,q1 :
LqpΩqn Ñ DpΔPS,q1q1 is injective. Hence u “ Pqu.

Proof of Proposition B.2. Let initially f P Lq,σpΩq X L2,σpΩq and let P2 : L2pΩqn Ñ
L2pΩqn be the Helmholtz projection. Due to Theorem 6.5 and the additional statement
that the resolvent is consistent, we have

u :“ pλ ´ ΔPS,qq´1f “ pλ ´ ΔPS,2q´1f P DpΔPS,qq X DpΔPS,2q. (B.5)
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Application of Lemma B.5 with q “ 2 gives u P L2,σpΩq. Therefore, we have div u “ 0
and this yields for any ϕ P C8

c pΩq

xu,∇ϕyq,q1 “
ż
Ω
divpϕuq dλn “

ż
BΩ

ν ¨ pϕuq dσ “
ż

BΩ
ϕpν ¨ uq dσ “ 0, (B.6)

using Gauß’s theorem (Lemma 3.4; note that ϕu P W 1
1 pΩqn). Since C8

c pΩq Ă xW 1
q1pΩq is

dense, we obtain (B.6) for ϕ P xW 1
q1pΩq as well. Hence u P Lq,σpΩq.

Let now f P Lq,σpΩq. Since Lq,σpΩq XL2,σpΩq Ă Lq,σpΩq is dense (note that C8
c,σpΩq Ă

Lq,σpΩq is dense), there exists a sequence pfkqkPN Ă Lq,σpΩq X L2,σpΩq such that

fk
kÑ8ÝÝÝÑ f in LqpΩqn.

Therefore, we obtain

pλ ´ ΔPS,qq´1f “ limLq

kÑ8 pλ ´ ΔPS,qq´1fk P Lq,σpΩq,

since pλ ´ ΔPS,qq´1fk P Lq,σpΩq holds for all k P N and Lq,σpΩq is complete.

Remark B.6. Note that the additional statement about the resolvent pλ ´ ΔPS,qq´1 to
be consistent (Lemma B.1) was needed in (B.5) only.
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Summary

In this thesis we considered the Navier-Stokes equations$&%
Btu ´ Δu ` ∇p ` pu ¨ ∇qu “ f in p0, T q ˆ Ω

div u “ 0 in p0, T q ˆ Ω
u|t“0 “ u0 in Ω,

where Ω Ă Rn is a domain and p0, T q is some time interval, as well as the Stokes equations$&%
Btu ´ Δu ` ∇p “ f in p0, T q ˆ Ω

div u “ 0 in p0, T q ˆ Ω
u|t“0 “ u0 in Ω,

which is the related linearization. The vector field u and the gradient field ∇p are the
unknown quantities while f is a given vector field and u0 is a given initial value. The
Stokes and Navier-Stokes equations were treated subject to partial slip type boundary
conditions "

Πτ pαu ` p∇uT ˘ ∇uqνq “ 0 on p0, T q ˆ BΩ
ν ¨ u “ 0 on p0, T q ˆ BΩ,

where ν is the outward unit normal vector, Πτ is the projection onto the tangent space
at BΩ and α is a real number. The partial slip type boundary conditions include the
well-known Navier boundary conditions and the perfect slip boundary condition, which
equals the vorticity condition in space dimension n “ 3.

In Lebesgue ground spaces LqpΩq we have proved well-posedness of the Stokes equa-
tions, utilizing analytic semigroup theory for a general class of uniform C2,1-domains.
We discussed that this class includes non-Helmholtz domains, e.g., sector-like domains
with a smoothed vertex and an opening angle β ą π as considered by Bogovskĭı and
Maslennikova in [10]. In addition, we established further results on the Stokes resolvent
problem as well as applications to the Navier-Stokes equations on uniform C2,1-domains.

We proved existence and uniqueness of maximal strong solutions to the Navier-Stokes
equations for the case Ω “ Rn in the scale of Triebel-Lizorkin-Lorentz spaces (see [14] and
[66]). Many important function spaces such as Sobolev-Slobodeckĭı spaces W s

p , Bessel-
potential spaces Hs

p , Lorentz spaces Lp,r and, in particular, Lebesgue spaces Lp are
included in this scale. In total, the obtained results concerning Triebel-Lizorkin-Lorentz
spaces now yield corresponding results simultaneously for all these function spaces.
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Contributions

The content of this thesis is based on a joint work with Jürgen Saal. The main subject of
Chapters II and III has been established in [38], where both authors contributed equally
to the content of [38]. The author of this thesis implemented the computations for the
localization of the Laplace resolvent problem and established the results concerning the
Stokes semigroup and applications to the Navier-Stokes equations. The strategies for
proving the assertions concerning the Stokes resolvent problem on uniform C2,1-domains
have been established in several mutual deliberations of Jürgen Saal and the author of
this thesis.

The content of Chapter IV has been published in [39]. Both authors contributed
equally to [39]. The author of this thesis significantly established the basic properties
of TLL spaces and he stated and proved the multiplier result of Mikhlin type for TLL
spaces. The results concerning the H8-calculus for the Stokes operator and applications
to the Navier-Stokes equations in TLL spaces have been developed in a number of working
sessions of Jürgen Saal and the author of this thesis. The result concerning the Helmholtz
projection in TLL spaces particularly includes several hints of the research group of the
Applied Analysis chair.

The preliminaries for this thesis, given in Chapter I, are mainly contained in the
introductory parts of [39] and [38] concerning the content and the formulation.
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