The Stokes and Navier-Stokes Equations in
Triebel-Lizorkin-Lorentz Spaces and on
Uniform C?!-Domains

Inaugural-Dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultat
der Heinrich-Heine-Universitat Disseldorf

vorgelegt von

Pascal Hobus

aus Viersen

Dusseldorf, Marz 2019



aus dem Institut fur Mathematik
der Heinrich-Heine-Universitat Diisseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultat der
Heinrich-Heine-Universitat Disseldorf

Berichterstatter:

1. Prof. Dr. Jiirgen Saal

2. Prof. Dr. Reinhard Farwig

Tag der miindlichen Priifung: 05.03.2020



Contents

Introduction

I  Preliminaries

1

5

Essentials . . . . . . . ..
1.1 General Notation . . . . . . . . . . ... .. ... ... ...
1.2 The Functional Analytic Setting . . . . . .. ... .. ... ...
Uniform C*'-Boundaries . . . . . . . . . . . .
2.1 The Definition . . . . . . . . . . . ..
2.2 Parametrization of the Boundary . . . . . .. .. ... ... ...
2.3 The Outward Unit Normal Vector . . . . . . .. ... ... ...
2.4 Boundary Operators . . . . . . . .. ... ... .
Traces and Gaufs’s Theorem . . . . . . . . . . .. ... ... ... ....
The Spaces Ly »(2) and G4(2) . . ... ... ... L.

4.1 Main Assumptions . . . . . . ..o
4.2 The Space Ly o(S2) . . . . . . . o Lo
4.3 Discussion of the Main Assumptions . . . . . . ... .. .. ...

R-boundedness, Maximal Regularity and H*-Calculus . . . . . . .. ..

Il The Laplace Resolvent on Uniform C%!-Domains

6

7
8

Perfect Slip Boundary Conditions for the Laplace Resolvent . . . . . . .
6.1 The Half Space . . . . . . .. ... ..
6.2 The Bent Half Space . . . . . . .. . .. ... ... ... .....
6.3 The Bent, Rotated and Shifted Half Space . . . . . . . ... ...
6.4 The General Case . . . . . . . . . ... .. ... .. .. .....
Neumann Boundary Conditions for the Laplace Resolvent . . . . . . ..
Ly s-Invariance of the Laplace Resolvent . . . . ... ... .. ... ...

Il Stokes and Navier-Stokes Equations on Uniform C?*!-Domains

9

10
11

12

The Stokes Resolvent Problem: Perfect Slip Boundary Conditions . . . .
9.1 Homogeneous Boundary Conditions . . . . ... ... ... ...
9.2 Inhomogeneous Boundary Conditions . . . . . . .. .. ... ...

The Stokes Resolvent Problem: Partial Slip Type Boundary Conditions

The Stokes Operator . . . . . . . . . .. ..

11.1  Projected and Non-Projected Equations . . . . . ... . ... ..
11.2 Stokes Semigroup . . . . . . ...
The Navier-Stokes Equations . . . . . . .. ... ... .. ... .....

IV Stokes and Navier-Stokes Equations in TLL Spaces

13

TLL Spaces . . . . . . oo o
13.1  Definition and Properties . . . . . . ... ... ... ... ...
13.2  The Laplace Operator in TLL Spaces. . . . . . . . ... ... ..
13.3  The Stokes Operator in TLL Spaces . . . . .. . ... ... ...

11
11
11
12
14
14
15
17
17
18
22
22
23
24
27

33
33
33
34
39
41
49
52

55
95
95
o7
59
64
64
65
68

73
73
73
7
80



Contents

14  The Navier-Stokes Equations in TLL Spaces . . . . . . .. .. .. ... ..
14.1  The Time Derivative Operator . . . . . . ... ... ... .....
14.2  Continuous Embeddings and Multiplication Results . . . . . . . . .
14.3  Maximal Strong Solutions . . . . . . . ... ... ...

A Extension Operators

B An Alternative Proof of Proposition 8.1(ii)
Summary

Contributions

Bibliography

91

93

99

101

103



Introduction

In mathematical fluid dynamics the Navier-Stokes equations

pou — pAu+ Vp+ p(u-Viu =pf in (0,7) x
divu =0 in (0,7) x Q (0.1)
uli—p =wup in £,

play a central role. They describe the behavior of a moving incompressible Newtonian
fluid with velocity field v and pressure p inside a domain 2 < R™. The vector field f
is the external body force affecting the fluid and wug is the observed velocity field at a
starting time ¢ = 0, while the interval (0,7T") is the remaining (finite or infinite) timeframe
under consideration. The appearing constants are the density p and the viscosity pu.

From a physical point of view, the space dimensions n = 2 and n = 3 are of greatest
interest. In this case, the domain {2 may be seen as filled with a moving fluid, described by
the mentioned quantities. Depending on the choice of the domain €2, it is further possible
to use the Navier-Stokes equations to describe the flow around a fixed body. This is the
case if € is an exterior domain, i.e., the complement of €2 is a compact nonempty set
(see [52]).

From a mathematical point of view it is convenient to reformulate (0.1) such that one
may concentrate on the nonconstant quantities. Dividing the first line of (0.1) by p > 0
and considering V(p/p) as the unknown gradient field instead of Vp, yields that the
quotient p/p is the only remaining quantity which is constant in the model. Now for
the mathematical theory the actual size of the quantity u/p is not essential. Hence, for
simplicity in the notation, it is common to set u/p = 1 and we receive

ou—Au+Vp+ (u-Viu =f in(0,7)xQ
divu =0 in (0,7) x Q
u]t:() = Up in Q.

(0.2)

Still, note that p/p is physically not a dimensionless quantity so that, strictly spoken, the
physical unit is skipped by setting p/p = 1. Nevertheless, for the mathematical theory
the assumptions are made without loss of generality, the problem (0.2) is meaningful
and any obtained mathematical result can be reformulated as a statement with precise
physical meaning. Moreover, as this is common as well, we will call the quantity p in
(0.2), which now stands for the pressure divided by the (constant) density, the pressure
again. Since p in (0.2) is proportional to the physical pressure, it has the same behavior
in all aspects that we are going to consider in this thesis.

Note that uniqueness of solutions to the Stokes and Navier-Stokes equations can only
be achieved for a couple (u, Vp) of the velocity and the gradient of the pressure but not
for the pressure p itself, since for any solution (u,p) and an arbitrary constant C' also
(u,p+ C) is a solution.

We will further use 1 < p < o0 as a parameter, appearing in some function spaces, but
keep denoting the pressure in (0.2) by p as well, since it will appear as a gradient Vp
only, so there will not be any notational confusion.



Introduction

The linearized version of the Navier-Stokes equations,

ou—Au+Vp =f in(0,7)xQ
divu =0 in (0,7) x Q (0.3)
u’t=0 = Up in Q,

called the Stokes equations, is on the one hand of great interest itself in fluid dynamics.
On the other hand, a treatment of (0.3) is usually the starting point in order to obtain
properties of the Navier-Stokes equations, subject to certain boundary conditions, like
well-posedness, regularity or stability.

In case 02 # J one has to add conditions on the boundary to the equations. Inter-
preting the domain € as filled with a fluid gives that 02 may be seen as a rigid wall
and the boundary conditions state the expected behavior of the fluid at this wall. One
reasonable condition is that the fluid may not penetrate the wall, i.e.,

v-u=20

shall hold at the boundary, where v is the outward unit normal vector at 02. In this
thesis, we will consider the Stokes and Navier-Stokes equations subject to partial slip
type boundary conditions of the form

{ I (au + (Vu' £ Vu)p) =0 on (0,T) x 09 (0.4)

v-u =0 on (0,7) x 09,

where a € R and we write (0.4)  or (0.4)_, depending on whether Vu” +Vu or Vu? —Vu
is considered. Here I1; is the projection onto the tangent space at 0f2.

The case (0.4) for a > 0 is called Navier condition, describing the situation that the
fluid slips along the wall and is stressed in tangential direction, where o« > 0 is the related
friction parameter. If we (formally) let & — 00 then we end up with the no slip boundary
condition (or Dirichlet boundary condition), i.e.,

u=0 on (0,7) x 0,

meaning that the fluid does not slip along the wall. The case (0.4)_ for a = 0 is called
perfect slip boundary condition (cf. [48]). In the physically interesting case n = 3 this
equals the vorticity condition

vxcurlu =0 on (0,7) x Q2
v-u =0 on (0,7) x 09Q.

In investigations of the Stokes equations the considered class of domains 2 = R"™ mostly
consists of Helmholtz domains, i.e., for the Lebesgue space L, the classical Helmholtz
decomposition

Lq(Q)n = Lq,U(Q) @ Gq(Q) (0-5)

holds for all 1 < ¢ < 0. Here Ly ,(2) < Ly(2)™ is the closure of the space of smooth
functions with compact support and vanishing divergence in 2 and G4(€2) is the space
of gradient fields Vp € Ly(2)", where p € Ly 1oc(£2).

For the no slip boundary condition on domains with compact boundary but also on
bent and perturbed half spaces it has been proved by FARWIG and SOHR (see [25]) that
the boundary regularity C! is sufficient for well-posedness in L, (for 1 < ¢ < o) of
the Stokes equations, where analyticity of the Stokes semigroup has been established.
GEISSERT, HECK, HIEBER and SAWADA (see [30]) have proved that, on domains with



uniform C3-boundary, validity of the Helmholtz decomposition (0.5) is sufficient for the
Stokes equations to be well-posed, where maximal L,-regularity of the Stokes operator
has been proved. Nevertheless, BOLKART, GIGA, MIURA, SUZUKI and TSUTSUI have
shown that validity of the Helmholtz decomposition is not a necessary condition for
well-posedness of the Stokes equations (see [11]).

First mathematical approaches on the Stokes equations with first order boundary con-
ditions are due to MIYAKAWA and GIGA (see [51], [32]; cf. [60]). Investigations concerning
Robin boundary conditions are due to SAAL, SHIBATA and SHIMADA (see [58], [57], [59],
[61]). For further investigations on that topic we refer to [12], [19] and [31] and for a
general overview of the state of research for the Stokes equations in the Ly-setting see [37].

One aim in this thesis is to obtain results concerning the Stokes equations and the
Stokes resolvent problem subject to partial slip type boundary conditions on a large
class of domains including particularly

e domains with noncompact boundary and
e non-Helmholtz domains.

The localization technique that we are going to apply has already been utilized in a similar
way by KUNSTMANN for second order elliptic operators subject to no slip boundary
conditions (see [46]). It turned out that uniform C*!'-regularity of the boundary oS
is suitable for our purposes and our methods, due to the structure of the boundary
conditions (0.4).

Using the special structure of perfect slip boundary conditions, we first establish ex-
istence and L, ,-invariance of the Laplace resolvent (Theorem 6.5 and Proposition 8.1).
This feature was utilized in [50] already (cf. [48], [45]) to study the Stokes operator sub-
ject to Neumann type boundary conditions on domains with Lipschitz boundary. We
further make use of a suitable generalization of the Helmholtz decomposition, given by

Lg(Q)" = Lo () ©G4(2) (0.6)

(Lemma 4.1 and (4.1)), where G,(2) is a proper subspace of G4(£) in case the decompo-
sition (0.5) does not hold. Note that in case the intersection Ly ,(2) n G4(£2) has finite
dimension the concept of generalized Helmholtz decompositions has already been estab-
lished by FARWIG, SIMADER, SOHR and VARNHORN (see [24]|). We apply the results for
the Laplace resolvent to obtain a unique solution to the Stokes resolvent problem

Au—Au+Vp =f inQ
diveu =0 inQ

subject to perfect slip boundary conditions as well as the corresponding resolvent esti-
mate, where Vp is contained in the space G4(€2) (Theorem 9.1 and Theorem 9.2). In case
the gradient field Vp is assumed to be contained in the space G4(2), we prove that solu-
tions of the Stokes resolvent problem are no longer unique if G,(12) is a proper subspace
of G4(92). In spite of this fact, note that this can not occur in the ground space

1) = Ly(2) +La(), 1<g<2
P L) m La(Q), 2< g < o,

which has been utilized by FARWIG, KOZONO and SOHR and later also by ROSTECK
(see [22], 23], [55]). A main difference to the Lg-approach is that for L,(£2) the related
Helmholtz decomposition holds on arbitrary domains with uniform C?-boundary.
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We generalize the results about perfect slip boundary conditions to the boundary
conditions (0.4) by utilizing a perturbation argument (Theorem 10.2) and deduce that
the related Stokes operator is the generator of a strongly continuous analytic semigroup
(Theorem 11.3). Our results about the Stokes equations on uniform C?!-domains are
finally applied to the Navier-Stokes equations to obtain corresponding local mild solutions
(Theorem 12.1).

Since there seem to be no results in the literature about the Stokes equations in L,
(1 < ¢ < o) on a general class of non-Helmholtz domains (in the sense of (0.5)), the
main results on that topic, stated in this thesis, are new.

A second aim in this thesis is to develop the theory of maximal regularity for the Stokes
equations and to apply this to the Navier-Stokes equations in the whole space for the
scale of Triebel-Lizorkin-Lorentz spaces (TLL spaces) Fjy .

TLL spaces F,; may be seen as a unification of Triebel-Lizorkin spaces F;, and
Lorentz spaces L, , and were introduced by CHENG, PENG and YANG (see [14]) in 2005.
The admissible parameters are s € R, 1 < p,q < o0 and 1 < r < oo. Implicitly the
spaces Fj, appear in the pertinent monograph of TRIEBEL (see [66], Sec. 2.4.2) already.
In 2011, XI1ANG and YAN (see [67]) already considered TLL spaces in the context of
partial differential equations and established local well-posedness of a quasi-geostrophic
equation.

Depending on the choice of the parameters s,7,p,q, the scale Fp, contains many
important function spaces, e.g.,

e Bessel-potential spaces H,,

e Sobolev-Slobodeckil spaces W,

e Lorentz spaces L, and particularly
e Lebesgue spaces Ly,

Local well-posedness in L, in the whole space under suitable conditions for the parameters
is due to KATO (see [44]). For mild solutions in L,, in the whole space see [68]. As
initiators for investigations in the subject, concerning classical function spaces, we should
mention LERAY, HOPF, FuJITA, KATO, SOLONNIKOV and GIGA. We refrain from trying
to give a complete list. Instead, we refer to the monographs [29] and [64] and the
references therein.

The main result (Theorem 14.7) gives existence and uniqueness of local strong solutions
on a maximal time interval in 2 = R™ for (0.2) in TLL spaces. Since the result is valid
for general TLL spaces, this finally yields corresponding outcomes simultaneously in all
the function spaces listed above.

We will make use both of the analytic semigroup theory and the theory of sectorial
operators in this thesis. Considering the Stokes and Navier-Stokes equations in TLL
spaces, we will focus on sectoriality and maximal regularity while in classical Lebesgue
spaces on domains we will focus on analytic semigroups. Of course, for an operator
A 92(A) ¢ X — X it is well-known that generating a bounded analytic strongly
continuous semigroup is equivalent to —A being pseudo-sectorial, if the spectral angle

is smaller than 7. Still, the approaches and notation are different: An operator A,
generating an analytic semigroup, usually relates to the Cauchy problem
/ — =
W(t) ~ Au(t) = (1), 1< (0.T) o)
u(0) =0



and the focus is on the corresponding resolvent set, lying in a sector with angle . Here
the related result becomes stronger the bigger the angle 6 can be chosen. A sectorial
operator A usually relates to

u'(t) + Au(t) ft), te(0,T)
{ w(0) =0, c (0.8)

I

the focus is on the corresponding spectrum and the related spectral angle ¢4 shall be
preferably small. In the Chapters II and III, where the focus is on analytic semigroup
theory, we define the Laplace operator, including the related boundary conditions, via
the mapping v — Awu. In Chapter IV, where the focus is on sectoriality, we define the
Laplace operator in TLL spaces via u — —Au, for the sake of convenient notation in
that subject.

This thesis is organized as follows. In Chapter I we begin by introducing general
notation and basic function spaces. We proceed with some preliminary results about
domains with noncompact boundary, including related trace operators and the versions
of Gault’s theorem and Green’s formula that we plan to make use of. In the common
literature, results of that kind for noncompact boundaries are hard to find. Therefore,
some of the proofs are adapted versions from results that one can find in the literature in a
more restrictive setting. We further state and discuss our main assumptions for the results
concerning Stokes and Navier-Stokes equations on uniform C?!-domains. Eventually, we
present the main tools and notation in the context of maximal regularity and bounded
H®-calculus that we are going to make use of for the main results concerning Navier-
Stokes equations in TLL spaces.

In Chapter II we apply a localization method for domains with noncompact boundary
to the Laplace resolvent problem subject to perfect slip boundary conditions. We further
prove L, ,-invariance for the related resolvent, which serves as a main tool in our con-
siderations about the Stokes equations subject to partial slip type boundary conditions.

We state and prove our main results concerning the Stokes and Navier-Stokes equa-
tions on uniform C?!-domains in Chapter III. For this purpose, we start with the Stokes
resolvent problem, where we make use of the results in Chapter II in order to treat perfect
slip boundary conditions. A perturbation argument is used subsequently to transfer the
obtained result to general partial slip type boundary conditions. Afterwards, we prove
existence and suitable L,-L4-estimates for the Stokes semigroup in order to obtain exis-
tence and uniqueness of local mild solutions for the Navier-Stokes equations on uniform
C?*!-domains.

In Chapter IV we begin by defining and investigating TLL spaces. We establish fun-
damental properties of TLL spaces, such as property («) and their affiliation to the class
HT and we further prove a multiplier result of Mikhlin type. We prove that the Laplace
and the Stokes operator in TLL spaces admit a bounded H®-calculus. Finally, this
is applied to obtain unique maximal strong solutions of the Navier-Stokes equations in
TLL spaces. We further prove that for the obtained maximal solution we either have a
blow-up at finite time or the solution exists globally in time.
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| Preliminaries

1 Essentials

1.1 General Notation

For x € R™ we denote the components by x;, j = 1,...,n and we write z’ for the vector
of the first n — 1 components. We denote the components of a vector field v in R™ by u/,
sou = (ut,...,u™)T. The identity matrix is I := (J;j)ij=1,..n € R"*". We also denote

the identity map between normed vector spaces by I if no confusion seems likely. The
transposed of some vector or matrix v is vT. We denote z - Y= Z?:I x;y; for two vectors
and A- B := szzl A;;B;; for matrices, respectively.

For a linear continuous operator T' : X — Y and two normed spaces X,Y we write
Z(T) for its range and A (T) for its kernel as well as ||T'|x_y for the operator norm
in Z(X,Y), the space of continuous linear operators from X to Y. We further denote
Z(X) = Z(X,X). For any normed space X the related dual space is denoted by X’
and the duality pairing is (-,-)x x/. We denote | - | ~ | -||" for two equivalent norms | - |
and || - |, as well as ||| < | |/ in case there is a constant C' > 0 such that |- | < C| - |’

The outward unit normal vector at the boundary of some sufficiently regular domain
QcR"isv: 0l - R" As usual, A\, denotes the Lebesgue measure on the Lebesgue
o-algebra (i.e., the completion of the Borel o-algebra) of R™ and o denotes the related
surface measure.

By the gradient of a function u we mean the column vector Vu = (d1u,...,0nu)"
and by the gradient Vu of a vector field with m components we mean the matrix Vu =
(Vul,...,Vu™), i.e., Vul is the Jacobian matrix of u. We further denote D (u) :=
Vu®l + Vu in case m = n. The vector containing all partial derivatives of order k > 2 of
a function u is V¥u (with n* entries) and similarly we define V*u (with mn” entries) if
u is a vector field with m components.

Divergence and Laplace operator are denoted by div and A, respectively. For a matrix-
valued function v with components v; ; (i, = 1,...,n) we denote by divv the column
vector with entries div(v;1,...,viy) fori=1,...,n.

The half space is R} = {x € R" : z;, > 0} and the bent half space is H,, := {x =
(o', 2,)" € R* : 2, > w(a)} for w: R" 1 — R. For a function w on R*! its gradient
with respect to the n— 1 components is V'w and its matrix of second derivatives is V"?w.
Similarly we use the notation V’*w for higher derivatives k € N and we write A’ for the
Laplace operator with respect to the first n — 1 components.

Given any parameters a,b,c,... we write C = C(a,b,c,...) to express that C is a
constant depending on (and only on) these parameters. We further make use of the
index notation C, . to emphasize dependencies of the constant on certain parameters.
In general, C,C’,C",... are positive constants that may change from line to line. We
primarily denote constants by C' and make use of C',C”,... where it is relevant to
emphasize that the constant is now a different one.

The natural numbers N do not contain zero and we put Ng := NuU {0}. We denote the
Euclidean norm on R™, C™ R™*" or C"*™ by |-|. The ball with respect to the Euclidean
norm with radius » > 0 and center a is always denoted by B,(a). The sector in the

11



I Preliminaries

complex plane with angle 0 < § < mis Xg:={AeC: XA #0, |arg(\)| < 6}.

1.2 The Functional Analytic Setting

As usual, C*(Q) is the space of k-times continuously differentiable functions on some
open subset = R for k € Ny and C*1(Q) is the subspace of functions with a Lipschitz
continuous k-th derivative.

For 1 < g < oo, any open subset 2 € R™ and a Banach space X, the usual Lebesgue
space is denoted by Lq4(9, X), i.e., the space of measurable (i.e., also separable-valued)
functions f : Q — X satisfying

j 1% dAn <
Q

if ¢ < o0 and

ess-sup | f(y)|x < o (1.1)
yed

if ¢ = o0, where two functions are considered equal if they coincide except on a null set.
We further use the notation Ly(€2, X) in case 2 is any measure space with some measure
p and a related o-algebra. We refer to 7] for the definition of X-valued measurable
functions and the Bochner-Lebesgue integral.

The Sobolev space W(f(Q,X ) on a domain @ < R" for some k € Ny consists of
those functions f € L,(€, X) satisfying dou € Ly(€Q2, X) for o € Nij, |a| < k. In case the
underlying domain € is clear from the context, we often write |- |, for the Lebesgue norm
and || - |4 for the Sobolev norm. Otherwise, we write | - |40 and | - |40, respectively.
The space of g-summable sequences for 1 < ¢ < o in a Banach space X is [4(X), i.e.,
the space of (zx)ken, = X such that

1
I@nnenolly ) = (5 lewl )

keNg

is finite and in case each element of the sequence shall be allowed to be contained in a
different Banach space X;, where ¢ € I comes from a countable index set I, we write
l¢(@;c; Xi). Furthermore, in case X; is a function space F'(€;) or F/(d€;) of functions
on some domain §2; or on its boundary 0Q; (eg., F = Wk for ke Ny and 1 < ¢ < 0), we
make use of the short form | - | () for the norm in ! (@ZE ; X;). In addition, for some
Banach space X and s € R let l;( = lg( Pren, Xr), where Xj, := (X, 1254 - ||x). In
case X = R or X = C we denote [j = [3(X).

The Sobolev-Slobodeckii space W7 (Q2) for s = k+ A, k € Ny, 0 < A < 1 can be defined
as the space of functions u € W(f(Q) such that

1
) — ),V
fulwzcor = Iy + 5 ([ [ S dy s
¢ “ | . Iy fcl

is finite (cf. [49]). We will further need Sobolev-Slobodeckil spaces on the boundary

W3 (082) for s =1 — l constituted by the image of the trace operator

tr qu(Q) — Ly(09), tru=ulsq Yue CL(Q).

For a treatment of the trace operator and a concrete definition of Sobolev-Slobodeckit
spaces on the boundary we refer to [49].* See also [66], Thm. 4.7.1 for the special case
of bounded smooth domains.

* Note that the Besov scale B;(0€2) from [49] coincides with the Sobolev-Slobodeckil scale, since in our
considerations s never is an integer, except s = 0.

12



1 Essentials

On the whole space, via real and complex interpolation, we receive Sobolev-Slobodeckit
spaces
Wi (R, X) = (Ly(R", X), W; (R", X)) .

kzq

(in case s ¢ N) and Bessel-potential spaces

Hi(R ) = [L,(R", X), WE(E", )]

I

el

respectively, where k e N, 1 < ¢ < o0, 0 < s < k and X is a complex Banach space.
Moreover, W7 (R", X) = Hj(R", X) if s € N. For an introduction of the real interpolation
functor (-,-)g,4 and the complex interpolation functor [-,-]g we refer to [9] and [66].

We set CX(Q) := {u e C®(Q) : spt(u) = Q compact} and CF,(Q) := {u e CX(Q)" :
divu = 0}, where spt(u) is the support of some function u. The space of solenoidal func-
tions is Ly, (92) := CX,(€2), where the completion is taken in L,(2)". The homogeneous

Sobolev space W(}(Q) = {p € Lg10c(2) : Vp € Ly(2)"} is endowed with the seminorm
|p|W1(Q) = |Vpllg. We further define the space of gradient fields G4(€2) := {Vp : p €
q

I//I\/ql (2)}, endowed with the Ly-norm (subspace topology of Ly(€2)"™). The dual exponent
ofl<g<wisd,ie., é + % = 1. As usual, for some domain 2 and some 1 < g < o0,
we say that the Helmholtz decomposition holds if the direct decomposition

Lq(Q)n = Lq,U(Q) @ Gq(Q)

is valid.

We denote (f, g)q,q := §¢ fg dNn for f e Ly(Q), g € Ly () and {f, g)q.q = §o f-9 dMn
for fe Ly(2)", g€ Ly(2)". Now {f, p) is the application of a distribution f € 2'(Q) to
a test function ¢ € C (1), in particular (f,¢) = {;, feo d\, in case f € L{ (Q) (similar
for fe 2'()™ and p € CL(Q)™).

The Laplace operator subject to partial slip type boundary conditions in L, (€)™ (for
a sufficiently regular boundary 092) is
Aiyq : .@(A;—‘jq) < Ly()" — Lg()", u— Au

(67

on Z(AL,) = {u e WZ(Q)" : I (cu + Di(u)r) = Oand v - u = 0 on 090}, where
1 < g <o, aeR and IL; is the projection onto the tangent space at some point on 0.
The Laplace operator subject to perfect slip boundary conditions is

Aps = Aps,q . _@(Apsﬂ) (e Lq(Q)n — Lq(Q)n, u— Au (1.2)

on Z(Aps,q) == {ue W2 ()" : D_(u)r =0 and v - u = 0 on 0Q}.

The space of Schwartz functions is denoted by .(R™) and thus .#”(R") is the space of
tempered distributions. The corresponding space of X-valued Schwartz functions (where
X is a Banach space) is Z(R", X) and we set '(R", X) = Z((R"),X), i.e., the
space of continuous linear operators T': . (R") — X.

For a Banach space X and a measure space (2, A, ) let M(£2, X) be the space of
measurable (i.e., also separable-valued) functions f : Q@ — X. The Lorentz space
Ly (X) = Ly, (2, X) € M(Q,X) with parameters 1 < ¢,7 < o0 consists of those

functions whose Lorentz quasinorm
e dt\ 7
1 T
<J [tqf*(t)]Tt) , T<ow

£z, 0.x) = 0

1
supta f*(t), r =00
t>0

13
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is finite, where
f*(t) =inf{a > 0:ds(a) <t}, t=0

is the decreasing rearrangement and
df(a) = p({z€ Q: [f(2)| > a}), a=0

is the distribution function of f e M(€, X). Two functions in L, (€2, X) are considered
equal if they are equal except on a null set (with respect to u).

For 1 < qo,q1,9 < 0, qo # q1, 1 <7rg,7r1, 7 < oo and 0 < 6 < 1 such that % = 1q;00+(%
we have

(LQO,TO (X)’ Lth,?“l (X))g,r = Lq,T(X)

(see [66], Rem. 1.18.6/4). In view of the identity Lq 4(X) = Lq(X) the Lorentz spaces are
identified as real interpolation spaces of the Lebesgue spaces L,(X). Note that L, (€2, X)
is hence normable in case ¢ > 1. We denote the corresponding norm by | - |, (x) for
X-valued functions and we denote | - ||, for the Lorentz norm of scalar functions.

In the following we assume that X is of class HT (we give one possible definition for
spaces of class HT in Section 5). In case s = m € Ny the Bessel-potential spaces are
given by the Sobolev spaces, so H;*(R", X) = W (R", X). For se Rand 1 < ¢ < o0 we
will also use the representation

H(R", X) ={ue.?(R", X): F ' (1+|¢*)2Fue Ly(R", X)},

where | Z71(1 + [¢]?)2.7 - |z, (r,x) 18 an equivalent norm in H(R", X) and Fu =
u denotes the Fourier transform of some function u. We refer to [3] and [8] for the
Fourier transform of vector-valued functions. For the case of scalar functions see also [34].
Moreover, the continuous embeddings

- -2
HE(R", X) c WS “(R", X) ¢ HS (R, X)

hold for any e > 0. We refer to [40] and [4] for a detailed treatise of Bessel-potential and
Sobolev-Slobodeckil spaces.

In general, if F'(R, X) is some normed function space (e.g., I' = H; or F' = W) and
U < R open, then we denote by F'(U, X) the space of restrictions of functions u € F(R, X)
to U, equipped with the norm |u|p@, x) = inf{|v|pg x) : v € F(R, X),v|y = u}.

2 Uniform C?*!'-Boundaries

2.1 The Definition

Let n > 2 and let Q < R™ be a domain with C?!-boundary, so we can cover Q with open
balls By, I € I and a countable index set I" such that, writing T'g := {{ e ' : B; < Q} and
Iy :={lel: B ndQ+# J}, for each [ € T'; we can find a compactly supported function
wy € C*L(R" 1) which describes the boundary locally in B; after rotating and shifting
the coordinates. The latter precisely means that for [ € I'y we can find a rotation matrix
Q; € R™™ and a translation vector 7; € R™ so that

QﬁBlZHlﬂBl and @QﬂBlzaHlﬁBl,

where H; := Q?le + 7 is the rotation and translation of the bent half space H,,,.

14



2 Uniform C*'-Boundaries

We say that Q has a uniform C?*'-boundary (or Q is a uniform C*'-domain) if we can
choose the cover By, [ € I' in such a way that the radii are all bigger or equal to some
fixed p > 0 and if there is a constant M > 1 such that

IV e, |V 2w1leo, [V Pwrlleo < M (2.1)

for all [ € Ty (note that w; € W2 (Q)).

Now, without loss of generality, we can assume that all of the balls By, [ € " have
the same radius p > 0 and that there is N € N so that at most IV of the balls B; have
nonempty intersection. Moreover, for arbitrary x > 0 we can assume that

VWil < % (2.2)

holds for all [ € I';. This can be achieved by choosing the radius p small enough and the
rotations @ in such a way that the plane {z,, = 0} is rotated into the tangent plane of
some point on d€) N By.

For two indices [, m € I' we write m ~ [ if B, n B; # & and we write m ~ [ if m ~ [
and [,m € I';. Note that for any [ € I' we have #{m ~ [} < N.

In order to handle uniform C?'-domains on a local level, we introduce the following
partition of unity. Let (¢;)er € C*(R™) so that 0 < ¢; < 1, spt(¢;) < B; and

i =1. (2.3)

lel

Since the B; have a fixed radius p, we can choose (¢;)ier in such a way that

sup |[Veille <0 and  sup || V2] < 0. (2.4)
lel’ lel’

2.2 Parametrization of the Boundary

Fix some [ € I'y. A C?*!-diffeomorphism between H,, and R’ is given by

~ SU/
. = n
o H, —>RY, x> (xn_wl(x,)>

with the inverse

_ = a
;'R = H,, xv—»( )

Ty, + wi(z)
We obtain
1 1
Ve, = o C(ve) =
—o01w; ... —é’n,llwl 1 Aw; ... Op—iw; 1

Now WU;(z) := &(Qi(z — 1)) defines a C%!-diffeomorphism ¥; : H; — R?. Using
the canonical extension of ®; to R™ and therefore of W¥; as well, we receive functions
®; : R® = R"™ and V¥; : R® — R", respectively. Restriction to B; gives

B>V, a2 &(Qi(z — 7))

15
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onto some open subset V; < R™ and its inverse
UV, B, xe QT (2) + 7

The set of diffeomorphisms ¥;, [ € I'; characterizes the C?!-manifold 0. The related
parametrization is given by ¢;(§) := ‘Ill_l (8), ie.,

o U — 00N By, &— QZT\Ill—l <g> + 7= QlT (w1§€)> + 7, (2.5)

where U; := {¢ e R" L (g) € Vi} (see [27]). We have

1
Ve =Qf o (2.6)
01wl . 8n_1wl
and therefore, since QZQZT =1,
1 61wl 1
(Vo)Ve" = :
1 Op1w !
n 1 &1wl oo 6n_1wl

Using the theorem of Binet-Cauchy, we obtain det ((V#;)V#") = 1+ |V'w|?, in partic-
ular
Jdet (Vo) TaT) | > 1. 27

Equation (2.6) further yields
IV <C Viely (2.8)

with a constant C' = C(n, M) > 0 and M > 0 from (2.1). Using Cramer’s rule, we obtain

(Vo)Ve, ")t = det ( (V;z)vqsz) ((—1)* det[(vgm)wﬁ]m)ijlwnfl
1

B 1+ |V’wl|2

(2.9)
(~1)™* det[(Vo) Ve lig)r 1

where [A];; means cancellation of the i-th row and j-th column of some matrix A.
Together with (2.7) and (2.6) this yields

(Vo) VeT) e <C WieTy

with a constant C' = C(n, M) > 0. Since we can estimate

v’

1
T vl < IV elel Vel

with C' = C(n) > 0, (2.9) together with (2.8) also yields
(Vo) V") e <C Viel; (2.10)
where C = C(n, M) > 0.
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2 Uniform C*'-Boundaries

2.3 The Outward Unit Normal Vector

Let Q  R™ be a uniform C?*'-domain and n > 2. The outward unit normal vector at
082 is denoted by v : 02 — R™. Let 1 : 0H,, — R™ be the outward unit normal vector
at 0H,, for [ € I'1, which is given by

N 1
V= —F—
A/ |V’wl|2 +1

and let v; : 0H; — R™ be the outward unit normal vector at dHj, i.e., v, arises from
rotating and translating 7;. Then we have v = v on ¢Q2 N B; = 0H; n B). The repre-
sentation (2.11) gives that we can extend 7 constantly to a function in W2 (H,,)" and
therefore we can also extend v} to a function v, € WO% (H;)™. This trivial extension yields
a constant C' = C'(n, M) > 0 so that

(Orwrs - v vy Oprwy, —1)T, (2.11)

121]l2,00,61, < C (2.12)

for all [ € T'y, where M is the constant from (2.1). Now
vi= ) i e WH(Q)" (2.13)
lEFl

is an extension of v, since we have

b 3 il < NC

|7l = sup [Xp,, Y, ¢inile < su
mel’

mely l~m 1lam

and the analogous estimates for | V7| and [|[V27]g. In total we receive
[Zl2,m0 < C (2.14)

for C = C(n, M) > 0.

2.4 Boundary Operators

For n > 2 let Q < R™ be a uniform C%*'-domain and v : 90 — R” its outward unit
normal vector. For a vector field u on €2 with n components the normal and tangential
projections of u on 0€) are given by

o I,u:= (vv)u and
o ILu:=(I—wvvhu,
respectively. We have II,u = (v - u)v, in particular

ILu=00n0 < v-u=0ond
and in dimension n = 3 we also have II,u = —v x (v x u) as well as

ILLu=00n02? < v xu=0ond.

Consider the two boundary operators Dy (u) = Vul + Vu = (Ojut £ Ou?)i j=1, m. In
dimension n = 3 we have D_(u)v = —v x curlu on 0. Also note that II,D_(u)v =
v (Vul )y — v (Vu)r = v (Vu)y — T (Vu)v = 0 and therefore

IL,D_(u)v =D_(u)r on 0N. (2.15)
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Lemma 2.1. Consider a scalar function ¢ on £ and some vector fields u,v,w on €
with ncomponents, respectively. We then have the following calculation rules (in case
the product rule for derivatives is applicable).

(i) div(D_(u)v) = (Vdivu — Au) - v + (Vul — Vu) - Vo.
(i) div(D_(u)Ve) = (Vdivu — Au) - V.
(iii) v-D_(u)w = —w - D_(u)v.

Proof. Simple computations yield (i) and (iii) while (ii) follows from (i), since v := Vo
implies (Vu! — Vu) - Vv = szzl(ajui — 0;u?)0;0j¢ = 0. O

3 Traces and GaulR’s Theorem

Definition 3.1. Let 1 < ¢ < 0, let Q < R” be a uniform C%!'-domain and n > 2. We
define

B (Q) = {f € Ly(Q)™ : div f € Ly(Q)}
with norm | f| g, ) := [ flg + [ div fllq and

L
q

W, #(09) = W, 7 (29)]"

Lemma 3.2. Let 1 < g < o0, n>=2 and let Q < R™ be a domain satisfying the segment
property (cf. |2]). Then CSO(Q) < E4(Q) is dense.

Proof. Step 1. Let J. € CZ(R™) be the mollifier from [2], Sec. 2.17, i.e., Je(z) := & J(£)
for e > 0 and a function J € CP(R™) satisfying J(x) = 0 for all x € R", J(z) = 0 for
|z] = 1 and g, J(x)dz = 1. Following the arguments in the proof of [2], Lem. 3.15, we
aim to show that for u € E,(Q) and any subdomain ' << Q (i.e., ' is compact and
Q)

Jeru 2% 0 in By () (3.1)

holds, where J. * © means convolution of J. with the trivial extension of u to R™. Due
to [2], Lem. 2.18 (¢) we have

| o vy < oy and  Jexv-D pin L(Q) Vo e Ly(Q). (3.2)

Now let Q' cc Q, u e E,(Q) and 0 < e < dist(€Q', 0Q). Writing @ for the trivial extension
of u to R™, we have for any ¢ € CZ ()

JI(JE*U).vqsdAn=Jnfng(x_y)JE(y),W(x)dxdy

- fou e~ ) (0)350@) do dy
_]ZJ o 00 (x — y) Je(y)d() da dy
—;1 L,(Je % 0ju? ) d,

= —J (Je = divu)p d,,
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3 Traces and Gaulk’s Theorem

so div(Je # u) = Je = divu holds in the sense of distributions in €’. Therefore, (3.2) gives

| div(Je # w) — divul oy = |e* diva — divu| ) =0

and (3.1) is proved.
Step 2. Following the arguments in the proof of [2], Thm. 3.16, we establish density
and continuity of the embedding

W, ()" A CP(Q)" < Ey(Q) (3.3)

by using (3.1). Continuity of (3.3) is obvious, since we can estimate the E,-norm directly
by the W, -norm. Now let u € E, () and 6§ > 0. Set Q := {z € Q : |z| < k, dist(z, 0Q) >
%} for ke N as well as Qo = Q-1 = & and Uy := Qi1 0 (Q_1)¢. Then the Uy, ke N
form an open cover of €. Let (¢;)ren be a related partition of unity, i.e., ¥y € CL(Uy),

O<¢r<land > ¢pr=1o0onQ. For0<e< we have

1
(k+1)(k+2)

spt(Je * (Yru)) < Qo N (Q—2)¢ =: Vi cc Q.

We apply (3.1) to Q' = V; now: Starting with some k € N, let 0 < ¢ < m such
that 5
| er * () — dwul gy = |6, * (Yrw) = wulp, i) < o5

Set @ := >77 | Je, * (¢ru) and note that on any Q' << Q there is only a finite number
of nonzero summands. For x € 0, we have

k+2 k+2
u(z) = Z Yj(x)u(zr) and P(z) = 2 Je; # (hju)(x).
= =1
Hence ® € C*(Q2) and
k+2

lu = gy < D Ie, * (5u) — bjul g, ) < 6.
j=1

By use of the monotone convergence theorem we conclude
lu = @lE, @) = im Ju—2fg@q, <4

so embedding (3.3) is dense.
Step 3. The embedding CF(Q) < W (Q2) n C*(Q) is dense, due to [2], Thm. 3.18. So,
using the density and continuity of (3.3), we obtain the statement. O

Lemma 3.3 (Trace). Let 1 < ¢ < o0 and let Q be a uniform C*'-domain. Then the
trace

1-1 —
tr = trog : qu(Q) — W, 1(09), tru=ulsg Yue CL(Q)

is continuous. For q > 1 it is surjective with a continuous linear right inverse

Roq : W, H9(0Q) — WH(Q).
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Proof. In case 1 < q < oo we refer to [49], Thm. 2, where the assumption is only
a uniform Lipschitz domain and the additional existence of a continuous linear right
inverse Ry : VV1 Y 10Q) — qu(Q) is proved. In case ¢ = 1 we make use of the trace
for bounded C*'-domains, constructed in [20], Thm. 5.5/1. Choosing for all parts of the
boundary 02 n By, | € I'y a bounded C'-domain U; such that oU; n B; = 0Q n B; and
denoting by tr; the trace operator for U;, we can define the trace of u € qu(Q) as

tru = Z try(fu).P
lEFl
Looking at the construction of tr; in the proof of [20], Thm. 5.5/1, we observe that the
uniformity of the boundary 02 yields that the continuity of tr; is uniform in [ € I'y.
Therefore, we obtain a uniform estimate of the operators tr; in their operator norm and
hence

s,y = || 3ttt ao

leF1
<[ Jmleb)do
lEF (}QﬁBl

= Z | try (7 u)| 1, (60nB))
lEFl

<C Z H‘PJQUHW}(QmBl)
l€F1
< Ol

with constants C' = C'(n,Q) > 0 and C" = C'(n,Q) > 0, where in the last estimate we
made use of (2.1) and of the condition that N of the balls B; have nonempty intersection
at most. O

We will write u|pq = tru also for u e qu (). Furthermore, for the surface integral we
will write §,o udo = §,, ulaq do for ue W] () if no confusion seems likely.

Lemma 3.4 (Gauk’s theorem in W). Let Q be a uniform C*'-domain, n > 2 and
ue WE(Q)"™. Then we have

J divud\, = J v-udo. (3.4)
Q o0

Proof. In case u € C*(Q)" see, e.g., |7], Thm. XIL.3.15. Since CX(Q) = W(Q) is
dense (see [2], Thm. 3.18), starting with some u € W{(Q)", we can find a sequence
(ur)ken = CP(Q)™ converging to u in W (Q)". Now, replacing u in (3.4) by wuy, we
see that the left-hand side converges to SQ divu d), and, thanks to Lemma 3.3, the
right-hand side converges to SaQ v-udo. O

Lemma 3.5 (Green’s formula in W,). Let Q@ < R™ be uniform C*'-domain, n = 2 and
1<qg<o. Then

J u(divv)d)\nzf u(wv)da—f Vu-vd\,
Q o0 Q
holds for all u € qu(Q) and v € qu,(Q)"

P The trace still does not depend on the specific choice of the partition of unity (¢;)ier. This is obvious
for u € CX(2) and the continuity of the trace yields the same for u € W, (Q).
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3 Traces and Gaulk’s Theorem

Proof. Lemma 3.4 yields {,div(uv)dX, = §,,v - (uv)do. Using the representation
div(uww) = Vu - v 4+ u(divv), we obtain the statement. O

Lemma 3.6 (Trace of the normal component). Let Q@ = R™ be a uniform C*'-domain,
n=>=2and 1l < q<o. Then there exists a bounded linear operator

1
7

tr, s Eg(Q) — W, 7 (09)

such that for any v € qu,(Q)" we have tr, v = v -v|aq in ijl/ql(aﬁ), i.e.,

1—1
try, v = [Wq 1(0Q) 29— J g(y'v)da].
o0
Forv e Ey(Q), we denote by (u,v-v)sq := {tru,tr, v)sq the application of tr, v to some
g=true W, 0Q), ue WHQ).

Proof. We follow the arguments in [64], Sec. I1.1.2 to construct the trace of the normal
component on uniform C*!-domains. Let g € qu*l/q(é’Q) and v € qu,(Q)” Then we

have Roq g € qu(Q), 80, using Lemma 3.5, we obtain

(Roa 9,divvyg g = (g, v - v)aa —{VRaq g,v)q q -

Therefore, we can estimate

g, v - v)aal < KVReaqg, U>q,q’| + [(Raq g, div U>q,q’|

<
< [VRaa glqllvlly + [ Roa glql divoly
< [Reaglwyr@lvle, @

< Cllglya-siagoqy 1P 01

where C' = C(n, q,§2) > 0. We obtain

|-

_1
q

tr, v = [qu (092) 59— (g, v v>ag] e W, 7 (09)

with || trl,vHW_ < C’HUHEq,(Q). Consequently,
q

S (00)

=

5 (WA - i, @) — W ¥ (29, trv = [g J o(v - v) do]

o9

is continuous. Since qu,(Q)” C Ey(Q) is dense (see Lemma 3.2), there exists a unique

continuous extension )
-7

1, By (Q) — W, 7 (69). O

Lemma 3.7 (Green’s formula in E,). Let Q = R" be a uniform C*'-domain, n > 2 and
1 < q < o0. Then we have for ue Wy () and v e Eqy(Q)

j u(div o) dA, = (u,v - v)sn — J Vu-vd,. (3.5)
Q Q
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Proof. Due to Lemma 3.2 we can choose a sequence (vg)geN < qu,(Q)” converging to v
in Ey(€2). Now Lemma 3.5 gives that (3.5) is true for vy, instead of v. It is not hard
to see that, for k& — oo, the two terms SQ u(divvg) dA, and SQ Vu - v d\, converge to
Yo u(divv) dA, and §o, Vu - vdA,, respectively. Using the continuity of tr : Wl(Q)

ql 1M(@Q) and tr, : Eg () — W, Ve (092), we obtain the third term (u,v - vg)sn

converging to (u, v - v)sq as well, for k — oo. O

Lemma 3.8 (Extended Gauf theorem). Let Q = R™ be a uniform C*'-domain, n > 2
and 1 < q < 0. Then for ue W}(Q) and v € Ey(Q) we have

J div(uv) dA, = {u,v - v)aq.
Q

Proof. The conditions for u and v give that div(uv) = Vu - v + u(dive) is a function
in L;(92), so the left-hand side of the formula is well-defined. Lemma 3.7 yields the
statement. O

4 The Spaces L,,(©2) and G,(Q?)

4.1 Main Assumptions

The following abstract statement is the starting point for the methods that we are going
to apply in Chapter III.

Lemma 4.1. Let E be a normed vector space and let Ev, Eo < E be subspaces with
E = Ey + Ey such that U := FEy n Ey is a complemented subspace of E, i.e., there is
a continuous linear projection Q : E — E with Z(Q) = U. Let Ey = (I —Q)E; and
Ey = (I — Q)E3. Then we have the following.

(i) For je{1,2}, Ej is a closed subspace of E in case F; — F is closed.
(i) By = E\®U and By = B>, ® U.
(i) E=E\@®FEy,=E ®FE,=EL®E,oU.

Note that the algebraic decompositions in (ii) and (iii) are topological ones in case the
appearing subspaces of E are closed.

Proof. First, note that E’l c Fq and EQ c FEs. Since Ej is a closed subspace of F; for
j = 0,1, we obtain (i).

In order to prove (ii), note that the definition of @ yields U = QF; = QF», since any
xz e U fulfills x = Qz € QF; for j = 1,2. Therefore, E; = QF; ® (I — Q)E; = U@Ej
holds for j =1, 2.

It remains to verify (iii). We have E1 n Ey © By n By = Z(Q) and on the other hand
EinEycEi=(I-Q)E, c (I—Q)E=4(Q). Thus Ey n Ey = {0}. Now let 2 € E.
Writing « = x1 + 29 with 21 € Ey and x5 € E» (ublng the assumption that £ = Ej + Ey),
we obtain x = (I —Q)x1+ (I —Q)za+ Q(z1+x2) € Ey+E;+U. Thus, E = BE\®@E,®U
holds. The remaining equalities in (iii) are consequences of (ii). O

For any domain 2 < R™, n > 2 and 1 < ¢ < o consider the following assumptions
about the spaces L, (£2) and G4(€2). These assumptions will be in the focus of our main
results in Chapter III.
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4 The Spaces Ly ,(€2) and G¢(2)

Assumption 4.2.
(1) Ug(2) := Lgs(2) N G4(2) is a complemented subspace of Lg(€2)".
(i) Lgo(92) + G4() is a closed subspace of L,(£2)".

Assumption 4.3. Ly(2)" = L, +(2) + G4(Q).

Assumption 4.4. C*(Q) ﬁ\/ql,(Q) is dense.

In case Assumption 4.2(i) is valid, we denote the continuous linear projection onto
Uy(Q) by Qp @ Ly(2)" — Lg(2)" and we can define a closed subspace of G4(€2) by
setting Gy () := (I — Q)G (). If Assumptions 4.2(i) and 4.3 are both valid, we have
the decomposition

Lg(Q)" = Lo () ©G4(Q) (4.1)
(see Lemma 4.1) and we denote the related continuous linear projection onto L, »(£2) by
P = P,. If only Assumption 4.2(i) is valid, we still have

Lgo(Q) + Gq(Q) = Lgs(2) © Gg (), (4.2)

but note that the direct decomposition (4.2) may not be a topological one. This can only
be guaranteed if additionally Assumption 4.2(ii) holds.

Decomposition (4.1) may be seen as a generalized Helmholtz decomposition. In case
Uq,(R2) is finite-dimensional we refer to [24] for an abstract setting of generalized Helmholtz
decompositions.

4.2 The Space L, ()
Lemma 4.5. For an arbitrary domain Q c R™, n > 2 and 1 < q < o0 we have

Lgo(Q) = {f € Ly(Q)" : {f, Vp)gq = 0 Yo € Wy ()} (4.3)
Proof. See 29|, Lem. III.1.1. O

Lemma 4.6. Let Q < R” be a uniform C*'-domain, n > 2 and 1 < g < 0. Then we
have
Lq,U(Q) = {f € LQ(Q)n : lef =0, v- f|aQ = 0}7 (44)

where v - flog = tr, f € Wq_l/q(é’Q) is the trace of the normal component (see Lemma
3.6). If additionally Assumption 4.4 is valid, then we have
Lyo(Q)={feLy,()":divf=0, v flog = 0}. (4.5)

Proof. Let f € Ly,(Q). For any ¢ € CF(Q) we have (div f,¢) = —(f, V) = 0, due to
(4.3), and therefore div f = 0 in the sense of distributions. We now aim to show that
{g,try fYoq = 0 holds for g € qu,_l/q (092). We can write g = tru with some u € qu/(Q),

since the trace is surjective from qu,(ﬂ) to qu,fl/q/((?Q). We use Lemma 3.8 (note that
f e Ey(Q)) and (4.3) to obtain

{g,try froa = (u,v - froa = JQ div(uf) dA, = fﬂ Vu- fdh, =0.

¢ The inclusion ">" as well as directness of the sum are obvious but also any function f = fo + V7 €

Lq.0(2) + G4(2) can be written as f = fo + Q,Vm + (I — Qq)V7 so that (I — Qq)V7 € G4(Q) and
fo+ QqVme Ly (2).
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Let now conversely f € L,(Q2)" with div f = 0 and v- f|sq = 0 and additionally assume
that Assumption 4.4 is valid. For ¢ € C*(2) we have, using Lemma 3.8,

VD e = fQ div(iof) dAn = (o~ Proa = 0.

Since C(Q) < WC},(Q) is dense, this holds for ¢ € I//I\/ql,(Q) as well. Hence, (4.3) gives
that f € Lq (). O

Remark 4.7. Note that without Assumption 4.4 the right-hand side of (4.4) can in
fact be larger than L, ,(€2). An aperture domain as considered in [26] and [21] is an
example of a Hehnholtz domain with uniform C?!-boundary for which (4.5) does not
hold if ¢ > -"5. Here we have

Lgo(€2) = {f € Lg(Q)" : div f =0, v flag =0, ®(f) = 0},

where ®(f) = SM v - f do denotes the flux of a function f through the aperture of the
domain and M is an (n — 1)-dimensional manifold shutting the aperture.

4.3 Discussion of the Main Assumptions

Since the Assumptions 4.2, 4.3 and 4.4 will be essential for the main results in Chapter I11,
we first show that there is in fact a large class of (Helmholtz and non-Helmholtz) domains,
satisfying these assumptions.

Definition 4.8. For n > 2 we call a domain 2 ¢ R", satisfying the segment property
(cf. [2]), a perturbed cone if there exists a (convex or concave) cone Q¢ < R™ (where we
assume the apex to be at the origin, w.l.o.g.) and R > 0 so that Q\Br(0) = Qc\Bg(0),
where the maximal cone Q¢ = R™ and the minimal cone Q¢ = ¢J are admitted.

We now prove that domains in the class of perturbed cones, which contains also non-
Helmholtz domains as we will discuss in Remark 4.10, satisfy Asspumption 4.4.

Lemma 4.9. Let n > 2 and let Q = R™ be a perturbed cone. Then CX(Q) < I//[\/l(Q) ‘
dense for all 1 < g < 00. Hence, Assumption 4.4 is valid for  and for all 1 < q < 0.

Proof. We first convince ourselves that it is sufficient to prove that Wcl’q(Q), consisting
of those functions in I//I\/ql(Q) having compact support in €2, is a dense subspace of ﬁ\/ql(Q)
In fact, the (algebraic) inclusion Wclq(Q) < W, () and the density of CX ()  W}(Q)
(/s\ee [2], Thm. 3.18; Q is assumed to have the segment property) yield that C*(Q2) <
VVC1 4(€2) is dense. Hence, for some given function p € qu () it remains to find a sequence

(¥r)ren in W2, (€) such that |V, — Vpl, 222 0.

Let X € C*(R") so that X = 1 in Byj(0), X = 0 in R™\By(0) and 0 < X < 1. Let
X (z) == X(%) for r € R" and k € N. Then we have X, = 1 in By(0), X = 0 in
R™\Bg(0) and 0 < X < 1. Setting M := |[VX|, we further have

M
IV Xylloo < & (4.6)

Let Ry := Bi(0)\By2(0) be the k-th annulus. Due to the assumption on 2 there exists
N € N so that for the scaling ¢ : @ n Ry — Q n Ry, © — kx we have

ok Ry) = Q0 Rey (4.7)
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for all k£ e N. .
Now for p € qu(Q) we define 9 1= XN (p — m SQmRkdi)\n>' Then ¢y, is a

function in ﬁ\/c{q(Q) for all k£ € N and we have

1
Vi — Vpl, < VA H - f A
VYR = Vplg < VAN o |p M@ Riw) Jonrn

+ 1 = Xin [0 Vil

QN RN (4.8)

SN\ By /2(0)*
Now, using (4.6), we can estimate |1 — Xpn[oo < 1 and [VXpn|oo < 25 as well as

1
H A (2 N Ren) meRkN
kn

_ kf ’pom_f po ¢ di,

On Ry M (0 Ren) Jonry
o A f po by din
A (0 Ren) Jonry
S K'CUV Do d)lg anry

= kanf |k(Vpo or)|?dA,
QNRy

q

QN RN

q
d\,

PO gy —

q,QN Ry

1
- k”kqncqf IVp|?d)y,
k QN RiN

= chq ”v])Hg,QmRkN )

using (4.7), were C' = C(n,q,Q2 n Ry) > 0 is the constant from the Poincaré inequality
(see [29], Thm. II.5.4). In total we have

k—o0

29,00,

MC
IVip — Vpllg < THW\ a.9nRy T [Vp

’(I7Q\BkN/2

since Vp € Ly (2)™. O
We gather some remarks about our main assumptions.

Remark 4.10.

(a) Obviously any Helmholtz domain in the classical sense fulfills the Assumptions 4.2
and 4.3 with U, (Q) = {0} and Ly (Q) + Gq(Q) = Ly(Q)™

(b) For domains 2 = R™ with uniform C*!-boundary, Assumption 4.4 is known to be
valid for

e (1 =R" Q =R" and perturbed half spaces, i.e., there exists some R > 0 such
that Q\Br(0) = R}\Bg(0) (Lemma 4.9; cf. [29], Thm. I1.7.8 for the half space),

e bent half spaces Q = H,, (see [25], Lem. 5.1; alternatively one could check that
bent half spaces are (€, 00)-domains, see the definition in Lemma 4.11),

e bounded domains (Lemma 4.9: choose R > 0 such that Q < Bgr(0); cf. [29],
Thm. 11.7.2, Def. IL.1.1),

e exterior domains, i.e., Q is the complement of some compact set in R™ (Lem-
ma 4.9: choose R > 0 such that Q\Bgr(0) = R™\Br(0); cf. [25], Lem. 5.1
and [29], Thm. I1.7.2, Def. I1.1.1),
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e asymptotically flat domains, i.e., ) is a layer-like domain Q = {x € R" :
v_(z') < zn < 4 (2')} which is delimited by two functions v,y € C*1(R"1)
with the asymptotic behavior limy|_4 v+ (2') = ¢4, where ¢ < ¢y and

lim|| o0 Vy+(2") = 0 (see [1], Lem. 2.6 and Cor. 6.4), and
e (¢,0)-domains, as treated in [15] and [42] (see Lemma 4.11 below).

With the exception of general (e,00)-domains, all of the mentioned domains are
Helmholtz domains in the classical sense and therefore satisfy the Assumptions 4.2
and 4.3 as well. We refer to [28] and [52] for perturbed half spaces, bounded domains
and exterior domains and we refer to [1] for asymptotically flat domains. See also [62]
for bent half spaces and [29] for the whole space and the half space.

Assumption 4.4 will be an important tool for all our results regarding the Stokes
equations. Even for the key statement concerning our main results, Proposition 8.1
in Chapter II, finding a proof without this condition seems hopeless. Note that, e.g.,
the natural identity

Lyo(Q2) ={feLy)":divf=0, v-f=0on o2} (4.9)

is a consequence of Assumption 4.4 (see Lemma 4.6). An aperture domain, as treated
in [26] and [21], is an example of a domain for which Assumption 4.4 does not hold for
all 1 < g < c0. The identity (4.9) is not satisfied in this case as well (as mentioned in
Remark 4.7). An approach to circumvent this problem and to include also domains
not satisfying Assumption 4.4 might be to define the space G4(12) as the closure of
C*(Q)™ in qu, (€2) instead. Then Proposition 8.1 had to be proved for a larger space
Lq.5(Q) such that Ly »(Q) ® G4(Q2) = Ly(Q2)™ holds but there seems to be no reason
for Proposition 8.1 to hold in general.

In case 1 < ¢ < 2 we have Uy(Q) = L, ,(Q) n G4(2) = {0} for any uniform C?1-
domain © so Assumption 4.2(i) holds and we have G,(Q) = G4(€Q). This is due
to [23], Thm. 1.2 (see also [22], Thm. 2.1 for the 3-dimensional case), from which we
receive the direct decomposition

Lg(Q)" + La()" = [Lgo(Q) + Lo ()] ® [Go(Q) + G2(Q)]
and therefore Ly ,(2) N G4(Q) < [Lgo () + Lo o (2)] N [G4(2) + G2(Q2)] = {0}.

Obviously, in case Uy(2) has finite dimension, Assumption 4.2(i) is valid and, in case
L, »(Q) + G4(€) has finite codimension, Assumption 4.2(ii) is valid. We refer to [24]
for an elaboration of generalized Helmholtz decompositions in this situation.

A sector-like domain with opening angle 5 > 7 and a smoothed vertex, as con-
sidered by BOGOVSKII and MASLENNIKOVA (see [10]), is an example of a non-
Helmholtz domain (for ¢ either small or large enough) to which our main theorems
in Chapter III apply: Lemma 4.9 gives that Assumption 4.4 is valid for sector-
like domains. For these domains Assumptions 4.2 and 4.3 are valid if ¢ > 1_3r 75"
We have dimU,(2) = 1 in this case. If ﬁ < q< ﬁ, Assumptions 4.2
and 4.3 hold and we have G4(Q) = G4(Q). If ¢ < ﬁ, Assumption 4.2 holds,
but 4.3 does not. We have codim(L,(£2) + G4(£2)) = 1 in this case. In the spe-
cial cases ¢ = ﬁ, Assumption 4.2(i) is still valid, but 4.2(ii) is not. Hence,

Theorem 9.1 is applicable to these domains for any ¢ € (1, oo)\{ﬁ} (merely the
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assertion (iv) is not known to hold for the special cases ¢ = ﬁ) Theorems 9.2

and 10.2 ai"e applicabl2e for q4e (1 +3r 7B o0)\{ 1—3r /5} and Theorem 12.1 is applicable
for g € (1+7r/,37 0)\{ 1—n/B’ 1_7r//3}-
Lemma 4.11. Letn > 2,1 < ¢ < 0 and let < R™ be an (e, 00)-domain for some e > 0,

i.e., for all z,y € Q there exists a rectifiable curve v in Q with length I(y), connecting x
and y, such that

I(y) < 2 - Yl (4.10)

and

dist(z, 00) > ez — 2|ly — 2|

Vz e . (4.11)
Condition (4.11) says that there is a tube around 7y, lying in ), such that in some point
z € vy the tube’s width is of the order of min{|x — z|,|y — 2|} (cf. [15] and [42]). Then
CP(Q) c W(Q) is dense.

Proof. Due to [15], Thm. 1.2, the conditions on {2 yield a continuous extension operator
A qu(Q) — qu (R™), where we choose the weight w = 1. Now, using the density of
CP(R") c T//I\/ql (R™), we obtain the statement. O

5 R-boundedness, Maximal Regularity and H*-Calculus

In order to deal with operator-valued Fourier multipliers we employ the following concept.
Let X, Y be complex Banach spaces. Let Ep denote the set of families of random variables
(€i)ier on a probability space P = (Q, A, ) (i.e., p is a probability measure, defined on
the o-algebra A of all possible events, and {2 is the underlying sample space) with values
in {£1}, which are independent and symmetrically distributed. We say that a family of
continuous linear operators 7 < Z(X,Y) is R-bounded if there is a probability space
P =(Q,A pn) with Ep # &, p € [1,00) and a constant C' > 0 such that for all N € N,
(61,...,6]\[)6513, T, €T and z; € X (for 1 SigN)

N

Z &1;x;

i=1

N

2, it

i=1

<C
Lp(Q,Y)

In this case we call R,(7) := inf{C > 0 : (5.1) holds} the R-bound or the R,-bound. Note
that R-boundedness implies boundedness of 7 < Z(X,Y). If a family 7 ¢ Z(X,Y)
is R,-bounded for some p € [1,00) then it is also R,-bounded for any g € (1,00) (see,
e.g., [47]). In this case (5.1) also holds for a (possibly different) constant C' > 0 if we
replace P by an arbitrary probability space @) with &g # . Also note that, in view of
Lebesgue’s dominated convergence theorem, it is sufficient to claim (5.1) for z; in a dense
subspace of X. The following result is useful to extend boundedness to R-boundedness
in some concrete cases (see [17], Lem. 3.5).

(5.1)

L,(2,X)

Theorem 5.1 (Kahane’s contraction principle). Let X be a Banach space over F €
{R,C}, P = (2, A, 1) a probability space and 1 < p < oo. Let N € N and a;,b; € F with
laj| < |bj| for j =1,...,N. Then we have for all x1,...,xny € X and €;,...,en € Ep

N
H Z A;€;T5
i=1

where Cr = 1 and C¢ = 2.

N
< C]FH Z bieiz; ;
Ly(Q.X) & Lp(2,X)
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We call a linear and densely defined operator A : 2(A) € X — X pseudo-sectorial if
its spectrum o (A) is contained in a closed sector ¥, with angle ¢ € (0,7) and the family
AMA+ AN e S, € Z(X) is bounded. If {(AA+A)7L X e X} c L(X)is
even R-bounded, A is called pseudo-R-sectorial. We omit the prefix “pseudo-" if the range
Z#(A) c X is dense and so we receive a sectorial or R-sectorial operator, respectively.
We denote the infimum over all ¢ € (0,7) such that o(A) < ¥, and such that the
family {A(A + A)7! : X e S} © Z(X) is bounded, by ¢4 (spectral angle) if A is a
(pseudo-)sectorial operator and likewise % is the infimum over all ¢ € (0,7) such that
this family is R-bounded if A is a (pseudo-)R-sectorial operator.

For a pseudo-sectorial operator A and a fixed angle ¢ < ¢4 we will make use of the
Dunford calculus

fr— f(4),
which maps a function f € J(3,) = U, g0 #a,8(X¢) to a bounded operator on X, as
well as of its extension to J,(X,) = J,er Ha,a(Ep) if A is sectorial. Here J%, g(3,) is
the space of holomorphic functions f : 3, — C such that

[/l = sup |22 f(2)| + sup [z7 f(2)]

|z]<1 |z|>1

is finite. We refer to [17] and [36] for a precise definition and treatise of this functional
calculus. Note that for a function f € J#, o(X,) we receive a bounded operator f(A) in
case o < 0 but in general only a closed operator on the domain

D(F(A) = {w e X : (6" F)(A)x € D(AF) n 2 (AF)}. (5.2)

Here k > « is a nonnegative integer and g € 74 (%) is the function g(z) := ﬁ, which

leads to a bijective mapping g(A)~* : 2(A*) n #(A*) — X. A slight modification of

this functional calculus leads to the following well-known characterization of sectorial

operators (see [36], Prop. 3.4.4).

Proposition 5.2. An operator A : 2(A) ¢ X — X is pseudo-sectorial with angle
™

pa < 5 if and only if —A is the generator of a bounded analytic strongly continuous
Semigroup.

The functional calculus is also used to describe the following important property of an
operator A. Let A : Z(A) € X — X be a sectorial operator. Then A has a bounded
H®*-calculus in X if for some ¢ € (pa,7) there is a constant Ci, > 0 such that for any
[ € 7(X,) we have

IF )] xox < Coll o, (5.3)

In this case (5.3) also holds for all bounded holomorphic functions f on ¥,. The infimum
over all angles ¢ € (¢4, ), such that (5.3) holds with a constant C,, > 0, is called H*-
angle and is denoted by ¢%. Likewise we say that A has an R-bounded H*-calculus in
X if the set

{f(A): fe (), [ fllooz, <1} = ZL(X)
is R-bounded and the related RH*-angle is denoted by 4,07:’00. If A has a bounded
H%-calculus, then
D(A%) =X, 2(A)]a (5.4)

holds for all 0 < @ < 1 (see [17]), where the fractional power A% : Z(A%) c X — X is
defined via the functional calculus above with the function z — z¢.

We recall the following two assertions that frequently occur in the context of the H®-
calculus. A proof can be found in [18] (see the proofs of [18], Prop. 2.9 and [18], Prop. 2.7,
respectively).
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Lemma 5.3. (i) Let 0 < ¢ < 7. Then for all o € Njj there is a constant Co,, > 0 so
that for every holomorphic and bounded function h : ¥, — C we have

sup [€[1*[0ah(I€]*)] < CaplPloo,s, -
e\ (0)

(ii) Let § < ¢ < . Then for k = 0,1 there is a constant C, > 0 so that for every
h e 7 (3,) we have

sup [€]*0ph(i€)| < Cy|[hlloo,x, -
£eR\(0)

Next, we give the definition of maximal regularity (due to [47]) for an operator A :
P(A) ¢ X — X, which is the generator of a bounded analytic strongly continuous
semigroup (e*4);>o on a complex Banach space X. Therefore, we fix 1 < p < 00 and 0 <
T < 0. The operator A has mazimal Ly,-reqularity on (0,T") if for all f € L,((0,7T),X)
the solution

t
u(t) = f =4 f(s)ds
0
of the Cauchy problem

{ u'(t) — Au(t)

ft), te(0,7)
u(0) 0

is Fréchet differentiable a.e., takes its values in Z(A) a.e., and we have
u', Au e L,((0,7), X).
In this case we receive

|4 2, 0,1),x) + [ Aull,0.1),x) < Cl L, 01),%) (5.5)

by an application of the closed graph theorem. We write A € MR(X, C) if A has maximal
L,-regularity for one (or equivalently for all; see [63]) 1 < p < c0 on some (0,7) so that
(5.5) holds with a constant C = C(T") > 0. If A€ MR(X,C) and C does not depend on
T (i.e., (5.5) holds for T' = ), we write A € MR(X).

Now we take a look at the advantages of maximal regularity. Again for a complex
Banach space X, let A : 2(A) € X — X be the generator of a bounded analytic
strongly continuous semigroup. For 1 < p < 00 and T € (0, 0] we set

Ep := H;((Ov T)a X) N LP((O7 T)v -@(A))
(the solution space of the related Cauchy problem) and
Fr x1:= L,((0,T),X) x {m =u(0):ue IET} (5.6)

(the data space). Note that T is a Banach space, where |z = inf,g)—; |u|r, is the
related norm, I is independent of T" and we have

I=(X,2(A)) (5.7)

17%,]}

see |54], Prop. 3.4.4). If A has maximal L,-regularity on a finite interval (0,7), then
P
the solution operator L1, where

L:Er —Frxl, ur—s <<%—A>u,u(0)>, (5.8)
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exists and is an isomorphism. This leads to the estimate
lull e300y, %)~ L (0,10, 204y < CO) (I F |z, 0.1).3) + l2]1),

when u := L™1(f, x) is the solution to (f,z) € Fr x L.

Lemma 5.4. Let X be a Banach space, 1 < p < 0, 0 < Ty < o and let A €
MR(X,C(Tp)). Then there exists a constant C' = C'(Ty) > 0 such that

1L ) s 0,090 Lo (0.1),2(4)) < C (T F Ly 0,1).%)

holds for all T € (0,Tp] and for all f € Ly((0,T), X), where L™! is the solution operator,
i.e., the inverse of L given in (5.8).

Proof. By the trivial extension of f € L,((0,7),X) to (0,7p) we obtain the estimate
(5.5) with a constant independent of T' € (0,Tp]. Now the assertion follows from the
fact that the Poincaré inequality |ullz, (o,7),x) < K|v'|L,(01),x) holds with a constant
K > 0, which is independent of T" € (0, Tp] as well. ]

Lemma 5.5. Let 1 < p < o and T € (0,00]. Then, with the notation above, we have
the continuous embedding

Er « BUC([0,T),1)

(where BUC, as usual, means bounded and uniformly continuous). Here the operator
A:9(A) c X - X only needs to be closed and densely defined in a Banach space X .

Proof. The case T' = oo follows essentially from the strong continuity of the translation
semigroup. Then, by a standard extension and retraction argument we obtain the case
T < o as a consequence. See [3], Prop. 1.4.2 for details. O

In the theory of partial differential equations, the notions of class H7 and property («)
for Banach spaces turned out to be significant. A Banach space X is of class HT if the
Hilbert transform

fe=s)

S

H - y(R’X) — M(R,X), Hf(t> = 11{%j5>6

has an extension H € Z(L,(R, X)) for one (or equivalently for all; see [3]) 1 < p < o0.
A complex Banach space X has property(«) if there exist 1 < p < 0, two probability
spaces P = (Q, A, p), P = (U, A, 1) with Ep,Epr # & and a constant o > 0 such that
forall N e N, ;5 € X, a;; € C, |aj;| <1 (i,j =1,...,N) and for all (e1,...,en) € Ep,
(€),...,€y) € Epr we have

N N

/ /
Z eiejaija?ij <o Z eieja:ij
1,7=1 1,j=1

Lp(QxY,X) Lp(QxQ,X)

A useful application of property («) is the following one, which is a direct consequence
of the Kalton-Weis theorem (see [54], Thm. 4.5.6).

Theorem 5.6. Let X be a Banach space with property () and let A: D(A) < X — X
be an operator with a bounded H™-calculus. Then A has an R-bounded H® -calculus with

o0 __ sz
Pa=%a -
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The following operator-valued version of Mikhlin’s theorem is important for our pur-
poses as well as the subsequent characterization of maximal L,-regularity. The results
are due to GIRARDI and WEIS (see [33] or [54]|, Thm. 4.3.9, Thm. 4.4.4).

Theorem 5.7. Let X and Y be complex Banach spaces of class HT having property («)
and let 1 < p < . For my € C"(R™\{0}, Z(X,Y)), X € A, assume that ko :=
Rp{¥0amx(§) : £ e R™\{0}, A € A} < o for each a € {0, 1}", where A is some index set.
Then the operator

FImyZ . S(R", X) — &' (R",Y)

has a unique extension Ty € Z(L,(R", X), L,(R™,Y)) for every A € A and we have

R{Tr: A€ A} < Cpp >, ko= C.
ae{0,1}m

In particular, we have | F'mxZ f| 1, o) < Clf|L,x) for fe #(R", X), Xe A.

Theorem 5.8. Let X be a Banach space of class HT, 1 <p < o0 and let A : P(A) c
X — X be the generator of a bounded analytic strongly continuous semigroup. Then the
following conditions are equivalent.

(i) A has mazimal Ly-regularity on (0, 0).

(i) —A is pseudo-R-sectorial with ¢} < Z.
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Il The Laplace Resolvent on Uniform
C?!1-Domains

We aim to obtain unique solvability of the resolvent problem

Au—Au =f in Q
D_(u)yr =1II;g on 00
II,u =1I,h on 092

as well as certain properties of the resolvent that will allow us to carry over the result
to the Stokes resolvent problem. A starting point for this investigation is a localization
technique with an infinite number of local neighborhoods under consideration.

The basic idea is in principle from [46], where a localization method for domains with
noncompact boundary is applied. For the (countably many) parameters [ € I" we multiply
the resolvent problem by the smooth cut-off functions ¢; in order to receive a system of
local equations (one equation for each of the [ € ') where now a sequence (u;)er of the
form u; = yu is the potential solution. Introducing a suitable Banach space X for the
sequence (u;)er as well as a Banach space Y containing the right-hand side functions of
the local equations, the purpose is to obtain unique solvability on a local level in space
and finally to carry over this result to the original problem. In comparison to [46], where
Dirichlet boundary conditions have been investigated, the localization of the boundary
conditions here is somewhat more intricate.

6 Perfect Slip Boundary Conditions for the Laplace
Resolvent
We begin by treating the half space R’} and, via perturbation arguments, bent rotated

and shifted versions of the half space. These special domains in turn, serve as auxiliary
domains that occur when the general domain €2 is considered on a local level.

6.1 The Half Space

Proposition 6.1. Letn > 2, 1 < ¢ < w0 and 0 < § < w. Then for f € Ly(R7})",
ge W (R})", he W(JQ(R?F)" and any A € Xy there exists a unique solution u € W,IQ(R’}F)”
of
A—Au = f in R7
D_(u)y =1II;g on dRY (6.1)
ILu =1II,h on JR7

and this solution fulfills the resolvent estimate
|\, VAV, V2u) |, < C|(f, VAg, Vg, \h, VAV R, V2h)|, (6.2)

where C = C(n,q,6) > 0.
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Proof. In the half space the outward unit normal vector is v = (0,...,0,—1)7 and the
tangential and normal projections are given by Il,g = (¢',...,¢" %, 0)" and II,h =
(0,...,0,h™)T respectively. Then (6.1) reads
( Au—Au = f in R"
ou™ — dput =gt on R
dou" — Opu? = g? on JR"

Op_1u™ — Opu™1 g"~ ' on OR%
u" h" on R’ .

Hence we can solve the inhomogeneous Dirichlet boundary problem

Au — Au™ = f" in R}
u" =h" on JR"}

first and then, after inserting the solution u" € I/Vq2 (R?%), solve the decoupled Neumann
boundary problems ' . .
Al — Au? = fI in R
{ —0pu! =g/ — d;u™ on IR
for j =1,...,n— 1. See [47], Thm. 7.7 and Sec. 7.18 for a detailed treatment of the
problems with Dirichlet and Neumann boundary conditions. Thus, we obtain unique
solvability of (6.1) as well as estimate (6.2). O

6.2 The Bent Half Space

Theorem 6.2. Let we W3 (R"™1), n>2 1<qg<o and 0 < < . Choose some
M > 1 such that
[V'wloo, [V 2w]ec, [VPw]eo < M (63)

holds. Then there exist k = k(n,q,0) > 0 and \g = Ao(n,q,k, M) > 0 such that in case
IV'wlow < K, A€ X, |A| = Ao for f e Ly(Hy)", g € W, (H,)" and h € WZ(H,)" there
exists a unique solution we W2(H,)" of
Au—Au = f in H,
D_(uw)y =1I;g on dH, (6.4)
II,bu =1II,h on JdH,
and this solution fulfills the resolvent estimate
| (A, VAV, V)| < C|(f,VAg, Vg, Ah, VAV A, VD)4 (6.5)
where C' = C(n,q,0, M) > 0.
In order to prove Theorem 6.2 we use the change of coordinates from x € H,, to 2 € R},
given by
= n x ~
¢:H, — R}, z~— <xn—w(x’)> =,
and we write u o ®~1 =: J lu =: U for a function u on H,,. For the partial derivatives
we have the following behavior under the change of coordinates, from which we obtain
particularly that
Jo: WHRY) = WH(H,), @—u (6.6)
is an isomorphism for k& = 0,1,2 such that the continuity constants of J,, and J ! only
depend on M from (2.1) and on n.
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~

e Jiu = 0;u— (Ow)opu fori=1,...,n—1.

® 0,0;u = 0;0n0 + (Ojw)02u fori=1,...,n—1.
o Zu = 02
o Au=Ali—2(V'wT,0)- Vil — (Aw)onii + |V'w|202% when u is a scalar function.

o Vul = vl — (V'w”,0)0,% when u is a scalar function.

(010)0n @ ... (Ip_1w)0nTt 0

o Vul' = vl — : : D= val — E(u) when u is a vector field.
(10)Pn @™ ... (Fn_1w)dnd™ 0 ‘

Setting dpw := 0, we can write E(@) = ((djw)dn")

i,j=1,...,n"

Hence, we can write

—_——

(X—A)u = (A — A)ii + Ba, (6.7)

where

B = 2(V'wT,0) - Vo, i + (Aw)onti — |V'w|?620u (6.8)

for a scalar function % and we define Bu componentwise if % is a vector field. For the
boundary condition operator we further have

D_(u)v =D_(0)v + (E(@)T — B())V. (6.9)
Now (6.9) gives that (2.15) holds for Dmy instead of D_(u)v as well, ie., (I —
17Z7T)D/E)/V = Dmy. Also note that transporting the normal vector v : 0H,, — R" of
the bent half space via a change of coordinates to 77 : R} — R™ does not yield the nor-
mal vector of the half space. In fact, since v(z) does not depend on the last component
Ty, which can be seen in the concrete representation

D= ;(alw, ey 0w, —1)T, (6.10)

VP 1

we can identify v = ¥ and even consider it as a function on the whole space, i.e.,
v=r:R"—>R"
In this case (6.10) gives that
1V]2.00 < Cul (V'w, V2w, VW)l (6.11)

holds with a constant C, > 0 depending only on the space dimension n. We denote the
outward unit normal vector of the half space by v, := (0,...,0,—1)T.
The boundary condition

{ D_(u)v =1Il;g ondH, (6.12)

II,u =1II,h on 0H,
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can be written equivalently as
D_(u)v +IIyu =1I,g + II,h on 0H,

due to separation of the tangential and the normal part in (6.12) and utilizing (2.15).
Now (6.7) and (6.9) give that a change of coordinates in (6.4) yields the equivalent®
problem

D_(@)7 + (E@)T - E@)y + ILa = (6.13)

Ni— A+ Bl = f in R
11
with f e Ly(R7)", § € WHRE)"™ and h e W2(R)".
We apply the matrix

vol =
1
01w —0Oow ... —Op_iw 1

to the boundary condition of (6.13). The matrix V&7 satisfies det V&L = 1, (VL)1
2] — V®T and it maps the tangent space at any point = € dH,, into the tangent space
at OR.P Therefore we have:

o (VO')D_(a)v = (I —vyvl)(VO")D_(@)v
= (I—v3vD)D_(@)vy +(I v D) (VO —DD_ @)y + (I v D) (VO D_(7) (v—

[ ]
3
iy
!
Ei
S

(
o (VOO = v vTa+(T—vivD) (VO™ V+V+)U+V+I/+((V(I)T) vl —v )i
)(E@@)" — E@))“ = (I - V+V+)(V<I>T)( (@" — E@@)v.°

)

o (VONILA = v T (VO Th+ (I — v D) (VT ) Th.
Hence, (6.13) becomes

Ai— A+ B =f in R -
{D() ( (614

@)y +vvli+ B o= (1 - 1/+V§C)C~; + 1/+fo[ on JR"
where
B :=(I —vvD)[(VET — DD_(@)vy + (VED_ (@) (v — v4)
+ (VT — v D)+ (VOT) (B ()T — E(i)] (6.15)

+ vl (VD! — v

* Since the change of coordinates u + % is an isomorphism Wj (H,) — Wy (R%) for k = 0,1,2 (see
(6.6)), this problem is in fact an equivalent one.

P The normal and tangential projections in the half space are given by v I/I and [ — Z/+I/I , respectively.
A vector in the tangent space at some point = € 0H,, can be written as (I — vv”)u. Now we have
vivIVel = \/[V'w|? + TvsvT and therefore vy vl (VOT)(I — vv')u = 0, since vTv = 1.

¢ (E(@)" — E(@))v is contained in the tangent space at dH.,.
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and

G = (VeI — "G+ (Vo) he WHRY)", (6.16)
H:= (Ve )y he W2(R?)". '

Now G and H are the new right-hand side functions in the boundary condition. Re-
garding (6.16), we observe that the invertible matrix VT is exactly the right matrix to
receive the intended regularity for G and H. Consequently, the proof of Theorem 6.2 is
reduced to the following perturbed version of Proposition 6.1.

Proposition 6.3. Letn >2, 1 <qg<o0w,0<0<m, we W3R 1) and let M > 0
such that (6.3) holds. Then there exist k = k(n,q,0) > 0 and Ao = Xo(n,q,k, M) > 0
such that in case |V'w|ow < K, X € S, [A| = Ao for f € Ly(R?)", G € WERY)™ and
He Wg(R’}r)” there exists a unique solution @ € W(?(Ri)” of (6.14) and this solution
fulfills the resolvent estimate

(AT, VAV, V) |, < C|(F, VAG, VG, H, VAV H, V2H)|, (6.17)
where C = C(n,q,0,M) > 0.

Proof. We prove the statement using a perturbation argument via the Neumann series,
where the version we make use of is [47|, Lem. 7.10. Therefore, we define the spaces

Y = Ly(R?)" x {(I — vsvD)G + vl H : G e W) (RY)", H e W2(R?)"}
(GY,...,Gm L HYT G e WHRY)", H e WA(RT)"},

with norms (depending on A € Xy)
[allx = | (AT, VAVE, V) [g,
[(Fo I = v DG + v )y o= |(FVAG! ... VG,
VGt ,...,van—l,Aﬁf",ﬁvﬁn,WﬁN)”q,
Iz :=1" \\Lq(Rﬁ)nqu(aRQ)n

as well as the continuous linear operators

S:X —Y, U ((A\—A)uD_(@)vs +rvivia),
P:X —Y, uw~ (Bu,B7),
Q:Y — 27 (~E) (fvtrﬁRz%)

(where B and B’ are the operators from (6.8) and (6.15)). By standard arguments
we obtain that the space Y is complete so X, Y and Z are Banach spaces. Due to
Proposition 6.1, for any ( f k) € Y there exists a unique o € X satisfying

QS = Q(f.k)
and there exists C' = C'(n,q,0) > 0 such that

[l x < CICF )y
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We now aim to show that we can choose A\g = A\g(n,q,x, M) > 0 and a constant C’ =
C’(n, M) > 0 such that for A € Xy, |A| = X\ and |[V'w|s < £ < 1 we have

| Py < C'kli] x (6.18)

we deduce

1

P — X L~
I1P|x—y < 50

for all @ e X. Then, prescribing x < ﬁ,

and as a consequence (see [47], Lem. 7.10) we receive: For any ( f , %) e Y there exists a
unique u € X satisfying s

QS+ P)u = Q(f, k)
and we have

i) x < 2C|(f. )]y

This is exactly the claim of the proposition.
It remains to prove (6.18). For this purpose, we assume M > 1, k < 1 and \g = M—
Let A€ Xy, [N = Ao, |[V'w|lw < k and % € X. Then, for the operator B, we have

| B, = H 2AV'w?,0) - Vol + (Aw)d, i — |V'w|20200)

j=1,..,n q

O (w20, + 7 [VAV, + 5|9, )

VIA
< C'nllit] x

with some constants C' = C(n) > 0 and C' = C'(n, M) > 0. For the operator B’ we
have (denoting ¥ = Y] x Y3)

[Biily, <[ VA[(V®T = )D_(@)vs + (VOT)D_(@)(v - vy)

+ (VO )" — vy + (VO ) (E@)T — E(i))y] Hq

+|V[(VoT - DD_(@); + (VO")D_(@)(w — 1)

+ (Vo™ — v D)+ (VoI ) (E@)T — E(@)v] Hq (6.19)

+H)\[((V<I>T)VVT — I/+I/}:)a] Hq
+H\/XV[((V<I)T)I/VT - my}!)ﬂ]”q
—i—HVQ[((VéT)w/T — vyvh)a] Hq.

Via the triangle inequality we receive eleven different summands in (6.19). Now each of
the summands can be estimated by C’k|@]|x with a constant C" = C’(n, M) > 0, where
all of the estimates can be done in a similar way. One essentially needs that |[v — v |
and |[V®T — I||, may be estimated by & up to a constant depending only on n, as well
as (6.3) and the condition \g > ]\g—; Then (6.18) is verified. We exemplarily treat three
of the terms in (6.19):

VAV " v D] < (192l + DA

/

|\l
C'(n, M)x|| Xt g
C'(n,

M)kulx,

//\ //\
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6 Perfect Slip Boundary Conditions for the Laplace Resolvent
[VIveT) B - E@w]| <c'm(I(v2e)E@®T - E@)vl,

- Z [(Vol)[on(E@)" — E(@)v|,
=1

+[(VOT)(B@)T - E@) Vv, )

) (K Vil + 5[ VZilg + [Vl + 5[Vl )

( VAV, + 4]V, )

A

< C'(n, M)s (M v, + [Vl
< C'(n, M)slix.

[P0 — v D] < € (15 VT T = v o,

WHV((WT) — V) o[ VAV

(VT T = v D)ol il
+ (VT — Do 92, )
< C'(n, M)k|il| x. O

Proof of Theorem 6.2. For f € Ly(Hy,)", g € qu(Hw)" and h € WqQ(Hw)” we have
fe Ly®y)", §e WHRR)™ and b e W2(R?)"™ and we define G € W} (R?)" and H €
WZ2(R'})™ as in (6.16). Choose x and Ag as in Proposition 6.3. Then for A € 5y, [A| = Ao
and | V'w| s < & there exists a unique solution @ € WZ(R')™ of (6.14), satisfying (6.17).
The calculations above give that u = J,u is the unique solution of (6.4).

Now, assuming |A| > 1, the isomorphism (6.6) gives that v = J,u fulfills

(A, VAV, V20) g1, < C(ATL VAVE, V2) g R (6.20)
where C' = C(n, M) > 0 and on the other hand
[(F. VG, Vg A VAR, V2 h) gz < CI(f, Vg, Vg, Ab VAVE, V) g, (6:21)
Using (6.11) and (6.6) and assuming |A| > 1 again, we further obtain
|(F. VAG, VG NH NAVH, V2 H) |grn < CI(F,VAG, VE, Mo, VAV, V20 gz, (6.22)
where C' = C(n, M) > 0. Now (6.17), (6.20), (6.21) and (6.22) yield (6.5). O

6.3 The Bent, Rotated and Shifted Half Space

Theorem 6.4. Let QT H,, + 7 be a bent, rotated and shifted half space, i.e., Q € R™ "
is a rotation matriz (QTQ =1 and det Q = 1) and 7 € R™ is some shifting vector. Let
weW3(R" Y, n=>2 1<g<wand0<6<n. Fixr M >1 such that

IV'wloo, IV2w]oo, [VPw]oo < M (6.23)

holds. Then there exist k = k(n,q,0) > 0 and \g = Xo(n,q,k, M) > 0 such that in
case [V'wlow < K, A€ Xy, [A| = X for f € Lg(QTHy +7)", g € WHQTHyy + 7)™ and
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he W2(QTH,, + 7)™ there exists a unique solution u € W7 (QT H, + 7)™ of

Au—Au = f in QUH, + 1
D_(u)y =1Il,g ondQTH,+7) (6.24)
Mu =1,k ondQTH, +7)

and this solution fulfills the resolvent estimate
| (O, VAV, V2u) |, < C|(f, Vg, Vg, A, VAV, V2h)|, (6.25)
where C = C(n,q,6,M) > 0.

Proof. We begin by observing that shifting the problem in direction of some vector
7 € R™ does not cause any extra difficulties: Using the coordinate shifting 7 := & — 7
for v € QTH, + 7 and u™ (27) := u(x™ + 7) for functions u on QT H,, + 7 we obtain that
x — x” commutes with arbitrary derivative operators and that

k. QT Hotr = W kq.Q7 m,
(K |u

holds for k € Ny. In addition, v7 is the outward unit normal vector at the boundary of
QT H,, when v is the outward unit normal vector at the boundary of Q7 H,, + 7. Hence,
applying u — u” to (6.24), the resulting problem is an equivalent one. We therefore may
assume 7 = 0 in (6.24) without loss of generality.

It remains to treat

Au—Au = f in QTH,
D_(u)v =1I,g ond(QTH,) (6.26)
I,u =II,h on d(QTH,).

For a vector field uw on QT H,, and x € H,, the chain rule gives

2 (QTe) = V(@) g

for j,k =1,...,n, where g; is the j-th column vector of QT = (q1,...,qn). Consequently

0
2 ul@e) = Vu(Q"a) g

Zj

for j = 1,...,n and therefore, writing u®(z) := u(Q"z), we have
VUQ(m)T = (VU(QTx)qu, e Vu(QTx)an) = Vu(QTx)TQT,
ie., (VUQ)T = ([VU]Q)TQT and hence
Vu® = Q[Vu]?. (6.27)

Besides, we have

V(Qud)" = Q(vu®)". (6.28)

Moreover, when v is the outward unit normal vector at the boundary of QT H,,, then
Qv is the outward unit normal vector at the boundary of H,,. Thus, the normal and
tangential projections of a vector field u% on ¢H,, are given by

o IT9u@ := Q) (¥)TQTu® and
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o I2u@ := Q(I — (1) (¥?)T)QTu?,
respectively. Applying v — u® to the boundary term
D_(u)v =1I,D_(u)r = (I — vv")(Vul — Vu)v
in (6.26), we obtain, using (6.27),
[D_(u)r]? = [(I — ") (Vul — Vu)v]?
= QTIOQ(([Vu]?)" — [Vu]?)w?
= QTPQ((Vu?)' @ - (Vu?)' @) QT Qv
Now (6.28) gives that we can write
(Vu?)" = Q"V(Qu?)",
SO we receive
[D-(w]? = QTP (V(Qu®)" — V(Qu?)Qv?.
Applying u — u® to the boundary term IT,u in (6.26) gives
[M,u]? = [1Tu]? = QTTIZQuC.
Furthermore, the orthogonality of @) yields
[Au]? = Au®.
In total, application of u — u? and @ to (6.26) yields the equivalent problem
MNQu?) —A(Qu®) =Qf°  inH,
19(V(Que)" = V(Qu?)Qv? =T1%Qg? on oH, (6.29)
n9Que =19Qh? on 0H,,.
Theorem 6.2 yields some x = k(n,q,0) > 0 and \g = A\o(n,q,k, M) > 0 such that

for A € ¥p, [A| = Ao and ||[V'w| < &, problem (6.29) has a unique solution Qu® €
T/Vq2 (H,)" satisfying the related resolvent estimate. Now the transformation u — Qu¥ is

an isomorphism W;(QTHW)” = qu(Hw)" for k =0, 1,2, where the related continuity
constants only depend on n, since we need an upper bound for powers of |Q|, only.
Consequently, u € WqQ(QTHw)” is the unique solution of (6.26) and (6.25) holds. O

6.4 The General Case

Theorem 6.5. Let Q < R" be a domain whose boundary is uniformly C*', n>2,1 <
g < and 0 < 0 < 7. Then there exist \g = A\o(n,q,0,Q2) >0 and C = C(n,q,0,Q) >0
such that for X € g, |A| = Ao the problem

Au—Au = f in
D_(u)yr =1II;g on dQ (6.30)
II,u =1II,h on 0N}

has a unique solution u € Wg(Q)” for any fe L,(Q)", ge qu(Q)” and h € W(IQ(Q)” and
this solution fulfills the resolvent estimate

|\, VAV, V2u) |, < CI(f, VAg, Vg, \b, VAV R, V20) . (6.31)

In particular, the operator Aps, defined in (1.2), is the generator of a strongly continuous
analytic semigroup on Lq(2)".
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Proof. Due to separation of tangential and normal part on the boundary, we can rewrite
(6.30), using (2.15), as

(6.32)

u—Au =f in Q
D_(uw)v +1,u =Il;,g+1,h on Q.

Moreover, we introduce the Banach space for the boundary functions in (6.32),

BF,(09) = BF,(02)
={aeLy(0Q)" :a=T trg+1I,trh, ge qu(Q)", he WqQ(Q)"},

with norm

laller, \@0) := inf |(VAg, Vg, A, VAV R, V2h) |,

where the infimum runs over all g € W, (Q)", h e W(IZ(Q)” such that a = II; tr g + 11, tr h.
For X\ = 1 the space BF,(0(2) is therefore equipped with the natural norm for the range
of the continuous linear operator T': Wy ()" x W2(Q)™ — Lg(0Q)", (g,h) — Il trg +
I, trh. We allow arbitrary A € ¥y in the definition of || - [gF, ,(0), since we will need
this for a perturbation argument later on.

Step 1: Local coordinates. For the sake of consistent notation we denote

H;, [T
Ql — Iy €l
R", leTy

and hence by the space BF,(0€};) we mean BF,(0€y) = BF,(0H;) for | € I'; and
BF,(0€y) := {0} for [ € I'y. We introduce the Banach spaces

X =l (P W)™,

lel’
Y = 1g(P Le(0)™) x Io(P BF4(05))
lel lel’

with norms (depending on A € Xy)

| u)ier|x = |, VAV, V20)ier |, (1,
|(fis aierlly = [(f)ierliyzy) + [(a)ier i, Br, 0

as well as the linear and continuous operator

S: X—Y, (w)er — ((/\ — A)uy, trog, D (w)y + I/lVlT troo, ul)lel“’

where we set trag, D_(u;)v + VlVlT tron, u := 0 in case [ € I'y.

For the bent, rotated and shifted half space H; = Q;‘FHMZ + 77, L € I'1 and the related
constant M > 1 from (2.1), let initially k = k(n,q,0) > 0 and Ao = A\o(n,q,k, M) > 0
such that the conditions of Theorem 6.4 are satisfied. We further assume v < 1 and
Ao = A:—; Let A € Xy, || = Ao and note that (2.2) gives |V'wi|o < & for all [ € T'y.

Now we can deduce from Theorem 6.4 that we have an isomorphism

S:X =Y (6.33)

and the continuity constants of S and S~! depend on ¢, n, @ and M only. For this purpose,
fix some (f;,a;)ier € Y. Then, for all [ € T'y, Theorem 6.4 yields a unique u; € WqQ(Hl)”,
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such that (A—A)u; = f; and trap, D,(ul)ylntull/lT trop, w; = a;. For [ € I'y, existence and
uniqueness of the solution u; € WZ(R™)" to (A — A)u; = f; is due to the heat equation
admitting a strongly continuous bounded analytic semigroup in the whole space (see,
e.g., [47]). In addition, we have a constant C' = C(n,q,0, M) > 0 such that

H()\ul, \F/\Vul, VQ”LL[) H(LHI < CH(fl, \F/\gl, Vi, A\, \F)\Vhl, Vth)HfLHz (6.34)

holds for all [ € Ty and arbitrary g; € qu(Hl)”, h; € WqQ(Hl)” such that a; = I1; trom, g1+
IL, trom, hy as well as for all [ € I'g by putting g; = h; = 0. Consequently, for [ € I', we
have

”()\Ul, \/>VUZ, V2’LL1) (Hfl |q,Ql + HalHBFq N an)) (6.35)
Thus
H(Ul)lel"HX = Z H )\ul, \FVUZ’ V UZ)Hqu
lel”
<O (I filgs + laulee, o) (6.36)
lel’

< Ol (fis a)ier|y
where C's = Cg(n,q,0, M) > 0. On the other hand, it is not hard to see that

IS(u)ierly < C'|[(wi)ier| x
holds for arbitrary (u;)er € X, where C’ = C’(n,q) > 0. Hence, (6.33) is verified.

Step 2: Localizing (6.30). We now multiply (6.32) by the functions ¢y, [ € ' in order
to receive corresponding local equations. If ¢ is a scalar function and w is a vector field,
then the product rule yields the matrix identityd

V(pu)" = uve! + oVul (6.37)
and the vector identity
A(pu) = (Ap)u + 2(Vul )V + pAu. (6.38)
Thus, writing u,, = ¢nu and using (2.3), we have
1A= A)u
= (A= A)(gu) + 2(Vul Ve + (Ag)u
T
— (= A)(er) +2(V Y ¢hu) Vet (Ag) Y, ¢hu

mel’ mel’

=A=A)u + Z [Qum(VgomT)Vgol + ngm(VumT)Vgol + (Agpl)cpmum].

m~l
For the tangential boundary condition in (6.32) we have (note that v = v; on spt(yp;) for
leT), using (2.3), (6.37) and writing u,, = @,u again,
piD-(u)y = (gVu" — o Vu)y,
= (VT = Vu)vy — u(Vo Dy + (Vo )ul vy,
=D (wv - Y. eou(Ve v+ Y on(Ve)u'y

mel’ mel’

=D_(w)y — Z [meum(v%@lT)Vl - @m(le)uglw]

m~lI

=D_ (ul v — Z ©m Umv@l (umv{plT)T]Vl

m~lI

d V(gou)T = (ﬁj(gpui))i‘jzl = (uié‘jgo + gpéjui)iyj:l = uVeT + oVuT

,,,,,,,,,,
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and for the normal boundary condition we have
T T
eilll,u = iy u = Yy y

for [ € T'y. In total, multiplying (6.32) by ¢; for [ € I' and writing u,, = @,,u yields the
local equations

Aup— A+ 3, [2um (Vo) Veor + 20m (V™) Ve + (A |
—f, inforalllel,

D_(w)v + vyfw — 3, em[um Vo — (un V)T |y,

= (I — I/lulT)gl + l/lVlThl on 0§ for all [ € T'y.

(6.39)

Therefore, we define the perturbation operator P : X — Y by

(w))jer — < Z [2um(V<me)chl + 20 (Vu, 1)V + (A emim],

m~l1

— trag, Z Pm [UmVWT - (UmV@lT)T]Vl)

ler’
m=l

where in case [ € I'g we set trag, D,~; ©m [ungolT — (ungplT)T] v, := 0 again.
Step 3: Well-posedness of local equations. We now aim to verify that there exists
Cp = Cp(n,q,Q) > 0 such that

Cp
|P(w)ier|y < \/— |(uw)ier | x (6.40)

holds for all (u;)er € X and for A € Xy, [A\| = Ao. For this purpose, let (u;);er € X. Then
for all [ € T" we have, using (2.4),

H Z 20U ( Vgom Vg@lH

= [ |3 2un(Teniva] dn,
a,£h iy

q
< ¢ Z szﬁBzﬁBm ‘um(vgme)ngl‘ d>\”

‘um(Vme)sz‘q d\n (6.41)
QmnNB;N B,

<y J ttn[T

m~l QmﬁBm

= C, Z HumH‘LQmmBm

m~lI

with constants C' = C(n,q) > 0 and C' = C’'(n, ¢, Q) > 0, where we also used (2.4) and
that the support of the function um(chmT)chl is contained in B,, N B;. Since at most
N of the balls B; have nonempty intersection, we deduce

(2 2unVennver) ! <€ D Il nm,

m~l1 lel" m~1

< Z HUZHCLQWBZ

lel’

<C" Yl g,

lel’

lel’
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6 Perfect Slip Boundary Conditions for the Laplace Resolvent

where C” = C”"(n,q,Q) > 0. In the same way we obtain

(X ae)emun) Hq <" Jullg,

m~l el

and

H( 2[ QQPm(vumT)v‘Pl)leF lo(Lq) < C”lzr Hv“ng,ﬂz‘
oy €

In total, by the definition of the norm in X, we have a constant Cp = Cp(n,q,) > 0
such that

H( D 2um(Veom ) Ve + 20m(Vum ) Vi + (Agpl)gomum]>

m~l
< Cpll(uwr, Vur)ierlli, (z.,)
< Cpl(Vau, Va)ier iy 2,
Cp

< \/WH(W)HHX

(note that the condition Ay = ]\g—; yields |A] = 1). In order to treat the boundary
term of P, we make use of the extension 7; € W2 (H;)" of the outward unit normal
vector vy for H;, which satisfies (2.12): For [ € 'y, a function g; € qu(Hl)” satisfying
trom, 91 = trom, Yt m|umVeor: —(um V)T v is given by g := 3, om[um Ver' —
(ungolT)T] ;. Note that trpp, g; is contained in the tangent space at dH;, since

1eT iy (Ly)

T
v trom, g1 = 0.

We further obtain, similar to (6.41) but additionally using (2.12),

I(VAg V)l < C Y f (W Nt + [V |7) A

mal Hypn B,

where again C' = C(n, q,Q) > 0. Consequently, we receive

q

Q(BFq,A)
’q

H(tragl Z Pm[um Vi (UmeT)T]Vl>l€F l

Z H trom, Z ©Om ungol (ungolT)T]Vl

lely mal BFy\(0H)
< A a
lZ H(\th vyl)Hq,H; (642)
EFl
<cY Y j (W Netga? + [Vttn|9) d
lel'y mald mNBm
<Y f (I Nul? + [Var]7) dA
tery VHiN By
with some constant ¢’ = C’(n, q,Q) > 0 and therefore
H(traﬂ > em[um V" — (UmeT)T]Vl> y S 2H(ul)lerHX
lm%l leT 1y (BF, A VI ’

where Cp = Cp(n,q,€2) > 0. Hence (6.40) is proved.
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II The Laplace Resolvent on Uniform C?'-Domains

We now increase Ao = Mo(7,q,0,9Q)° such that \g = (2CsCp)?, where Cp is the
constant from (6.40) and Cyg is the constant from (6.36). Then we have

1

Plxoy < — 6.43
IPlx—y < 55 (6.43)

so the Neumann series gives that we have an isomorphism
S+P:X =Y (6.44)

so that )

S+ P) Yy_x <Cs < 2C%. 6.45
S+ )y < Cs TPy (64

Now (6.44) gives that (6.39) is uniquely solvable for any right-hand side functions
fi € Lq(Ql)n, g € qu(Q)n and h; € Wg(ﬂ)n such that (fl)lel" S ZQ(@ZGF Lq(Ql)n) and
(al)le[‘ € ZQ(@ZEF BFq(an)) for a; := (I—VIVZT) trom, gl-i-VlVlT trom, h; (l € Fl) and a; :=0
(I € Ty), respectively. Moreover, (6.45) yields the related resolvent estimate.

Step 4: Uniqueness and resolvent estimate. We briefly convince ourselves that we
have proved uniqueness for (6.30) as well as the related resolvent estimate (6.31). For
any solution u € W2(Q) of (6.30) we have seen that (u;)er := (p1u)er solves the local
equations (6.39) with right-hand side functions (f;)ier := (@1 f)ier, (91)ier, := (¢19)ier,
and (h)er, = (pih)ier,. Now (6.39) is uniquely solvable, so we have uniqueness for
(6.30). For a; := (I — I/ll/lT) trom, g1 + I/ll/lT tropg, hy if L € 'y and a; := 0 if [ € I'g, we have
(S + P)(w)ier = (f1,a1)ier. Estimate (6.45) therefore implies

|(u)ier|x < 2Cs|(f1, aierlly < 2Cs|(f1.VAgi, Vi, N, VAV Ry, V2 ier |, (1) -

(6.46)
It remains to prove existence of some constant C' = C'(n,q,2) > 0 so that
|Aw, VAV, V2u) g0 < Cl(w)ier| x (6.47)
and
|(fis VgL, Vgis Ny, VAV Ry, V2R ier ) < Cl(FVAg, Vg, Ak, VAV R, V) g.0.
(6.48)
For u e W2(Q)" and w,, := @pmu we have
q
Pl = A |2 emun]” dr,
Q" mer
q
= |>\|qJ Z‘PlZ’ Z Qamum‘ dA,
Qier m~l
< C!)\]qf 2 2 | omum|? dAy
el m~i
< cfmqf 3l dan (6.49)
Qler
—CPIY | Jelan,
ZGZI]‘ QlﬁBl
< C’\A\qZJ g d\y,
ler Y&

= C'|(uer [, 1.,

¢ The constants M and x only depend on the domain 2 so we do not need to specify the dependence
of \o on M and k.
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6 Perfect Slip Boundary Conditions for the Laplace Resolvent

where C' = C(n,q,Q) > 0 and C’ = C’(n,q,Q) > 0. Similarly, using (2.4), we obtain
VAVl o < Cl(VXu, VAVw)er ] )

and
||v2UHZ7Q < CH(UZ, VUZ, V2Ul)lel“”;1q(L )

with some constant C' = C(n, ¢,2) > 0. In total we obtain (6.47), since |A| > 1
For f e Ly(2)™ and f; := ¢, f we have

I(f)erlf Zf o f1? dAn

lel’

<3 ifiran,

ler YSunBy

3 EY

lel QﬁBl
CHqu QO
where C' = C(n,q,Q2) > 0. Using |\| = 1 and (2.4) again, we obtain similarly

|(VAg1, Vg1, s VAV R, VPR ier ] (< Cl(VAg, Vg, A VAVR, V2R

with some constant C' = C(n,q,§) > 0. Hence (6.48) is proved. In total, (6.46), (6.47)
and (6.48) imply (6.31).

Step 5: Ewxistence. As a last step we need to prove existence of a solution to (6.30).
For this purpose we introduce the notation Dv := (@v),r for functions v on Q and
C(v))jer := Duer @i for sequences (vy)er of functions vy on €. If v is a function on 092,
then we still write ¢;v for the restriction (¢;|an)v so that Dv is a sequence of functions
on 0N and similarly, if v;, [ € I' are functions on 0€; (in particular v; = 0 for [ € T'y),
then C(v;)er is a function on 092. We further denote Rou := trag D_ (u)v + II,, traq w.

Note that there is no way to deduce existence of a solution to (6.30) from the verified
unique solvability of the local equations (6.39) by abstract means. In fact we have proved
that for any solution u e W(IQ(Q)” of (6.30) the representation

(f,Il;trg + I, trh) = C(S + P)Du (6.50)

holds and S + P is invertible. Still, at this point, the lack of invertibility for C' makes it
untransparent to decide whether it is possible to invert C'(S+P)D. The identity CDv = v
holds for arbitrary functions v on  but, conversely, the identity DC(v;)jer = (v1)ier can
only be guaranteed if the sequence (v;)er is of the form v; = v for some function v on .
Unfortunately, for u € W2($2), we do not know the sequence (f, a;)ier := (S + P)Du to
be of the form (f;,a;) = (¢1f, ¢1a). Hence, the ansatz C(S + P)~'D(f, 11, tr g +II,, tr h)
might not lead to a solution. Instead, we have to find a substitute P’ for P such that
the converse identity for (6.50), i.e

w=C(S+P)'D(f 1 trg + II, tr h) (6.51)

holds. In order to find such a perturbation P’ : X — Y, we assume for a moment that
the (unknown) operator S + P’ : X — Y is an isomorphism. Then our purpose (6.51)
gives

(A=A, Rq)C(S + P 'D(f, T, trg + II,, tr h)

= (f, Il trg + 11, trh)

=C(S+ P) S+ P) 'D(f I, trg + 11, tr h),
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II The Laplace Resolvent on Uniform C?'-Domains

so that consequently

(A=A, Rq)C =C(S+ P) (6.52)

must be satisfied. We therefore compute C'S — (A — A), Rq)C now: For (u;)er € X we
have, using (6.38),

Do = A — (A= A) Y g = > [ (A= Ay — (A = A) () |

lel’ lel’ lel’
=Y [(Ag)u + 2(Vu) V] |

lel’

lel’

and the identity v = v; on 02 N By as well as (6.37) yield

Z [tl"an oD (u)v + I/lVlT traq, gplul] — [trag D_ < Z golul) v+ vl trag Z gplul]

lel’ lel’ lel
= Z troo, pD_ (ul)ul —tronD_ (Z golul) v
lel’ lel’
= Z [trng QDZ(VUZT — VUl)Vl — tI‘ag(V((plul)T — V(cplul))u]
lEFl
= — 2 tra, (W Vel — (w Ve )y,
lEFl
== > D trag, oh (wVe " — (w Ve )y
mel’ l~m

- C’( — Z traq,, gol(ungomT — (umVmeT)T)Vm)

mal

= é( - tI‘an Z QOZ(UvaOmT - (umv@mT)T)Vm>

m~l

lel’

ler

Therefore, we define P’ : X — Y by

(u)ier — ( — @1 Z [(A(Pm)um + 2(VUmT)VQDm]a

m~I

trag, Z (Pl(umv@mT - (umv‘me)T)Vm)

mal

ler

Then (6.52) is true and consequently (6.51) must be the solution of (6.30) in case (S +
P")~! exists. Therefore, it remains to verify that P’ is a perturbation of S so that
S+ P': X — Y is an isomorphism.
In the same way as in (6.40) we obtain existence of some Cpr = Cpi(n,q,2) > 0 such
that o
| P (ur)ier |y < \/%‘l(ul)lerlx (6.53)
holds for all (u;)er € X and for A € ¥y, |A| = A¢ (Note that trom, >, 01 (U VT —
(U Vo, 1)) vy, is contained in the tangent space at 0H, for every [ € I'; again). Thus,
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7 Neumann Boundary Conditions for the Laplace Resolvent

by increasing A\g = Ao(n, ¢, 0, Q) such that \g = (205Cp/)?, where Cs and Cps are the
constants from (6.36) and (6.53), we achieve as in (6.43) that

1
Plxoy < —
1P| x -y 5Cs

holds, so again the Neumann series yields that we have an isomorphism

S+P:X =Y. O

7 Neumann Boundary Conditions for the Laplace Resolvent

Theorem 7.1. Let Q < R™ be a uniform CY'-domain, n > 2,1 < g <o and0 <6 < .
Then there exist \g = A\o(n,q,0,Q) >0 and C = C(n,q,0,Q) > 0 such that for X\ € Xy,
|IA| = Ao the problem

{)\uAu =f inQ (7.1)

dyu =g on 052

Jor all f e Ly(Q) and g € Wi (Q) has a unique solution u € WZ(Q) and this solution
fulfills the resolvent estimate

| v, VAV, V2 g < (£, Ag, V9)lg. (7.2)

Proof. The proof is very similar to the proof of Theorem 6.5 but a little simpler, since
the Neumann boundary condition is a condition only for scalar functions instead of
vector fields. One could also take vector fields with componentwise Neumann boundary
conditions into account but this would not cause any extra difficulties. In particular,
there is no distinction between boundary conditions in tangential and normal direction.
Consequently there is no necessity to include a strategy for the components of u like an
additional application of the matrix V&' in the proof of Theorem 6.2 to the boundary
terms to be able to apply a perturbation argument. Therefore, we only sketch the main
differences from the proof of Theorem 6.5.

First, we obtain that Theorem 7.1 is true for the half space 2 = R’} (with A9 = 0).
This is due to [47], Thm. 7.7, since (7.1) satisfies the Lopatinski-Shapiro condition.

Next, let Q = H,, be a bent half space, where w € W2 (R"!) such that

IV'weo, [V20l0 < M (7.3)

holds for some M > 0. Application of the change of coordinates x — T (we use the same
notation as in the proof of Theorem 6.2) to (7.1) yields the equivalent problem

{/\ﬂ—AﬁJrB%I —f mR2 (7.4)

vy -Vau+ B4 =97 ondR"
where B is the same operator as in the proof of Theorem 6.2 and
B':=(v—vy) Vi—v- (Vw001
Again, we can apply [47], Lem. 7.10, defining the Banach spaces

X o= W2(RY),
Y = Ly(RT) x W) (RY),
7 := Ly(R™) x Ly(0R")
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II The Laplace Resolvent on Uniform C?'-Domains

with norms
[@]x == | (AT, VAVE, V27) g
I(F. D)y = (£, VAG. V),

|1z =1 | zy®n)xLq(or)
and the operators
S: X —Y, u—((A\=A)u,vs - Va),
P:X —Y, uw~ (Bu,B7),
Q:Y — 2, (J.9)~ (J.tromy 9)

this time. Comparing the definition of the space Y to the related definition in the proof
of Theorem 6.2, we observe that only zero and first order derivatives are needed for the
Neumann boundary conditions. Therefore, uniform C'!-regularity of the boundary is
sufficient in order to receive the same result that we have proved for perfect slip boundary
conditions. We obtain that for sufficiently small k = k(n,q,0) > 0 and for sufficiently
large Ao = Ao(n,q,k, M) > 0, the problem (7.1) for Q = H, is uniquely solvable if
A€ g, A = Ao and ||[V'w|s < k and also (7.2) holds with some C' = C(n,q,0, M) > 0.
Hence, Theorem 7.1 holds for bent half spaces.

We easily transfer the latter result to the bent, rotated and shifted half space by using
similar arguments as in the proof of Theorem 6.4.

As a last step we apply the localization procedure to (7.1) for arbitrary C?!-domains
), where we use the same notation as in the proof of Theorem 6.5. Multiplication of
(7.1) by ¢ for [ € I'y yields the local equations

Aup — Ay + Zm~l [2Um(V(me)VQpl + 290m(vumT)v90l + (A‘pl)@mum]
=fi inQforalllel,

v Vup =g - Zm%l(V(Pl)SDmum

=g on o foralllel,

(7.5)

for wy, = @pu. Similar to the proof of Theorem 6.5 we obtain that (7.5) is uniquely solv-
able, where we apply the same perturbation argument, defining BF,(0§2) = BF, \(092)

as the trace of qu(Q) (i.e., as qu*l/q((%l)) with norm

- inf \g, V
ol o = E 100,900,

and defining the Banach spaces

X = 1(@D W, (w)),

lel’
Y 1= 1(D Ly(0) x 1o(D BF, (%))
lel’ lel’

with norms

|(w)ier] x = | A, VAV, V2w)ier |1, L)

I(fiy an)ier [y = [(fi)ierli, Ly + [(at)ier |y, BF, 0
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7 Neumann Boundary Conditions for the Laplace Resolvent

and the operators

S: X —Y, (w)er— (()\ — A)uy, v - trag, vul)lel"

PiX —Y, (e — (Y [2um(Ven ) Vo1 + 2om(Vun") Vs + (Ap)omtim).

m~I

— V- tré’Ql Z (V@Z)Wmum)

mal

lel’

this time. This gives uniqueness for solutions of (7.1) and the resolvent estimate (7.2).
In order to obtain existence of a solution to (7.1), we use a representation

u=C(S+P)'D(f trg)

as in the proof of Theorem 6.5, where in this case we have to consider

PiX—Y, (e — (=@ Y [(Apm)um + 2(Vun") V],

m~l1

v - trag, Z @l(VSOm)um)ler. O

mal

Proposition 7.2. Let Q < R” be a uniform CY'-domain, n > 2, 1 < q < o and

0 <6 <m. Let \g > 0 such that for X\ € Xy, |A\| = Ao the conditions of Theorem 7.1 are
satisfied for q and ¢'. Let w e W2(Q)" such that

{ A=A)divw =0 inQ

O, divw =0 on 0f. (7.6)

Then divw = 0.f

Proof. Let Angq: Z(Anyg) € Lg(2) — Ly(2), u — Au be the Neumann-Laplace opera-
tor, ie., Z(Ang) = {u e WqQ(Q) Oyu =0 on 00}, and let AL 1 Ly(2) — Z(An,g) be
the continuous dual operator (endowing Z(An,4) with the graph norm). Note that we
can regard Ly (Q) as a subspace of Z(An ), since Z(An,q) € Lg(£2) is dense.
We aim to prove that (A — AY /) divw = 0. For this purpose, fix some ¢ € Z(Ax ).
Then the Neumann boundary conditions v - V¢ =0 and v - Vdivw = 0 on 082 yield
(A=A g) divw, ©)g(ay )28y )
= {divw, (A = A)p)q.q
= <d1v w, A@>q,q’ — <d1V w, div ch)tmz

= {divw, Ap)q ¢ + J Vdivw - Ve d\, — {divw,v - Ve)sa
Q

= {divw, Ap)q ¢ — J (Adivw)p dh, + {p,v - Vdivw)sq
Q
={((A=A)divw, gy
=0,
where we made use of Lemma 3.7, one time with Vg € E,(Q) and divw € W, (€2) as well
as a second time with Vdivw € E;(Q) and ¢ € qu,(Q) Therefore (A =AY /) divw = 0.

Now A — Ang @ Z2(Anyg) = Ly(€2) is an isomorphism, due to Theorem 7.1, so its
continuous dual operator, A — AY g is injective. Hence divw = 0. ]

f By divw solving (7.6) we mean (A — A)divw = 0 in the sense of distributions and tr, Vdivw = 0
in Wy /%(0€). Note that (A — A)divw = 0 implies div Vdivw = Adivw = Adivw € Ly(Q) and
therefore Vdivw € E,(9).
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II The Laplace Resolvent on Uniform C?'-Domains

8 L,,-Invariance of the Laplace Resolvent

An important property of the Laplace resolvent for our purposes is the following, which
is a special feature of the perfect slip boundary conditions.

Proposition 8.1. Let Q < R™ be a uniform C*'-domain, n > 2 and 1 < q < o0 such
that Assumption 4.4 is valid. Let 0 < 6 < m, choose \g = \o(n,q,0,Q) > 0 so that the
conditions of Theorem 6.5 and Proposition 7.2 are satisfied and let X € g, |A| = Xo.
Then the following implications hold.

(i) ue Z2(Aps) N Lyo(2) = Aue Lys().
(i) feLyo(Q) = (A= Apsy) 1 f € Lyo().

Proof. We will make use of both the L, ,(€)-representations in Lemmas 4.5 and 4.6. Let

ue Z(Aps) N Lys(R2) and ¢ € CL(2). Then we have
Au, V) g = — JQ(V divu — Au) - Vo dA,
=— JQ div(D_(u)V) dA,
= —f v-D_(u)Vedo
o2

= V- -D_(u)vdo
o0

:07

where we made use of Lemma 3.4 and of Lemma 2.1(ii) and (iii). Now this holds for
@ E 17[\/(11/((2) as well, since C°(Q) I//[\/ql, () is dense. Hence (i) is true.
In order to see (ii), let f € Ly (). The function u := (A — Apg,) "' f € WqQ(Q)” is
the solution of
Au—Au = f inQ
D_(u)y =0 on df2 (8.1)
v-u =0 on 0,

so, applying tr, to the first line of (8.1), we receive
tr, Au = 0. (8.2)

Furthermore, we obtain (A — A)divu = 0 in the sense of distributions, applying div to
the first line of (8.1). Now we aim to show that the boundary condition 0, divu = 0 on

0 holds: Let k € qu,_l/q,(é(l) and choose w € qu,(Q) so that trw = k. First note that
Vdivu e E4(f), so tr, Vdivu is well defined. We have

(k, tr, Vdivu>aQ = {(w,v- (Vdivu — Au)>(m

_ L div(w(V divu — Au)) dA, (8.3)

Q
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8 Lg-Invariance of the Laplace Resolvent

using (8.2), Lemma 3.8 and div(Vdivu — Au) = 0. In case w € C*(£), we obtain for
the last term of (8.3) that

j Vw - (Vdivu — Au) d\, = J div(D_(u)Vw) d\,
Q Q
= J v-D_(u)Vwdo
o0 (8.4)

=—| Vw-D_(u)vdo
o0

=0,

using Lemma 2.1(ii), (iii) and Lemma 3.4. The density of C(Q) < qu,(Q) gives that
(8.4) holds for w € qu,(Q) as well. Therefore, (8.3) and (8.4) yield 0, divu = 0 on 0.

We have in total
(A=A)divu =0 inQ
O,divu =0 on 0.

Consequently divu = 0, due to Proposition 7.2. Lemma 4.6 yields u € L, ,(€2). Ol
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Il Stokes and Navier-Stokes Equations
on Uniform C?'-Domains

The main results concerning Stokes and Navier-Stokes equations on general domains
are presented and proved in this chapter. For this purpose, we will take the Assump-
tions 4.2, 4.3 and 4.4 into consideration. A starting point will be the perfect slip boundary
conditions, for which we have the useful properties of the Laplace resolvent from Chap-
ter II available.

9 The Stokes Resolvent Problem: Perfect Slip Boundary
Conditions

9.1 Homogeneous Boundary Conditions

Theorem 9.1. Let Q < R™ be a domain with uniform C*'-boundary, n =2 and1 < q <
w0 such that Assumption 4.4 holds. Let 0 < 6 < m and denote Uy(2) = Lq+(2) N G4(Q2)
again. Then there exist \g = \o(n,q,0,92) > 0 and C = C(n,q,0,Q) > 0 such that for
A€ Xy, |A| = Ao we have the following, concerning

AM—Au+Vp =f in§Q
=0

divu mn Q
D_(uw)yr =0 ondQ (0-1)
v-u =0 on Q.

(1) Provided that f € Ly(2)", problem (9.1) has a solution
(u, Vp) € [WHQ)" N Lgo ()] x Gg()

if and only if f € Lq () + G¢(Q). In particular, there exists a solution of (9.1)
for any f e Ly(2)" in case Assumption 4.3 is valid.

(ii) The solution space Shom < [W2(Q)" N Lq o ()] x G4(Q) of the homogeneous problem
(9.1) (i.e., f=0) s

Shom = {((/\ — Aps,) 'Vr,—Vr) : Vre Uq(Q)}.

In particular, we obtain dim Shom = dim Uy ().

(iii) In case Assumption 4.2(i) is valid, we obtain: For f € L,(2)" there exists a unique
solution
(u, Vp) € [WZ(Q)" N Lo ()] x Go()

of (9.1) if and only if f € Ly (1) +G4(Q). In particular, in case Assumption 4.3 is
valid as well, there exists a unique solution of (9.1) in [W2(Q)™ N Lg, ()] x G4(2)
for any f e Ly(Q)™.
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IIT Stokes and Navier-Stokes Equations on Uniform C?'-Domains

(iv) In case Assumption 4.2 (i.e., 4.2(1) and 4.2(i1) ) is valid, the solution in (iil) satisfies
the resolvent estimate

| (A, VAV, V2, Vp) | < C| fq (9.2)
for any f € Ly - () + G4(Q).

Proof. Choose Ao = Ao(n,q,0,) and C = C(n,q,0,) such that the conditions of
Theorem 6.5 and Proposition 7.2 are satisfied and let A € g, |A| = Ao.

In order to prove (i), we decompose a given function f € L, ,(2) + G4(f2) into fy €
L, ,(Q2) and Ve G4(£2). Setting

(U, Vp) = ((A - APSJ])_lfO’ Vﬂ-)a

we obtain a solution of (9.1), due to Proposition 8.1(ii). Conversely, if there exists a
solution (u, Vp) of (9.1) with right-hand side f € L,(€)", then Proposition 8.1(i) gives
that f e Ly,(Q) + Gg(2).

A solution of the homogeneous problem (9.1) is given by ((A — Apg,)~'Vm, —Vr)
with some Vr € Uy(€2), due to Proposition 8.1(ii). If, conversely, (u, Vp) € [W(IQ(Q)” N
Ly o (2)] x G¢(§2) solves (9.1) with f = 0 then we have (A—A)u = —Vp e G4(2). On the
other hand Proposition 8.1(i) yields (A — A)u € Ly ,(€2). Therefore, Vp = —(A — A)u €
U,(€), so we have in total

(u, Vp) = (A — Apg ) 'V, —V7)

with Vr := —Vp € U, (). This proves (ii).

Now let Assumption 4.2(i) be valid and f € L, ,(€2) + G4(Q2). Using the direct decom-
position (4.2), we can decompose f = fy + Vp into fy € Ly +(2) and Vp € G4(€2). The
solution

(u, Vp) := (A= Apsq) " fo. VD)

of (9.1) is contained in [W2(2)" N Lg+(92)] x G4(£2), thanks to Proposition 8.1(ii), so we
only have to prove that there is at most one solution in this space to obtain uniqueness.
Therefore, let (v, V) € [W2(Q2)" N Lg,s(2)] x G4(Q) be a solution of the homogeneous
problem (9.1). Proposition 8.1(i) then yields (A — A)v € L, »(€2), but on the other hand
we have

(A—A)v = =Vr e G4(Q).

Since G4(0) N Ly »(2) = {0}, we deduce Vr = 0 and v = —(A— Aps 4) "1V = 0. Hence,
solutions of (9.1) in [qu(Q)” N Lq o (2)] x G4(£2) are unique. Therefore, the sufficiency
in (iii) is proved. Conversely, for any right-hand side function f € L,(£2)" the condition
f € Lgo(2) + G4(€) is also necessary to obtain existence of the solution in (iii), since
[W2(Q)™ N Lg,s ()] x G4(Q) is a subspace of [W2(Q)™ N Lg,(2)] x G4¢(€2) and for the
latter space we have seen necessity in (i) already. Hence, (iii) is proved.

Now let Assumption 4.2 be valid. Then the right-hand side of (4.2) is a Banach space,
yielding a constant C" = C’(n,q,) > 0 so that for the decomposition f = fo + Vp we
have

[(fo, VD)llg < €[ fq- (9:3)
Hence, the functions u = (A — Aps )~ fo and Vp fulfill the resolvent estimate (9.2), due
0 (9.3) and Theorem 6.5. O
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9 The Stokes Resolvent Problem: Perfect Slip Boundary Conditions

9.2 Inhomogeneous Boundary Conditions

In case of inhomogeneous boundary conditions the problem is a little more intricate.
Nevertheless, in order to be able to make use of perturbation theory, an inhomogeneous
version of Theorem 9.1 is needed.

Theorem 9.2. Let Q < R” be a uniform C*'-domain, n > 2 and 1 < ¢ < oo such that
Assumption 4.4 is valid and let 0 < 6 < w. Then there exist \g = \o(n,q,0,Q) > 0 and
C =0C(n,q,0,Q2) > 0 such that for X € Xy, |A\| = \o we have the following, concerning

M—Au+Vp =f in €
divu =0 i )
D_(u)y =1I,g on o2 (94)
v-u =0 on 0f2.

i) If Assumption 4.3 is valid, then for all f € L,(Q)" and g € W(Q)" there exists a
q q
solution
(u, Vp) € [W7 ()" 1 Lgo ()] x Gq(€)

of (9.4) (which may not be unique; see Theorem 9.1(ii) ).

ii) If Assumptions 4.2 and 4.3 are valid, then for all f € Ly, (Q)" and g € W)™ there
q q
exists a unique solution

(u, Vp) € [WZ(Q)" N Lo ()] x Go()
of (9.4) and the resolvent estimate
|(hu, VAV, V20, Vp) g < CI(f, VA9, V)l (9-5)
holds.

Proof. Fix Ao = Ao(n, q, 0, ) such that the conditions of Theorem 6.5 and Proposition 7.2
are satisfied and let A € Xy, |A| = A.
Let g € Wy (€)™ and assume initially f € Ly ,(€2). Denote by @ e WZ(€)™ the unique
solution of
AMi—Au =0 in
D_(a)y =1I;g on o9
v-u =0 on 052

(see Theorem 6.5). Let Vp € G4(£2) be a solution of
(~VD,Vdgy = (Vdivi— AG, Vgy,y Yoe Wh(Q) (9.6)

(Assumption 4.3 yields existence of such a solution). Using Theorem 6.5 again, we define
ue WZ(Q)" as the unique solution of

A—Au = f—Vp inQ
D_(u)r =1Il;g on 0 (9.7
v-u =0 on €.

We now aim to prove that u € L, ,(€2), where we use the representation of L, ,(£2) from
Lemma 4.6. Applying tr, to the first line of (9.7) gives

tr, Au = tr, Vp, (9.8)
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where tr, Vp is well-defined, since divVp = —div(Vdiva — Aa) = 0 in the sense of
distributions, due to (9.6). Also tr, V div u is well-defined, since (9.7) yields div V divu =

div Au = Adivu € Ly()". In order to obtain that tr, Vdivu = 0, let ke W, 7 (2Q)

and fix any w € qu,(Q) so that trw = k. Then we have, using (9.8), Lemma 3.8 and
divVp =0,

(kytry, Vdivuysg = (w,v - (Vp 4+ Vdivu — Au) oo

- L div(w(Vp + Vdivu — Au)) dA, (9.9)

:f V- (Vp+ Vdivu — Au)dh,
Q

as in (8.3). Now, in the last term of (9.9), we can replace V divu — Au by Vdiva — Ad.

In fact, using Lemma 2.1(ii) and (iii) and Lemma 3.4, we obtain for w € C(Q)
f Vw - (Vdivu — Au) dA, = f div(D_(u)Vw) d\,
Q Q

= j v (D_(u)Vw) do
o0

—| Vw-(D_(u)r)do
o2

—J Vw - (Il;g) do
o2

and the same for @ instead of u, so we have
f Vw - (Vdivu — Au) dX, = f Vw - (Vdiva — Aa) dA, (9.10)
Q Q

for w e CF(Q). The density of C*(Q2) qu,(Q) yields that (9.10) holds for w € qu, (Q)
as well and therefore (9.6) gives that the right-hand side of (9.9) vanishes. Consequently

we have tr, Vdivu = 0 in total. Moreover, applying div to the first line of (9.7), we
obtain (A — A)divu = 0. Hence

A=A)divu =0 in
O,diveu =0 on 0Q

holds. Proposition 7.2 then yields divu = 0, so we receive u € Ly () and (u, Vp) €
[W2 ()™ N Lgo ()] x Gg(9) is a solution of (9.4).

Now, in the general case f € Ly(Q2)", we can decompose f = fo + Vm, where fy €
L,,(2) and Vr € G4(9Q) (Assumption 4.3). We have shown that there exists a solution
(u, Vp) € [W2()™ N Lgo ()] x G¢(Q) of (9.4) with right-hand side function fo, so
(u, Vp 4+ V) solves (9.4) with right-hand side function f. Thus, (i) is proved.

Let now Assumptions 4.2 and 4.3 be valid. Again, let initially f € L, ,(£2). As in the
proof of (i) let @ € WZ(€2)" be the unique solution of

ANMio—Au =0 in Q

D_(a)v =1I;g on dQ
v-u =0 on 0.
Theorem 6.5 then yields
(A, VAVE, 929)], < CI(VAg, V9)l, (9.11)
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10 The Stokes Resolvent Problem: Partial Slip Type Boundary Conditions

with a constant C' = C'(n,q,0,Q) > 0. The direct decomposition (4.1) gives that
(~VD,Vdgy = (Vdivi— AG, Vpyy Yoe WhQ)
has a unique solution Vp € G,(12), which relates to the decomposition of the function

Vdiva — At = vy — Vp into vg € Ly () and —Vp € G,(€2). Furthermore, (4.1) yields
a constant ¢’ = C’(n, q,Q) > 0 so that

IVply < C'||V diva — Adl,. (9.12)
Again, we define u € W7(€)" as the unique solution of

AM—Au =f—Vp inQ
D_(u)r =1Il,g on oS
v-u =0 on 052

and obtain u € Ly »(€2) in the same way as in the proof of (i). Hence, (u, Vp) € [WZ(Q)"n
Ly»(2)] x G4(92) is the unique solution of (9.4). Moreover, Theorem 6.5 yields

(v, VAV, V20)l, < CL(f — Vip,VAg, V)l (9.13)

with a constant C' = C(n,q,0,Q2) > 0. The estimates (9.11), (9.12) and (9.13) imply
(9.5).

Now, let f € Ly(€2)". Decomposition (4.1) gives f = fy+ V7 with two unique functions
Jo € Lyo(2) and V7 € G4(€2) as well as a constant C’ = C’(n, ¢,§2) > 0 so that

[(fo, V)llg < C'Ifllg- (9.14)

We have proved that (9.4) with right-hand side function fp admits a unique solution
(u, Vp) € [WZ(Q)" N Lyo(Q)] x Gy(Q) satisfying (9.5) with fo instead of f. Thus,
(u, Vp + V) € [W2()" N Lgo(2)] x G4(€) is the unique solution of (9.4) with right-
hand side function f and (9.14) yields the related resolvent estimate (9.5) with Vp + V7
instead of Vp. Hence (ii) is proved. O

10 The Stokes Resolvent Problem: Partial Slip Type
Boundary Conditions

In order to receive results similar to Theorem 9.1 and Theorem 9.2 subject to a more
general class of boundary conditions, we first obtain that it is possible to perturb the
perfect slip boundary conditions in such a way that we receive partial slip type boundary
conditions.

Lemma 10.1. Let Q < R™ be a uniform C*'-domain, n > 2 and 1 < ¢ < 0. Then
there exists a matriz A € WL(Q)""™ such that for all u € qu(Q)" with v-u =0 on 09
we have

ILDy(u)y = D_(u)v + II; Au  on 0N

Proof. Let T,00 < R"™ ! be the tangent space at some fixed point z € 0Q. Let

Ti,...,Tn—1 be a basis of T,00Q. Then, with the outer unit normal 7, := v = v(x),
let 71,...,7" be the dual basis of 71,...,7, in R" (e, 7, - 77 = §;; for i,j = 1,...,n).
Then we have 7" = v, since 7" - 7; = 0 for j = 1,...,n — 1 implies 7" = [v for some

SeRbut thenl=7"-v=0v.-v=_,.

We first observe for the tangential projection II,u = (I — vv* )u, the change of basis
matrix S := (71,...,7,_1,7)! and the vector [u]1,.. n of covariant components [u]; :=
u-7; = (Su); that

)
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() Hru =305 (u- 7)7",
(b) S~t= (..., 7 L v) and
(¢) TL-S™HMul1,.. =TS ([u]1, ..., [u]n-1,0)T.

It is obvious that (7!,...,7%71 v) is a right inverse of S but S also has full rank, so

(7%,..., 7" 1 ) must be the left inverse as well. Thus (b) is true. We receive from (b),
using the representation u = S~1[u];. ., that

n—1
ILu=(I—- VVT)(Tl, T v)ul, . .= (7'1, T 0)[uli,..n = Z (u- Tk)Tk,
k=1

so (a) is true. Now, using (a) and (b), we obtain (c), since

IS ([u]t, oo [u]ne1, 00T = (74, .., 71 0) ([u)y, - (U], 0)

n—1

= D (u-mp)7"
k=1

=1Il,u

= HTS_l[u]l,A..,n

We now choose a concrete basis of 7,0 in an arbitrary point z € 0. For this
purpose, let ¢;, [ € I'; be the parametrization of the boundary 092 chosen in (2.5). If,
for some [ € I'1, the point x € 0 is contained in the part 0 n B; of the boundary,

the functions 0;¢;, i = 1,...,n — 1 form a basis of T,,0€2. More precisely, we can define
T = 1i(x) = ﬁiqﬁl(gbfl(x)) fori=1,...,n—1. Let [ € I'y be fixed now. For a function v
on 02N Byand i =1,...,n — 1 we define the i-th tangential derivative as

anv = az(v o ¢l) o ¢;1

and if v is a vector field, then v is defined componentwise. If v € W(Q n By), the
chain rule gives 0,,v = Vv - (0;¢; 0 gb;l) = Vv - 7, so the tangential derivative is exactly
the directional derivative in direction of the tangential vector. In case v € qu(Q N By)",
we have 0,,v = (Vol)7;. Therefore, for u e Wg(Q)” we have

[(Vu)v]; =7 - (Vu)r =v- (Vul)ry =v-d,u on 0Q N By, (10.1)
where ¢ =1,...,n—1. Forue WqQ(Q)” satisfying v - u = 0 on 02 we obtain
0=0,(v-u)=u-0,v+v- -0,u onddn By (10.2)

Utilizing (10.1) and (10.2) and writing (Vu®)v = d,u, we receive
[D+(u)v]; = [Opul; F (Or,v)-u on dQn Byfori=1,...,n—1. (10.3)
Now (c) and (10.3) yield
IL,Dy(u)ry = HTS_l[Di(u)I/]me
= IS~ ([Dy (u)r]y, - .., [Ds (w)v]n_1,0)"

— LS (([Avults - -, [Gouln1,0)" F ((0r,0) -1y, (0 ) -4, 0)7)
=1I,(0,u T S'Ru) on dQn By,
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10 The Stokes Resolvent Problem: Partial Slip Type Boundary Conditions

where R := (0nv,...,0r, ,v,0). Hence, for u € qu(Q)” satistfying v - u = 0 on 092, we
obtain (using (2.15))

IL,D, (u)v = D_(u)v — 2I1,S"'Ru on 0Q.

It remains to prove that there exists an extension 4 € W1 (Q)"*" of —2S~!R. There-
fore, we first consider the entries of S~!. We have shown in (2.13) that there exists an
extension 7 € W2 (Q)" of v. In the same way we can establish an extension 7; € W2 ()"
of i, for i = 1,...,n—1 and the corresponding extension 0z, of the tangential derivative
operator 0.

A representation of 77 is given by 7% = 22;11 g"*7;,, where (gjk)j7k=17___7n_1 = G~ lis the
inverse of the Gram matrix G' := (77 ) j k=1,...n—1 (cf. [54]). In (2.10) we have established
a uniform upper bound for |G~ ., so we also have an extension 7 € W2 (Q)" of 7* for
t=1,...,n—1. Now, considering the entries of R, we obtain that o, v fori =1,...,n—1
can be written as the directional derivative of the extension 7 in direction of 7;. Since
v e W2(Q)", we receive 0-v € WL (Q)". Summarizing, we have extensions of S~! and
R, hence also of —2S71R, in W1 ()", O

Now we are able to take general partial slip type boundary conditions into considera-
tion. The result reads the following.

Theorem 10.2. Let Q  R™ be a domain with uniform C*-boundary, n > 2,1 < ¢ < ©
such that Assumptions 4.3 and 4.4 are valid. Let 0 < 0 < and o € R. Then there exist
Ao = Xo(n,q,0,Q,a) >0 and C = C(n,q,0,Q) > 0 such that for X € g, |\ = Ao we
have the following with regard to

M—Au+Vp =f in €
divu =0 imn )
I (cu+Dy(u)y) =1Il;g on 2 (10.4)
v-u =0 on OS2,

where we denote (10.4), and (10.4)_ for the respective boundary terms D1 again.

(i) There exists € = €(n,q,Q,\) > 0 so that in case |a| < € for any f € Ly(Q)" and
g€ WH(Q)" there exists a solution

(u, Vp) € [WG(Q)" 0 Lgo ()] x G¢()
of (10.4)_.

(ii) Additionally, let Assumption 4.2 be valid. For any f € Ly(Q)" and g € W (Q)"
there exists a unique solution

(u, Vp) € W3 ()" N Lo ()] x G4()
of (10.4) . and of (10.4)_, respectively, and the estimate
|Aw, VAVu, V20, Vp)ly < C|(f; VA9, V9)q (10.5)

holds in each case.
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Remark 10.3. Note that Theorem 10.2(ii) yields that solutions (u, Vp) of (10.4) in the
class [W2(Q2)" N Lg,s(2)] x G4(€2) are not unique in case [W7 ()™ N Lo ()] x G4() is
a proper subspace. In fact, if V€ Uy(Q2) = Ly »(2) n G4(€) is a nonzero function, then
Theorem 10.2(ii) yields a solution (u, Vp) € [WZ2(Q2)" N Lg,s(2)] x G4(€2) of (10.4) with
f=Vmand g =0, so (u,Vp—Vm) e [WqQ(Q)” N Lqo(2)] x G4(€) is a solution of the
homogeneous problem (10.2). This solution is nonzero, since Vp — Vr = 0 would yield
Vr =0, due to the definition of G,(2).

Proof. We start with proving (ii). Let initially f € L, ,(£2), choose Ao = Ag(n,q,6,)
and C' = C(n,q,0,Q) such that the conditions of Theorem 9.2(ii) are satisfied and let
A€ Xg, [A| = No. Let A e WL(Q)"*" be the matrix from Lemma 10.1.
We define the Banach spaces
X = {(u,Vp) € [WZ(0)" N Lgo(2)] x Gg(Q) : (A= A)u+ Vpe Lyo(Q)},
Y= Leo(Q) x {Il trg: g€ W, ()"}

with norms (depending on \)
[(w, Vp)| x = [(Au, VAVu, V2u, V)4,
I(f, @)y == fllq + nf{|(VAg, Vo)l : g € W (Q)",a =TI, tr g}.
We further define the operators

S: X —Y, (u,Vp)— (A= A)u+ Vp,trD_(u)v),
P_:X—Y, (u,Vp)r— (0,11, tr au),
P,: X —Y, (u,Vp)r— (0,1 tr(Au + au)).

The statement for f € Ly »(€2), g € W} (Q)" now means that
S+Pi:X —Y (10.6)

is bijective such that (S + P4)~! is bounded, uniformly in A\. More precisely, the related
continuity constant of (10.6) is only allowed to depend on n, ¢, , Q2 and we prescribe |\| >
Ao. Besides, in (10.6) the operator S + P_ relates to (10.4)_ while S + P corresponds
to (10.4), .

Theorem 9.2(ii) gives that S is bijective and for (f,a) € Y, (u, Vp) := S7!(f,a) and
any g € qu(Q)” satisfying a = I, tr g we have

Consequently
[(w, VD) x < Cl(f,a)]y- (10.7)
Next, we prove that the two operators Py are continuous with
C'+ |a
| Pl x—y < | |, (10.8)
VIAl
where C’" = C'(n,q,Q) > 0. The definition of the norm in Y directly gives
|P-(u, VD) ly < lal|(VAu, Vu)g, (10.9)
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for all (u, Vp) € X. We obtain the same for the second part of Py, i.e.,
10,11, traw)ly < [a|[(vVAu, V).
Lemma 10.1 yields for the first part
10, T tr Au)ly < A1, (VAu, V)|

if |A| = 1. In total we obtain (10.8).

We now increase the constant A\g = Ag(n, ¢, 0, Q) to some \g = \o(n, ¢, 0,2, ) so that
Ao =1 and Ao = (20)%(C" + |a])?, where C and C” are the constants from (10.7) and
(10.8). Then (10.8) yields for |\| = Ao

1
Pilxoy < —.
IPelx-y < 57
Consequently, by use of the Neumann series, we receive that S + Py is bijective and
1
I(w, Vp)|x < C I(f,a)|y < 2C|(f,a)|y (10.10)
1= C|Ps|x—y

for all (f,a) € Y and (u, Vp) = (S+P+)"*(f,a). For any g € W} (Q)" we have (f,a) €Y,
where a := Il trg €, so (10.10) implies (10.5) in the special case f € Lq »(£2).

Now let f € L,(2)". Using (4.1), we decompose f = fo+Vm, fo € Ly (2), VI € G4(2),
where we additionally have a constant C” = C”(n, q,2) > 0 so that

[(fo, V)llg < C"] fq- (10.11)
Problem (10.4), with right-hand side function fo admits a unique solution (u, Vp) €
[Wé(ﬂ)” N Ly - (Q)] x G4(£2) satistying (10.5) with fj instead of f. Hence, (u, Vp+ V) €
(Wi ()" Lgo ()] xGy(€) is the unique solution of (10.4) . with right-hand side function
f and (10.11) yields the resolvent estimate (10.5) with Vp + V7 instead of Vp.
In order to prove (i), similar to the proof of (ii), consider the Banach spaces
X' = [WHQ)™ A Lgo ()] x Gg(),

Y'i=L,(Q)" x {Il;trg:ge qu(Q)”}

with the same norms as for X and Y and the operators S: X’ - Y  and P_ : X' - Y’

as defined above. Then estimate (10.9) is still valid for X', Y” instead of X,Y, so we
have

(10.12)

IP_xy <ol (10.13)

if A\g > 1. Theorem 9.2(i) yields that S : X’ — Y’ is surjective. Hence, there exists
e = €(n,q,Q,A) > 0 so that in case |P_|x/_y’ < € the operator S+ P_ : X' — Y is
surjective as well. Now (10.13) yields the statement. O

Corollary 10.4. Let Q < R" be a domain with uniform C*'-boundary, n = 2 and
1 < q < o such that the Helmholtz decomposition

Lg(Q)" = Lg,0(2) @ Go () (10.14)

holds and such that Assumption 4.4 is valid. Let 0 < 6 < w. Then there exist \g =
Xo(n,q,0,Q,a) >0 and C = C(n,q,0,9Q) > 0 such that for X € Xg, |A| = \g, problem
(10.4) _ and (10.4), , respectively, has a unique solution

(u, Vp) € [WqQ(Q)n N Lo (Q)] x G¢(22)
for any f e Ly(Q)", g€ qu ()™ and this solution fulfills the resolvent estimate
|(Aw, VAV, V2u, Vp) g < CI(f,VAg, V) lg-

+
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Remark 10.5. Corollary 10.4 shows that we can recover the main result in [30] (con-
cerning the Stokes resolvent problem) for partial slip type boundary conditions instead
of no slip. Still, note that in [30] the Assumption 4.4 is not required.

Remark 10.6. As the proof of Theorem 10.2 shows, we could further add another zero
order boundary term of the form Au with some matrix A € WL (£)"*" to the partial slip
type boundary conditions, i.e.,

II;(cu+ Dy (u)y + Au) =1I.g on 09
v-u =0 on 0f2

and the assertion is still valid (where the quantities now may additionally depend on the
matrix A, of course).

11 The Stokes Operator

We aim to define a suitable Stokes operator such that solving the related Cauchy problem
leads to well-posedness of the Stokes equations

ou—Au+Vp =f in(0,7)xQ
divu =0 in (0,7) x Q

II-(cu+Dy(u)y) =0 on (0,7) x N2 (11.1)
v-u =0 on (0,7) x 00
uli=g =wup in Q.

We begin by stating some auxiliary results, showing that the definition given afterwards
is meaningful.

11.1 Projected and Non-Projected Equations

Under Assumptions 4.2 and 4.3 we can use the decomposition (4.1) to reformulate (11.1)
and (11.1)_, respectively, with f : (0,T) — Lq(Q2)" and ug € Lq () as the equivalent
problems
ou—PAu = fy in(0,T) x Q
divu =0 in (0,7) x Q

II;(cu+Dy(u)y) =0 on (0,7) x 00 (11.2)
v-u =0 on (0,7) x 00
ulimp =up in

with fo : (0,T) — Lys(Q) and up € Ly, (€2), where we denote the continuous linear
projection onto L4 (Q), related to decomposition (4.1), by P = By : Ly ()™ — L, ().
We obtain this reformulation by the following equivalence of the corresponding resolvent
problems which is a direct consequence of the continuity of the projection P.

Lemma 11.1. Let Q < R™ be a domain with uniform C*'-boundary, n =2 and 1 < q¢ <
o0 such that Assumptions 4.2 and 4.3 are valid and let 0 < § < 7w and o € R. Then for
any A€ X9 and f € Ly(Q)" a couple

(4, Vp) € [Lgo(2) 0 2(A5 )] % G4(2)

solves
AMo—Au+Vp =f inQ
divey =0 inQ
II;(cu +Dy(u)y) =0 on dQ (11.3)
v-u =0 on o2
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11 The Stokes Operator

if and only if u € Ly s () n (A7) solves

M — PAy =Pf inQ
divu =0 inQ

II-(cu+Dy(u)y) =0  on N2 (114)
v-u =0 ondd
and Vp = (I — I?’)(f — M+ Au). In this case, for a fized \g > 0, the validity of
|, VAV, V20, Vp) g < C) fllg (11.5)
for all |[A| > Ao with some C = C(n,q,0,Q) > 0 is equivalent to the validity of
O, VAV, V2, < C'I £, (11.6)

for all |\| > X\o with some C' = C'(n,q,0,8) > 0.

Definition 11.2 (Stokes operator). Let £ = R" be a uniform C?*!-domain, n > 2 and
1 < ¢ < o such that Assumptions 4.2 and 4.3 are valid and let a € R. We define the
Stokes operator as

Asia = Ag__a : ‘@(Ag__,o) < Lq,o(Q) - Lq,o’(Q), u — ﬁun
on Z(A%, ) = D(DE,) A Les(9).

11.2 Stokes Semigroup

Proposition 11.3. Let Q c R” be a uniform C*'-domain, n > 2 and 1 < q < 00 such
that Assumptions 4.2, 4.3 and 4.4 are valid and let o € R. Then the Stokes operator A*a
is the generator of a strongly continuous analytic semigroup

+

(etAS’a)tzo

on Ly (). For arbitrary w € (0,%5) we can find d = 0 such that the semigroup, gen-
erated by the shifted Stokes operator AJr —d, is a bounded analytic strongly continuous
semigroup with angle w.

Proof. For § := w + 3, Theorem 10.2 and Lemma 11.1 yield some constants Ao =
Xo(n,q,0,Q,a) and C = C(n,q,0,9) so that for A € Xy, |A\] = A\¢ the resolvent (A —
AT )7V Lyo(9) — Ly o () exists and fulfills the resolvent estimate

IAA = AG) T fllg < Cllflg-

Let 0 = 6(0) € (0,1) so that |a + b| = d(Ja|] + b) for all a € £y and b > 0. Existence of
such a constant § can be deduced from a compactness argument by employing 6 < .
Then for any A € ¥y we have |\ + %)\0| > Ao and \ + %)\0 € Yy and consequently for

f€Lgo(S2)

Pp(r G- az.) 4,
1 —
<[ (e 20) (3 0= 2) 1]+ (3 320) (v o) ],

- (1 )0 ) (s b a2) 7

< (1+5)C1ls
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Hence, Aét — %)\0 is the generator of a strongly continuous bounded analytic semigroup
with angle w. O

Lemma 11.4. Let Q = R" be a uniform C%'-domain (i.e., a uniform Lipschitz domain)
andn = 2. Then there exists a linear operator E/, mapping functions on ) to functions on
R™, such that Ef|q = f holds for any function f on § (i.e., E is an extension operator)
and such that
k k
E W/ (Q) — W/(R") (11.7)

s continuous for all 1 < g < w0 and all k € Ny.

Proof. See [65], Thm. VI1.3.1/5. The condition for €2 to be a uniform C%!-domain is
exactly the condition in [65] for 0€2 to be minimally smooth. O

The following semigroup estimates are the essential tools for application of a fixed-point
argument to the Navier-Stokes equations in order to receive local well-posedness.

Proposition 11.5. Let 1 < p < g < o0, n = 2 and let Q < R™ be a uniform C>'-
domain such that Assumptions 4.2, 4.3 and 4.4 are valid fm“ p and for q. Let a € R
and T > 0. Then for the semigroup of the Stokes operator A— a,p Uhere exists a constant
C=Cn,q,p, QaT) >0 such that for all t € (0,T) and any feL,s,(Q) the following
inequalities hold.

.. Air _l ,,,,,
(ii) |Ve'Sarf|, < Ct2 Dfl, fi-l<l

Proof. Let § := n(% - %) € [0,2). Then for the Bessel-potential space
H(R") = [Lp(R"), W (R™)] (11.8)

we have the Sobolev embedding Hpﬁ(R”) < Lg(R™) (see, e.g., |66]) with some embedding

constant C, = C¢(n,q,p) > 0 since the condition p < ¢, % — 0B < % is satisfied. Let

t e (0,7) and f € Ly,(2) and denote by E the extension operator from Lemma 11.4
(where, in case of a vector field v, by Fv we mean componentwise application of the
operator E). Then we conclude

e AT
|e5ecn fl oy < [ s £, oy

tAE
< Ce||Ee ’a’prHg(R
+ 1-8 + 8 (11.9)
< C.|EeSanf| B ian)n | BetSan f| Za (e
< CUB||e S fl 5 |6 wf|\2 .

where ||E|| denotes the maximum of the operator norms of (11.7) for k& € {0,2}.

+
@ = w(n,p,Q, @) € R denotes the growth bound of (e"45.a:r),~( then for w := |@| + 1 and
some M = M(n,p,Q,«a) > 0 we have

=+
e fllpn < Me!| £z, n < M| f]L, - (11.10)

i . . . i .
Since (etAS’am)t)o is an analytic semigroup, we have etASvaﬂpf e 9(A é*r ) Fix any

0 < 6 < 7 and choose Ay = A\g(n,p,0,Q,¢) =1 and C = C(n,p,0,Q) > O such that
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11 The Stokes Operator

the conditions of Theorem 10.2 are satisfied. In the proof of Proposition 11.3 we have
seen that for some appropriate § = (5(0) € (0,1) the strongly continuous semigroup

(e HAS o 6/\0))t>0, generated by AS ap T
Theorem 10.2 and Lemma 11.1 that

Gro-42.,)

(since $A9 = Ao = 1). Consequently,

)\0, is analytic and bounded. We receive from

N

C

Lp(Q)"—Hp ()"

i = (o= ) (o Ao

1 + 1

<C —AOT‘( Ao — AT ) HAZ a,p=520) 11.11
NG T M S P )

DY T1
< OCe™ | flr,@r:
where
C'=C'(n,p,0,Q,a) =su H ( — Af ) HAG o, 520)
(n.p 20 Sieup Lo ()= Lpo(9)

+
is a finite constant, since (et(AsyavP_%)‘O))go is bounded and analytic. Now (11.9), (11.10)
and (11.11) yield

B B
2 2

+ _ 1 _B
le"4Sen 11 @ < Cel E|(MeT) =2 (CC"ea™T) 2t 2| £, ()n

Hence (i) is proved.
11

In order to prove (i), let ¢ € (0,7) and f € Ly, »(£2) again, where we have § = n(;—) €

[0,1) this time. The condition p < g, % -6 < % for Sobolev’s embedding is still satisfied,

so we have HEH(R”) < Hj(R™) with some embedding constant Ce = Ce(n,q,p) > 0 as
above. Furthermore, the condition § < 1 gives that (11.8) holds with 8+ 1 instead of £3.
Therefore we have

AL At
Hvet s,a,prLq(Q)nz < ”et Sv""PfHH‘}(Q)n
+
< ||E€tAS’“”’fHH;(Rn)n
+
< Ce||EetAS’a’prHB+l(Rn)n
tAE 1
< Ce| Ee S‘”’fHL Rr nHEe S‘“°f||H2 (Rn)n

A_
< Cl e “Eer Fl e o oy

Applying (11.10) and (11.11) again, we conclude

t w B4t
Vet sl e < ClBIMETf] 1, @)~ 5 (OCeRNT 2 1, ) T

B+1 B+1

= CL|E|(Me“T) = (CCes™T) 5 175 | f]l 1, - O
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12 The Navier-Stokes Equations
We consider the Navier-Stokes equations subject to partial slip type boundary conditions

ou—Au+Vp+(u-Viu =0 in (0,7) x Q
divu =0 in (0,7) x Q

IL-(cu+Dy(u)r) =0 on (0,T) x 2 (12.1)
v-u =0 on (0,7) x o
u’t=0 = Ug in Q,

where (u - V)u = Y7, w/ 0ju. We denote (12.1), and (12.1)_ for the Navier-Stokes
equations subject to boundary conditions with the related boundary operator D, and
D_, respectively. With the assumption divu = 0 we also have (u-V)u =37, 0j(uu).

Theorem 12.1. Let Q < R™ be a domain with uniform C*'-boundary, n > 2 and
n < q < © such that Assumptions 4.2, 4.3 and 4.4 are valid for q and also for 3. Again

we denote the projections related to decomposition (4.1) by IF’Q and ﬁ”q/Q, respectively.
Let 0 < 0 < 7, a € R and up € Lys(2). Then there exists T > 0 such that the
Navier-Stokes equations (12.1) _ and (12.1)_, respectively, admit a unique mild solution
depending continuously on ug, i.e., the integral equation

+ b it o~ ‘
u(t) = etA&a,quo — f el S)AS’M/QIP’Q/Q Z 0j(u’ (s)u(s))ds, te[0,T1], (12.2)
0 =
j=1
related to the projected Navier-Stokes equations

Oru —]?’un —i—ﬁ’q/g(u V)u =0 in(0,T) xQ

divu = in (0,7) x Q
II;(cu+Dy(u)y) =0 on(0,T) x 0Q (12.3)
veou o= on (0,T) x 09
ulimg =wug in
admits a unique solution
uwe BC([0,T], Lg» ()  with [t — VtVu(t)] € BC([0,T7], Lg()™™). (12.4)

Proof. Let ug € Lqys(2). For M > 0 and T" > 0 we define X/ 7 as the space of
functions w satisfying (12.4) and [u|r < Muolg, where [ul7 := supepo 7 lu(®)lq +
SUPye[0,7] Vt|Vu(t)|, and we set

+
s,

t n
H(u)(t) := eang — f e(tfs)ASiv%WPq/Q Z 0j(u? (s)u(s)) ds
0

j=1
for ue Xy and t € [0,7]. We aim to prove that H is a contraction. Assuming 7' < 1,

we can apply Proposition 11.5(i) with 7' = 1 and p = £ (and with p = ¢ for the first
term) to receive a constant C' = C(n,q,, a) > 0 so that

[H )l < C (ol + Y fo (= 5)" % [Byyo0(u (s)u(s)) g ds). (12.5)
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12 The Navier-Stokes Equations

The continuity of IF’q/Q on Lg/5(€2)" and Holder’s estimate yield some C' = C'(n, ¢, Q) > 0
so that

D | (=9 Bty sy g
j=1

<o (1 — 5 | Vu(s) g u(s) |, ds
<c(sw 1ol ) (s vIvaeol,) L(t_\f)d

7€[0,T] €[0,77]

2 st —n

t— 2q

<o/< sup Ju(r)]y + sup ﬁqu(T)llq> J(S)ds (12.6)
e[0,7] e[0.7] 0 Vs

t _n
v 2 (t B 5) 24
- Ol | s

/ 9,i_o
< C'Chgluf7t> 2
/ 2 i
< C'ChyglulpT? 2

/ 2 2i—
< C'CrgM=|uo|T2 24,

since 2% < 1 gives that

b(t—s) 2 ft/Q 1 1 Jt 1 1
7d52 77nd8+ 77nd5
fo Vs 0 VS (t—s)2 12 VS (t — )2

t2 1 1 toq 1
< j — - ds +j — = ds
0 VS (t— L) t/g\/g(t—s)zq
no 1 1 n_ 1\ 1 n
= [ 22¢ 2+1_£22q2 t2 2q
2q
= Cn,qt%_%
Therefore .
|H (u)(t)]q < Clluollq + CC'Cr g MPT2™ 24 |ug (12.7)

for M >0,0<T <1,ue Xy and tel0,T].
Now we aim to receive a similar estimate for

t n
VH(u)(t) = VetA;_rva’quo — L Ve(tfs)AS%a!q/?]P’qp Z 0j(u? (s)u(s)) ds®
j=1

for w € Xprr and ¢t € [0,7]. We assume T' < 1 again and apply Proposition 11.5(ii)
with 7' = 1 and p = £ (and with p = ¢ for the first term) to receive a constant C' =

* We can interchange the integral SS and the gradient: Pairing with some test function ¢ € CZ(2)"
t (t—s)AT

yields that the gradient of { e S.a/2 fy ds (where fo 1= I?’Z?zl 9;(u? (s)u(s)) € Lyj2,0(Q)) in the

(t—s)Ai

distributional sense is in fact given by Sé Ve S.a/2 fo ds.

69
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C(n,q,Q,a) > 0 so that
(12.8)

Again, using the continuity of IF’q/Q on Lg;(22)" and Holder’s estimate, we receive a
constant C” = C"(n,q,Q) > 0 so that

D% | Vit = o) B a0, (00 (a5 s
j=1

t 1
< C”L Vit — )72 2| Vu(s)|qfu(s)q ds

n

2q

< (s Jucely ) (s VAITul, ) [t

T€[0,T]

[SIE

n

2 ~t —

t_ 2

<c”( sup |u(7)|q + sup ﬁuvu(f)nq) f St =2
r€[0,T7] re[0,T] 0 NG

D=

1_n
<C"C flulFe2 5

n

1_
< C"C) |ulpT? %
1_n
< C"C M |ug 2773,

. n l .
since 5, < 5 gives that

b (t—s) %2 Y2 (t— )3l t (t—s) 303
\/%(7 ds = Vi s+ Vi s
0 Vs 0 Vs t/2 Vs
Y2 (p - tyTE b (t—s) R
< \/g( 2) ds + \/Z%ds
0 /s t/2 \/g
2g 71 1 pz+1),i-2
o e N e
q
Cl b2 %
Therefore
el D S X 2
VIV H(@)(®)ly < Clluolly + CC"Cly MAT5 3 g 2 (12.9)

for M >0,0<T <1,ue Xy andtel0,T].
We further receive for fixed tg € [0,7"] and uw € Xy that |[Hu(to) — Hu(t)|, =0,

t—to

and [vtVHu(ty) — VtVHu(t)|, —> 0 hold, by establishing analogous estimates.
Hence, for arbitrary u € Xy, the functions Hu and ¢ — +/tV Hu(t) are continuous.

2 2
/ /AN 1 -7 1 -7
Now let 0 < T < T, where T" := min {1, <—4C2C/Cn,q“UOHq) 7, (—4020/@%””0%) a }

and M = 2C. Then (12.7) and (12.9) yield

H: Xyr— Xur, (12.10)
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12 The Navier-Stokes Equations

i.e., H maps Xy 7 into itself.
We proceed to prove that H : Xy 7 — Xy 7 satisfies a contraction estimate for
M > 2C and T > 0 small enough. Let u,v € Xy, 7 and t € [0,7"]. Then we have

H(u)(t) — H(v)(t) = fo Iz, 3 05wl ()u(s) — v (s)u(s)) ds.

J=1

As in (12.5) we obtain

[H(w)(t) — H@) (D], < Z f (t = )75 [Byya0 (w (s)uls) — o (s)0(s)) |5 ds

and as in (12.8) we receive
VI (H O -HE)O); < C Y, | Vilt=s)™ 57310, ()u() = ()o(s)g ds
j=1

Now for 0 < s <t we can estimate

|05 (u( — v/ (s)v(s)) | g

il ( ( )[ () = v(s)] + [ (5) — 7 (s)]v(s)) | g

< (Ju(s)lg + fo(s )II IV (uls) = v(s)) g + (IVuls)lg + [Vols)g)uls) — v(s)l
< (Julr + HUHT)\fHu vlr + \}(UT +lvllr)]w = vl

4M
<7
NG

[uollylu = vll7-

(12.11)

The continuity of IF)q/Q on Lg/(2)" and (12.11) yield some C" = C"(n, q,€2) > 0 so that

JH(W)(0) ~ HE)Ol, < CC"Mluwlgu ol [ £

1_n
< CC"Cl e MT? ™ 21 gy [u — v

ds

and
IVEY (H (w)(t) — H(w)(1))ly < CC"Cl MT5 55 Jug]lu — vl

Thus, we have

() ~ H)lr < 5u— vl (12.12)

2 2
if 0 <T < T where T" := min{l, (M) =g 7(%) 12} and
M = 2C.
In total, for M > 2C and 0 < T' < Ty, where T := min{7",7"}, (12.10) and (12.12)
yield that H : Xpr 7 — X7 is a contraction and therefore has a unique fixed point. []

Remark 12.2. Rewriting (12.3) as the original Navier-Stokes equations (12.1) might
be not possible in case the projections Py and P, fail to coincide on Ly(2) N Ly /o(2).

In fact, we do not know the projection P, to be consistent with respect to 1 < ¢ < o
in general. Nevertheless, we can not replace Py in (12.2) by Py and guarantee that
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(12.2) is meaningful, since the nonlinear term is not contained in L4(€2)" in general but
in Lq/z(Q)". Still, when applying Theorem 12.1 to a common setting, e.g., bent half
spaces or domains with a compact boundary, then the obtained mild solution of (12.3)
always conincides with the usual meaning of a mild solution of (12.1) (cf. [30]). In this
case, IF’q equals the standard Helmholtz projection.
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IV Stokes and Navier-Stokes Equations
in TLL Spaces

The subject of this chapter, on the one hand, is the scale of Triebel-Lizorkin-Lorentz
spaces (TLL spaces) Fp and their properties. On the other hand, we apply these
properties to solve the Stokes and Navier-Stokes equations in this scale. The obtained
results are consequently valid for all function spaces that are included in the scale of TLL
spaces F,;: By setting r = p, we obtain the Bessel-potential spaces Hp for ¢ = 2 as well
as the Sobolev-Slobodeckil spaces W for ¢ = p in case s ¢ Z and ¢ = 2 in case s € Z.
In particular, we obtain the Lebesgue spaces L, by setting s = 0 as well as the Lorentz
spaces L, = FI%.

Concerning the Stokes equations we aim to prove that the Stokes operator in TLL
spaces admits a bounded H%-calculus. Finally, we apply this to prove existence of
unique maximal strong solutions of the Navier-Stokes equations

ou—Au+Vp+ (u-V)u =f in(0,7) xR"
divu =0 in (0,7) x R"
u‘tzo = Uup in R"

in TLL ground spaces, i.e., the solution is supposed to exist on a time interval (0,7%)
which is not possible to be increased. This can be either the whole time line (0,7*) =
(0,00) or we have a blow-up of the solution at finite time 7% < co.

13 TLL Spaces

13.1 Definition and Properties
For parameters se R, 1 <p,q <00, 1 <r < oo we call
Py = {ue " (R"): luf s < w0}

Triebel-Lizorkin-Lorentz space (as defined in [14]). The norm is given by

1

) )
Jull gy = Nk * wkeno Iz, . az) = H( > 2l x ul]?)
keNg

p,T
where (@ )ken, is a dyadic decomposition defined as follows (cf. [66], Def. 2.3.1/2).

Definition 13.1. Let @ (for N € N) denote the set of systems of functions (¢ )ken, <
Z(R™) with the following properties.

e o =0 for all ke Ny.
o spt(Qr) < {28V < |x| < 28N} for k € N and spt(Po) < {|=| < 2V},

e There exist D1, Do > 0 such that for all £ € R”

Dy < ) Gil€) < Da. (13.1)
k=0
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e For any a € N{j, there is C,, > 0 such that for all £ € Ny and { € R"
€[00 @1 (€)] < Ca. (13.2)

Additionally, we set ® := | Jyy®n and call each family (@r)ren, With (¢r)ren, € ® a
dyadic decomposition.

Note that the constant Cy, in (13.2) does not depend on the index k but on the selected
N €N, i.e., on the radius 2%V of the dyadic decomposition. Also note that the existence
of Dy in (13.1) can be deduced from (13.2) with @ = 0 and the properties of spt(@x).
We will often use the following more specific dyadic decomposition.

Example 13.2. Let ¢ € C*(R") be radially symmetrlc with spt(¢) < {|z| < 1}, ¢ =1

on {|z < 3} and 0 < ¢ < 1. We set (&) 1= ¢(5) — ¢(€) and 1y (€) 1= 1h(27*¢) for £ e R”
and k € Z. Now we set ¢y, := 1y for k > 1 and define ¢ € . (R™) by

D), i E#0
Po(§) = 4 i<0
1, if £ =0.

This implies (¢r)ken, € ®1 with 35y k() = 1 for all £ € R"™. In addition, we have
the following (easy to verify) properties:
(@) [orlr = [¢]1 for all k€ N.

(b) SN B =%, 1 locally uniformly on R™.

(€) SN g+ f 225 fin F(RY) for all fe 7 (R™).

(d) Zé\[:o pj*EU N0, v in ' (R™) for all ue '(R™).

If we replace the Lorentz-norm |- | ~(i5) by Iz, (15)> then we receive the well-known

Triebel-Lizorkin spaces F} . More precisely we have Fyi = Fj, One can find the
following result as [66], Rem. 2.4.2/1.

Proposition 13.3. The TLL spaces are independent of the choice of the dyadic decom-
position.

The following result is due to YANG, CHENG and PENG (see [14]), where their proof
is based on wavelet theory. We notice that it is possible to derive this property by
L,-interpolation and retraction and coretraction techniques as developed in [66], as well.

Theorem 134 ForseR 1 <po,p1,g <0, 1 <rg,ri,r <00, pyg#pr and 0 <6 <1

such that £ = 1=2 + 0 ye have
P po p1

S,70 S,T1 . S,7
(FPO:(]’FPI:Q)H,T - Fp,q'

In particular, if ro = po and r1 = py, we have (F3 . Fs q) =Fyy.

Lemma 13.5. Let s € R, 1 < p,q < 0 and 1 < r < . Then we have the following
continuous embeddings.

(i) L (R") < Fpy < L' (R™) and the first embedding is dense in case r < o0.
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(i) Fpe™" < Fpy form=0.
(iii) Fpgq < Ly, if s > 0.
Proof. Assertion (i) follows from the corresponding fact for Triebel-Lizorkin spaces, since

n s S S,T S s
y(R ) - Fpqu n Fpluq - Fp,q - Fpoﬂq + Fplvq

c .7 (R"
and since the intersection of an interpolation couple of Banach spaces is dense in their
real interpolation space. Assertion (ii) is a consequence of [J*7 < I2.

In order to prove (iii), we use the dyadic decomposition (@ )ken, given in Example 13.2.

First we consider the estimate

0
|2 lenxul
k=0

that we receive from Hélder’s inequality with % + % = 1 and some C = C(p,r,n) > 0.
Since s > 0, the right-hand side is finite for u € Fj};. Applying Example 13.2(d) we have
u = Y77k * u where the convergence is in .%”/(R"). Now (13.3) gives that the series
even converges pointwise a.e. and thus u is a measurable function. On the other hand

(13.3) gives [u[r,, < C"|ul gy with some C" = C'(p,r,n) > 0. O

lulegg (13.3)

q

<] ()
Ly r 28k keNg

Proposition 13.6. F, is of class HT for se R and 1 < p,q,7 < 0.

Proof. We need to show that the Hilbert transform

€ s|>e

S

has an extension H € £ (L,(R, Fp)). For any s € R and 1 < ¢ < oo, Tonelli’s theorem
implies that L,(R"™,[7) is a space of class HT and so is L,(R",[7) for arbitrary 1 < p < co.
Since the Triebel-Lizorkin space F};  is a retract of L,(R",[7) we can transfer the H7T-
property to F7  for any s € R and 1 < p,q < .

Now for fixed parameters s,p,q,r as in the assertion we can use Theorem 13.4 to
complete the proof. As a direct consequence of the interpolation property

L’/‘(Rv (X(), Xl)@,r‘) = (LT(R7X0)7LT(R7X1))0,T

we obtain that for an interpolation couple X, X1 of spaces of class HT the real interpo-
lation space (Xg, X1)g, is also of class HT. Thus, Fyy is of class HT. O

Corollary 13.7. F,; is reflexive for s€ R and 1 < p,q,r < o (due to [56]).

Corollary 13.7 could also be obtained in a direct way, regarding the following result
which is a conclusion of the corresponding result for Triebel-Lizorkin spaces (see [66],
Thm. 2.6.2) and Theorem 13.4.

Proposition 13.8. The dual space to Fyy is given by Fp_,z&r/ forseR and 1 <p,q,r <
YA . 1 1 1 1 1 1 _

oo, where 1 < p',q',r" < aregwenby;)—i-y—l, T 7 =land ; +, =1

Proposition 13.9. F;,’g has property (o) for se R and 1 < p,q,r < 0.

Proof. The Triebel-Lizorkin spaces Fj , have property (), since there exists an isomor-
phism to a closed subspace of L,(R",[7). This implies the assertion, since property ()
is preserved under real interpolation (see [43], Thm. 4.5). 0
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IV Stokes and Navier-Stokes Equations in TLL Spaces

Theorem 13.10 (Multiplier theorem for TLL spaces). Let s € R, 1 < p,q < o and
1 <r<o. Let (my)ren € C™(R™{0}) such that

Cy = sup |€¥0ama(§)] < o0
£eR™\{0},\eA

for all a € {0,1}™. Then for every X\ € A
FimyF - S (R — S (R")
has a (unique) continuous extension Ty : Fpq —> Fpy such that

TN Fgp gy < © JJhax Ca

where C' = C(n,s,7,p,q) > 0. Furthermore, (Tx\)xen < L (Fpyq) is R-bounded in case
1 <r<oo.

Proof. We define My € Lo (R™, Z(17)) by setting My(§)x 1= (ma(§)7k)ken, for € €
R™{0}, 2 = (21 )ken, € 7 and A € A. By Kahane’s contraction principle (see Theo-
rem 5.1) we see that the assumption C, < oo implies R-boundedness of {{%0, M (£) :
§ e R™M{0}, e A} c Z(l7) and the Ry -bound does not exceed 2max,eqo,1)» Co. Since
lg is of class HT (note that 1 < ¢ < o0) and has property (a), Theorem 5.7 gives that
M) is a Fourier multiplier, i.e.,

FIM\F « S (R 15) — (R, 15)
has a (unique) continuous extension Sy : Ly(I5) — Lp(l) such that

Rqy({Sy: AeA}) <C I?oai(} Co=K (13.4)
ae{0,1}m

for all A € A, where C' = C'(n, s,r,p,q). From the identity

(r * fﬁlm)\ff)ke[\]o = 971M>\§(90k * f)keNo (13.5)
we receive Hﬂ‘lmAﬂfHFg < K|flpg, for f e S (R") and consequently we have a
continuous extension T) : Fs — F, of Ftmp\TF . S(R") — '(R"). Now (13.4)

and (13.5) imply Rq({T) : /\ e A}) < K Hence, the assertion is proved in case p = r.
In order to generahze the result, we select 1 < pg < p <p; <o and 0 < 6 < 1 such

l — 1;9 - ) S S
that 5 = == + p1 and receive Fpy = (Fpo.qs Fpyg)o.r- Thus, for

Ty:(Fy oo Fy o o)or — (E5 oo F5 o

Po,q’ " P1,9 P0,q° ~ P1,9

we obtain the estimate |T)|psr_ psr < C'max,eqo1)n Ca, since the real interpolation
method is exact of type 6, where C' = C’(n, s,r,p,q) > 0.
Since szj,q ist of class HT for j = 0,1 we receive R-boundedness of

I s (o0 By g)or — (Fpo g By g)on
for 1 < r < oo as a consequence of the case p = r proved above (see [43], Thm. 3.19). O

Proposition 13.11. For se R, 1 < p,qg < o0 and 1 < r < o the following representa-
tions hold.

(i) Fpg® = {ue S'(R") : F71 1+ |¢2)2 Fue Fy} for o e R,
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13 TLL Spaces

(i) Fpsh" = {ue S"(R") : 0qu € Fyq Yo e NJ, |a| <k} for ke Ny and r < o0.
(ili) Fyi2mr = {ue " (R"): Alue Fyy VjeNy,j <m} formeNy and r < .

The corresponding norms are eqivalent, where the norm of the space on the right-hand
side is given by |F (1 + \5]2)59u\|F;,; in (1), by X<k [0avlpsr in (i) and by

Zosjgm ”AjUHF,f;g in (iii).

Proof. We consider the Bessel-potential operator Bu := . 1(1 + |§|2)%ﬁuAfor u €
S'(R™) and 0 € R. If we fix (pr)ren, € ® and o € R, then by setting ¥ (§) =
#@k(g) we obtain (¢y)ken, € ® (cf. proof of [66], Thm. 2.3.4). Hence,

Jullggy ~ 1Bl o (13.6)

and (i) is proved.

Now the special case o = 2m in (13.6) leads to Fjq2™" = {fue S"(R"): (I —A)™
Fyq} together with the equi.valence HUHF;’ZZW,T ~ |(I = A)™u| gsr. Hence, for (iii) it
remains to show >, [AMu|psr < C[(I — A)™upsr, since the converse estimate is
obvious. For this purpose we write

The associated symbol ( €% fulfills the conditions of Theorem 13.10. Therefore, we

1+[€[2)*
receive (iii).

In order to verify (ii) we write

(0%
Oqu = i‘o‘|9*1€7m9‘3|0“u for |a| < k (13.7)
(1+[E)=
and
FN £ &z (13.8)
Fuy = .
| k
e !a\ (1+1¢P)2
(cf. [35], Sec. 1.3.1). Applying Theorem 13.10 and (13.6) again, we receive |u pssr.r ~
p.q
2lal<k | Oatl 5., where (13.8) gives the estimate “<” and (13.7) gives “>". O

13.2 The Laplace Operator in TLL Spaces

The Laplace operator in F,y for se R, 1 < p,q < o0 and 1 <7 < o0 is defined as

A = cD(AL) € Fyy — Byl u— —Au,

qu P,q’

where the domain is 2(Az) = Fpi®". We will use the same notation, i.e., Az, for the
Laplace operator defined in (F, )™, which is then understood to be apphed component-
wise.

Proposition 13.12. The operator Aj is R-sectorial with gpﬁL =0 forseRand 1 <

p,q,r < 00 and we have ( qu) Azsprq In particular, Ay, is injective.
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IV Stokes and Navier-Stokes Equations in TLL Spaces

Proof. Lemma 13.5(i) implies that Az, is densely defined. For A € C\(—o0, 0] we aim to
show \ € p(—Ar) with

1
A Ay)t=F F
( L) P
Therefore, we consider the symbols +|§|2 and /\Lrl‘é\” which are smooth and fulﬁll the

conditions of Theorem 13.10. Considering the first symbol we obtain that %~ )\ = 5‘2,92

defines a bounded operator on F,5. Considering the second symbol and using Proposi-
tion 13.11 we obtain that this operator in fact takes values in Fjy>" and hence must be
the inverse operator of A + Ap.

In order to prove the claimed R-boundedness of {A(A+AL) "t : X e X} « L(Fpy)

we show the uniform estimate

sup  [§%dama(§)] < o
EeR™, \eXy,

for all o € N and ¢ > 0, where m(§) := This is a consequence of Lemma 5.3(i),

P
so we can apply Theorem 13.10. Summarizing, A, is pseudo-R-sectorial with cpﬁL = 0.

Let now initially s > —2. Then we obtain in an elementary way that Ay, is injective:
For u e A4 (Ar) we have spt(u) {0} and thus u is a polynomial (see [34], Cor. 2.4.2).
Lemma 13.5 gives that F;;IFQ’T < Ly« and it is not hard to show that L, does not
contain any nontrivial polynomials. Hence u = 0. Now we consider the decomposition
Foq = N (AL) @ #(ApL), which is a consequence of the pseudo-R-sectoriality proved
above and of the reflexivity of F},q obtained in Corollary 13.7 (see, e.g., |36], Prop. 2.1.1).
The injectivity of Ay then gives that Z(Ar) < Fyy is dense.

By integration by parts we easily obtain Azs’f ' (A3" ). The fact that —1 €

L,p,q
o( qu) for all se R and 1 < p,q,7 < 0 then gives A, , = (A}, ). Since (Fyy)' =
F _,S,T , the R-sectoriality with ¢’ 2, = 0 for s < —2 now follows by standard permanence
propertles of R-sectorial operators. ]

Remark 13.13. The proof of Proposition 13.12 shows that for » = 1 we still have that
Ap is pseudo-sectorial with ¢ 4, = 0 and, in case s > —2, A, is injective.

Proposition 13.14. Let s € R and 1 < p,q,r < . Then Ap has an R-bounded
o0 - R,OO
H™-calculus with ¢~ = 0.

Proof. Thanks to Proposition 13.9 and Theorem 5.6 it is sufficient to prove that Ay has
a bounded H®-calculus with ¢% = 0. Let ¢ € (0,7) and f € J(3,). The operator
Ay is sectorial due to Proposition 13.12. Using Cauchy’s integral formula we receive
fADu = F7Lf(|€]%) Fufor all u € #(R™). Now the symbol f(|¢|?) fulfills the condition
of Theorem 13.10 (due to Lemma 5.3(i)) which yields

| FALE s o < Col fllos,
with some C, > 0 independent of f. O

Note that Proposition 13.14 implies Proposition 13.12 if we only knew the sectoriality
of Ay. But, as the proof of Proposition 13.12 shows, R-sectoriality can be obtained in a
direct way at essentially the same cost.

Now, we consider an alternative representation for TLL spaces. We prove that F;}ZM’T
is the domain of (I — A)* in F,, where a € [0, 1].
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13 TLL Spaces

Proposition 13.15. Let se R, 1 <p,q < and 1 <r < oo. Then

A:.@(A)ZQ(.AL)CFST%FST ur— (I — Au

p,q’

is sectorial with angle p4 = 0 and for a € [0,1]
P(A*) ={ue F5r - F' 1+ [§2)* Fue Egr} = Fb2or (13.9)

holds with equivalent norms, i.e., |u|g(aoy ~ | F (1 + ]{\Z)O‘ﬁuHF;g for allu e P(A%).
Moreover, we have

A = F7H 1+ |€)* Fu (13.10)
for all u e P(A%).

Proof. The second equality in (13.9) is Proposition 13.11(i). The Laplace operator Ay,
is pseudo-sectorial with angle 4, = 0 and so is A. Now —1 € p(AL), so A is bijective
and thus sectorial.

We now assume « € (0,1), since the cases @ = 0 and o = 1 are obvious (due to
Proposition 13.11). We set ¢(z) := (1+ iz and ha (z) := 2z Using Cauchy’s integral
formula, we obtain

(Pt
gho)(A)f =F 1L Ff 13.11
(9ha)(4) CRATIIE (13.11)
for all f e Y(R”) Theorem 13.10 gives that (13.11) even holds for all f e Fy;. Now
A P(A) — Fyy is bijective with A1 f = 7~ 11+|§|2 7 f for f € Fpy and thus we obtain
-1 2 4—1 12+ [€P)?

for all f e Z(A). Relations (13.11) and (13.12) yield (13.10) by the fact that A% is given
by g(A)~"(gha)(A).

Now we verify (13.9) together with equivalence of the norms. For this purpose, let
first u € Fpy so that F71(1 + [£]?)*Fu € F,y. Then, using (13.11) and Theorem 13.10,
we obtain (2 — A)(gha)(A)u € Fpy. Consequently, we have (gh)(A)u € Z(A). Now
we also know (ghy)(A)u € Z(A) = Fpy, so we obtain u € Z(A%). Hence, we have
{ue Fpy : F7HA+[E)*Fue Foy} © D(A”), so we can restrict ourselves to u € Z(A%)
to show the equivalence

lul geaey = lul gy + 1A%l gy ~ 1771 (1 + |§|2)°‘9UHF;;;- (13.13)

For u € 2(A%) we can apply (13.10), so we directly receive “>" in (13.13). Applying

Theorem 13.10 to the symbol W and using (13.10) again, we receive the estimate

lullpsr < ClF=t1+ ]§|2)a9u|\F;,g and consequently the converse inequality in (13.13).
Hence, we have proved the equivalence (13.13) and this also shows

2(A) c{ue Fl - 7 A+ gP)s Fue Fy . O

As a consequence of Propositions 13.14 and 13.15 and of (5.4) we infer the following
result on complex interpolation of TLL spaces.

Corollary 13.16. Let —o0 < sg < 51 < 0 and 1 < p,q,r < 0. Then for n € (0,1) we

have

so,r ps1,r] . pp(l=m)so+nsi,r
[qu 7Fp7q ]77 - vaq :
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IV Stokes and Navier-Stokes Equations in TLL Spaces

Proof. For s € R we receive

[Fy B0, = By (1314
in case k = 1, § = 1 from (5.4) and from Propositions 13.14 and 13.15. Since for any
B = 0 we can write A% = A™A® for some m € Ny and «a € [0,1], (13.14) holds for all
k € Ng and # = 1. An application of the reiteration theorem now gives (13.14) for all
0 €[0,1] and k € Ny. This proves the claim. O

13.3 The Stokes Operator in TLL Spaces

We first introduce the Helmholtz projection P on (Fpy)". Again n € N is the dimension
and se R, 1 <p,g<o0,1<r<o. Forue ¥ (R")" we set

T n £
Pu:zﬂ1{I—|£§|2}ﬂu=u—<2ﬁli|%ﬂuj>l' : (13.15)

j=1

By virtue of Theorem 13.10 we obtain P € .Z((F},’;)"). The space of solenoidal functions
is

(B3 = A{ue (Fyr)" : div u = 0}
and the space of gradient fields in (Fpy)" is
G :={Vp:pe Z'(R"),Vpe (F/)"}.
Proposition 13.17. Similar to the definition of the space of gradient fields we set
9*:={Vp:pe S'(R"),Vpe (F;)"}.

Let 1 < p,q,r < 0 and n = 2. If s > —2, we additionally admit r = 1. Then
the range and the kernel of the Helmholtz projection are given by %(P) = (Fpg)™ and
N (P) =9 =9*. In particular, we have the Helmholtz decomposition

(Fpg)" = (Fpg)o ®Y.
Proof. We prove the claim in three steps and start with some general observations that
we will make use of. First we remark that one can obtain the inclusion Z(P) < (Fpy )2 by

direct computation (and approximation). Second the injectivity of the Laplace operator
(see Proposition 13.12 and Remark 13.13) yields

(FsI2 A9 = {0} (13.16)

Furthermore, de Rham’s theorem (see [16]; cf. [29] and the references therein) gives
that ¢ is a closed subspace of (Fjq)".

Step 1. We show A (P) © ¢ in the special case that Fj, is a Lebesgue space. So, we
fix 1 <n <2 andset 4 = {Vp :pe S'(R"),Vp e LW(R")"}. Furthermore, let P,
denote the Helmholtz projection on L, (R™)"™. Then the Hausdorff-Young theorem gives

that Pyu = Z I- %]ﬁ u (which is a priori valid for Schwartz functions) is meaningful

for all w e L,(R™)". Thus, for v e A4 (IP;) we have 1 = f%ﬁ with %ﬁ e ' (R") (since
n > 2) and receive A (Py) = 9.

Step 2. We use the first step to show the inclusions A (P) ¢ ¥* < ¥4 < A (P) (in
the stated order). For a fixed 1 < 1 < 2 we receive (I — P)((Fpq)™ n L,(R™)") < ¢*
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14 The Navier-Stokes Equations in TLL Spaces

from the first step. Since (Fpj)" N L,(R™)"™ is dense in (F,j)" we obtain A (P) =
(I—P)((Fpq)")  9* as a consequence. The second inclusion ¥* < ¢ is valid, since ¢ is
closed. For the third inclusion we fix u € 4. Since we have already shown 4 (P) ¢ ¥*
¢, we obtain Pu = u — (I — P)u € 4. On the other hand, we have Pu € Z(P) < (Fpy)2.
Consequently, (13.16) implies Pu = 0.

Step 3. It remains to prove Z(P) = (Fp4)% In view of what we have already seen
we obtain (Fpg)" = Z(P)® N (P) = Z(P) DY < (Fp3)2 +%. Now the last inclusion
must be an equality, since the converse inclusion is obvious. Besides, (13.16) yields
directness of the sum, so Z(P) @Y = (Fpq)" ® Y together with Z(P) < (F,)" gives
B(P) - (Fyg ). .

Remark 13.18. The space (Fpy)% is of class HT for 1 < p,q,r < o and s € R. This is
a consequence of Proposition 13.6: F, is of class HT, so is (Fpq)™ and hence (Fpy)"
as a closed subspace.

Now we are able to define the Stokes operator as
Ags = g’;,q cD(As) © (Fpy)o — (Fpy)ys,  ur— —PAu

on the domain Z(Ag) = (F5&>")n.

lea

Proposition 13.19. For se R and 1 < p,q,r < 00 we have Ag = AL’@(_AS). Besides,
we have p(Ar) < p(Ag) with (A — Ag)™t = (A — AL)_1|(F;:;)3 for all X e p(Ap).

Proof. For ue Z(Ag) we have u € A (I —P), since P is a projection and thus Pu = u.
By Proposition 13.11 and the continuity of A : ./(R™) — ./(R"™) we receive PA = AP
on (F5&®")". This gives Agu = Apu for u e Z(Ag).

Now let A € p(AL) and set Thv := (A — Ar) tv for v € (Fpy)?. Again we can use
PA = AP and receive PT)\ = Ty by injectivity of A\ — Ay, i.e T\ maps into (Fpy)~.
Consequently, T\ = (A — Ag) ! on (Fpy)n. O

Proposition 13.20. Let s € R and 1 < p,q,r < . Then Ag is R-sectorial with

oag =0. Hence —Ag € MR((Fpjq)%). Furthermore, we have ( SS’; ) = AEZ,T;,.

Proof. Let 0 < ¢ < . Then we receive R-boundedness of {A\(A + Ag)™' : X € B}
ZL((Fpq)) as a direct consequence of Propositions 13.12 and 13.19. The space (Fpq)%
is reflexive (see Corollary 13.7). Consequently, we obtain density of 2(Ag) < (Fpj)%
(see, e.g., [36], Prop. 2.1.1). The Laplace operator Ay, is injective and so is Ag. The
remaining proof is thus completely analogous to the proof of Proposition 13.12. L]

14 The Navier-Stokes Equations in TLL Spaces

14.1 The Time Derivative Operator

We consider the operator

B:9(B) = H%(}R,X) c LR, X) — L,(R,X), u+— (1 + %)u

The proofs of the following two assertions work very similar to the proofs of Proposi-
tions 13.15 and 13.14, respectively. In addition, one can find a similar result in [18].
Therefore, we only sketch the main steps.
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Proposition 14.1. Let 1 < n < o and let X be a Banach space of class HT with

property (o). Then B is sectorial with angle pp < T and we have

2(B*) = Hy (R, X)
for a€[0,1]. The related norms are equivalent. Furthermore, we have
B = Z7Y1 +i€)*Fu Yue 2(B%).
Proof. First note that the Bessel-potential spaces have the representations

HYR,X)={ue S (R,X): F(1+&)2Fue L,(R, X)}
={ue S R,X): F'(1+i)*Fue L)(R,X)}.

(L1 jg2)e (L1ig)
g 2 G

This is a consequence of Theorem 5.7, where the symbols =7 heed
to be considered.

Now, using Theorem 5.7 several times, it is straightforward to see that the inverse
operator of A — B for Re(A) < 0 is given by T\ := 9*1)\ 11 £5~ and to obtain the
estimate [A(A — B) !, ®.x)>L,®x) < Cp for all =\ € ¥, and ¢ < §. Here we also
need Lemma 5.3(ii) together with Kahane’s contraction prln(jlple T hus B is pseudo-
sectorial with pp < 7. Since those computations also work in case A = 0, B is bijective
and in particular sectorial.

Cauchy’s integral formula yields a formula for (gh,)(B) just as in (13.11). Now likewise
the rest of the proof works in the same way as in Proposition 13.15 by using Theorem 5.7

instead of Theorem 13.10. O

Proposition 14.2. Let X be a Banach space of class HT with property (a) and 1 <n <
. Then B has an R-bounded H*-calculus in L,(R, X) with gog’oc < 5.

Proof. Let ¢ € (0,%) and f € #3(X,). We already know from Proposition 14.1 that B
is sectorial. Cauchy’s integral formula gives that

f(B)u = F7L1f(i&).Fu (14.1)

holds for all v € (R", X). From Lemma 5.3(ii) and Kahane’s contraction principle
we receive that f(i€) fulfills the condition of Theorem 5.7, so (14.1) even holds for all
u € Ly(R, X) and we have

1f (B, X)Ly &,x) < Cf]oo,5,- O

14.2 Continuous Embeddings and Multiplication Results

Lemma 14.3. Let se R, 1 <p,q < and 1 < r < o such that p > 5. Let 6 > 0 such
that 2 2% T 0 < 1. Then there exists € > 0 s.t. for all 0<e<E€we hcwe the continuous

embedding
s5+2—0,r s+1,r
F »q F2p7€7q‘
Proof. We use an embedding theorem for Triebel-Lizorkin spaces and deduce the result
via interpolation. Select 1 < po < p < p; < such that 57~ 4+ <1 for j = 0,1 and let

6 € (0,1) such that == =2 + —. Then, setting ¢; := (13))11371%7906 for j = 0,1, we have
2p1_6 = 213101060 + 2p1 o Usmg [66] Thm. 2.8.1, we obtain for small € > 0
2p
Fp szj_ejj7q
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and hence, using Theorem 13.4,

s+2—0,r __ s+2—0 s+2—0 s+1 s+1 _ s+l
Fp,q - (Fpo,q 7Fp1,q )0,7‘ < (F2po—607q’ F2p1—61,q)9,r - F2p—e,q' U
Lemma 14.4. Let s >0, 1 <p,q < o0 and 1 < r < oo. Then there exists € > 0 s.t. for
all 0 < e <€ the product m: Fy)' x Fy — Fply, (u,v) = m(u,v) = uv, induced by

pointwise multiplication, 1s continuous.

Proof. Again we make use of a corresponding fact for Triebel-Lizorkin spaces (which is
included in [41]) and extend this to TLL spaces via interpolation. We fix parameters

1<p0<p<p1<oosuchthat%=2p%o+g}l. For some small € > 0 and ¢; := ¢222L for

2p1—j

j=0,1 .we then have 2(2;:3—50) + 2(2p11_€1) - 2p£6, Choosing ¢ and |pg — p1| small enough
we obtain
S, o
F2p_5uq - (FSPO—EO? F2Sp1—61) %77. (142)

(due to Theorem 13.4) as well as 2pi£€i < p%. < 2pj£€j + 2p¢176¢ which is, due to [41],

Thm. 6.1, a sufficient condition for the product

. S S S
VI szj X F2pi — F

—€5,9 —€i,q Pj.q

to be continuous for i = 0,1 and j = 0,1. Hence 7(-,u) : F3, — F, is continuous
J Jo

—€5,9
for each uw € Fy, .. fori=0,1and j =0,1and sois 7(-,u): F;I;ie’q — Fpy, using
(14.2). Thus, the whole product

. ST S
m: F x by,

s,
2p—e,q - Fp7q

—€irq
is continuous for i = 0, 1.

Now by repeating an analogue argument with (v, -) : Fyeiq ™ Fyyq fori=0,1we
obtain continuity of w: Fy)" % Fy”  — Fpy, where we made use of (14.2) again and
the (simpler) fact that we receive Fj,y by real interpolation with itself. O

Consider a function space F of time-dependent functions on some time interval (0,7")
(or in other words on [0, T'], since we usually identify two functions differing on a null set).
If F contains the smooth functions with compact support on (0, 7], then we denote their
closure in F by ¢F. Observe that for the function spaces of time-dependent functions
that appear in the sequel, F consists of those functions v € F with ul;—¢g = 0 if the
trace in time exists in terms of a standard trace operator on F. Further, note that we
usually have ¢F = F in case the trace in time does not exist in that sense (cf. [66],
Thm. 4.3.2/1(a)).

Lemma 14.5. Let se R, 1 <p,q,r <0, 1 <n < o0 and a € [0,1]. Then for T € (0, 0]
we have the continuous embeddings

HY(R,ES7) o Ly (R, F5i27) < HE (R, Fi 2= (14.3)

and
HY((0,7), E5) A Ly ((0,7), F5327) < HE((0,T), Fyd 2070, (14.4)

For T € (0,00) we also have the continuous embedding
oH ((0,7), F5) o Ly((0,T), g i) < oHY((0,T), Fi i 2070m) (14.5)

locally uniformly in time, i.e., for every Ty > 0 there exists an embedding constant C > 0
for (14.5), which is independent of T € (0, Tp].
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Proof. Let A =1 — A in Fpy be the operator from Proposition 13.15 and B = 1 + % in
L, (R, F,q) the operator from Proposition 14.1. Propositions 14.2 and 13.14 give that A
and B admit a bounded H*-calculus with % +¢% < 7. Note that A can be interpreted
as an operator in L, (R, Fpy) instead of F,j; in a trivial way, where it still admits a
bounded H *-calculus with the same angle ¢% = 0. Obviously A and B are resolvent
commuting operators. So all conditions of the mixed derivative theorem (in the version
of [18|, Lem. 4.1) are fulfilled. This yields that

AT By, . ryr) < ClAu + Buly, @ rir)
holds for all u € Z(A) n Z(B) and all « € [0,1]. Now we use Propositions 14.1, 13.15
and 13.11 and receive for all u € .7 (R, F5i>") < H} (R, Fpg) 0 Ly (R, ESi2my

HUH ) HB u”Ln(

Hg(R’F;:gQ(l—a),r R7F;7-g2(1—a),r)
~ [ B%u| 1, ®,2(a1-2))
l—a pa
~[ATB UHLT,(R,F;’;)
< [|Au + Bul g, r, r2)
<l e,y sy
This proves (14.3).

We obtain (14.4) as a consequence of (14.3) by suitable retraction and extension. More
precisely, we make use of (A.1), which yields an extension operator simultaneously on
HY((0,T), Fpyg) and on Ly ((0,T), Fpg®").

In order to prove (14.5), we make use of the extension operator (A.3) in case § = 1.
For a fixed Ty > 0 we receive

HUHHE,‘((O,T),F;,Zﬂl*“)‘r) < HEoo,lETUHHT?(R,ngz(l—a),r)
< ClBon Ertl gy e rig)nrg e )
i
< Ol

(0,7),F54) AL ((0,T),F5 %)

for all w e oH,\ ((0,T), Fpq) n Ly((0,T), Fp ™) with a constant €’ > 0, independent of
Te (0, To] O

We will additionally need the following embeddings for Bessel-potential spaces on a
time-interval.

Lemma 14.6. Let 1 < n < o and let X be a Banach space of class HT. Then for
s> ﬁ and T € (0, 0] we have the continuous embedding

Hp((0,7),X) < Lay((0,T), X). (14.6)
For a > % and Ty > 0 the continuous embedding

o ((0,T), X) < Ly ((0,T), X) (14.7)
holds with an embedding constant C' > 0, which is independent of T € (0,Tp].

Proof. For (14.7) let first a € (%,1]. We select € > 0 such that oo — 2¢ > % The
embedding constant of Hy'((0,7), X) € W=¢((0,7"), X) does not depend on T € (0, 0]

and for the extension operator

Ew71ET : ()Wnaie((O,T),X) — ()W;[ie(]R,X)
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14 The Navier-Stokes Equations in TLL Spaces

from (A.3) there exists a continuity constant independent of T' € (0,7]. Consequently,
for uw e o H;*((0,T), X) we conclude

|l 2, (0,17, %) < B 1 Erul 1y, (R x)
<

C“EOO71ETUHH$726(R,X)

N

,HEOO,]-ETUHW;;_E(R,X)

c
Cullwg—or).x)
c

n |

A

N

ullme(0,1),x)

where C"” > 0 is a constant independent of T" € (0, Tp].

Now let o € (%, %] In this case we have o H'((0,7), X) = Hy((0,T), X) (see [66],
Thm. 4.3.2/1(a)), so we can make use of an extension argument as well, where we have
the trivial extension available this time. The case o > 1 is an obvious consequence.

Relation (14.6) is a well-known Sobolev embedding. It can be obtained by an analogous
extension argument as above, where we make use of (A.2) instead of (A.3). For R instead

of (0,T) see, e.g., [5], Thm. 3.7.5. O

14.3 Maximal Strong Solutions

Our main result reads the following.

Theorem 14.7. Letn e N, n > 2, s > —1 and let 1 < p,q,r < 0 and 1 <n < ©
such that 55 + % < 1. Then for every f € L,((0,00),(Fpq)™) and every initial value
up € (F;;;,F;;lr)?_l/n with div f = 0 and divug = 0 there is a mazimal time T* > 0
such that the Navier-Stokes equations

ou—Au+Vp+ (u-Viu =f in(0,T)xR"
divu =0 in(0,7) xR" (14.8)
uli—g =up in R”

have a unique mazimal strong solution (u, Vp) on (0,T*) satisfying

we Hy((0,7), (F53)") 0 Ly ((0,7), (Fpg™")"),
VP € Lﬁ((oa T)a (F;:g)n)

for every T € (0,T*). If additionally % + % < 1, then u is either a global solution or we
have

T* <0 and lmsup [u(t)]/ cr ~cr2m® = 0. (14.9)

t ST (prq Fp.a” )1_1/77,7,

Remark 14.8. The constraints on the parameters p, 7, especially the more restrictive
one for the additional property that u is either a global solution or (14.9) holds, rely on
the use of the multiplication result for Fpy-spaces given in Lemma 14.4. They might
be improved to the standard contraints in classical function spaces such as L,. This,
however, requires optimal results on multiplication for Fj’;-spaces which by now are not
available and would go beyond the scope of this thesis.

In order to give a proof, we consider the usual operatorial formulation relying on the use
of Helmholtz projection and Stokes operator. We fix s e R, 1 < p,q,r < 0,1 <n < ®
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IV Stokes and Navier-Stokes Equations in TLL Spaces

and X, := (Fpq)" with n > 2. As above, Ag is the Stokes operator in X,. The space of
maximal regularity for the Stokes equations is

Er:=H,((0,T),Xs) n Ly((0,T), 2(As)),
where T € (0,0]. Next, as in (5.6), we set
Fr:=L,((0,T),Xs) and 1:= {ug=u(0):ueEr},

equipped with the norm |ug|; = infy,(g)—y, |u[lE;, so Fr x I is the data space with right-
hand side functions f € Fr and initial values ug € I. Note that by (5.7), Proposition 13.17,
and [66], Thm. 1.9.3/1 we obtain

n

_1 0
1=5m

I= (X, 2(As)), 1.

Ly =P (F;,r Fs+2,7~)

7q ) p7q
where P € Z((F,4)") denotes the Helmholtz projection introduced in (13.15).

The solution operator L~! for the Stokes equation is an isomorphism if 7' < oo, due
to Proposition 13.20, where

L:Bp =5FpxI, ur— ((% -l—AS)u,u(O)).

The nonlinear term is
G(u) := —P(u-V)u = —Pdiv(uu?), ue (Fyi)o-

Now, our main theorem concerning the Navier-Stokes equations in TLL spaces can be
formulated as the following.

Theorem 14.9. Letne N, n>2 s> —1 and let 1 <p,q,r < o0 and 1 <n < 0 such
that 55 + % < 1. Then for all (f,up) € Fop x I

u(0) =wup inR" (14.10)

{ ou—Au+Pu-Viu =f in(0,T)xR",
has a unique maximal strong solution w : [0,T*) — I with T* € (0,] and u € Eg for
all T e (0,T*). If additionally % + % < 1, then u is either a global solution or we have
T* < 0 and limsup, »p«|u(t)[r = .

We first convince ourselves that the two systems (14.8) and (14.10) are equivalent.
This particularly shows that Theorem 14.9 implies Theorem 14.7. Indeed, when u is the
solution of (14.10) given by Theorem 14.9, we receive the solution (u, Vp) of (14.8) as
claimed in Theorem 14.7 by setting Vp = —(I —P)(u- V)u. On the other hand, if (u, Vp)
is a solution of (14.8), then u solves (14.10) and consequently Vp = —(I — P)(u - V)u.

The proof of the additional statement in Theorem 14.9 will essentially make use of the
following embedding for the space of initial values.

Lemma 14.10. Let se R, 1 < p,q,r < 0 and 1 < n < o© such that % + % < 1. Then
there exists € > 0 so that for all 0 < € < € we have the continuous embedding

I (B0
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14 The Navier-Stokes Equations in TLL Spaces

Proof. Select 0 < ¢ < min{n—1,2[1 — (55 + %)]} and T € (0,00). Then we have the
continuous embeddings
)

where the first embedding follows from Lemma 14.5 and the second one can be deduced

from standard Sobolev embedding in the same way as in the proof of Lemma 14.6. Now,

setting 0 := 2(17%/)’ we deduce %4—(5 < 1, so Lemma 14.3 yields the continuous embedding

1+€

9 1_1+e/ , 9(1— lte
EreH, (0.1, (B YY) e oo, (B

/
s+2(1—1E) 0
n s+1,r \n
(FP#I ) - (F2p—e,q)

for small € > 0. This leads to HUOH( < Clu|lg, for up € I and any u € Er with

s+1,7 \p
F2p7é,q)

u(0) = ug so the assertion is proved. O

Proof of Theorem 14.9. Let (f,ug) € Fo, x I. We start with local existence and unique-
ness, so we need to show that there is a unique solution u € Ep of

Lu = (f + G(u),uo)

on some time interval. First of all we note that it is possible to restrict ourselves to those
solutions with u(0) = 0. In fact, by setting u* := L™'(f, ug), we can always consider
u=u—u* € oEp for u € Ep, so for any T € (0, 00) the following assertions are equivalent:

(a) Lu = (f + G(u),up) has a unique solution u € Ep.
(b) Lu = (G(u + u*),0) has a unique solution @ € ¢Erp.
Before we are able to verify (b), it is necessary to have the continuous embedding
G(Er) c Fp (14.11)
for T € (0,00). For u € Ep, using Proposition 13.11, we have
|G (W) = [P(w- V)ulp, o), Emm
< Ol div(uu®) |1, o). 7))

/ T
C'|uu ”Ln((

" 2
Nl o,y g2y

N

0.7),(Fpg " )mm)

A

where we applied Hélder’s inequality together with Lemma 14.4 (note that s +1 > 0 is
assumed) to obtain the last inequality. Here we choose ¢ > 0 small enough such that Lem-
mas 14.3 and 14.4 can be applied. Now it remains to prove Ep < Lo, ((0,T), (F;;_le’fq)”)
to obtain (14.11). Due to the condition 3 T % < 1, we can select § > % such that

35 0 < 1. Then we have Fﬁfﬂs’r c ngtlﬁ’rq according to Lemma 14.3. By setting
)

a 1= § we receive the continuous embeddings
Er < HZ((0,7), (Fy i)
< Loy ((0,T), (Fgh2(tme)mym) (14.12)

1’
< L217 ((O> T)7 (F;;_Jq)n)7
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IV Stokes and Navier-Stokes Equations in TLL Spaces

where we used Lemma 14.5 for the first embedding, Lemma 14.6 for the second embedding
and Lemma 14.3 for the last embedding. This yields (14.11).
In order to obtain (b), we define

N :oEpr — Fr x {0}, @+~ Lu— (G(a + u*),0)

for T' e (0,0). The embedding (14.11) gives that N is well-defined, i.e., we have indeed
N(u) € Fp x {0} for all w € gEr. Furthermore, N is continuously Fréchet-differentiable,
where

DN(0)v = Lv — (DG(u*)v,0) = Lv + (P(u* - V)v + P(v- V)u*,0) Vv e oEr

is the derivative at the origin. Our aim is to verify that there exists a unique u € gEp
such that N(u2) = 0 for small time intervals (0,7).

As a first step to see this, we prove that DN (0) : oEp — Fp x {0} is an isomorphism
when 7" > 0 is small enough. Similar to the verification of (14.11) we obtain for 7' > 0
and v € gEp that

|(DG(u*)v,0) = |[Pdiv(u*vT) + Pdiv(v(u*)T)||Ln((0yT)7(F;, )

HIFTX{O} ’;
< Ol div(u*o") + div(o(w*) )| L, 0,1, F50)m)
< Cu*oT + v(u*)

< Cu

. (14.13)
Iy, (rg st mymem)

*
| a0y, rsm sy 10 01y g vy

in view of Proposition 13.11, Lemma 14.4 and Hélder’s inequality, where the constant
C” > 0 is independent of T € (0,0) and € > 0 is small enough. Again let § > % such

n _ 6 s+2—4,r s+1,r . 1
that'% + 0 <1 and set a := 5. Then we have Fj 4 c Iy, ., and, since a > 2> We
obtain for any fixed Tp > 0

oEr < oH ((0,7), (Fi,f(l*a)m)n)
< Lon((0,7), (Fj520=rym) (14.14)

17
o= L27]((07 T)v (F;;‘_;’"q)n)’

where the embeddings are continuous with an embedding constant independent of T €
(0,Tp], due to Lemmas 14.5 and 14.6. Hence, we have in total

| (DG(u*)v,0) Cillu (14.15)

H]FTx{o} < *HLQn((OyT),(F;:_IéTq)”)H/U”ET

for all v € gEp and for all T € (0, Tp] with some C7 > 0. Thanks to Lemma 5.4 there is
also a constant Cy > 0 such that L™, «f0}-,E, < Co for all T' € (0, Tp].

The size of the finite time interval (0,7y) was arbitrary up to this point. Proceeding
from any finite Ty > 0, we will shrink the interval (0,7p) in the following to receive a
unique local solution. The constants C7 and C5 found above can be assumed to be fixed,
so they do not change by shrinking (0, 7). First, let (0,7p) be small enough, so that

1
k
s HLG((O,To),(FQSJ_l;fq)") < 20,05

(14.16)

holds. Then we obtain from (14.15) and (14.16)
1

HL_l HFT X {0}—>0ET

| (DG(u*),0) HOET—>FT x{0} <
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14 The Navier-Stokes Equations in TLL Spaces

for all ' € (0,7p]. Hence, by use of the Neumann series, we obtain that DN(0) :
oEr — Fp x {0} is an isomorphism for all T" € (0, Tp].

We apply the inverse function theorem (see, e.g., [6], Thm. VII.7.3) and receive open
neighborhoods 0 € Ur < ¢Ep and N(0) € Vp < Fr x {0} such that N : Up — Vp is
bijective. Following the idea in [13], we fix T € (0,7p] and define for 0 < 77 < T a

function Fp € Fp by
0, if t € (0,77)
FT/(t) = " . ,
Gu*)(t), ifte[T,T).

Then we have
T
[ (Fre,0) = (G(u), 0) |z, 0y = JO [ Fre () = G(u™) (1) %, dt

T/ ’
- | 16t @, @ 0
and thus (Frr,0) 0, N(0) in Fr x {0}. Since V7 is a neighborhood of N (0), this yields
(Fr/,0) € Vp if T' € (0,T) is small enough and consequently for % := N~1(Fp,0) € Ur
we have N(u) = (Fr,0) = (0,0) on (0,7”). Hence, by restriction of @ to (0,7"), we
obtain a solution @ € gE7» of (b). Since N : Up — V7 is bijective, this solution is unique.

Having established local existence and uniqueness of a solution for (14.10), we now
extend the solution to a maximal time interval [0,7%). First we note that uniqueness
holds on any time interval: Considering two solutions u,v € E¢ of (14.10) on [0,7") for
given data f,up and some T € (0,0], we know from the established local uniqueness
that u = v holds on some [0,7") < [0,7). We assume that v and v do not coincide on
[0,7"). Then Lemma 5.5 allows us to apply a continuity argument, which provides some
0 < t1 <t < T so that u(t) = v(t) for all t € [0,¢1] and w(t) # v(t) for all t € (¢1,t2).
Now, setting uq := u(t1) and f1 := f(t1+-), we can apply local uniqueness of the solution
of (14.10) with data fi,u; and receive u(t;+-) = v(t;+-) on some [0,7"), a contradiction
to u(t) # v(t) for all t € (t1,t2).

In order to obtain a maximal time interval [0, T*) for the solution of (14.10), we define
for fixed data f,ug

M := {(Jr,ur) : T € (0,00), 3 solution ur € Er of (14.10) on Jp = [0,T)},
T = J{Jr : (Jr,ur) e M} =:[0,T%)

and u : [0,7*) — I, u(t) := up(t) for t € Jp. Due to the uniqueness proved above, u is
well-defined and consequently the desired maximal solution.
Now, let additionally % + % < 1. We assume T* < o0 and

limsup, qps |u(t)|1 < oo

for the maximal solution u. Then we have u € BC([0,7™),1) (i.e., bounded and contin-
uous). For T' € (0,7*] and v € E7 we define the linear operator

Bv = (Pdiv(uw™),0).
Then we have (L + B)u = (f,up). As in (14.13) we obtain

|Bvlrrx1 < Cllulp,, o)zt ym 10l L.y, mgrtn yny Vo € Er (14.17)
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IV Stokes and Navier-Stokes Equations in TLL Spaces

with a constant C' > 0 independent of 7" and ¢ > 0 small enough such that Lem-
mas 14.3, 14.4 and 14.10 can be applied. Concerning (14.14) and Lemma 14.10 we
obtain

T by 1
2 1
HBUHIFT xI < Cl <J0 HU(t)H ns+1,r )n)> HUHET < C”T277 HUHBC([O,T*),H)

v
(F2p—e,q | HET

for all v € gE7 with a constant C” > 0 independent of T" € (0, 7*]. Due to (14.12) we can
also deduce B € Z(Ep,Fp x 1) from (14.17). Furthermore, Lemma 5.4 yields a constant
K > 0, such that |L7! g, «f0} ok, < K holds for all T € (0,7%]. Consequently, we
obtain for sufficiently small 7" € (0,7*] that

1

1 )
HIFT X {O}HoET

B <
” H()]ET—>]FT><{0} HL_

which yields that L + B : gEp — Fp x {0} is an isomorphism. More precisely, we need

to choose ]

(2C"K |[ul pe(o,r+)n)*"

Now, for T" as in (14.18), we can select T} € (0,7™*) and repeat the argument on (77,7 +
T1) instead of (0,7). This yields that L + B : oE¢py, 7o) — Fipyrem) x {0} is an
isomorphism, where oE(7, 7,7y (and F(7y 7,7,), respectively) consists of the translations
of functions in (Ep (and Fp, respectively) by T;. We repeat this argument k times on
the interval (kT1,T + kT1) n (0, 7%) until we reach T' + kTy = T*. Finally we have that
L+ B : oEps — Fps x {0} is an isomorphism. Now it is not hard to deduce that

T < (14.18)

L+ B :Eps — Fps x 1 (14.19)

is an isomorphism: Continuity and injectivity are obvious while we receive the surjectivity
by setting v* := L71(0,v0) and v := (L + B)"!(g — Pdiv(v*ul),0) + v* € Ep« for
(g,v0) € Fp x I. As a consequence of (14.19) and Lemma 5.5 we can achieve

u=(L+ B)"(f,u) € Ep« ¢ BUC([0,T*),])

and hence u(7T%) = lim; »p+ u(t) € I. Application of the local existence and uniqueness
now gives a solution of (14.10) for data f(- + T*),u(T™) on some time interval [0,7"),
which yields an extension of u to a solution of (14.10) with data f,ug on [0,7* + T"),
in contradiction to the maximality of u. O
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A Extension Operators

Let 1 <n < . For fixed m € N and T € (0, 0] there exists a mapping
ur— Eppu

for functions u (defined on (0,7") with values in any vector space) such that for all
k€ {0,1,...,m} and any Banach space X we have an extension operator

Erm : WF(0,7),X) — W} (R, X). (A1)

A precise proof can be found in [2], Thm. 4.26 for the case of scalar-valued functions,
but the given proof can be directly transferred to the vector-valued case. The operator
Er,, is the coretraction of

. k k
RWn(RvX)—)Wn«OaT)vX)v u'—)u|(O,T)7

so, by the interpolation W7 (R, X) = (LW(R,X), Wﬁ(R,X))

obtain

s for0<s <k, s¢ N, we
k?

Wi((O,T), X) = (Ln((O,T),X), Wi((O,T), X))

2o

and the extension operator
Erpm : Wi((0,T), X) — WS(R, X) (A.2)

(see [66], Thm. 1.2.4).
Now let T' € (0,0), 1 <n < o0, and let X be a Banach space. For a function u defined
on (0,7") with values in any vector space we set

u(r), ift0<7<T
Eru(r) :=<ul2T —71), T <7<2T
0, ifoT < 7

(cf. [53]). Then, due to [53], Prop. 6.1, this leads to an extension operator
Er : oW/ ((0,7),X) — oW/ ((0,0), X)

for g e (%, 1] such that for any fixed Ty € (0, 00) there is a constant C' > 0 with ||Ep| < C
for all T € (0,Tp]. Now we use (A.2) in case T'= o0 and m = 1 and receive the extension

operator
Ex1Er : oW ((0,7),X) — oW/ (R, X) (A.3)

(for g € (%, 1]), whose operator norms |Ey 1 E7|, T € (0,7p] are bounded above for a
fixed Ty > 0 as well. The structure of E7 also gives that

IETul 1, ((0,0),x) < 2[ulL,01),%)
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B An Alternative Proof of
Proposition 8.1(ii)

If we knew the solution u in Theorem 6.5 to be consistent in ¢ € (1, 00) and if we assume
that C(Q) < I//-[\/;(Q) is dense for s = ¢ (Assumption 4.4) but also for s = 2, then
for Proposition 8.1(ii), which is the key to the proof of our main results regarding the
Stokes equations on uniform C%!-domains, we can give an alternative proof. This proof
needs some further properties about Apg, (which makes it a little longer), but these
are also of interest themselves and then the proof gets along with abstract functional
analytic duality arguments. Therefore, we consider the following additional statement to
Theorem 6.5.

Lemma B.1 (Consistency). Under the conditions of Theorem 6.5, if f € Lqy(2)" n
L.(Q)", g€ qu(Q)” A WHQ)™ and h € WqQ(Q)" A W2(Q)™ for some 1 < q,r < o0,
then for \g := max{A\o(n,q,0,Q), Xo(n,7,0,Q)} and X € Xy, |\ = Ao the solution of
(6.30) fulfills u € WqQ(Q)" N W2(Q)"™. In particular, Aps is the generator of a strongly
continuous analytic semigroup with consistent resolvent (A — Apg )™t = (A — Apg )~
on Le()" n L, ()" for 1 < q,r < o0.

Proof. Following the proof of Theorem 6.5, we similarly deduce the statement for general
uniform C%'-domains from the statement for bent half spaces and this in turn from the
half space R’}. We only sketch the main steps. In order to distinguish between the
exponents ¢ and r, we denote X := lo(@yep W ()") instead of X and similarly denote
Yy, Zy instead of YV, Z as well as Sy, Py, P, Cy, D, for the operators S, P, P', C, D
defined in the proof of Theorem 6.5.

As we have seen, the solution u € WZ(€)™ of (6.30) for f € Ly(Q)", g € W} (Q)",
h e W2(Q)" satisfies the representation

u= GQ(SQ + Ptg)_qu(fv a))

where a = I, tr g + II,, tr h. For the operator Dq we directly observe that Dq = D, holds
on (Ly(Q)" x BF, 1 (09Q)) N (L ()™ x BF,. ,(09)) and the same is true for C,. Therefore,
it remains to see (S, + P;)~' = (S, + P)) ' on Y, n Y,.

Now (S,+P;) ! is defined via the Neumann series, i.e., writing Sy +P) = So(I+5; ' P}),
we receive

o0
(Sq+P) ' =T +S'P)lst = ( Z (—1)k(S;1P;)k> St
k=0

T
holds on Y, n'Y;, since convergence of the Neumann series in the operator norm on

Xy N X, is eventually a consequence.

For this purpose, fix some (f;,a;)ier € Yy n'Y,. Setting (w;)ier = Sq_l(f[,al)[e[‘ we
receive that for all [ € T' the function u; is the unique solution of (A — A)u; = fi,
IL,D_(w)y, + yu; = a; on 0€ in WqQ(Ql)”. Therefore, it remains to obtain that

The identity P, = P/ on X, n X, is obvious. Hence, it remains to see that S L=g-1
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B An Alternative Proof of Proposition 8.1(ii)

u; € W2(Q)™ holds for all [ € I'. In fact, the unique solvability of (A — A)u; = fi,
IL,D_(w)v + H,u; = a; on 0y in W2(€;)"™ then implies the resolvent estimate

|y, VAV, V20 |0, < C(lf:

for all [ € I" and consequently (u;)ier € X, as in the proof of Theorem 6.5.

In total, it remains to prove consistency for domains of the type €, i.e., the whole
space R™ and bent, rotated and shifted half spaces. For the whole space we have a
representation of the solution via Fourier transformation (cf. Proposition 13.12) which
directly yields consistency. For the bent, rotated and shifted half spaces we can repeat
the argument from above: Since unique solvability of (6.24) can be reduced to the half
space (see the proof of Theorem 6.4), mainly via the Neumann series, we obtain the
statement for bent rotated and shifted half spaces, in case constistency holds for the half
space.

In order to obtain the statement for the half space {2 = R}, consider the proof of
Proposition 6.1. We have seen that for the half space we can separate the boundary con-
ditions such that we receive a remaining Dirichlet boundary problem and n—1 Neumann
boundary problems. These problems in turn fulfill the consistency condition, since there
is a representation of the respective solution via Fourier transformation (in the whole
space) and a reflection principle, which does not depend on the parameter q. O

oy + HalHBFT,,\(EQl))

Proposition 8.1(ii) under the mentioned additional assumption reads the following.

Proposition B.2. Let Q < R” be a uniform C*'-domain, n >2,1 <q<w,0<0 <7
such that CX () WQ(Q) is dense for s € {¢',2}. Choose \g = \o(n,q,0,Q) > 0 so that
the conditions of Theorem 6.5 and Proposition 7.2 are satisfied and let X € X9, |A\| = Ao.
Then we have the implication

fe€L,(Q) = (A= Apsy) 'f e Ly(Q).

Lemma B.3. Let Q < R” be a domain with uniform C*'-boundary, n =2 and 1 < q¢ <
. The operator Aps 4 is symmetric, i.e., for the dual operator

/PS,q : @( %’S,q) = Lq’(Q)n - Lq’(Q)na
defined on
P(Apg,) = {ve Ly (Q)" :
3 A%S,qv € Ly ()" : (Aps,qu, v)g ¢ = {u, Aijs7q'l)>q7ql Yue Z2(Apsyq)},
we have Apg g < Ai)&q.

Proof. Let ue 2(Apsq) and v e Z(Apgy). Then we have
(Apg g, Vg g = JQ(V divu) -vdA, — JQ(V divu — Au) - vdA,. (B.1)
Regarding the first term, we write (V divu)-v = div(v divu) — (div v)(div ) and obtain
JQ(V divu) - vd\, = f«g v-vdivudo — JQ (divo)(divu) dA, = J (divv)(div u) dA,,

Q

where we made use of Gauk’s theorem (Lemma 3.4; note that v divu € Wi (2)?). By
interchanging u and v we conclude

f (Vdivu) -vd\, = J (Vdivo) - udh,.
Q Q
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Regarding the second term, we make use of Lemma 2.1(i) to write (Vdivu — Au) - v =

div(D_(u)v) — (Vul — Vu) - Vo and obtain

J(Vdivu—Au)-vd)\nzf I/-D_(u)vdo—f(VUT—VU)~Vvd)\n,
Q o0 Q

where we made use of Gauft’s theorem again (Lemma 3.4; note that D_(u)v € Wi (Q)").
For the first integrand we have v - D_(u)v = 0 on 09 (Lemma 2.1(iii)) and the second
integrand, (Vu! — Vu)- Vo, is symmetric in  and v. Hence, interchanging v and v gives

J (Vdivu — Au) - vdA, :J (Vdive — Av) - udh,.
Q Q

Summarizing, we are able to continue (B.1) and receive (Apg g, v)q.q = (U, Apg ¢0)q.q-

Lemma B.4. Let Q  R" be a domain with uniform C*'-boundary, n > 2 and 1 <
q < 0 such that the Helmholtz projection Py : Ly(2)™ — Lg(2)™ with range Lq () and
kernel G4(Q) exists. Consequently the Helmholtz projection exists for ¢ as well and we

have P, = Pg. Moreover we require that CP () < 17[\/81(9) is dense for s € {q,q'}. Let
Aipsﬂ be the dual operator of Apgq as in Lemma B.3 and let

Absg: Ly ()" — Z(Aps)

be the continuous dual operator of Apgy € L(D(Apsy), Le(2)"), where Z(Apsq) is
endowed with the graph norm. Then we have

PqA;S’q/u = A;Sﬂ/Pqu
for allue Z(Aps q). In particular, Afg , maps Lq s (§2) into Lq(€2)".

Proof. We have APS , C APS , and due to Lemma B.3 we also have Apg, < APSq
Therefore Apg 4 APS . In partlcular the expression P;Afq JU (= P,Au) is meaning-
ful. Also note that the den31ty and continuity of the embedding Z(Apg 4) < Lq(Q2)" give
that we can interpret Ly (Q)" as a subspace of Z(Apg,). Now let u € Z(Apg,4) and
v e P(Apg,y). Then we have

(Aps ¢ Pt V)9 (Aps ), 7(Bps ) = Paths Aps,g g
= <U, Pq/A’U>q’q/ (B2)
= —(u,Py(Vdive — Av) ), 4.

Now we obtain
Vdive —Av e Ly (), Vdivu — Au € Ly (). (B.3)

Indeed, using Lemma 2.1(ii) and (iii), we see that
f (Vdive — Av) - Ve d\, = f div(D_(v)V) dA,

Q Q
_ f v (D_(v)Ve) do

o2

=—| Ve (D_(v)v)do

=0
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B An Alternative Proof of Proposition 8.1(ii)

holds for all ¢ € C () (Gauk’s theorem, i.e., Lemma 3.4, is applicable) and thus for all
€ qu(Q) as well, due to the density of C°(Q) = W, (). Since CF(Q) qu,(Q) is
dense, we can do the same for V divu — Au. Besides, we have

J u- (Vdive — Av) dA, = J v (Vdivu — Au) dA,, (B.4)
Q Q

since application of Lemma 3.4 and Lemma 2.1(i) and 2.1(iii) gives

j u- (Vdive — Av) dA, =J
Q

div(D_(v)u) d\, — j (Vo — Vo) - Vud,
Q

Q

_ _Lﬂu A(D_(v)) do — L(WT — Vv) - Vudh,

= f (Vv — Vol) - Vud,
Q

and the same for {, v - (Vdivu — Au) d),. Now, continuing (B.2), we obtain

—(u, Py (Vdive — Av))g g = —(u, Vdive — Av), o
= —(Vdivu — Au,v)q ¢
= —(Py(Vdivu — Au),v)q ¢
= (P, Au,v)q ¢

= <]P)QA;S,Q’U7 'U>q7q/

by use of (B.3) and (B.4), so we have in total
<A§)Syq/Pqu’ U>@(APS,q’)/’-@(APS,q’) = <IP)QA;S:QIU’ U>q7q/ : u

Lemma B.5. Let Q < R” be a domain with uniform C*'-boundary, n = 2 and 1 <
q < o0 such that the Helmholtz projection Pq : Ly(2)" — Lg(Q)" exists and we require
that C*(Q) < 171\/81(9) is dense for s € {q,q'}. Let 0 < 0 < m, Ao := max{A\o(£,¢,0,n),
Mo (Q,¢,0,n)} with \g from Theorem 6.5 and let A € X9, || = Ag. Then we have the
implication

feLys(Q) = (A—Apsy) 'feLyo().

Proof. We have Aps, < AI"SS’q, again, since we know that Apg, < A%&q, (due to
Lemma B.3) and Apg , = Afg ., are valid. Hence, for u:= (A — Aps )"t f we have

()\ — A§S7q/)u = ()\ — A)U = ]P)q(>\ — A)U = ]P)q()\ — A;Sg/)u.
Due to Lemma B.4, we conclude
()\ — A;S’q/)u = ()\ — A;&q/)ﬂ]’qu.

Now A — Apg g + Z(Aps,y) — Ly ()" is an isomorphism and therefore A — Afg
Ly(Q)" — 2(Aps ) is injective. Hence u = Pgu.

Proof of Proposition B.2. Let initially f € L, »(2) N Lo () and let Py : Ly(Q2)" —
L2 (Q2)™ be the Helmholtz projection. Due to Theorem 6.5 and the additional statement
that the resolvent is consistent, we have

U= ()\ — Aps,q)flf = ()\ — Apsg)flf € @(APS,q> N 9<APS,2)- (B.5)
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Application of Lemma B.5 with ¢ = 2 gives u € L ,(£2). Therefore, we have divu = 0
and this yields for any ¢ € C ()

(u, Voyeq = L div(pu) dA, = J

v (pu)do = J p(v-u)do =0, (B.6)
o

(%9

using Gaufk’s theorem (Lemma 3.4; note that pu € W} (Q)"). Since CX(Q2) I//I\/ql, (Q) is

dense, we obtain (B.6) for ¢ € qu, () as well. Hence u € Ly ().
Let now f € Ly (). Since Ly () N L25(Q) © Ly, (9) is dense (note that C2, ()
L, -(9) is dense), there exists a sequence (fi)ren © Lg,o(€2) N Lo »(€2) such that

k— . n
fo =2 f in L,()".
Therefore, we obtain
(A= Apg ) 7' f = lim" (A — Aps )7 fis € Lyo(9),

since (A — Apg ) 1 fi € Ly (€2) holds for all k € N and Ly »(€2) is complete. O

Remark B.6. Note that the additional statement about the resolvent (A — Apg )~ to
be consistent (Lemma B.1) was needed in (B.5) only.
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Summary

In this thesis we considered the Navier-Stokes equations

Ou—Au+Vp+ (u-Viu =f in(
divu =0 in (0,7) x Q
ulimg =wugp in £,

where 2 € R™ is a domain and (0, T') is some time interval, as well as the Stokes equations

ou—Au+Vp =f in (0,T) x Q
divu =0 in (0,7) xQ
Q

ult=o =g in Q,

which is the related linearization. The vector field u and the gradient field Vp are the
unknown quantities while f is a given vector field and wug is a given initial value. The
Stokes and Navier-Stokes equations were treated subject to partial slip type boundary
conditions

I, (ou + (Vul + Vu)r) =0 on (0,T) x 09
v-u =0 on (0,7) x 05,

where v is the outward unit normal vector, II, is the projection onto the tangent space
at 0f2 and « is a real number. The partial slip type boundary conditions include the
well-known Navier boundary conditions and the perfect slip boundary condition, which
equals the vorticity condition in space dimension n = 3.

In Lebesgue ground spaces L,(£2) we have proved well-posedness of the Stokes equa-
tions, utilizing analytic semigroup theory for a general class of uniform C?!-domains.
We discussed that this class includes non-Helmholtz domains, e.g., sector-like domains
with a smoothed vertex and an opening angle 5 > 7 as considered by BOGOVSKII and
MASLENNIKOVA in [10]. In addition, we established further results on the Stokes resolvent
problem as well as applications to the Navier-Stokes equations on uniform C?!-domains.

We proved existence and uniqueness of maximal strong solutions to the Navier-Stokes
equations for the case 2 = R™ in the scale of Triebel-Lizorkin-Lorentz spaces (see [14]| and
[66]). Many important function spaces such as Sobolev-Slobodeckil spaces W, Bessel-
potential spaces Hp, Lorentz spaces Ly, and, in particular, Lebesgue spaces L, are
included in this scale. In total, the obtained results concerning Triebel-Lizorkin-Lorentz
spaces now yield corresponding results simultaneously for all these function spaces.
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Contributions

The content of this thesis is based on a joint work with Jiirgen Saal. The main subject of
Chapters IT and III has been established in [38], where both authors contributed equally
to the content of [38]. The author of this thesis implemented the computations for the
localization of the Laplace resolvent problem and established the results concerning the
Stokes semigroup and applications to the Navier-Stokes equations. The strategies for
proving the assertions concerning the Stokes resolvent problem on uniform C?!'-domains
have been established in several mutual deliberations of Jiirgen Saal and the author of
this thesis.

The content of Chapter IV has been published in [39]. Both authors contributed
equally to [39]. The author of this thesis significantly established the basic properties
of TLL spaces and he stated and proved the multiplier result of Mikhlin type for TLL
spaces. The results concerning the H*-calculus for the Stokes operator and applications
to the Navier-Stokes equations in TLL spaces have been developed in a number of working
sessions of Jiirgen Saal and the author of this thesis. The result concerning the Helmholtz
projection in TLL spaces particularly includes several hints of the research group of the
Applied Analysis chair.

The preliminaries for this thesis, given in Chapter I, are mainly contained in the
introductory parts of [39] and [38] concerning the content and the formulation.
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