Dokument: Transport scaling in incompletely
chaotic Hamiltonian systems

Titel:Transport scaling in incompletely
chaotic Hamiltonian systems
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=2194
URN (NBN):urn:nbn:de:hbz:061-20020523-000194-1
Kollektion:Dissertationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Lesnik, Dmitry [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]2,48 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 09.02.2007 / geändert 09.02.2007
Beitragende:Prof. Dr. Spatschek, Karl-Heinz [Gutachter]
Prof. Dr. Pukhov, Alexander [Gutachter]
Stichwörter:Tokamak, dynamical system, Hamiltonian system,symplectic mapping, transport barrier, diffusion
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 530 Physik
Beschreibung:Some aspects of the diffusion of phase trajectories in systems,
which exhibit partially and completely chaotic behavior, are
considered on the example of a nonperiodic Chirikov-Taylor
(standard) map. The topic is related to the problem of transport
of charged particles in hot plasma, embedded in strong magnetic
field, like that in Tokamak or Stellarator. The standard map
gives a good local description of the magnetic field lines
behavior in the vicinity of resonances and therewith is simple
enough to be treated numerically or analytically.

In the first part the subcritical nondiffusive regime of weakly
chaotic dynamics was explored. In this regime, KAM barriers
prevent the global \'action\' transport, and therefore allow a
stationary action distribution function $\\psi_p$. The function
$\\psi_p$ was estimated by means of the
continuous-time-random-walk model. In the framework of this model
it is supposed that the chaotic portion of the phase space is
subdivided into a finite number of regions, named basins. A
chaotic trajectory is then reduced to the sequence of sojourns in
different basins, followed by transitions to other basins. The
only statistical parameters of a trajectory are sojourn-time
distribution and transition probabilities. Although being a
serious simplification of the exact motion, this model allows one
to obtain a good estimate of the stationary distribution
function.

In the second part we have investigated the angular transport in
a standard map both for weak and strong chaotic regimes. An
angular diffusion coefficient was estimated analytically using
the Frobenius-Perron evolution operator formalism. We have
observed superdiffusive behavior for small stochasticity
parameter $K$ ($K\\to 0$) with a transport exponent
$\\mu_\\theta=2$. The transport properties for large values of $K$
depend on the boundary conditions for the action variable $p$.
For a periodic boundary condition in $p$, the angular transport
becomes diffusive ($\\mu_\\theta=1$), and the corresponding
diffusion coefficient has been derived. On the other hand, for
an unrestricted $p$ motion, the transport is found to be
superdiffusive with the transport exponent $\\mu_\\theta=3$. It
has been shown that the action and angle diffusion coefficients
are related as $D_\\theta \\simeq \ u^2 D_p$, where $\ u$ plays a
role of time. In both cases of periodical and unrestricted
boundary conditions, characteristic oscillations in the transport
coefficients occur. All analytical predictions reveal excellent
agreement with numerical simulations.
Lizenz:In Copyright
Urheberrechtsschutz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Physik
Dokument erstellt am:23.05.2002
Dateien geändert am:12.02.2007
Promotionsantrag am:23.05.2002
Datum der Promotion:23.05.2002
english
Benutzer
Status: Gast
Aktionen