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1 Introduction

1.1 Motivation: The magnetic field in a fusion reactor

Since the discovery of the nuclear fusion, a very attractive idea of physics was
to harness the energy released in the fusion reaction of two hydrogen atoms. It
would be an almost inexhaustible energy source with less pollution and a smaller
risk factor in comparison to other energy sources. Therefore, the realization of
controlled fusion has become a challenge to science, since there are many physical
and technical problems that have to be solved.

One of the most significant difficulties of the controlled fusion is the Coulomb
repulsion: In order to fuse, two kernels need to overcome the electrostatic poten-
tial barrier between them. The probability for this process depends strongly on
the system’s conditions and it is possible to calculate a criterion under which the
fusion reaction can take place. To be more specific, we look at the fusion of deu-
terium 2D and tritium 37". This process is usually considered as it has the largest
cross-section and energy output. Any fusion process should run fast enough to
compensate the energy escape. Thereto a sufficiently high density n is necessary
to be kept for long enough time 7. For the D —T reaction the Lawson-criterion [1]
is

TL-T-TZH)%%-B-H)?K,
and for a different process, the D — D reaction, the Lawson number is even higher:
1022sm=3 - 108K.

There are two common ways to reach the threshold Lawson number:

e inertial fusion, which deals with strongly compressed deuterium-pellets and

reaches the Lawson number due to high density n.

e magnetic confinement, which deals with low densities, but high tempera-
tures and long confinement times. The main direction of this group belongs

to Tokamaks as well as Stellarators.
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The magnetic confinement seems to be more hopeful, since it would allow control
of the reaction rate.

The matter in a tokamak (or stellarator), due to high temperature, is strongly
ionized. In the strong magnetic field the charged particles are moving approxi-
mately along magnetic field lines, tracing out a helical path around it. All possi-
ble magnetic field configurations are limited by the Maxwell equation V - B = 0.
Apart from that the magnetic lines should not hit the walls of the plasma con-
tainer to avoid energy loss. The simplest topological configuration, satisfying
these conditions, is toroidal.

The difference between tokamak and stellarator is that the stellarator in con-
trast to the tokamak has no toroidal symmetry. A confinement in stellarator may
thus be achieved in a stationary magnetic field, while in a tokamak an additional
poloidal magnetic field is produced by a toroidal plasma current.

Although a single charged particle, to the lowest order, follows field lines and
thus should never escape from the fusion device, the behavior of plasma particles
is quite different. In real systems one observes a transport of particles and energy
from the inside of the device to the exterior, which leads to loss of particles density
and heat and reduces the Lawson number. There are two mechanisms of the radial
transport: First, the collisional transport, caused by collisions between electrons
and ions with each other. This transport is diffusive, i.e. proportional to the
density gradient. The second one, the collective transport, arises from collective
effects and is due to the long-scale Coulomb interaction. This transport may be
of much higher order and is called anomalous transport.

To obtain confinement of the plasma, the magnetic field must possess magnetic
surfaces, i.e. the field lines must trace out a nested set of toroidal surfaces.
They could prevent the particles from radial transport, and allow pressure and
temperature gradient. However, in practice, it appears that magnetic surfaces can
be destroyed by motion of particles itself. Regions with “wild” (chaotic) character

of motion appear in the structure of magnetic field. Such chaotic regions lead to
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the anomalous transport of particles.

As an example, Fig. 1 illustrates the behavior of the magnetic field lines
in different regions. It presents a portrait of the magnetic field structure in a
Dynamical Ergodic Divertor, plotted in radius-poloidal angle coordinates. The
picture is obtained from numerical simulations. In this numerical experiment the
magnetic structure has been purposely destroyed in the vicinity of the wall. Unde-
stroyed magnetic surfaces are recognizable in the plot as continuous lines (arising
from successive intersections of a single magnetic line with the plotted plane).
The area between undestroyed curves is filled with points (quasi-)randomly and

corresponds to the chaotic region of the magnetic field structure.

Figure 1: Cross section of the magnetic field structure in Dynamical Ergodic

Divertor (DED).

The analytical description of a hot plasma embedded in a strong magnetic
field is a difficult problem. But it is crucial for the design of any fusion reactor
based on magnetic confinement. The aim of the present work is to contribute to

its solution and to help to make the realization of controlled fusion possible.
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1.2 Hamiltonian structure of a magnetic field

Because of its divergence-free property, the magnetic field flow can be formulated
as a Hamiltonian system. Indeed, due to V - B = 0, we can write B=VxA.
Introducing the toroidal coordinates p, 6, with 7(p, 6, (), the vector potential
may be written as:

A=A,Vp+AyVO+ A V(.
Then, we define G(p,,() so that 0G/0p = A,. Since VG = (0G/dp) Vp +
(0G/00) VO + (0G/0¢) V(, we can write

. oG oG
A=VG+ (Ag—%) v+ (Ag—a—c) Ve,

or, introducing functions 9 and v,
A=VG+4$pVo + 1, V(.
Thus, the magnetic field can be expressed in the form
B =V x V- Vi, x V(.

A magnetic field line is defined as a one parameter curve so that the magnetic field
is everywhere tangent to it. Taking variables ¢, 8, ( as new coordinates, we can
choose ( as a parameter on the curve {¢((),#(¢)}. By definition of the tangent
vector we have 0y/0¢ = B - Vip/B-V(, 00/ = B -V0/B - V(. Substituting

B from the last equation, we get

dp V- (VX V) ) _ VO (Vi x V)

¢~ (VyoxVe)-V¢'  dl (V¢ xVh)-V(

Writing the gradient of ¢, as Vi, = (0, /0¢) Vip+(0,/00) VO+(0,/0¢) V(,
we finally obtain:

dy Oy g Oy,

dc 80  d¢ oy
These equations are of Hamiltonian form. A toroidal coordinate ¢ plays then a

role of time, and ¢, (¢, 0, () the Hamiltonian. A magnetic line corresponds to a
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trajectory of the Hamiltonian system with appropriate initial conditions. Thus,
the problem of magnetic field lines transport can be treated in the framework
of the theory of Hamiltonian systems. The essential nonlinear nature of these
equations makes the mathematical treatment of the problem extremely compli-
cated [2, 3, 4]. A brief outline of the basic principles of Hamiltonian mechanics
is given in App. A.1.

There are three basic concepts which are essential for understanding of the
dynamical behavior of nonlinear conservative systems. The first is the concept of
global symmetries which serve to constrain the dynamical flow of the system to
a lower dimensional surface in the phase space. Some of these global symmetries
are obvious and are related to the space-time symmetries of the system. Others
are not obvious and have been called “hidden symmetries” by Moser in 1979.
When there are as many global symmetries as degrees of freedom, the dynamical
system is said to be integrable.

The second important concept is that of nonlinear resonance. Following a
conjecture of Kolmogorov (1954), Arnol’d and Moser have in 1962 shown that,
when a small symmetry-breaking term is added to the Hamiltonian, most of the
phase space continues to behave as if the symmetries still exist. However, in
regions where the symmetry-breaking term allows resonance to occur between
otherwise uncoupled degrees of freedom, the dynamics begins to change its char-
acter. When resonances do occur, they generally occur on all scales in the phase
space and give rise to an extremely complex structure.

The third important concept is that of chaos or sensitive dependence on initial
conditions. For the class of systems in which symmetries can be broken by adding
small symmetry-breaking terms, chaos first appears in the neighborhood of the
nonlinear resonances. As the strength of the symmetry-breaking term increases
and the size of the resonance regions increase ever larger regions of the phase
space become chaotic.

The dynamical evolution of systems with broken symmetry cannot be deter-
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mined using conventional perturbation theory, because of the existence of nonlin-
ear resonances. Nonlinear resonances cause divergences in conventional pertur-
bation expansions. This occurs because nonlinear resonances cause a topological
change locally in the structure of the phase space and simple perturbation theory
is not adequate to deal with such topological changes.

The problem of anomalous transport can be thought of as transport in a
medium that is strongly disordered. The fine structure of phase space is the
primary origin of anomalous transport in Hamiltonian systems. Long-range cor-
relation effects occur from visits of orbits to boundary layers in the vicinity of
islands (see below). The name “disordered” suggests that such systems are too
complex for a detailed deterministic study: we have to resort to statistical or
probabilistic methods for the study of such problems.

When the “degree of disorder” is very large, the system considered appears
almost homogeneous on a macroscopic scale. This makes the statistical treatment
very efficient. In an extremely disordered system, when a characteristic “stochas-
ticity parameter” is very large, the transport processes behave almost classically,
although the transport coefficients depend on the stochasticity parameter (hence
on the degree of disorder), and the driving mechanism is not collisional. Such
processes are called diffusive, but anomalous.

A fundamental difference between “ideally disordered” systems, like Sinai
billiard, and more realistic systems, like the standard map, is the existence of
islands, making phase space a complicated mixture of small nonchaotic domains
and stochastic regions. The presence of the islands implies much stronger de-
viations in long time asymptotics than can be described by simply a change
in the diffusion constant. This phenomenon was named “strange diffusion pro-
cesses” [5]. It may result in transport that is slower than the expected diffusive
one (subdiffusive regime), or faster than the diffusive one (superdiffusive regime).

Strange transport is a very important problem, since it has many practical

applications. It is also extremely difficult to treat, because it occurs in systems
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that are neither ideally ordered, nor ideally disordered. There are extremely
few exact analytical results available. In the majority of cases one has to resort
to numerical simulations, which may suggest approximate mathematical models,

that can be treated analytically (or semianalytically).

1.3 Transition to discrete time systems

In principle, the study of the evolution of a material system should start from
the equations of motion. It is, however, known that these are, generically, non-
integrable. Therefore, they must be solved numerically. But even this is usually
impossible, because a minimal degree of precision requires constraints that are
not realizable even with the most powerful modern computers. A widely used
method consists then of replacing the differential equations of motion by a map,
i.e. of replacing the continuous time description by a discrete one (see App. A.2).

Maps, originating from the Hamiltonian systems, inherit most of their re-
markable properties. The most important for us is that the Hamiltonian maps
preserve area and do not support attractors.

The class of area preserving maps usually discussed in literature are the so-
called twist maps (see App. A.2). Twist maps are a class of area preserving maps
on the plane which provide clear visualization of the many important features
of nonlinear conservative dynamical systems with two degrees of freedom. They
may be thought of to be an analytic representation of a Poincaré surface section
of a torus (see App. A.1). For instance, this is usual way, how the magnetic field
system can be reduced to a discrete map. Area preserving maps also stand on
their own as describing the dynamical evolution of systems with discrete time
steps.

When an integrable twist map is rendered non-integrable by a small pertur-
bation, resonance can occur. It leads to appearing of finite chains of alternating

hyperbolic and elliptic fixed points surrounded by nonlinear resonance zones. As
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the strength of the perturbation is increased, the resonance zones grow, can over-
lap and form a chaotic sea. We thus distinguish integrable from nonintegrable
twist maps. Birkhoff’s fixed point theorem (see App. A.2.) describes changes
that occur in an integrable map when its integrability is destroyed by a pertur-
bation. These changes and the new behavior that occurs in nonintegrable maps
is a topic of intensive discussions.

Most of examples of twist maps, that are of practical interest, appear to be
nonintegrable. It is however often possible to represent a given map as a sum
of integrable part and a perturbation, which vanishes as a parameter, named
stochasticity or control parameter goes to zero. Although the canonical pertur-
bation theory in nonintegrable case breaks down, there still exist methods of
approximate describing of the chaotic dynamics in the limit cases of small, as
well as large stochasticity parameter.

It is well known that, if the map is nonintegrable, a variety of orbits is possible:
cycles (conditionally periodic orbits), island chains (encircling the cycles), KAM
tori, and chaotic orbits. For a sufficiently small stochasticity parameter resonance
zones (both chaotic and regular) are separated from one another by KAM tori.
Thus in area preserving maps the KAM tori serve to isolate one region of the phase
space from another. These surfaces play crucial role in the transport process,
since they prevent particles from reaching arbitrary values of “action” p. Thereby
they are also often referred to as transport barriers. A KAM torus is destroyed
suddenly, as the mapping parameter increases, allowing trajectories to diffuse
more or less randomly in the chaotic sea.

One of the most frequently occurring models in many different applications
is the standard map, first introduced by Chirikov [6]. It describes the local be-
havior of nonintegrable dynamical systems in the separatrix region of nonlinear

resonances [7, 2, 3, 4]. A problem that reduces locally to the standard map is the
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diffusion of magnetic lines in a tokamak or stellarator [8, 9]. Written in the form

K
Pvil = Du— o cos 276, , (1)
01/—1—1 = 91/ + Pv+1, (2)

it has become a paradigm for the study of properties of chaotic dynamics in
Hamiltonian systems. In spite of its apparent simplicity, it exhibits much of the
complexity and canonical behavior of more complicated models.

The real number K > 0 is the stochasticity parameter. Figure 2 shows a
plot of some phase trajectories of the standard map for the value of stochasticity

parameter K = 0.7.

Figure 2: Standard map phase portrait for K = 0.7. The characteristic features,

such as island chains, KAM surfaces, stochastic orbits may be clearly seen.

For small K, the chaotic component of the phase space is limited to finite
regions, bounded by island chains and KAM barriers. As K gradually increases,
the more subsequent KAM barriers are captured by chaotic component of phase
space and thus destroyed. There exists a critical value, K = K., when the last
(“golden”) KAM barrier is destroyed, and the chaotic orbits can reach arbitrary
values of p . The value of the critical K is K, = 0.971635.... In the Fig. 3 we
see phase portrait of the standard map for the value of stochasticity parameter

above threshold, K = 1.2. Obviously, no primary KAM barriers are observed.
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Figure 3: Standard map phase portrait for a K = 1.2. This is an above threshold
regime, there are no more survived KAM tori present. A chaotic trajectory arising

from the primary island separatrix may reach arbitrary values of p.

The method for obtaining the critical number of K was developed by Greene [10].
Each undestroyed orbit may be uniquely identified by its winding number w. At
this correspondence every cycle M has a rational winding number, while KAM
tori have irrational winding numbers. Since every irrational number can be ap-
proximated by a series of fractions, there is a way to approximate a torus by a
sequence of cycles M;. The method in question hinges on the fact that the exis-
tence of a KAM torus is related to the stability of the cycles which approximate
it. It is assumed that if in the limit ¢ — oo, the M;-cycle has become unstable,
the corresponding KAM torus itself has been destroyed. This behavior of the ra-
tional approximates provides a fairly precise method of determining numerically
when a given KAM curve is destroyed. As the “most irrational” the golden mean
number [y = (1 + v/5)/2] was supposed by Greene to be the winding number of
the most stable KAM torus. Indeed, it has been numerically confirmed, that the
golden mean, within numerical error, is the winding number associated with the
last KAM curve to be destroyed in the standard mapping. Analyzing stability
of the cycles, which approximate the “golden” KAM tori, the value K, can be

obtained.
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We should note that in the area of stochastic magnetic field line transport,
later some more sophisticated models than the standard map have been used [11,

12, 13, 14].

1.4 Anomalous transport

In the globally stochastic region of the phase space for a system with two degrees
of freedom, in which KAM curves spanning the phase coordinate do not exist, a
complete description of the motion is generally impractical. We can attempt to
treat the motion in a statistical sense. That is, the evolution of certain average
quantities can be determined, rather than the trajectory corresponding to a given
set of initial conditions.

When a chaos sets in a twist map, large regions of the map can contain a
“chaotic sea” of trajectories. There is no way to predict the future evolution of a
trajectory in that region. However we can use the techniques of stochastic theory
to determine the statistical behavior of trajectories. If the mapping parameter
is large enough such that no stable islands or cantor: exist, the diffusion process
is very much alike to those found in simple Brownian motion. However, if stable
islands and cantori exist, the diffusion process become much more complex.

Keeping in mind the application to the problem of magnetic field line dif-
fusion in a tokamak, the interest usually lies in a reduced problem, namely the
“diffusion” in the radial direction, which corresponds to the p direction in the
standard map.

In numerous publications on transport in the standard map, the considera-
tions concern only the transport in p direction. However, this map being asym-
metric, it is of interest to consider both directions, p and #, in transport compu-
tations [15]. In some physical applications, such as determining of heating rates
and final energy distribution, one needs the angle evolution. Thus we distinguish

between “action” and “angle” transport.
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It is a well known fact that for a sufficiently large stochasticity parameter the
standard map exhibits a diffusive behavior in the “action” direction. However,
for some values of K, the system has a much more complicated dynamics. The
presence of “survived” islands, surrounding stable periodical points, makes the
phase space, in contrast to “pure stochastic” systems, a mixture of regular and
chaotic components, causing a strong deviations from the diffusive law and ap-
pearing of anomalous transport. A reason for such deviations is the stickiness
property of KAM surfaces: an orbit in a chaotic component, which comes close
to a KAM surface bounding this component tends to spend longer time in its
vicinity, and this time is typically longer the nearer the orbit comes.

A good (and usual) indicator of the dispersion is the mean square displacement
(MSD): (Ap?(t)) and ((A@)?). (Here, (-) means averaging over different initial
conditions.) In its long time asymptotics v — oo, the stochastic system can be
characterized by the transport exponents yu, (for motion in p direction) and p,

(for motion in @ direction) that are defined through
((Ap)*) ~ v, ((A9)%) ~ v, (3)

respectively. Following the usual notation, the transport regime can be charac-

terized as

u =1, diffusive,
i < 1, subdiffusive,

i > 1, superdiffusive.

It was shown that at some values of K the islands have strong effects on
transport. For example, the two cases, K near the threshold K. ~ 0.972 and
K near K,, = 27n, n = 1,2,..., respectively, were considered. In the latter
case, relatively large accelerator mode islands lead to “peaks” of the transport
exponent.

The complete description of the dispersion process would involve the deter-

mination of a “coarse-grained” distribution function ¥ (p,0;t). Its dynamics is
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greatly simplified if an average over one of the variables can be employed. The ap-
plicability of this procedure has been explored by Lichtenberg and Lieberman [2]
and is based on the random phase hypothesis.

In the section 2 our purpose will be to develop a semianalytical model for
determination of the “action” distribution function ¥ (p;t) = (¥(p,d;t))e in the
subcritical regime K < K.

In the section 3 we use a Frobenius-Perron operator formalism to estimate

the time evolution of the angular distribution (0;t) = (¢ (p, 6;1)),.

1.5 Transport in different regimes
1.5.1 K <K,

It is clear a priori that the evolution process in the case K < K, cannot be
diffusive in action space. Indeed, because of the presence of KAM barriers, the
MSD will necessarily saturate asymptotically, as ¢ — oo. The final value will
be essentially the square of the width of the region occupied by the stochastic
sea. This is in contrast with a diffusive process, in which the MSD exhibits an
unbounded growth, proportional to time. The effective action diffusion coefficient
(defined more precisely below) is thus necessarily zero:

D, ~ o) =0, (4)

We are thus in presence of a strongly subdiffusive behavior. Balescu and co-
workers [11, 16] used a continuous time random walk model for subcritical values
of the stochasticity parameter and have found a time asymptotic distribution in

the thin stochastic layer of the separatrix region of the primary resonance island.

1.5.2 K~ K,

Maybe the most difficult region of the stochasticity parameter values for analyt-

ical treatment is that near the threshold K, ~ 0.972. It has been intensively
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investigated by White et al. [17]. An extremely complicated fine structure of the
phase space has a strong influence on the trajectories behavior, making it essen-
tially nondiffusive. Numerical simulations even show that an attempt to calculate
a transport exponent is a nonconvergent process: there always present some ir-
reducible uncertainty, depending on initial distribution, length of iterations, etc.

A starting point of the analysis of the transport in this case lies in the scaling
behavior of “noble” tori. Kadanoff [18] and Shenker [19] were first who have
shown that the cycles which approximate the KAM torus and the resonance
zones associated with them exhibit scaling behavior and in some regions of the
phase space form a self-similar structure. The scaling behavior of area preserving
mappings has been extensively studied by many authors [20, 21, 22, 23].

MacKay [24] has developed a renormalization group theory for the noble KAM
tori. On the basis of this approach many analytical predictions concerning trans-
port rates in the vicinity of self-similar island chains can be done. A quantitative
theory for the transport has been proposed using a fractional generalization of the
diffusion (Fokker-Planck-Kolmogorov) equation [25]. The renormalization group
has been used to obtain an explicit expression for the transport exponent.

In the centre of attention of many authors was a superdiffusive transport
caused by accelerator islands [26, 27, 28] (see also [25, 29, 15]). It has been
shown that the anomalous exponents are related to the characteristic temporal
and spatial scaling parameters of the island chains. This phenomenon is observed

only for certain values of K, when sufficiently large accelerator mode islands exist.

153 K — o0

In the limit of large stochasticity parameter K, the standard map exhibits a dif-
fusive behavior in the action variable p, with a quasioscillating diffusion constant
D, as a function of K. The latter was first numerically discovered by Chirikov [6].

Rechester and White [30] and Rechester et al. [31] used a probabilistic method
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for the solution of the Vlasov equation for the distribution function of the “kicked
rotor” system. The latter may be thought as a continuous time complement of the
standard map. Authors have studied a propagator G of the distribution function
in a Fourier space and found dominant terms of its power expansion with a small
parameter 1/ VK. It was shown that for large K in a first approximation, the

“action” diffusion coefficient D, can be estimated as

D, ~ K{u — 21y(K)] . (5)

where J is the Bessel function of the first kind (and second order).

3

25 -

15

05

0 1 1 1 1 1 1
10 15 20 25 30 35 40 45

Figure 4: Diffusion coefficient D,, normalized to the quasilinear result Dg; = KT2

vs the control parameter K. The smooth dotted curve shows an analytical first
order estimate, obtained from a FP-operator expansion. Oscillations are due to
correlations, which persist well above the chaotic threshold. Regular “peaks” are

caused by trapping of orbits in the vicinity of accelerator mode islands.

Later, spectral properties of the discrete time evolution operator, named
Frobenius-Perron (FP) operator, were rigorously studied. Many of its properties

are known [32, 33, 34]. Hasegawa and Saphir [35, 34] have obtained a spectral
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decomposition of the FP operator and shown, that the corresponding eigenval-
ues are related to the decay rates of correlation functions. These rates are the
logarithms of the Ruelle resonances, which are defined as a poles of the resolvent
of the FP operator.

Khodas and Fishman [36] and Khodas et al. [37] have found that the slow
relaxation rates, in essence, correspond to diffusion modes in the momentum
direction.

Bénisti and Escande [38] showed that the diffusion properties of the standard

map are nonuniversal in the framework of the wave-particle interaction.

1.6 The subject of the present work

In the present work all the analyses was fulfilled on example of the standard map.

The standard map may be written in action-angle variables p and 6,

!

K
po=p-o sin 276 | (6)
0 = 0+p, (7)

where K is the stochasticity (control) parameter. All values are then taken
at discrete “times” v, which correspond to values of the toroidal angle. The
latter is assumed as nonperiodic while the poloidal angle is periodic, as denoted
above [30, 31, 16].

The topology of the Poincaré plots for sets of numerically iterated trajectories
depends on the stochasticity parameter K. For K values around K., character-
istic peculiarities such as stochastic sea, island chains, KAM surfaces, etc., can
be clearly seen in the figures 2 and 3.

Because of the obvious translation symmetry it is convenient to study the
topological properties of the phase plane with boundary conditions on torus, i.e.,

the variables (p, ) are replaced with the new variables (p, #) by substituting

p=pmod1l, 6=80mod]l, (8)
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such that

0<f<1, —05<p<05. (9)

Other choices of boundary conditions originate from the specific applications
one has in mind. For example, in plasma physics, the model was extensively
used in order to understand generic behavior of field lines and orbit dynamics
in partially chaotic as well as completely chaotic magnetic systems. Then, for
tokamak applications, in the two-dimensional dynamical system, p can be consid-
ered as the “radial” coordinate whereas 6 denotes the poloidal angle coordinate
[measured in radians divided by 27]. When studying a “radial”; i.e., “action”

transport, a natural choice of boundary conditions would be

0<h<1l, —oc0<p<oo, (10)

i.e., operation “mod” is applied only to angle variable.
However, other boundary conditions are also in use. Khodas and Fishman [36]
and Khodas et al. [37], have used boundary condition on the 1 periodic in p and

s periodic in # torus,
p=pmodl, #=0mods, seN, (11)

to study relaxation rates to invariant density for the kicked rotor.
In this work we investigate the cases of infinite phase space for both # and p

in more detail. To be more specific, we apply two types of boundary conditions,

case A: —oo< 0 <oo, —00<p<o0, (12)

case B: —oo< 6 <oo, —-05<p<05; (13)

thus in case B we use p modulo 1.

In the following we shall use Egs. (6) and (7) together with the just-mentioned
restrictions A or B.

As already mentioned, section 2 is devoted to studying a stationary action

distribution function ¥(p;v) = (¥(p,0;v))e in framework of the CTRW model.
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Due to the translation invariance of the standard map p'(p, 0) = p'(p,0+ N), N €
Z it does not matter, what type of angular boundary conditions is used. Therefore
in numerical simulations we have enclosed the angle variable on torus # mod 1.
Using the distribution function, an asymptotic mean square displacement may
be obtained. The latter is defined in the section 2.3.

The object of our interest in the section 3 will be the transport in the angular
direction for both cases A and B, i.e., to find, if they exist, corresponding expres-
sions for Dy and for transport exponent py. The present investigation deals with
the asymptotic behaviors of the system as K — oc and K — 0, respectively. Di-
vergences, arising from accelerator mode stable points and other types of stable
periodical points will also be discussed.

Let us briefly mention some expected differences between transport in p and
f directions, respectively. First a summary of the p transport. For K < K,
transport barriers in p direction exist in the form of KAM surfaces. Just above
the threshold K., the system exhibits a very complicated phase space topology.
The multiisland structure of the phase plane causes “orbit sticking”, which leads
to changes in transport rate. The cross section of a capture to the sticky part of
the phase space has a very sensitive dependence on K.

By investigations similar to those of White et al. [17] one can show a strange
(subdiffusive) behavior with strongly varying exponents near threshold. For K >>
K, as the structures of islands vanish, the transport in p becomes diffusive. The

leading order of expression (5) immediately follows from

(K /2r)? 1

((Ap)?) ~ Yy g aDw (14)

where Ap = p, — po-

Now the different expectations for the (mostly unknown) situation of trans-
port in @ direction. Even for K < K, we expect a (strong) superdiffusive trans-
port. This expectation is motivated by the following thought experiment. Let
K = 0 and initial conditions being distributed on p axis as n(p)d(f). After v
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iterations the latter becomes n(p) 6(f—v p). Thus, the mean square displacement

shows the following behavior:

(@07 = [ [ #n)00 - vp)pas
= //(Vp)zn(p) dp ~ V2. (15)

Near the threshold K, we also expect a strange behavior. Extrapolating from the
derived variations of the exponents for case B [17], we expect that for the latter
case and K > K, the transport may be diffusive. In case A, on the other hand,
the transport may be much faster, e.g., Dy ~ D, v* (see below).

To analyze the angular transport, here we apply a procedure based on the
Frobenius-Perron operator. In the Sec. 3.1, we briefly outline the method. Sec-
tion 3.3 is devoted to the behavior in the limit K — 0. The opposite limit
K — oo is considered in two sections. First, we treat case A in Sec. 3.4. The
case B is evaluated in Sec. 3.6.

Conclusion and summary follow the main text.
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2 Subcritical dynamics of the standard map

2.1 CTRW model

A very important regime in practical applications lies in a domain of moderately
large, subcritical values of the stochasticity parameter. For instance, in the toka-
mak problem, we must be sure that the magnetic field lines (and, hopefully, the
plasma) remain confined in the toroidal chamber. In this regime the particles
can only be dispersed in a limited region of space, because of the presence of
impermeable KAM barriers. This is the reason why in this case the process is
subdiffusive.

Balescu and co-workers [11, 16] have shown that the motion of the particles in
the bounded stochastic region near the separatrix can be approximately described
by a continuous time random walk (CTRW) [39, 40, 41].

An analysis of a long time series p(t) of a typical chaotic orbit, as in the Fig. 6,
suggests that it can be splitted into “basins” of rather regular motion. The three
of them are designated in the Fig. 6 with the letters A, B and C. The origin
of the basins is strongly related to the well-known stickiness phenomenon of the
partially chaotic dynamics [42, 43, 44] (see also [15, 17]). Long range correlation
effects occur from visits of orbits to boundary layers in the vicinity of island
chains and cantori. This property was named a stickiness of islands.

Further we observe a number of (statistically) simple features of the standard
map dynamics. The latter can be described as a conditionally regular motion
of the particle within a “basin”, followed by a jump to another basin, where the
motion is again rather regular, etc. Based on this picture, we simplify the present
problem of deterministic chaos by considering that its only random features are
the transition probabilities between basins and the duration of the sojourn in a

given basin. These are precisely the ingredients necessary for the definition of

CTRW.
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We consider the evolution in time of the coordinate p;. Any given particle
remains in a basin for some time, then jumps abruptly to another basin, etc.
We shall not be interested in the details of the motion within a given basin.
Rather we assume that the process, starting at a given initial value, is described
statistically: the motion is then completely defined by the specification of three

features:
1. the location of the relevant basins in the phase space,
2. the probability of a sojourn of length t in a given basin, and
3. the transition probability between two basins.

The conception, that the whole “randomness” associated with the deterministic
chaos of the standard map is concentrated in the statistics of the jumps between
basins, is, of course, a serious simplification of the exact motion. Nevertheless, as
the further analysis shows, this approach gives rather good estimate of the aver-
aged statistical values, such as distribution function or mean square displacement.

The first point mentioned above, i.e., the location of the relevant basins,
depends on the value of the stochasticity parameter and on the initial condition.
We develop here a general analytical formalism which is illustrated by a very
simple particular case. In this example, the stochasticity parameter is chosen
to be well below the critical threshold, but not too small (in order to produce
sufficiently large chaotic regions); specifically, we choose K = 0.7. The portion
of phase space under consideration is taken as the region bounded by the main
island around (0,0) and the nearest undestroyed KAM barriers above (p > 0) and
below (p < 0) this island; a typical chaotic orbit is shown in Fig. 5.

Neglecting the effect of satellite island chains (which are clearly distinguish-
able in the plot of stochastic sea), we can say that the three surfaces mentioned
above, i.e., the edge of the main island and the two nearest KAM barriers, are

the most relevant surfaces bounding the chaotic orbit. As a consequence, we
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Figure 5: Chaotic orbit for K = (0.7 originating from the destroyed separatrix of

the main steady island, represented in phase space (p, 0).

expect to observe three basins each corresponding to the motion trapped in the
boundary layer of these surfaces.

We now consider a time series, as in Fig. 6. It clearly appears that the p
coordinate sojourns successively in three regions: these are the relevant basins
for K = 0.7 and for the present configuration (Fig. 5) of the phase space.

Having identified the relevant basins, we construct a CTRW model describing
approximately this dynamics. (A similar, but not identical problem is treated
in the monograph [18] under the name “multistate CTRW?”.) We recall that we
are only considering here the distribution of particles among the relevant basins.
The latter will be labeled by a subscript, e.g., m = 1,2,..., M, where M is the
number of relevant basins in the problem. In our example M = 3; the labels are
chosen as follows: m = 1 for whole island basin; m = 2 for that, corresponding
to the upper KAM barrier; m = 3 - to the lower one.

The random walk (i.e., the “dynamics”) is completely determined by the
quantities n,,(t): the probability of finding a particle in a basin m at time ¢.

These quantities can be considered as the components of an M-component vector
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Figure 6: A piece of a chaotic trajectory p(t). Different types of quasi-regular
motion, designated as A, B and C, correspond to a sojourn in different basins.
C corresponds to motion close to the main island, A and B to upper and lower

KAM barriers respectively.

n(t). We also use the notation n® = n(0) for the initial condition.

Next, we define p,,(t) as the probability that a particle, entering the basing
m, makes a transition after a time ¢. From the quantities p,, a matrix P(t) can
be constructed as follows: P, (t) = pm(t)0mn

The last component necessary for the definition of the CTRW is the transition
probability F,,, from basin n to basin m: the set of this quantities defines a
matrix F'. By definition, the diagonal elements are identically zero. Thus, in our

example, taking a symmetry reasons into account, we have:

0 ® 77
F=]105 0 1-¢ (16)
05 1—¢ 0

with 0 < ¢ < 1. A numerical calculation of the ¢ leads to the value

¢ ~ 0.616. (17)
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It can be shown (see App. B), that the density n(¢) in Laplace representation

yields the following equation:
. . -1
[I . P(s)] : [I ~F. P(s)} -n°, (18)

where P(s) represents a Laplace transform of P(t). This equation provides us
with the complete solution of the initial value problem for our CTRW. It is very
similar to the well-known Montroll-Weiss equation [39, 40, 41] adapted to our
problem.

i From the Eq. (18) a non-Markovian equation of evolution for the distribution

vector can be obtained:
¢
on(t)=~(1~F)- [ drQ(r)-n(t-) (19)
0
where the Laplace transform Q(s) of Q(t) is given by:

O(s) = /0 Tate Q) = s P(s) - [1- P(s)] (20)

2.2 Asymptotic density distribution

An interesting problem of dynamics of the approach to the saturated steady state
is considered in [11, 16]. In this section we will be only interested in the time
asymptotic stationary distribution between basins n®. From (19) it is obvious

that n®> should satisfy the following equation

(I—F)-[/ dTQ(T)]-nOO:O. (21)
0
We now present an argumentation, why generally the analytical formula

2 {to) v

is the correct time asymptotic distribution. Here the f,, denote components of

the steady state distribution of the Markov process, that is described by the
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transition matrix F' (see Eq. (16)). The steady state distribution f = (f1, fa, f3)

is an eigenvector of F' corresponding to the eigenvalue 1:
(F—1I)-f=0. (23)

It is straightforward to calculate
f~ 1 |- (24)

One heuristic argument for the analytical formula for n.° is the superposition
of two independent processes: waiting in basin m and transition between basins.
Let us consider a sequence of transitions. By fI we designate the probability that

immediately after the 7-th jump the trajectory arrives in basin m. Obviously
f£+1:Zanfg (25)
n

should hold. Thus, in the limit 77 — oo for a stationary distribution, Eq. (23)
appears with f>° = f,,.

Next, taking into account the independence of the waiting and transition
processes, we conclude that the probability ny® of finding the system in the state
m at arbitrary time should be proportional to the mean waiting time (t,,), and

therefore
n;.; ~ <tm>fm . (26)

After a proper normalization, expression (22) is obtained.

Formally, the expression for nJ> can be also found from the asymptotic equa-
tion (21). We show first, how the matrix Q = }odT Q(7) can be calculated.
Performing an inverse Laplace transform, we get: "

+e+i00

Qr) = — / ds e O(s). (27)

+e—io0
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where Q(s) is defined in (20). Next integrating Q(r) over time, and changing the

order of integration, we evaluate:

0 T +e+i00 )
27m'/d7' Q(r) = Tlim dr / dse’ s P(s) - [I — P(s)]
—00
0 0 +e—i00
+e+i00 . +e+i00
= Tlim / dse’T P(s) - [I — P(s)} — / ds P(s) - [I - P
—00
+e—i00 +€e—100
= Il - IQ .

We calculate these integrals by means of the residue theorem. It can be shown

that the only singularity of the P(s)- [I - P (s)} "~ in the finite part of the s-plane
is at s = 0. For I; we can close the contour in the left half of the s-plane, whereas
for I, we close the contour in the right half of the s-plane. Here we make some
assumptions about the asymptotic behavior of the functions py,(s)(1 — pn(s)) ™t

They should either have an asymptotic form

ﬁm(s) 5200 ms
T TE ),

or yield the condition

where m > 0 and f(s) = 0, as s — o0,

lim s p(a:) =0.
s—oo 1 — p(s)
Changing the integration variable § = —is, one applies the Jordan’s lemma to

see that the integral

/C ds €T ppu(s) - [1 — p(s)]™"

left

vanishes on the left infinite semicircle. Analogously the integral

; ds Dn(s) - [1 = P ()]

right

vanishes on the right infinite semicircle.

This leads to

p
I,b=0 and I, = —2miRes,— {eﬂi} . (29)
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To calculate the residue, we expand the Laplace transformation 15(3) near the
origin s = 0. Taking into account the normalization condition [ p(7)dr =1

and the existence of the mean waiting times (t,,) = [ 7 pm(7) d7, we get

pm(s) = /dteStpm(t) - /dt(l st ) pml®)
0 0
= 1—s{ty) +0(s%), (30)
. .71
and, thus, the diagonal elements of the matrix P(s) - [I — P(s)} become

Pm(S) ~ 1 — s{tm) + o(s)
1 — Pm(s) $(tm) + o(s)

(31)

The off-diagonal elements are zero. Substituting (31) into (29), we finally get:

00 <t1>_1 0 0
0= / QN = o @ o | (32)
0 0 0 (t3)"

But from Eq. (21) we see that vector Q - n* yields the equation (23) for the
eigenvector of the matrix F, i.e., @-n* = f. From this the Eq. (22) immediately
follows.

Explicit expressions for @ and n can be found by assuming special functional

forms of p,,(t). For instance a piecewise power law

(ti) O(t, —t) + (ti) o 0t — tc)] : (33)

with oy, > 1 and £, > 0. An argumentation for such algebraic decay form may be

found in Refs. [45, 16]. Using this form, the average mean waiting times become:

(tm) = = . (34)

Now the stationary distribution n* is defined by the three parameters, ¢, ay,

and t., which can be calculated numerically.



30 2 SUBCRITICAL DYNAMICS OF THE STANDARD MAP

2.3 Mean square displacement

As already mentioned, an adequate way to describe the statistical properties of
the chaotic component of the phase space is the mean square displacement (MSD):
(Ap?(t)), where (-) means average over initial conditions. Various definitions
of the MSD, that are equivalent in diffusive and superdiffusive case, may give
different results in subdiffusive regime. Thus we need a correct definition of MSD
for every special case.

Let all the initial positions of test particles have the same initial momentum
po (but, maybe, different other parameters, such as angle ). The so-defined
MSD depends on py:

1N
%% (pos t) = N ;(pz(t) — o). (35)

In terms of distribution function 1(p;t) the MSD can be defined as

S2(pos ) = / (0 — Do) (p: ) dp. (36)

If py < ¥?(pg;t — oo) (this is possible in the absence of transport barriers), then
the MSD becomes independent of py. We will make use of this definition with
respect to angle variable in the Sec. 3.

Alternatively, we can put in the phase space pairs of particles with slightly

different initial positions in phase space and measure a distance between them:

N
1
20 2
0 = 5y Ll o) (37)
or in terms of distribution function
1
S (t) = §/dp1/dp2 (p1 — p2)> ¥ (p1; t)h(pa; t). (38)

An additional factor 1/2 is chosen so that in the diffusive regime the two defini-

tions above give rise to the same result. In the present chapter we make use of the
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second definition (37,38), since it is more suitable for the case of a nonsymmet-
ric distribution (although in our special example the distribution is symmetric,
the CTRW model describes the behavior of any weakly chaotic region with not
necessarily symmetric distribution).

If a transport barrier exists, the MSD will necessarily saturate to its asymp-
totic value. An interesting topic is, how the MSD approaches the asymptotic
value. It is related to that of relaxation to invariant density distribution, consid-
ered by Khodas et al. [37]. In this chapter we restrict our consideration only to
the saturated state.

We now introduce a way, how the asymptotic probability distribution function
¥ (p; 00) = 1(p) can be estimated within the framework of CTRW model.

The phase portrait of the trajectories near the discussed region is very similar
to that of ordinary mathematical pendulum. To see this, consider a continuous

time mechanical system with “kicked rotor” Hamiltonian:
2

D
H=—-— 0 E -
5 42c0s26’ St —v) (39)

where 6(t) is a Dirac function. This system may be thought of as a pendulum, that
is subjected to a vertical periodic impulsive force, applied at timest =0,1,2,....
It is straightforward to check by direct integrating that the coordinates p(t) and
f(t), taken at times v — 0 coincide with a discrete time trajectory iterated by
standard map. Thus the standard map becomes a surface of section map for the
system (39) (see App. A.2).

Using the Poisson summation formula

o

Y d(t—v)= ) cos(2mst), (40)

V=——00 §=—00

the Hamiltonian (39) can be written in the form
2

H = %—4—2 COSQ’]TH"‘St)
T Z
2
p K
R __E: P . 41
5~ 13 08 76 172 2 Co8 (6 + st) (41)

s#£0
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In such a form the perturbation of the Hamiltonian (i.e., the part, that disappears
as K — 0) may be interpreted as an infinite set of correlated harmonic waves
with integer frequencies.

Secular perturbation theory shows! that each harmonic wave in a perturbation
gives rise to the pendulum-like phase portrait in the vicinity of its resonant torus,
until this region of phase space is captured by other structures (e.g. chaotic
component). The main resonance, that may be recognized in a phase space
portrait (Fig. 2 on the page 11) as an island around the elliptic fixed point
(0,0), is caused by the wave in perturbation with zero frequency (s = 0). We
have explicitly separated this term in the second equality of (41). Thus the
mathematical pendulum with the Hamiltonian

2

K
H=" 2 cosorg (42)

2 Arx?
has, in the neighborhood of the separatrix, a phase portrait very close to that of
the standard map, provided the stochasticity parameter is small enough.
It is easy to see that for a regular trajectory p(t) the distribution function can

be written up to normalization constant as

1

1/1(10) ~ m,

where p should be expressed as a function of p. Indeed, consider a particle, that

(43)

performs a regular periodic motion with arbitrary initial phase. A probability
dP = 1(p) dp to find the particle in the momentum interval dp is proportional to
the time dt, that the particle spends in this interval. Thus we have 9 (p) dp ~ dt,
from which Eq. (43) follows.

For the Hamiltonian (42) straightforward calculation leads to

KZ

bl =\ o — 0 -

K
= = —20)2, (44)

27?2
where we have substituted H = 4% + €. A small positive € corresponds to a

rotation and € < 0 corresponds to a libration.

1See Lichtenberg [2], secular perturbation theory.
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We now choose three regular orbits of the pendulum by specifying an ap-
propriate € and calculate corresponding distributions 1,. We assume that they
estimate distributions in the corresponding basins of the standard map. The total

1y function is constructed in the form

Y(pst) =Dt (p). (45)

This approximation is applicable as long as the mean waiting times (¢,) are much
bigger than the liberation or rotation periods.

Figure 8 shows the analytical distribution v, constructed in accordance with (45).
When compared to the numerically calculated distribution, Fig. 7, we recognize a
quite good agreement. This result could still be improved, if we had considered in
our CTRW model more basins. For example those, corresponding to the satellite
island chain, which appears nearby the main island and is good recognizable in
the phase space portrait in the Fig. 5.

35 T T T T T

25 - b

15 b

05 - b

0 1 1 1 1 1
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Figure 7: A distribution function ¢ (p) for the chaotic region, as in Fig. 5, for

K = 0.7. The data was obtained from 108 iterations of a single orbit.

Finally, we calculate the MSD:

Y2t — o00) = %/dpl / dpa(p1) ¥ (p2) (p1 — p2)* = 0.017. (46)
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Figure 8: A theoretical estimate of 1)(p). We have truncated peaks, corresponding

to integrable singularities of the function ¢ (p) appearing on the ages pq, and

Pmin Of regular trajectories, where p = 0.

To check the validity of this result we have fulfilled a direct numerical cal-

culation of MSD. The value 0.02 was found. We see that it is in a satisfactory

agreement with the value predicted.
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3 Angular transport

3.1 Outline of the method

In this section we summarize the definitions and formulas of the Frobenius-Perron
operator formalism that are necessary for an understanding of the main results
of the present investigation. For reasons of simplicity, we choose here case A (see
Eq. (12)), for demonstration.

Suppose we have a discrete time system, whose evolution is governed be a
map M. Let also suppose, that there is some distribution of the ensemble of
points in the phase space, which is characterized by a distribution function at
some initial time v = 0, fo(p,#). Then, after one time step, the distribution
changes because the particles move in accordance with the map M. We denote
the distribution function after vth application of the map by f(p,0;v). The
thereby defined (coarse-grained) distribution function should be smooth in the
limit of an infinite ensemble. Although in the case of weak chaos, KAM surfaces
prevent orbits from reaching arbitrary values of p, it is assumed that f(p, §;v) is
defined in the whole phase plane (6, p). A one step evolution of the distribution

function f(p,0;v) is then described by Frobenius-Perron equation:

f(p,0;v) = // dxé(x— M(z') f(p, 00— 1), (47)

where & = (p, ). An integral operator U with the kernel §(x — M (x')) is called
Frobenius-Perron (FP) operator [32, 33, 34]. If the map M is invertible, the

corresponding FP operator becomes:

f0,0;0) =Uf(p,0;v = 1) = f(M ' (p,0);v = 1). (48)

A complete time evolution of the distribution function is obtained from the

vth power of the FP operator:

Fp,0;v) =U" fo(p, 0). (49)
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Much information about dynamical system parameters, such as escape rates,
Lyapunov exponents, diffusion coefficient, may be obtained from the spectral
analysis of the FP operator. In particular, as was already mentioned, the poles

of the matrix elements of the resolvent,

. 1 1N .
R(z) = - = - urz—", 50
= 5= (50)

describe the decay (relaxation) of the distribution function to the invariant den-
sity. The relaxation rate is, in turn, related to the diffusion coefficient in the
action space.

In the current section we will perform direct calculation of the FP operator
in Fourier space for the standard map.

Since in this section we are only interested in angular dynamics, the problem
may be essentially simplified by averaging over the momentum. We introduce a

local density profile n(f;v) as an average of f(p,0;v) over the action variable p,

n(0s) = [ dpso.00). (51)

oo

All the subsequent calculations will be done in Fourier space. For the Fourier-

transform in 6 and p we use the definition

flg,m;v) = /_oo dp /_oo df exp[—2mi(pg + 0m)] f(p,6;v), (52)

f(p,0;v) = /_ N dq /_ " dm exp[27i(pq + 0m)] f (g, m; V). (53)

Here, ¢ and m are continuous variables, since we define p and # on the whole
plane, and we don’t assume the distribution f(p,#;v) to be periodic.
The Fourier transformation of the density is related to the ¢ = 0 mode of the

Fourier transformation of f(p, 6;v),
(m;v) = f(g=0,m;v) . (54)
Evidently the normalization condition

atos0) = [ : i [ Z 46 f(p,0;v) = 1 (55)
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must hold (for all v).
In the statistical theory of transport, the diffusion coefficient is related to the

time-dependent mean-square-displacement (MSD). The latter we define via

$2(y) = /_ " 4062 n(0; ). (56)

(e o]

Thus, X2 is just a second moment of the distribution n. As was already men-
tioned, X2 tends to ((A#)?) for v — oo (see explanation on p. 30).
It is a well-known fact that the moments of a distribution may be easily

obtained from its Fourier transform. A simple calculation leads to
1 d?n(m;v)
472 dm?

From the formula above we can draw an important conclusion, that only

S3(v) = - (57)

m=0

an infinitely small region of fi(m;v) near m = 0 determines the MSD [provided
fi(m;v) is an analytic function|. Obviously, this means that for long times only
the lowest m modes of the distribution function determine the MSD. We will
later make use of this fact, when studying the time dynamics of the distribu-
tion. Indeed, as far as the main point of our interest is the MSD, and not the
distribution itself, we will restrict the problem of the time evolution of the distri-
bution function only to the lowest Fourier modes, i.e., we will consider the time
propagation of 7i(m;v) in the limit m — 0.
It is natural to define the running diffusion coefficient Dy = Dy(v) as a time
derivative of the displacement ¥2(v), i.e.
,0%, 10 dn(m;v)

D= T T ame

The factor 27 is chosen so that the expression for D, obtained from this formula

(58)

m=0

for the case K — oo coincides with that in literature [Eq. (5)].

3.1.1 Diffusive regime

If the dynamics were diffusive, the density profile would obey a diffusion equation

D o?
orn(0;t) = yy wn(ﬁ;t), (59)
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which in Fourier space takes the form:
0, n(m;t) = —Dm?f(m;t), (60)

(because the Fourier transform of 9 is —4w m?). The solution of this equation

is obviously (for ¢t = v):
A(m;v) = e P™ " fi(m; 0) = 7(m; 0) — Dm? v i(m;0). (61)

An independent on time constant D is a diffusion coefficient, which can be seen

from the formula (58).

3.1.2 What we expect

What will we get in the case of nondiffusive dynamics, when the diffusion coeffi-
cient is not a constant, rather it has a power dependence on time? Basing on the
formula (57) for the MSD, and taking into account the normalization condition

(55), we expect for the power expansion of the density profile the following form:

n(m;v) = n(m;0) + a; (v)m + as (v)m? + a3 (v)m* + - - - | (62)

with  ax(v) ~ V" as v — oo.

Indeed, substitution of this expression into the formula (57) leads to the MSD
S3(0) — Z30)] ~ 50,

3.2 Propagator for “unmoduled” map

We start with the Egs. (6,7) together with boundary condition A (i.e., with no
periodicity) to calculate the propagator U for unmoduled map. We start with
the definition (48).

An important fact, which plays a key role in determining the FP operator is

that the standard map is invertible. The inverse map may be easily obtained by
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expressing (p, ) in terms of (p/, ¢'):
K
p = p+—sin2x(0 —p), (63)
27
6 = 0 -7, (64)

Combining Eq. (48) with (63) the FP operator may be determined from

0100 = £ (4 0.0) = 1 (p+ 5o sin2e0-p).0-p) . (69

The Frobenius-Perron operator can thus be expressed explicitly as a simple finite

displacement operator

. 0 K 0
U =exp (—p%) exp <27r sin 27r08p) (66)
Next we transform to the Fourier space. This space is spanned by the basis:
(p, 0| g, m) = exp[2mi(pg + Om)] . (67)
In the Fourier representation, the operator U has the matrix elements

(¢, m| |, m) / dp / d6 exp [~ 2mi(pg + 6m)]

xU exp [2mi(pg’ + Om')] . (68)

Using these matrix elements, the one-step evolution of the distribution func-

tion in Fourier space becomes

f(g,m;v) (69)
/ dq/ dm' ( q,m\U|q m') (q m';v—1),

or, for the density profile,

[

dm' (¢ = O,m\mq’,m’) f(q',m’;y— 1).

\II
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A complete description of the dynamics is given by an operator U”. The

solution of the initial value problem in Fourier representation follows as
Flamiv) = [ dg [ i ta,miT"1d',m') Fg',m50) (71)

In a similar manner as above one can write the Fourier-transformation of the

density as
n(m;v) = /dq'/dm'(q: 0,m|U”|¢',m'y f(¢',m';0). (72)

For determining the MSD we need only an evolution of the density profile 7.(m; v).
Thus our next aim will be to calculate (or, if it is not possible, to estimate) the
projection of the vth power of the FP operator (q,m|U“|q’,m’) on the ¢ = 0
state.

We introduce a projection operator P as follows:
P :=0,m)(0,m|. (73)

It projects any vector |-) on the ¢ = 0 state, so that any matrix element (g, m|PU”|¢, m’)
is zero for ¢ # 0. We can say that the operator (g, m\f?f]”|q’, m') is a time prop-
agator for the density profile. One can show that

(¢, m| POV |, m'y = / dgi - - / dmy (74)

X<0a m|f]|Q1, m1> e <QI/71: mu—1|[7|q,a ml> -

From here the analog to path-integral may be seen. Indeed, the matrix
element (qi,mi|U |g;, m;j) can be treated as an amplitude of the transition from
(g;, m;) state to (g;, m;) state. The final amplitude is an integral over the all
intermediate states, i.e., over the all possible paths in the (¢, m;v) space. The
only specific feature of our case is that the “time” v is discrete, and, as we will
later see, the space (¢, m) as well.

Next we proceed to calculation of the propagator in Fourier representation.

It is an important fact of the standard map that the matrix elements of the
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Frobenius-Perron operator can be calculated analytically. Substituting (66) into

(68), we get for the matrix element:

<Qa m|U|ql’ ml) -
/Oo dp /Oo dp e27ilp(d' —g—m)+6(m’ —m))] LiKq'sin(0—p) (75)

Using the well-known identity with Bessel functions J; (first kind, /th order)

exp(iz sin @) Z e Ji(z (76)

[=—

and performing the integration, one obtains

(@, m|Ulg',m') = (77)
Jm—m’(qlK) 5(q+m—q') H 5(m—m’—l) .
1=0,£1,...

Although m and m' are continuous, the difference m—m' remains integer. This
reflects the fact, that the Frobenius-Perron operator is invariant under translation
transformations 6 = 6 + n, n € Z.

Making use of the explicit form (77), integration over ¢’ and m' can be replaced

by summation in following way:

//dqdma(q+m—q H S(m—m'—1) -

1=0,%1,.

— Z 5q’,q—|—m (Sm’,m—l cee (78)
l

Thus, we can write for the one-step evolution

Fla.mv)= [ dg [ am'ta. 0l m)f miv=1)= (79
S @K) f(d =q4+mm =m—lv-1).
1=0,41,...

This formula may be interpreted as follows. The state at the moment v is a sum
of transitions from the countable number of the “initial” states (at the moment

v — 1) specified by the whole number [, each with the amplitude J;(¢'K). To run
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a few steps forward we note that if ¢ K < 1, the largest amplitude is given by
the choice [ = 0.

Introducing new indices k; = m; —m, ¢ =1,...,v —1 and keeping in mind an
integration over ¢’ and m’ (i.e., we replace the §-functions with Kronecker delta

in accordance with Eq. (78)), the propagator finally becomes
(g =0,m|PU"|¢,m') = (80)

Z JkO*kl (mK) Jkl*k& [(27’)’1, + kl)K]

k1,k2,.00ky—1
Xoeee Jku—l_ku [(Vm + kl + kQ + -+ ku_l)K]

X 5m’,kufm 5q’,um+k1+k2+.--+kuf1 ;

where the k;,i = 0,...,v, are integers with ky = 0, kK, = m’ — m. The indices
k; specify the intermediate states (g;, ;) in the sum (74) by the formulas: m; =
m+ki, ¢g=1m+ko+k+---+k_1.

If we do not specify ¢’ and m’, i.e. the matrix element, then each string
ki,...,k, determines to which matrix element the corresponding term in the
sum (80) contributes. On the other hand, for a given matrix element the two

conditions

¢ =vm+ki+-+k, 1, (81)

m' =k, +m, (82)

must hold.

The matrix element (¢ = O,m\PU Y|¢',m') is an amplitude of the transition
from the state (0,m) to the state (¢',m’). A string of k; determines a path in the
space (g, m;t) as in Fig. 9. The final amplitude is the sum over the contributions

from the different paths, each of the magnitude
Tko—tiy (ME) Tpy iy (2 + k1)K -+ iy, [(vm + ko + k2 + - + k1) K]

Equation (80) is an exact result that provides the starting point for an asymp-

totic analysis. In the following sections we estimate the propagator in the limits
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Figure 9: The amplitude of the transition (0, m) — (¢’,m') is a sum over different

paths in the space (g, m;t).

K — 0 and K — oo. We show how together with Eq. (72) it leads to the

anomalous transport equation (62).

3.3 Asymptotic analysis for K — 0

We shall show now how the transport behavior in € direction can be obtained
from the propagator (80) in the limit K — 0. In Appendix C we present another
(simpler) derivation based on the solution of the continuous system of a kicked
rotor that corresponds to the discrete standard map.

The propagator (80) consists of a product of Bessel functions. All the ar-
guments ¢; K are small in the limit K — 0. We therefore expand the Bessel
functions for small arguments in the form

1 x2

MT(n+1) 2720 (n+ 2) +0(z*)| . (83)

Jo(z) = 2"

It is easy to see that the main contribution in the sum (80) originates from the
term with

ki=ke=...=k,_1=k,=0. (84)
In the case K = 0, this is the only nonvanishing term. It is of zeroth order in K;

terms with any other choice of k; contain higher orders of K.
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Substituting the string (84) in the expression (80) and using the expansion

(83) (in this case all the Bessel functions are Jy(z) = 1), we get in zeroth order:
(g, m|PU"|¢,m') =1 (85)

for ¢ = vm, and m' = m. The solution of the equation of motion (72) becomes
i(m;v) = f(vm,m;0). (86)

This is exactly what we get in a corresponding continuous-time system for K = 0
(see Appendix C). We conclude that the regime at K — 0 is superdiffusive with
respect to angular transport. The corresponding transport exponent gy = 2.
Indeed, using the formulas (57) and (58), the mean square displacement and the

diffusion coeflicient are:

Y =a-v, (87)

Dy=b-v, v — 00, (88)

where constants a and b depend on the initial distribution (see Egs. (211) and (212)).
This is obvious from the physical point of view. At K = 0 the “orbits” do not
change their momenta p at all. So the rate of transport depends only on how
the orbits are initially distributed in p. The transport exponent follows from (87)
immediately.

We note that, after expanding of the right-hand side of Eq. (86) in power
series, the anomalous transport equation (62) with ay(v) ~ v? appears. It should
be emphasized that the predicted value uy = 2 (for K < K.) holds for both
cases A and B. In Figs. 10 (p. 49) and 13 (p. 60) it can be easily seen, that the
transport exponent remains constant (ug = 2) up to the stochasticity parameter
values K < K., where K. ~ 0.97 is the threshold value. This can be understood
from the observation, that the dominant contribution to the transport is made

by the particles, located on KAM surfaces.
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3.4 Asymptotic analysis in the limit K — oo for the case A

Here our aim is to find a diffusion coefficient in the limit K — oo, when a strong
chaos sets in the system. Given the solution 71(m;v), we have to differentiate it
twice at m = 0, to obtain the MSD as well as the diffusion coefficient. As was
already mentioned, this implies, that the behavior of n(m; v) is of interest only in
a small region near 0. Thus, the limit m — 0 may be applied, when calculating
the propagator. The two limits above are to be applied in the following order.
First, we consider large values of K. But after the K is fixed, the limit m — 0
can be applied. In other words, the following two assumptions are crucial. First,

we assume a large stochasticity parameter
K>1. (89)
But second, we can assume sufficiently small m, treating K as constant, i.e.

mK < 1. (90)

3.4.1 Lowest order in 1/\/1_(

There are two types of arguments in the Bessel functions of the propagator (80):
small ones, if they are like im K, and large ones, if they are like (im + j) K, where
1,j are integers. Apart from that, we note that for diagonal elements only the
terms being proportional to m? give a nontrivial contribution to the MSD [see
Eq. (57)].

For large arguments we use the expansion

Jn(z) = 2 [cos (x _ I E) + O(%)] : (91)

T 2 4

We shall expand the propagator in a power series of two small parameters,
\/1/7 and mK, respectively. We can immediately proceed with the expressions
derived in 3.2. Again, the dominant term in the sum (80) is the one corresponding
to the string

kh=ky=-=k,_1=k, =0. (92)
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We shall designate the contribution from this string by Sy. Expanding the Bessel

functions up to the second order in mK, we find

So = Jo(mK) Jo(2mK) - -- Jy(vmK) ~ (93)

m2K? m2K? m2K?
1-1 )(1—22 )---(1—2 )
( 4 4 Yy

Up to the second order this product leads to

m2K? v v v\ miK?
Sy~ 1— '2:1—(— v —) . 94
0 4 ;Z 6T 273) 1 (94)

In the next step we consider the transition to large “times” (the limit v — oo

should be taken for fixed K and m),

2 m?K?
Som = T (95)

According to conditions (81) and (82) this contribution belongs to the matrix
element of the propagator with ¢ =0, ¢ =vm, m' =m:

1/3 m2K2
3 4

(0, m|PU"|vm, m) ~ — (96)

This is a dominant matrix element of the propagator PU”. The equation of

motion in first approximation becomes:

5 v® m2K?
n(m;v) ~ ——

3 4

fym,m;0). (97)
With the formula (58), this leads to the so called quasilinear result:
DQL = T ) (98)

which also may be obtained from a different argumentation (See Introduction).
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3.4.2 Next order

The next terms we consider will contain the additional small factor Jo(K) ~

v/1/K. These terms originate from the strings, which we designate as follows:

Sit k= =k 1=0,k=1, k. =—1,
kivo= -+ =k,_1 =0;
S_it ki=--=k_1=0,ki=-1, k=1,
kivog= - =k, 1 =0
fori=1,2,...,v — 2. With such a choice of indices the term S; becomes
Si = Jo(mK) Jo(2mK) - - JO([i - 1]mK) (99)

xJ_1(imK) Jy ([i +1mK + K) I, <[i + 2]mK)
xJo([i +3]mK> - Jo(vmK).

Expanding the Bessel functions, we find that the only principal multiples in
the product above are in the middle row. They correspond to that part of the
string k;, where it deviates from the zero. Using the identity J_;(z) = —Ji(),
S; can be estimated in dominant order as

m2K?
4

S; = i(i +2) Jo(K) . (100)

For S_; we obtain the same expression S_; = S;. Since all these terms contribute

to the same matrix element (96), we can add them together, with the result

v—2 3, 272
K
S (Si+52) =2 % m4 Jo(K) . (101)
i=1
Here the summation formula
v—2
5 2 3 3
z(2+2):1—%—%+%—>%, for v — o0, (102)

was used. Combining with Sy, we finally get for this matrix element

R 3 2K2
(0, m| PU” |vm, m) = _% (1 _ 2J2(K)) m4

(103)
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We note that for 6 transport asymptotically the propagator has off-diagonal ele-

ments, and it cannot be represented in the form
(g, m|PU"”|¢',m')y ~ &(¢' — q) 6(m' —m), (104)

as it was in the case for “action” diffusion.
The propagator (103) delivers the explicit solution of the equation of mo-

tion (72), )
A(m; v) = —% (1 . 2J2(K))

Again we note, that the Eq. (62) with ay(v) ~ 3 holds.

mKC f(vm,m;0). (105)

Now using Eq. (58), the running diffusion coefficient can be finally estimated

as
Dy w~ KTZ (1—2J2(K)>1/2
~ KTZ<1—|— WiKcos [K—%DI/Q. (106)

We conclude that in case A (Eq. (12)) the angular transport is superdiffusive

and the running diffusion coefficient is proportional to v?

. The corresponding
transport exponent in this case py = 3. In Fig. 10 one can see that the transport
exponent reaches the value 3 for K 2 3.

The “transition” regime, when the stochasticity parameter values are lying in
the interval K. < K < 10, is not described by our approach. In this regime there
are no more KAM barriers. This makes the transport in p, and consequently in 6
faster, then in subthreshold regime. But the presence of complicated multiisland
structure in the phase space causes deviations from the “pure” regimes with
integral transport exponent.

Figure 11 shows a comparison of the analytical prediction for the diffusion

coefficient with numerical simulations. The oscillations with K can be seen clearly

in the plot of 4Dy/(v*K?). A quite good agreement is observed for K 2 10.
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Figure 10: Exponents py (solid line) and p, (dotted line) vs K for case A (—oo <

p < 400). Note that ¥y ~ v# and ¥, ~ v#». The fluctuation

K ~ 6.5 is due to influence of accelerator mode islands.
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Figure 11: Normalized diffusion coefficient 4Dy/(K?v?) vs control parameter K

for case A (—o0 < p < +oc0). The solid zigzag line represents the measure-

ments from numerical simulations while the dotted curve shows the theoretical

prediction.
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We note that the angular diffusion coefficient (106) is related to that in action
space (5) via

Dy = D,v°. (107)

In Appendix D we present simple arguments to explain why that should be the

case.

3.5 Influence of accelerator mode islands

The present analysis does not apply to the regions around periodical stable points,
of which the most important role belongs to the so-called accelerator modes.
Accelerator mode point is a periodical fixed point of “moduled” map such that,
if a trajectory of “unmoduled” map originates in this point, it is displaced in
p at every time step by an integer number. Furthermore, if such a point is a
stable (elliptical) fixed point of the “moduled” phase space and is surrounded by
a KAM island, then the whole island becomes “accelerator mode”. In a phase
portrait of the “moduled” map the accelerator mode island chains are obviously
indistinguishable from ordinary island chains.

Accelerator modes have a very strong influence on the diffusion process. Di-
vergences that may be observed in the D(K') dependence as regular peaks, are
related to relatively large “accelerator mode” islands, that appear for certain
values of K. Indeed, if a particle appears in an accelerator mode island, it ex-
periences a free acceleration p ~ v, causing the divergence of the MSD and the
diffusion coefficient D.

Let us consider one example. For a period-1 accelerator mode point (pg, p)
[period 1 means that in a “moduled” map it would be a period-1 fixed point] we
have the condition

K
~5- sin276y = N, NeZ; (108)
m

the starting momentum p, has to be integer, say 0. The action p, starting in this

point, increases at each step by N, and thus grows linearly with time. Then 6
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2
grows as v,

p, =po+vN =vN, (109)
2
v

0,,:90+p1+"'+p,,—>31\7. (110)

Therefore, the mean square displacement in 6 direction increases as v*. For
the transport exponents one gets in these accelerated regions of phase space
tp =2, g =4. Therelation pug = p,+2, discussed in Appendix B, is therefore
also valid here. Even when only a few orbits are located in the accelerator mode
island, their contribution to the MSD becomes dominant as v — oo.

We should note here that traditionally a strange transport of the chaotic
component of the phase space in the vicinity of accelerator mode islands is con-
sidered [28, 29, 15]. A fractional anomalous transport exponent was obtained
for self-similar configuration of the satellite accelerator mode island chains. Con-
trary to that consideration our approach deals with a continuous distribution of
particles. In particular, some portion of them is located directly on the accel-
erator mode islands, causing the whole transport exponent to reach the values
tp =2, pg=4.

A linear stability analysis of the accelerator islands, considered above, shows

stability windows

1 1 1
S - 111
1wy <P <7 (111)
2mN
K=—+——. 112
sin 276, (112)

The reason why the accelerator mode contributions were not evident in the
propagator expansion is the following: The Fourier modes have been calculated
to the lowest order with respect to the small parameter \/1/7 . Contributions of
accelerator modes are of higher order in \/1/7 , but contain an additional factor
v. That is why they become dominant as v — oo.

Although the stability windows for the accelerator islands are very narrow,

there exist stable accelerator mode islands of higher periods [28]. Their existence
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would lead us to the conclusion that divergence should take place for most (prob-
ably for all) values of K. In transport simulations that is not observed. As far
as we deal with a finite number of orbits, there is a finite probability that an
arbitrary orbit can be found in one of the accelerator mode islands. The prob-
ability is proportional to the areas occupied by the latter. In turn, these areas
(similar to areas of any structures in phase plane) tend to zero as the stochasticity
parameter increases. In order to observe the corresponding divergences in com-
puter simulations, either a huge number of orbits with random initial conditions
must be taken, or one has to choose some (quite specific) initial conditions on
the islands.

To avoid the divergence difficulty, a collision term could be added to the

Liouville equation, describing a phase flow of a continuous-time system [30, 37]:

if of @ of
E—E‘*‘{Haf}—gw,

where a? characterizes the diffusion process due to collisions. This term leads to

(113)

an additional factor exp(—(a®/2) m?) in the propagator (77). As a consequence,
the propagator does not lead anymore to matrix elements with rapid time growth
rates caused by accelerator mode (quasi-)periodical orbits. After performing the
calculations of the diffusion coefficient, the limit of vanishing noise (¢ — 0) can

be taken to obtain a “physical” solution of the original problem.

3.6 Asymptotic analysis in the limit K — oo for case B

We now consider the dynamics of the standard map (6,7) with periodical bound-
ary condition in p, i.e. —0.5 < p < 0.5, —o0o < 0 < oo. Although the phase
portrait of this map remains the same as for the “unmoduled” map, the dynamics
of particles is quite different. Therefore we need to find a new expression for the
propagator of the “moduled” map.

If the operation “mod” is applied to the first equation of the standard map (6),

we are immediately faced with a problem that the new map becomes noninvert-
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ible. In order to apply the Frobenius-Perron operator formalism, which essentially

needs the explicit inversion of the map, let us introduce a function
[p] :==p mod 1, (114)

where the operation “mod” forces p to the interval [—0.5,0.5].

Now we can introduce a new map

!/

K
p = p—%sin%r@, (115)

0 = 0+p], (116)

which has the same angular dynamics as the “moduled” map (Egs. (6) and (7)
with boundary condition —0.5 < p < 0.5, —o0 < # < 00). This map may be

easily inverted:

K

p = p+—sin2r(¢ —p'), (117)
2m

0 = 0—1p), (118)

Modifying the previous calculations, we get for the Fourier representation of

Frobenius-Perron operator

(4, IO (119)
— el K) [ dp exporif(a’ —a—m+ m)p il

X H d(m—m'—1).
1=0,41,...

The function [p] can be written as a Fourier series,

=, (=1)k!

pl=>

k=1

sin 27kp . (120)

Using this and the summation formula (76), the one-step propagator (g, m\U lg',m')
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becomes

(g, m|U|¢',m') (121)
, 2m/
= > Jm—m'(qK)Jk1< . )
k1, k..
X J, <2m’> H d(m—m'—1)
ko 9
1=0,41,...

><5(q'—q—m+m'—k1+2k2—3k3+---),

where the summation indices k; are integral numbers k; € Z.

Next we multiply the propagator v times to obtain the v-step propagator

(¢, m|PU"|¢',m) = /dql---/dm,,_l (122)

x {0, m|U|qr, m1) -+ {gy_1,mu_1|Ulg",m') .

The projection operator P was introduced in (73). Again, we have convolutions
over all intermediate indices g1, m1, ..., q,—1, m,_1, which, due to delta functions
in (121) may be replaced with summation over integer-valued indices. To be more
specific, we introduce an upper sub-index n = 1,2, ..., v to specify the transition

between the states (g, m,) and (g,_1, m,_1), so that we can substitute:

__n
mn—l_mn—l7

n — Q1 =1"+ kT —2ky +3k5 —---, n=1,2,...,v
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Using this designation, one finds explicitly
(q,m|PU"|¢',m") = (123)

1 11 2 1.2 v kY kY
kL kL, 12,2,k .. 1, kY, kY, ...

k
2 2
X Jp (Kqu) Jy (%) Ik <ﬂ) Ik (%)

2m
xJi2 (K gz) Jyz (TQ) Ty

X Jlu (Kq,,) ka

X O, q, O’ m, » It k; Y/
where we have to substitute
1=
mn:m—zn:lli, n=1...,v.
1=

Because of the two Kronecker deltas in (123) we have two conditions

v

¢ =q, =) (I'+k —2kh+3ki— ), (124)
=1
m' =m,=m-Y I (125)
=1

Similar to the case A a choice of the string ?, k; specifies a path in the (¢, m) space,
and consequently per Eqgs. (124,125) a matrix element where the corresponding
term of the sum (123) contributes. On the other hand, for a given matrix element
the relations (124,125) must hold. Equation (123) is an exact result. Our next

aim will be to find a simplified asymptotic expression for the propagator.

3.6.1 Lowest order in 1/VK
We consider now the limit K — co. Again the two conditions are relevant

K>1,
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and

mK <« 1.

We start with the zeroth order terms (in 4/1/K) in a power series expan-
sion of the propagator. The lowest order follows from the “trivial” choice of all

coefficients

Il=ki=0; i=1,2,...,v; 7=1,2,.... (126)

Then we get ¢, = 0, m, = m, for all n. According to Egs. (124,125) this

choice corresponds to the matrix element
(0,m|PU"(0,m) (127)

i.e., the dominant matrix element is that with ¢’ = 0, m’ = m. Substituting (126)

in Eq. (123), we get for that matrix element

(0,m|PU"|0,m) = (128)
«(7)#(5) #(5) -
x.Jy (sz) To (277”) Js (%”)

2m 2m 2m
xJo (T) o (7) % (?)
Expanding the Bessel functions for small arguments,

(129)

)
((F)a)aE)
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In this way, the dominant matrix element (127) becomes, in zeroth order,
A A 7r2 v
(0, m|PU”|0,m) ~ [1 - m2] (131)
2
~ 1-— % m?v.
Thus, asymptotically the propagator in zeroth order may be written in the form

2

(0, m|PU”|¢',m') ~ (1 — % m? l/) 8q,0 Ot m - (132)

Note that the main part of the propagator is diagonal, which is typical for diffusive
vortex-free flows. With the propagator (132) the equation of motion has the

solution
2
n(m;v) = (1 — 5 m? v) fi(m;0) . (133)
Taking derivative of A(m;v) twice with respect to m we get the MSD
1 0% 1
Egz———n =—v, V—00. (134)

4m? Om?|, _, 12
(We have omitted a constant term, corresponding to the initial distribution

S3(v = 0)).

3.6.2 Next order

Next we consider the first nontrivial choice of coefficients. Let
I'=0; ki =1; kI =—1; k?él’Z:O; k;>1 =0, i—1,...,v. (135)

This choice contributes to the same matrix element (127). Note that for this
choice ¢; = 1; ¢iz1 = 0. In the corresponding contributions to the sum (123)
(we designate it by S;) all but three Bessel functions contribute (in lowest order)
with the factor 1. The three principal factors are that containing k1, k?, and ¢;.
They appear from that part of the string (135), where it deviates from zero. The

contribution of this string may be easily estimated:

Sy~ Jo(K) Ji(2m) J_1(2m) ~ —Jo(K) m?. (136)
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The further procedure is analogous to that in the previous Sec. 3.4. We can
find 2(v — 1) strings with minimal deviation from zero, each contributing to
the same matrix element with the same magnitude. We designate these strings,

specifying only nonvanishing indices, as follows:

Si: Ki=1, Kt =1,
S ki=-1,k"=1, i=1,...,v—1.

For all S; we get the same result as for Sy, ie., S; = S, = —Jo(K)m?, i =
1,...,v—1. Summing all the terms S; (remember that all of them belong to the
same matrix element (127)), we get

v—1
Y (Si+Su) =20 -1)Si~2L(K)m’v, forv>1. (137)

i=1
This is the first order term in the expansion of the propagator. Combining it
with the zeroth order term, the propagator finally becomes
2

(0, m|PU”|¢,m') ~ (1 - % m? v — 2 Jo(K)m? 1/) 8¢ .0 Ot am - (138)

Now we can write a more precise solution for the equation of motion,

2

A(m;v) ~ (1 - % m2v — 2 Jo(K) m? V> 7i(m; 0) (139)

from which by virtue of (57) and (58) (as v — o)

1 1
2 __
»2 = (—12 + - JO(K)) v, (140)
ox2 g2
Dy =272"20 =" 1+ 92J(K 141
o =2m — 5 + 2 Jo(K) (141)

follows. We note again, that, after a proper transformation, the density profile
satisfies the predicted analytical asymptotics (62) with ay(v) ~ v.
Expanding Jy(K) for large arguments, we finally obtain

2 8 T
D=1 14> (K——). 142
0= + X coS 1 (142)
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We conclude that the angular transport of the standard map dynamics with
periodical boundary conditions (13) is purely diffusive, with transport exponent
g = 1. The diffusion coefficient is a slightly oscillating function of stochasticity
parameter, and asymptotically approaches the constant value 72 /6.

In Fig. 12 we compare this analytical result with numerical simulations. A

very good agreement for K 2 10 is observed.

3 T T T T T T

25 -

05 4

0 1 1 1 1 1 1
10 15 20 25 30 35 40 45

Figure 12: Diffusion coefficient Dy vs control parameter K for case B (—0.5 < p <
+0.5). The solid line represents the measurements from numerical simulations

while the dotted curve shows the theoretical prediction.

In Fig. 13 a numerical calculation of the transport exponents py and p, is
shown. One can see that the angular transport exponent reaches the value 1 for
K =2 3.

We conclude this section by some heuristic argument, why for the (in p)
modulated map diffusion in # should occur. We base the consideration on the
assumption that for large K any p; can be treated as an arbitrary function of
f;_1. In other words, we assume the existence of a stationary action-density
profile [ng(p) = (f(p,0))s, (d/dt)ns = 0]. Within this approximation, p; is just

a random number, distributed in the interval [—0.5, 0.5[. Let ng has the first
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Figure 13: Exponents p (solid line) and p, (dotted line) vs K for case B (—0.5 <

p < +0.5). In the latter case, obviously p, = 0.

and second moments (p) = 0 and o2, respectively. Provided p was distributed

uniformly, the second moment would be 02 = .

A displacement of a given orbit at time v is
NG, =0,—0=> p; ~0,. (143)
i=1

According to the central limit theorem 6, should be distributed as

1 62
PO) = on (55 ) (144)

where 6, = 0+/v. From this distribution function the MSD can be easily obtained

as
52 = / 62 P(6,) db, = v . (145)
For a uniform p distribution (approached in the limit K — oc) the MSD becomes
2oL, (146)

o127

So, we have a pure diffusive process in agreement with the previous formula. In

general, the diffusion rate depends on the p-distribution.
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Comparing Eq. (145) with Eq. (140) we conclude that the second moment of
the stationary distribution ng(p), i.e. the MSD of action, is an in fact slightly
oscillating function of K: 0? = & + (1/7%)Jy(K) .

4 Summary and discussion

The first part of the present work was devoted to subcritical dynamics of Chirikov-
Taylor (standard) map. It has been shown, that due to the presence of transport
barriers an asymptotic stationary coarse-grained action distribution function
exists.

We used a simplified continuous-time-random-walk model to analyse the sta-
tionary action distribution in a chaotic region of the phase space near the primary
resonance. The angle variable was assumed to have periodical boundary condi-
tions. In this model it is supposed, that the phase space is divided into several
regions, named basins. A given trajectory is reduced to the sequence of sojourns
in different basins, followed by transitions to other basins. The only statistical
parameters of a trajectory are sojourn-time distribution and transition probabil-
ities.

Making use of the CTRW model, the distribution function was estimated semi-
analytically. It has been shown that the asymptotic distribution between basins
n* is proportional to the eigenstate f of the Markovian process of transitions
between basins, and to mean waiting times (t). An action distribution function
is calculated then as an average over distributions in corresponding basins. In the
Figs. 7 and 8 on the page 33 the result of analytical prediction may be compared
with computer simulations. Using the distribution function, an asymptotic mean
square displacement was explicitly calculated.

In the second part we have investigated the angular transport in a nonperi-
odic standard map. The angular diffusion coefficient was estimated analytically,

using Frobenius-Perron operator in Fourier representation.



62 4 SUMMARY AND DISCUSSION

We have observed superdiffusive behavior for K — 0 with a transport expo-
nent pg = 2. The transport properties for large values of K (K — 00) depend on
the boundary conditions for the action variable p. For an unrestricted p region
(case A, Eq. (12)), the transport is found to be superdiffusive with the transport
exponent puy = 3. The action and angle diffusion coefficients are shown to obey
the relation Dy ~ v2D,. This theoretically predicted behavior is in complete
agreement with numerical simulations, as shown in Fig. 11. On the other hand,
for a periodic boundary condition in p (case B, Eq. (13)), the € transport be-
comes diffusive (up = 1), and the corresponding diffusion coefficient has been
derived. Again, as shown in Fig. 12, the agreement with numerical simulations is
excellent. Thus all analytical predictions are confirmed by numerical simulations.
In both cases of periodical and unrestricted boundary conditions, characteristic
oscillations in the transport coefficients occur. They appear due to correlations,
which persist well above the chaotic threshold. Figures 10 and 13 also contain
the results for transport exponents for #, as well as p diffusion. Figure 10 shows
that in case A the accelerator modes have the same influences on both, # and p
transport. In case B (Fig. 13) obviously no divergences due to accelerator modes

occur.
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A Chaos in Hamiltonian systems

A.1 Definitions of Hamiltonian formalism

In this section we briefly review the most significant principles of the Hamiltonian
mechanics, which is an essential part of the dynamical systems theory. As we
will see, Hamiltonian mechanics forms a basis for understanding properties of the

area-preserving mappings.

Dynamical systems A dynamical system may be defined as a deterministic
mathematical prescription for evolving the state of a system forward in time. The
time-evolution of a N-dimensional dynamical system can be described in terms

of N first-order differential equations:

dot/dt = Fy(2t, 2%, ..., zN)
dz?/dt = Fy(2,2?,...,z")

> (147)
do™N /dt = Fy (2", 22, ..., 2") )
or, written in vector form
dx
— = F(x(t 148
" P, (148)
where x is a N-dimensional vector. The space (z!,z2,...,z") is referred to as a

phase space. The path in the space followed by the system as it evolves in time
is referred to as a trajectory or orbit. Let us consider an arbitrary point of the
phase space M and a solution of the system (147), for which the M is the initial

condition at time ¢ = 0. The solution at time ¢ depends on M. So we can write
M(t)=g¢"'M. (149)

JFrom the ordinary differential equations theory it is known, that, under
rather general assumptions about the right-hand-side of the system (147), the

mapping ¢’ : RY — RY forms a group of diffeomorphisms: ¢'** = g' o ¢%; ¢° is
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an identity element of the group and ¢g~* is inverse to the g'. This group is called
a phase flow of the system (147).

Let us consider a “particle”, which position in space is specified by N gen-
eralized coordinates ¢*. A time-dynamics of the system is, as a rule, described
by a second order ordinary differential equation. Thus, treating generalized ve-
locities ¢* as N additional independent coordinates, we obtain a 2N-dimensional
dynamical system of the form (147). This system is said to have N degrees of
freedom. A phase space of the system is then formed by 2N dimensional vectors
e={q", ¢ ..,¢" ¢ ..., q"}.

Among other dynamical systems the important role belongs to Hamiltonian

or symplectic mechanical systems.

Hamiltonian mechanics A dynamics of a Hamiltonian system [46] is com-
pletely specified by a single function, the Hamiltonian H(p, q,t). The state of
the system with N degrees of freedom is specified by its “momentum” p and
“position” g, where p and g are N-dimensional vectors.

The time evolution of the trajectory in 2N-dimensional phase space is given

by Hamiltonian’s equations

dp/dt = —0H(p,q,t)/0q, (150)
dq/dt = 0H(p,q,t)/0p. (151)

Any set of variables p, g whose time evolution is given by the equation of the
form (150,151) is said to be canonical, with p’ and ¢ said to be conjugate vari-
ables.
By taking @ to be 2N-dimensional vector © = (p, q), the Eqgs.(150,151) can
be written in the form:
oH

r=1dH =1— 152
b oy (152)



A.1 Definitions of Hamiltonian formalism 65

where
0 —F
I= . (153)
E 0
Then the field H := [ dH is referred to as Hamiltonian vector field. A Hamilto-
nian’s phase flow g, is defined as a flow along the Hamiltonian vector field:

L) gt = IdH(z). (154)
i),

Perhaps the most basic structural property of Hamiltonian’s equations is that
they are symplectic, i.e., the Hamiltonian phase flow g%, conserves a symplectic
structure on the configurational manifold. This structure is provided by the

differentiable 2-form w?, which in canonical variables may be written in the form
w* =dp \dg=dp, \dg +---+dpy )\ dgn (155)

Thus the symplectic property implies
(¢")'w? = w?. (156)

Symplectic nature of the Hamiltonian systems endows them with many spe-
cific features that differ qualitatively and fundamentally form other systems. We

recall some of this features:

1. The area preservation property. Generalized to the extended phase space,
this becomes a Poincaré-Cartan theorem. Let v, and 7, are two arbitrary

curves, lying on the same tube of trajectories J. Then the theorem states:

f(pdq—Hdt):j{(pdq—Hdt). (157)
71 Y2
In particular, if v; and -, are both chosen to lie in a surfaces with ¢; =

const, i # i, t = const, then the preservation of an area in the plane

(i, pi,) under a time map follows:

71 72
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The area preservation property follows from the invariance if the symplectic

form w in the Hamiltonian flow.

2. Hamiltonian’s equations also preserve 2/N-dimensional volumes in the phase
space. This statement is known as Liouwville’s theorem and follows from the

invariance of the form w?”.

3. The Poincaré recurrence theorem, which states that most of trajectories re-
turn at some time arbitrarily close to their start point. From the recurrence
theorem in particular follows that any regular orbit is either periodical or is
everywhere dense on the torus (See below). Another important consequence

of this theorem is that Hamiltonian systems does not support attractors.

Integrability By virtue of Egs. (150,151) a time dependence of any function
F(p,q,t) in phase space is given by

dF _ F

E—E—F{F,H}, (159)

where {F, H} denotes a Poisson bracket:

{F,H}:ZZ—I;%—Z—Z‘;—? (160)
It is easy to see that {F, H} is nothing else but the derivative of F' along the
vector field IdH, {F,H} := (H - V)F.

A function F is said to be a first integral of motion, if it remains constant
in the flow, i.e., if its derivative along the Hamiltonian vector field vanishes. By
other words, function F' is an integral of motion, if and only if the Poisson bracket
{F, H} vanishes:

{F,H} =0. (161)

Noether’s theorem. If a Hamiltonian function survives under a single-parameter
group g% corresponding to some function F', then F is a first integral of the sys-

tem with the Hamiltonian H. Introducing an operator of the derivative along
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the field F: Ly = F2

5> We note, that equation

LyH =0 (162)

with respect to unknown function F' provides a way for searching integrals of
motion, but, in general case, does not give an answer on the question, whether
they (integrals) exist and how many (if any).

A concept which is essential for the treatment of Hamiltonian flow is that
of integrability. A Hamiltonian system with N degrees of freedom is said to be
integrable, if there are N independent first integrals in involution (two functions

are said to be in involution, if their Poisson bracket vanishes).
R,....,Fy;  {F,F}=0 4,j=1,2,...,N. (163)

Hamiltonian function can be taken as one of the first integrals.

Consider a manifold My
Mf:{x:Fi(x):fi, i=1,...,N} (164)

Any orbit with initial conditions on the surface M is restricted to “live” (stay)
on it, while evolving in time. It can be shown that the manifold M; is smooth

and (if compact) has a topology of a N-dimensional torus TV

TV = {(¢1,...,6n) mod 27}. (165)

The latter is related to the fact that the torus TV is the only N-dimensional
surface, which has smooth non-degenerate tangent field.

This property lies in the basis of Poincaré surface of section technique.

Poincaré surface of section. There exists a general technique to reduce a
N-dimensional continuous time system to N — 1-dimensional map called the
Poincaré surface of section. For illustrative purposes we consider a conservative

Hamiltonian system with two degrees of freedom, N = 2. Since the system
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Figure 14: An invariant torus, constructed from the action-angle variables
(p1,p2,01,0,). If the frequencies w; = 0H/Op; are commensurate, the trajec-
tory will be periodic and will repeat itself after some finite time. Otherwise the

trajectory will never repeat, but fill the surface of the torus everywhere dense.

is integrable, there exist two isolating integrals of motion, one of which is the

Hamiltonian itself:

H(pl,pQ,Ql,QZ) = E7 (166)

I(p1, p2, 01, 42) = C. (167)

The two constants F,C define a two dimensional surface in four dimensional
phase space. Any trajectory is restricted to lie on such a surface. Combining
Eqgs.(166, 167) and choosing ¢; and ¢ as local coordinates on the surface, we can
express p; = p1(q1, g2, E, C). If we now consider a surface, go = 0, the trajectory
has to lie on a one dimensional curve. The curve is a cross section of the torus.
It is closed (provided the motion is bounded), and two different curves does not
cross with one another.

In general if we are given the Hamiltonian (166), we do not know if an addi-

tional isolating integral, I, exists. We can check this numerically by solving the
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Hamiltonian’s equations and plotting p; and ¢; each time ¢o = 0 and py > 0. If
the system is integrable, the trajectory will appear as a series of points (a map-
ping) which lie on a one dimensional curve. Otherwise it will occupy some finite

(due to energy conservation) area.

A.2 Area preserving maps

Twist maps In case of discrete integer-valued time, an example of a dynamical

system is a map, which in vector form is given by
Tpy1 = M(z,,). (168)

Say we consider a Hamiltonian system and define the “time 7" map” My for the
system as

Mo(z,t) = (t +T). (169)

This map is symplectic?, and hence area preserving.

Consider a one-degree-of-freedom system with Hamiltonian, that depends pe-
riodically on time: H(p, q,t) = H(p,q,t+ 7), where 7 is the period. In that case
we can consider our system in an extended phase space by replacing time ¢ with
a dependent variable £. Since the Hamiltonian is periodic in &, we can treat it
as an angle variable and replace its value by ¢ = ¢ modulo 7. We then use the
surface £ = t; for our surface of section. Taking in (169) T = 7, we define a

surface of section map as a time 7 map:
M(xz) = M, (,t). (170)

It is easy to see that the map M is endowed with the same symplectic properties

as M.

2A map M is called symplectic if the matrix J = M /O satisfies the symplectic condition,
S=JtsJ,

where t denotes transpose.
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A twist map can also be derived from a Poincaré surface of section of the torus.
If the system is integrable, the torus is constructed from the action-angle variables
(p1,p2,01,06>). The angle 6, could play a role of time for time dependent systems.
Each time, the trajectory passes a given angle, let us say 6, = O, we plot its
position in polar coordinates with angle 6, and radius p = v/2p;. The trajectory
will thus lie on a circle of radius v/2p;. The area enclosed by the circle is 27rp;. The
time interval between passes will be 7 = 27 /w, where Oy = Wy = wo (p1,p2). Let
us assume that a given trajectory passes the surface of section at angle 6; = ¢,.
Then next time it will pass at angle 6, = ¢,11 = ¢, + wWi1T = ¢, + 27r“:’1—;. The

quantity w = Z—; is called the winding number. The mapping now takes the form

Prnt1 = Pn; (171)

¢n+1 = ¢n + 27Tw(pn) ’ (172)

where w is assumed to be a smooth function of p. When a winding number is

N
M

equal to rational fraction w = where N and M are relatively prime integers,
the mapping will consist of M discrete points on a circle. If we denote the initial
coordinates of the trajectory as (po, ¢o) then after M iterations of the map we
obtain the pointgy, = ¢g + 20N = ¢q since ¢ is defined mod 27. Thus the
trajectory repeats itself after M iterations, having traveled around the circle N
times.

Let us now perturb this map and write

Pnt1 = Pn + ef(pm ¢n)a (173)

¢n+1 = ¢n + 271'11](,0”) + eg(pn, ¢n)a (174)

where f and g are chosen so that area is preserved under the mapping. The area

preservation condition is fulfilled if we require that the Jacobian

J Prt1 Dot — det pnt1/0p Prt1/0 1 (175)

Pn On Obn11/0pn OPny1/0¢n
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An additional requirement for a twist map is 0¢,11/0p, # 0, so that the twist

is always in the same direction.

Standard map The standard map is a single parameter nonlinear twist map
which describes the local behavior of nonintegrable dynamical systems in the
separatrix region of nonlinear resonances. In the Sec. 2.3 we have shown that
it is also a surface of section for a rotor with one degree of freedom, driven by
a position dependent, time periodic delta function kick. The standard map may

be written in the form:

K

Pnsl = Pn— o cos 276, mod 1, (176)
T

Ony1 = Op+ppyr modl, (177)

where K is a stochasticity parameter. This map has an obvious translation
symmetry p — p + ny,0 — 0 + ny, ny,ny € Z. For this reason a boundary
condition “on torus” (p mod 1, # mod 1), is usually applied to study the topology
of the phase space.

The most of characteristic peculiarities of the twist maps may be demon-
strated on example of the standard map. It is often used by many authors to the

important features of the transition to chaos in classical conservative systems.

Canonical perturbation theory If a small perturbation is entered in an in-
tegrable dynamical system, an approximate solution of the equations of motion
may be obtained by means of perturbation theory. Suppose, we can split a

Hamiltonian into integrable part and a small perturbation:

H = Hy(p1,p2) + €V (p1,p2,61,02), (178)

where € is a perturbation parameter. Variables (pi,po,0:,62) are the action-
angle variables of the unperturbed system. One can try to find new variables

(p1, P2, 01,0,), which were the action-angle variables of the perturbed system.
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This would imply, that we have integrated the perturbed system. Let S(py, po, 01, 65)
be the corresponding generating function. As usually we search for S in the form

of perturbation series:

S(p1, P2, 01, 02) = 101 + D2ba + €S1(P1, P2, b1,62) + - - . (179)

Expanding S; and V in Fourier series

Sl (pla p?a 017 02) = Z Z Sn1,n2 (ﬁlaﬁ?) ei(n191+7l292) (180)
niy ns
V(p1;p2,61,0:) = Z Z Vi s (P15 P2) glmtitnate) (181)

we get in the first order:

7; an,nz (ﬁl: 172)

Snl,nz = 3
niwi + Too

(182)

where w;(p) = 0Hy(p)/0p; are the unperturbed angular velocities, taken as func-
tions of p = (py, p2). We are at once faced with a problem of small denominators,
since for any p an n = (n1,ny) can be found such that njw; + now, is arbitrarily
close to zero. This may cause the series (180) to diverge, in principle, for any p,
i.e., for any torus, given by w = (w1, ws).

We say that an internal resonance occurs, if a condition
Nnw = niw; + Nows = 0 (183)

is fulfilled. Clearly, if the corresponding (resonant) term V, ,, is present in the
perturbation, the expansion (180) does not work at all, and the perturbation
theory breaks down.

A torus with a winding number w = &% is referred to as a resonant torus. We
emphasize that the resonant tori are dense in the phase space of the unperturbed
Hamiltonian. If resonance occurs in a system , it changes a topology of the phase
space trajectories. Qualitatively, these changes are described by the Poincaré-

Birkhoff theorem.
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For a small perturbation parameter ¢, resonance layers are thin and sepa-
rated by nonresonant invariant curves. As e increases, the invariant curves are
progressively destroyed, either wrapping up the existing islands or forming chaotic
trajectories.

A reason for the chaotic behavior near separatrices may be obtained from
the concept of resonance overlap. As the overlap occurs to higher and higher
order (islands within islands), the motion becomes exceedingly complicated. This
motion is limited to a region near the separatrix by the existence of nearby regular

surfaces.

Poincaré-Birkhoff theorem A fate of resonant tori is qualitatively described

by Poincaré-Birkhoff theorem. Say, we consider a twist map M. The theorem

ny

states, in particular, that perturbation of a torus with winding number w = -

results in an equal number of elliptic and hyperbolic fixed points of M"2.

In the phase portrait of the map the resonant torus appears as an island chain,
very similar to that of a mathematical pendulum. These islands are also called
resonance zones. Every island arises around an elliptic fixed point. Such a reso-
nance zone implies a local topological change of the phase space: the separatrix
of the resonance splits the space into two parts - inner and outer. For sufficiently
small stochasticity parameter, different resonance zones are separated from each
other by “survived” regular surfaces, corresponding to nonresonant tori. As the
perturbation parameter increases, resonances “absorb” the nearest regular or-
bits, and thus the area, occupied by resonances increases, too. Resonances may
overlap, multiplying the “degree of splitting” of the phase space.

Overlap of an infinite number of resonances leads to appearance of chaotic
orbits. The latter are known to fill finite portions of the phase space (provided
the stochasticity parameter remains small).

Usually the first candidate to destruction is a separatrix, since an infinite

number of resonances usually appears in its vicinity, and a distance between the
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successive resonances tends to zero as approaching the separatrix.

Chaotic components of the phase space exhibit a self-similar behavior: a
topology of the phase space in the vicinity of secondary resonances is qualitatively
similar to that of primary resonances, and this is also valid for all higher order
resonances. Thus, not only do we have a dense set of destroyed resonant regions,
containing elliptic and hyperbolic orbits, but now we find that these regions of
destroyed resonances have embedded within them chaotic orbits. Furthermore,

this repeats on all scales as we successively magnify regions around elliptic points.

KAM theory We know that, if a stochasticity parameter is large enough,
all the invariant curves, separating the resonance zones are destroyed, and the
merging of resonances leads to the appearance of global or strong stochasticity
in the motion. The question, what happens to the system, if the stochasticity
parameter remains small, was rigorously studied by Kolmogorov, Arnol’d and
Moser.

As we have seen, the canonical perturbation theory diverges (in regions con-
taining resonance zones), if small denominators arise from the resonances. How-
ever, Kolmogorov found a way to construct a perturbation theory which was
rapidly convergent and applicable to nonresonant tori. Kolmogorov’s ideas were
made rigorous by Arnol’d and Moser. The nonresonant tori, which have not
been destroyed by resonances, are called KAM tori or KAM surfaces (after Kol-
mogorov, Arnol’d and Moser). Examples of KAM tori can be seen in Fig. 2 on
the page 11.

The major result of the KAM theorem is that it guarantees the existence
of invariant tori for sufficiently small perturbation parameter. Furthermore, ac-
cording to KAM theorem, for small ¢, the perturbed system phase space volume
(Lebesgue measure) not occupied by surviving tori is small and approaches zero
as € approaches zero.

Fig. 2 shows on example of standard map the most of the typical phase tra-
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jectories of a Hamiltonian system. Such a peculiarities as KAM surfaces, island
chains and chaotic trajectories may be observed. In the Fig. 3 a regime over

threshold is shown, when no more survived primary KAM barriers exist.

B Derivation of the equation for distribution in

CTRW

Consider a system, which at given time ¢ can be found in one of M different states.
Let the state of the system be described by the M-component distribution vector
n(t): n;(t) is a probability to find the system at time ¢ in the state ¢. Dynamics
of the distribution vector n(t) can be described completely, if the two following

quantities are known:

e waiting time distribution p(¢). We define p;(¢) as the probability that the
system, coming to the state 7, makes a transition to another state after a
time ¢. Then the integral fot pi(7) dT gives the probability that the system
leaves the state ¢ during time ¢. We define a diagonal M x M matrix P(t)
as

(m|P(t)In) = pm(t) 6mn , (184)

without summation in the right-hand-side.

e Transition probabilities f,,, from the state n to the state m. These quan-

tities define a matrix F":

By definition the diagonal elements of the matrix F' are zero.
The probability 7;(t) that the system, after coming to state i, is still after a

time t in the same state, is obviously

() = 1 —/Otpm(T) dr (186)
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or, performing a Laplace transformation,

Fns) = £ [1 = hn(9)]. (187)

We group these quantities into a diagonal matrix:

A

R($) = Fn(s) bm =~ [ = P(s)]. (188)

Let ¢, (t) be the probability that the system makes a transition to the state m at
the time . Then the probability, that the system is in state m at time % is just a
product of the probability ¢,,(7) to arrive to the state m at the time 7 times the
probability 7,(t — 7) to stay in this state during the time ¢ — 7, integrated over

all intermediate times 7:

non () = /0 A7 g (7) Pt — 7). (189)

Using the matrix notation, the last equation becomes in Laplace representation:

(s) = - [ - P(s)] - (s). (190)

In order to calculate the quantity g,,(t), we consider successively the cases,
where the system arrives to the state m at time ¢ in j steps. For the single jump

7 =1 the probability is obviously:
¢ () = frrpi(t) 0l (191)
k

where nj is the distribution at ¢ = 0. For j = 2 the the system first jumps to
the state [ at time 7, then waits till £ and jumps to the state m. The probability

a? (t) is obtained by summing over all intermediate states [ and times 7:
t
1
0= [ dr fune-1g). (192)
l 0
Analogously we get a recurrence relation for arbitrary j:

#0=3 [ dr fapit -7 gV (7). (193)



7

which must be solved with the condition
ai (8) = 1, 0 (2) - (194)
Written in the matrix form, Eq. (193) becomes
a () =3 / 4P Pl-7)-qf (). (195)
- Jo
In Laplace representation the last equation becomes just an algebraic equation:
q9(s) = F - P(s) - 4" V(s), (196)
which may be easily solved, yielding
49(s) = [F-P(s)] -n. (197)

Now, summing this result over j, we get a total probability vector q(s) in Laplace

representation:
L 1-1
a(s) = [I ~F. P(s)} -n®. (198)
Substituting this result into Eq. (190), we finally obtain:
1 . R -1
fi(s) = - [1 - P(s)] : [1 ~F. P(s)} -n?. (199)
s

¢, From this result an equation of time evolution for n(¢) can be derived. Using

the notation:
Qs) = sP(s)- [T -P(s)] (200)

we can write:
si(s) —n’ = —(I — F) - Q(s) - ni(s) . (201)
Performing an inverse Laplace transformation, we get an integral equation of

evolution for the distribution vector:

dyn(t) = —(I— F)- /0 dr Q(r) - n(t — 7). (202)

It is easy to see that, if a stationary probability distribution n* exists, it should

satisfy the following equation:

(I—F). [/OO dTQ(T)} % =0, (203)

0
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C Superdiffusion for K =0

Let us consider the continuous Hamiltonian system for the “kicked rotator”

2

K
H(p,&;t)z%—él—ﬁcos%rﬁ 25(75—1/). (204)

The coordinates p(t) and 6(t) coincide at ¢ = v — 0 with p, and 6, used in the
main text. Here, v stands for the iterated times in the standard map.
In the absence of perturbation (K = 0) the continuous system is trivial to

integrate. The kinetic equation for the distribution function becomes

aof  of

— —=0. 205

ot "Pae (205)
In Fourier space, the corresponding equation

of  of

= _m=L =0 206

Y (206)
has the solution

flg,m;t) = F(m,mt +q), (207)

where F is an arbitrary function that can be expressed through the initial distri-

bution,
Thus,

flg,m;t) = fo(g +mt,m), (209)

and for the density profile we obtain
a(m;t) = f(g=0,m;t) = folmt,m). (210)

Now Eq. (57) can be applied to estimate 35 . Leaving only the dominant term

in the large-time limit, it becomes

1 (e m)
Eg — —4—7]_2 T ’ t2 = const t2 (211)
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The first derivative of £2 with respect to time gives the running diffusion coeffi-
cient (58), i.e.,
R, m)

Dy = o

t = const t. (212)

q'=0
m!=0

The regime is superdiffusive with the diffusion exponent py = 2.

D Relation between angle and action diffusion

Let us start with the assumption that the transport in p direction is diffusive.
Then we introduce n(p; v) as the density profile at “time” v. We designate s(p'—p)
as the transition probability, i.e., the probability that an “orbit” with momentum
p after one iteration will have momentum p'. In an ideal diffusive process, s(p)
would be a Gaussian. Actually, not the shape but the width of s(p) affects the
dynamics. Although it is not exactly the case for the standard map, for the sake

of simplicity we use

1 2
e 207 5(q) = e 2T (213)

s(p) = ,
(P) = 75—
Here o2 is an effective one-step mean square displacement of p.
;From the standard map one can see that o = \/((Ap)2) = \/((K?2/472)sin?(f)) ~

%g- The stickiness property leads to small (periodical) deviations from the linear

dependence o(K) ~ K. Having a density profile n(p;v) at “time” v, after one

iteration it becomes

n(p;v+1) = /dp’ n(pv)sp—p'), (214)

or in Fourier space
(g v +1) =n(g;v)3(q)- (215)

Starting with an initial distribution n(p;0) = §(p), we get after v iterations

ilgv) = [3(g)] = (216)
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Thus for action diffusion, using Eq. (57), the MSD is
212, = vo?, (217)
as was expected for diffusive regime. From here the action diffusion coefficient
D, = 2r%0? (218)

follows.

We now interpret this formula in the following way. Knowing the diffusion
coefficient D, one can estimate the effective p displacement o. The relation
between the transports in p and in € will be estimated from the second equation
of the standard map,

A)=0"—-0=1p". (219)
When an “orbit” starts with 6 = 0, then n(6;;1) = s(61) is nothing else but
the probability for this “orbit” to have the coordinate f; at time v = 1. If
during v steps the “orbit” had successive momenta pi,ps, ... ,p,, then its ac-
tual coordinate is #, = p; + po + --- + p,. The amplitude of this process is
s(p1) s(pe — p1) -+ - s(p, — pu_1) . Integrating over all intermediate states, we get

the probability for the orbit to have the coordinate 6 after v iterations,

/ / dp; -+ - dpy_1 5(p1) (220)

) o (pll Pv— 1)

where
p1+p2+...+pU:0 (221)
must hold.
After Fourier transform
P,(q) = 5(q) 5(2q) --- 3(vq). (222)

Substituting §(¢) from Eq. (213) and using the summation formula

k\D

3

Zz +——|—6—>%, as v — 00, (223)



81

we finally get

3 3
P,(qg) = exp (—27r2 % 02q2) (224)

= exp(-2770,¢%),
where 02 = (1°/3) 6®. Here P,(g) can be interpreted as a Fourier transform of

the angular density profile.
Using Eqgs. (57) and (58), the MSD and the diffusion coefficient at “time” v

are
1 0% - V3
Y2—- —— —_P, = —0?, 225
0 472 D2 (q) o 3 o (225)
Dy = 2% 1207, (226)

respectively. Comparing Eq. (218) with Eq. (226), we conclude that
Dy =1v*D, (227)

from which the relation py = p, + 2 for the transport exponents immediately
follows. A similar relation was derived by Benkadda et al. [15] for the anomalous

transport in the vicinity of accelerator mode islands.
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