Dokument: Zellvolumen-abhängige Regulation des hepatischen Methyl- und Cholinstoffwechsels

Titel:Zellvolumen-abhängige Regulation des hepatischen Methyl- und Cholinstoffwechsels
Weiterer Titel:Cell volume dependent regulation of hepatic methyl- and choline metabolism
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=9811
URN (NBN):urn:nbn:de:hbz:061-20090122-095742-5
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Hoffmann, Lars [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]1,96 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 12.01.2009 / geändert 12.01.2009
Beitragende: Schwahn, Bernd Christian [Gutachter]
Prof. Dr. Willbold, Dieter [Gutachter]
Stichwörter:Osmoregulation, Organische Osmolyte, Cholinstoffwechsel
Dewey Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie
Beschreibungen:Durch die Identifizierung der BHMT als osmotisch reguliertes Enzym wurde klar, dass nicht nur Transportvorgänge, sondern auch metabolische Vorgänge durch tonizitätsvermittelte Volumenänderungen der Zelle beeinflusst werden. Die enge Verknüpfung der wichtigsten hepatischen organischen Osmolyte mit dem Cholin- und Methylstoffwechsel in der Leber ließ vermuten, dass die Umgebungsosmolarität weitreichenden Einfluss auf den Stoffwechsel und die übrigen Funktionen der Leber hat. Durch die Expressionsanalysen konnte die tonizitätsinduzierte Regulation der BHMT bestätigt und gleichzeitig eine solche Regulation der Enzyme DMGDH und SARDH neu identifiziert werden. Die Ergebnisse zeigten eine fein abgestufte Sensitivität gegenüber osmotischen Veränderungen der DMGDH und für alle drei Enzyme eine zeitabhängige Veränderung ihrer mRNA Expression, die sich auch in der Proteinexpression wiederfand. Durch den Einsatz alternativer Osmolyte wurde gezeigt, dass die Stoffwechselenzyme BHMT, DMGDH und SARDH durch die Zellvolumenänderung reguliert werden und nicht durch die Ionenstärke oder die Osmolaritätsänderung per se, was auf eine Signalübertragung durch Integrine hinweist. Die Enzyme CHK und PEMT zeigten nur kurzfristige Änderungen in ihrer mRNA Expression in Abhängigkeit von Osmolaritätsänderungen während die Enzyme MS, MTHFR, CBS und PCYT1A keine oder nur geringfügige Änderungen zeigten. Mit Hilfe von Inhibitoren ließen sich Hinweise auf die beteiligten Signaltransduktionswege für die Regulation der BHMT und DMGDH finden. Durch die Quantifizierung relevanter Stoffwechselmetabolite wurde versucht die komplexen Zusammenhänge zwischen Genregulation und physiologischem Effekt aufzuzeigen, was nur teilweise gelang. Es traten Diskrepanzen zwischen dem Zellkulturmodell und dem Tiermodell auf, was darauf schließen lässt, dass sowohl die physiologischen als auch die genregulatorischen Auswirkungen in vivo von weiteren Faktoren beeinflusst werden. Durch die koordinierte Regulation des Cholin und Methylstoffwechsels durch anisoosmolare Reize ist davon auszugehen, dass organische Osmolyte auch in den Parenchymzellen der Leber eine Rolle bei der Aufrechterhaltung des Zellvolumens spielen und dass Zellvolumenänderungen durchaus funktionelle Bedeutung für die gesamte Methylierung haben. Daraus folgt, dass eine gestörte Bereitstellung von Betain und anderer organischer Osmolyte zu chronischen Schädigungen der Leber beitragen kann, wie sie in angeborenen Störungen der Methylierung gefunden werden.

By identifiing BHMT as an osmotic regulated enzyme, it becomes evident, that not only transport events, but also metabolic events can be regulated by changing the surrounding osmolarity. The close connection between the most crucial hepatic Osmolytes and the Choline and Methyl metabolism pointed to Osmolarity as a major Regulator to all functions of the liver.
Expression analysis confirmed BHMT as an osmoregulated gene and further more DMGDH and SARDH were newly established as regulated by osmolarity. The expression profile of DMGDH showed a sensitive response to osmotic changes and for all 3 enzymes a time dependent expression change could be established, which was validated on the protein level.
The use of alternative osmolytes such as Manitol it was shown that the trigger of the regulatory changes are not the ions themselves, but the change in cell volume, pointing to a signal transduction starting at the integrines in the cell membrane.
In this work, other genes like CHK and PEMT only showed short time expression changes due to osmotic alterations, while genes like MS, MTHFR,CBS and PCYT1a showed no clear reaction to a change in the osmotic enviroment.
The use of inhibitors made it possible to draw first conclusions about the signal transduction pathways involved in osmotic regulation.
By quantifying relevant metabolic substrates and products it was attempted to corellate the regulatory changes in gene expression to physiological effects, which was only partly successful. There were dicrepancies between the cell culture model and the animal model of MTHFR deficiency, that leads to the conclusion, that physiological and generegulatory changes in vivo depend on more factors besides osmolarity.
It was clearly shown that choline metabolism can be regulated coordinately by osmotic changes, which points to the fact that organic osmolytes do play a significant role in maintaining celllular integrity and cell volume. Cell volume changes seem to have a functional importance for methylation as well. This leads to the point that disturbed availability of betaine and other organic osmolytes may have a negative effect on the liver and possibly leads to chronic liver diseases, like it is found in inherited methylation defects (MTHFR deficiency)
Quelle:1)
Häussinger D, Lang F.
The mutual interaction between cell volume and cell function: a new principle of metabolic regulation.
Biochem Cell Biol. 1991 Jan;69(1):1-4. Review.

2)
Häussinger D, Schliess F.
Cell volume and hepatocellular function.
J Hepatol. 1995 Jan;22(1):94-100. Review.

3)
Häussinger D, Wettstein M, Warskulat U, vom Dahl S, Noé B, Schliess F.
Cell volume signalling, osmolytes and liver function.
Digestion. 1997;58 Suppl 1:21-3. Review.

4)
Schliess F, Häussinger D.
The cellular hydration state: a critical determinant for cell death and survival.
Biol Chem. 2002 Mar-Apr;383(3-4):577-83. Review.

5)
Parker JC.
In defense of cell volume?
Am J Physiol. 1993 Nov;265(5 Pt 1):C1191-200. Review.

6)
Burg MB, Kwon ED, Kültz D.
Regulation of gene expression by hypertonicity.
Annu Rev Physiol. 1997;59:437-55. Review.

7)
McManus ML, Churchwell KB, Strange K.
Regulation of cell volume in health and disease.
N Engl J Med. 1995 Nov 9;333(19):1260-6. Review.

8)
Häussinger D.
Regulation and functional significance of liver cell volume.
Prog Liver Dis. 1996;14:29-53. Review

9)
Häussinger D.
The role of cellular hydration in the regulation of cell function.
Biochem J. 1996 Feb 1;313 ( Pt 3):697-710. Review.

10)
Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, Häussinger D.
Functional significance of cell volume regulatory mechanisms.
Physiol Rev. 1998 Jan;78(1):247-306. Review.

11)
Häussinger D, Schliess F.
Osmotic induction of signaling cascades: role in regulation of cell function.
Biochem Biophys Res Commun. 1999 Feb 24;255(3):551-5. Review.

12)
vom Dahl S, Schliess F, Reissmann R, Görg B, Weiergräber O, Kocalkova M, Dombrowski F, Häussinger D.
Involvement of integrins in osmosensing and signaling toward autophagic proteolysis in rat liver.
J Biol Chem. 2003 Jul 18;278(29):27088-95.

13)
Häussinger D, Kurz AK, Wettstein M, Graf D, Vom Dahl S, Schliess F.
Involvement of integrins and Src in tauroursodeoxycholate-induced and swelling-induced choleresis.
Gastroenterology. 2003 May;124(5):1476-87.

14)
Schliess F, Reissmann R, Reinehr R, vom Dahl S, Häussinger D.
Involvement of integrins and Src in insulin signaling toward autophagic proteolysis in rat liver.
J Biol Chem. 2004 May 14;279(20):21294-301. Epub 2004 Feb 24.

15)
Ingber DE.
Integrins, tensegrity, and mechanotransduction.
Gravit Space Biol Bull. 1997 Jun;10(2):49-55. Review.

16)
Aplin AE, Howe A, Alahari SK, Juliano RL.
Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins.
Pharmacol Rev. 1998 Jun;50(2):197-263. Review



17)
Hynes RO, Lively JC, McCarty JH, Taverna D, Francis SE, Hodivala-Dilke K, Xiao Q.
The diverse roles of integrins and their ligands in angiogenesis.
Cold Spring Harb Symp Quant Biol. 2002;67:143-53. Review

18)
Miranti CK, Brugge JS.
Sensing the environment: a historical perspective on integrin signal transduction.
Nat Cell Biol. 2002 Apr;4(4):E83-90. Review.

19)
Hsu SL, Cheng CC, Shi YR, Chiang CW.
Proteolysis of integrin alpha5 and beta1 subunits involved in retinoic acid-induced apoptosis in human hepatoma Hep3B cells.
Cancer Lett. 2001 Jun 26;167(2):193-204.

20)
Torimura T, Ueno T, Kin M, Harada R, Nakamura T, Kawaguchi T, Harada M, Kumashiro R, Watanabe H, Avraham R, Sata M.
Autocrine motility factor enhances hepatoma cell invasion across the basement membrane through activation of beta1 integrins.
Hepatology. 2001 Jul;34(1):62-71.

21)
Yasunobu Okada, Emi Maeno, Takahiro Shimizu, Katsuya Dezaki, Jun Wang
and Shigeru Morishima
Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD)
J Physiol. 2001 Apr 1;532(Pt 1):3-16.

22)
Warskulat U, Weik C, Häussinger D.
myo-Inositol is an osmolyte in rat liver macrophages (Kupffer cells) but not in RAW 264.7 mouse macrophages.
Biochem J. 1997 Aug 15;326 ( Pt 1):289-95.

23)
Warskulat U, Wettstein M, Häussinger D.
Betaine is an osmolyte in RAW 264.7 mouse macrophages.
FEBS Lett. 1995 Dec 11;377(1):47-50.

24)
Zhang Z, Ferraris JD, Brooks HL, Brisc I, Burg MB.
Expression of osmotic stress-related genes in tissues of normal and hyposmotic rats.
Am J Physiol Renal Physiol. 2003 Oct;285(4):F688-93.
25)
Ou WB, Park YD, Zhou HM.
Effect of osmolytes as folding aids on creatine kinase refolding pathway.
Int J Biochem Cell Biol. 2002 Feb;34(2):136-47.

26)
Yamauchi A, Uchida S, Kwon HM, Preston AS, Robey RB, Garcia-Perez A, Burg MB, Handler JS.
Cloning of a Na(+)- and Cl(-)-dependent betaine transporter that is regulated by hypertonicity.
J Biol Chem. 1992 Jan 5;267(1):649-52.

27)
Denkert C, Warskulat U, Hensel F, Häussinger D.
Osmolyte strategy in human monocytes and macrophages: involvement of p38MAPK in hyperosmotic induction of betaine and myoinositol transporters.
Arch Biochem Biophys. 1998 Jun 1;354(1):172-80.

28)
Uchida, S., Kwon, H. M., Yamauchi, A., Preston, A. S., Marumo, F., and Handler, J. S. (1992)
Molecular cloning of the cDNA for an MDCK cell Na+ - and Cl- -dependent taurine
transporter that is regulated by hypertonicity.
Proc. Natl. Acad. Sci. USA 89, 8230.8234

29)
Smith, K. E., Borden, L. A., Wang, C. D., Hartig, P. R., Branchek, T. A., and Weinshank,R. L. (1992)
Cloning and expression of a high affinity taurine transporter from rat brain.
Mol. Pharmacol. 42, 563.569

30)
Liu, Q. R., Lopez-Corcuera, B., Nelson, H., Mandian, S., and Nelson, N. (1992) Cloning and expression of a cDNA encoding the transporter of taurine and ß-alanine in mouse brain.
Proc. Natl. Acad. Sci. USA 89, 12145.12149

31)
Vinnacota, S., Qian, X., Egal, H., Sarthy, V., and Sarkar, H. K. (1997)
Molecular characterization and in situ localization of a mouse retinal taurine transporter.
J.Neurochem. 69, 2238.2250

32)
Ramamoorthy, S., Leibach, F. H., Mahesh, V. B., Han, H., Yang-Feng, T., Blakely, R. D.,and Ganapathy, V. (1994)
Functional characterization and chromosomal localization of a cloned taurine transporter from human placenta.
Biochem. J. 300, 893.900
33)
Warskulat U, Wettstein M, Häussinger D.
Osmoregulated taurine transport in H4IIE hepatoma cells and perfused rat liver.
Biochem J. 1997 Feb 1;321 ( Pt 3):683-90.

34)
Kwon HM, Yamauchi A, Uchida S, Preston AS, Garcia-Perez A, Burg MB, Handler JS.
Cloning of the cDNa for a Na+/myo-inositol cotransporter, a hypertonicity stress protein.
J Biol Chem. 1992 Mar 25;267(9):6297-301.

35)
Nakanishi T, Burg MB.
Osmoregulatory fluxes of myo-inositol and betaine in renal cells.
Am J Physiol. 1989 Nov;257(5 Pt 1):C964-70.

36)
Kwon HM, Yamauchi A, Uchida S, Preston AS, Garcia-Perez A, Burg MB, Handler JS.
Cloning of the cDNa for a Na+/myo-inositol cotransporter, a hypertonicity stress protein.
J Biol Chem. 1992 Mar 25;267(9):6297-301.

37)
Shetty HU, Schapiro MB, Holloway HW, Rapoport SI.
Polyol profiles in Down syndrome. myo-Inositol, specifically, is elevated in the cerebrospinal fluid.
J Clin Invest. 1995 Feb;95(2):542-6.


38)
Häussinger D, Laubenberger J, vom Dahl S, Ernst T, Bayer S, Langer M, Gerok W, Hennig J.
Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy.
Gastroenterology. 1994 Nov;107(5):1475-80.

39)
Burg MB.
Molecular basis of osmotic regulation.
Am J Physiol. 1995 Jun;268(6 Pt 2):F983-96. Review.

40)
Finkelstein, J. D., Martin, J. J. (1984)
Methionine metabolism in mammals. Distribution of homocysteine between competing pathways.
J. Biol. Chem. 259, 9508.9513


41)
Warskulat U, Schliess F, Häussinger D.
Compatible organic osmolytes and osmotic modulation of inducible nitric oxide synthetase in RAW 264.7 mouse macrophages.
Biol Chem. 1998 Jul;379(7):867-74.

42)
Delgado-Reyes CV, Garrow TA.
High sodium chloride intake decreases betaine-homocysteine S-methyltransferase expression in guinea pig liver and kidney.
Am J Physiol Regul Integr Comp Physiol. 2005 Jan;288(1):R182-7.

43)
Schäfer C, Hoffmann L, Heldt K, Lornejad-Schäfer MR, Brauers G, Gehrmann T, Garrow TA, Häussinger D, Mayatepek E, Schwahn BC, Schliess F.
Osmotic regulation of betaine homocysteine-S-methyltransferase expression in H4IIE rat hepatoma cells.
Am J Physiol Gastrointest Liver Physiol. 2007 Apr;292(4):G1089-98.

44)
Zhu X, Mar MH, Song J, Zeisel SH.2004.
Deletion of the Pemt gene increases progenitor cell mitosis, DNA and protein methylation and decreases calretinin expression in embryonic day 17 mouse hippocampus.
Brain Res. Dev. Brain Res.149:121–29

45)
Albright CD, Tsai AY, Friedrich CB, MarMH, Zeisel SH. 1999.
Choline availability alters embryonic development of the hippocampus and septum in the rat.
Brain Res. 113:13–20

46)
Craciunescu CN, Albright CD, Mar MH,Song J, Zeisel SH. 2003.
Choline availability during embryonic development alters progenitor cell mitosis in developing mouse hippocampus.
J. Nutr. 133:3614–18

47)
Loy R, Heyer D, Williams CL, Meck WH. 1991.
Choline-induced spatial memory facilitation correlates with altered distribution and morphology of septal neurons.
Adv. Exp. Med. Biol. 295:373–82


48)
Meck WH,Williams CL. 2003.
Metabolic imprinting of choline by its availability during gestation: implications for memory and attentional processing across the lifespan.
Neurosci. Biobehav. Rev.27:385–99

49)
Mellott TJ, Williams CL, Meck WH, Blusztajn JK. 2004.
Prenatal choline supplementation advances hippocampal development and enhances MAPK and CREB activation.
FASEB J. 18:545–47

50)
Fisher MC, Zeisel SH, Mar MH, Sadler TW. 2001.
Inhibitors of choline uptake and metabolism cause developmental abnormalities in neurulating mouse embryos.
Teratology 64:114–22

51)
Shaw GM, Carmichael SL, Yang W, Selvin S, Schaffer DM. 2004.
Periconceptional dietary intake of choline and betaine and neural tube defects in offspring.
Am.J. Epidemiol. 160:102–9

52)
Zeisel SH, Blusztajn JK. (1994)
Choline and human nutrition.
Annu. Rev. Nutr.14:269–96

53)
Binzak BA, Wevers RA, Moolenaar SH, Lee YM, Hwu WL, Poggi-Bach J, Engelke UF, Hoard HM, Vockley JG, Vockley J.
Cloning of dimethylglycine dehydrogenase and a new human inborn error of metabolism, dimethylglycine dehydrogenase deficiency.
Am J Hum Genet. 2001 Apr;68(4):839-47. Epub 2001 Feb 28.

54)
Mudd, S. H., Poole, J. R. (1975)
Labile methyl balances for normal humans on various dietary regimens.
Metabolism 24, 721.735

55)
Storch, K. J., Wagner, D. A., Young, V. R. (1991)
Methionine kinetics in adult men:effects of dietary betaine on l(2H3-methyl-1-13C)methionine.
Am. J. Clin. Nutr. 54, 386.394
56)
Schwahn BC, Chen Z, Laryea MD, Wendel U, Lussier-Cacan S, Genest J Jr, Mar MH, Zeisel SH, Castro C, Garrow T, Rozen R.
Homocysteine-betaine interactions in a murine model of 5,10-methylenetetrahydrofolate reductase deficiency.
FASEB J. 2003 Mar;17(3):512-4.

57)
Hill CS, Treisman R.
Transcriptional regulation by extracellular signals: mechanisms and specificity.
Cell. 1995 Jan 27;80(2):199-211. Review.

58)
Häussinger D, Roth E, Lang F, Gerok W.
Cellular hydration state: an important determinant of protein catabolism in health and disease.
Lancet. 1993 May 22;341(8856):1330-2.

59)
Schliess F, Heinrich S, Häussinger D.
Hyperosmotic induction of the mitogen-activated protein kinase phosphatase MKP-1 in H4IIE rat hepatoma cells.
Arch Biochem Biophys. 1998 Mar 1;351(1):35-40.

60)
Miyakawa H, Rim JS, Handler JS, Kwon HM.
Identification of the second tonicity-responsive enhancer for the betaine transporter (BGT1) gene.
Biochim Biophys Acta. 1999 Sep 3;1446(3):359-64.

61)
Miyakawa H, Woo SK, Dahl SC, Handler JS, Kwon HM.
Tonicity-responsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity.
Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2538-42.

62)
Miyakawa H, Woo SK, Chen CP, Dahl SC, Handler JS, Kwon HM.
Cis- and trans-acting factors regulating transcription of the BGT1 gene in response to hypertonicity.
Am J Physiol. 1998 Apr;274(4 Pt 2):F753-61.


63 )
Jeon US, Kim JA, Sheen MR, Kwon HM.
How tonicity regulates genes: story of TonEBP transcriptional activator.
Acta Physiol (Oxf). 2006 May-Jun;187(1-2):241-7. Review.


64)
Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S, Chen MF, Pai A, John SW, Smith RS, Bottiglieri T, Bagley P, Selhub J, Rudnicki MA, James SJ, Rozen R.
Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition.
Hum Mol Genet. 2001 Mar 1;10(5):433-43.

65)
Davis PK, Ho A, Dowdy SF.
Biological methods for cell-cycle synchronization of mammalian cells.
Biotechniques. 2001 Jun;30(6):1322-6, 1328, 1330-1. Review.

66)
Park EI and Garrow TA.
Interaction between dietary methionine and methyl donor intake on rat liver betaine-homocysteine methyltransferase gene expression and organization of the human gene.
J Biol Chem 274: 7816-7824,1999.

67)
Skiba WE, Taylor MP, Wells MS, et al: Human hepatic methionine biosynthesis.
Purification and characterization of Betaine:homocysteine S-methyltransferase.
J Biol Chem 257:14944–14948, 1982

68)
Finkelstein, J. D. (1974)
Methionine metabolism in mammals: the biochemical basis for homocystinuria. Metabolism 23, 387.398

69)
Finkelstein JD.
The metabolism of homocysteine–pathways and regulation.
Eur J Pediatr 157: S40–S44, 1998.

70)
Lang H, Polster M, Brandsch R.
Rat liver dimethylglycine dehydrogenase. Flavinylation of the enzyme in hepatocytes in primary culture and characterization of a cDNA clone.
Eur J Biochem. 1991 Jun 15;198(3):793-9




71)
Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N,
Shibuya M and Fukami Y.
Genistein, a specific inhibitor of tyrosine-specific protein kinases.
J Biol Chem 262: 5592-5595, 1987.

72)
Findik D, Song Q, Hidaka H and Lavin M.
Protein kinase A inhibitors enhance radiation-induced apoptosis.
J Cell Biochem 57: 12-21, 1995.

73)
Martiny-Baron G, Kazanietz MG, Mischak H, Blumberg PM, Kochs G, Hug H, Marmé D and Schächtele G.
Selective inhibition of protein kinase C isoenzymes by the indolocarbazole Gö6976.
J Biol Chem 268: 9194-9197,1993.

74)
Cheatham B, Vlahos CJ, Cheatham L, Wang L, Blenis J and Kahn CR.
Phosphatidylinositol 3-kinase activation is required for insulin stimulation of
p70 S6 kinase, DNA synthesis, and glucose transporter translocation.
Mol Cell Biol 14: 4902-4911, 1994.

75)
Cross DA, Alessi DR, Vandenheede JR, McDowell HE, Hundal HS and
Cohen P.
The inhibition of glycogen synthase kinase-3 by insulin or insulinlike growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf.
Biochem J 303: 21-26, 1994.

76)
Lornejad-Schäfer MR, Schäfer C, Graf D, Häussinger D and Schliess F.
Osmotic regulation of insulin-induced mitogen-activated protein kinase
phosphatase (MKP-1) expression in H4IIE rat hepatoma cells.
Biochem J 371:609-619, 2003

77)
Davies SP, Reddy H, Caivano M and Cohen P.
Specificity and mechanisms of action of some commonly used protein kinase inhibitors.
Biochem J 351:95-105, 2000.




78)
Schliess F, Heinrich S and Häussinger D.
Hyperosmotic induction of the mitogen-activated protein kinase phosphatase MKP-1 in H4IIE rat hepatoma cells.
Arch Biochem Biophys 351: 35-40, 1998.

79)
Wiese S, Schliess F and Häussinger D.
Osmotic regulation of MAP-kinase activities and gene expression in H4IIE rat hepatoma cells.
Biol Chem 379:667-671, 1998.

80)
Ueki I, Stipanuk MH.
Enzymes of the taurine biosynthetic pathway are expressed in rat mammary gland.
J Nutr. 2007 Aug;137(8):1887-94.

81)
Wijnholds J, Mol CA, van DL, de HM, Scheffer GL, Baas F:
Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs.
Proc Natl Acad Sci U S A 2000;97(13):7476-7481.

82)
Sadzuka Y, Sugiyama T, Suzuki T, Sonobe T:
Enhancement of the activity of doxorubicin by inhibition of glutamate transporter.
Toxicol Lett 2001;123 (2-3):159-167.

83)
Jedlitschky G, Burchell B, Keppler D:
The multidrug resistance protein 5 functions as an ATP-dependent export pump forcyclic nucleotides.
J Biol Chem 2000;275:30069-30074.

84)
Menno van Lookeren Campagne*, , Harold Thibodeaux*, , Nick van Bruggen§, Belinda Cairns, Robert Gerlai§, James T. Palmer§, Simon P. Williams§, and David G. Lowe
Evidence for a protective role of metallothionein-1 in focal cerebral ischemia
Neurobiology Vol. 96, Issue 22, 12870-12875, October 26, 1999

85)
Michel V, Yuan Z, Ramsubir S, Bakovic M.
Choline transport for phospholipid synthesis.
Exp Biol Med (Maywood). 2006 May;231(5):490-504. Review.



86)
Sunden SL, Renduchintala MS, Park EI, Miklasz SD, Garrow TA.
Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene.
Arch Biochem Biophys. 1997 Sep 1;345(1):171-4.

87)
Reinehr RM, Graf D, Fischer R, Schliess F and Häussinger D.
Hyperosmolarity triggres CD95 membrane trafficking and sensitizes rat
hepatocytes towards CD95L-induced apoptosis.
Hepatology 36: 602-614,2002.

88)
Prudova A, Bauman Z, Braun A, Vitvitsky V, Lu SC, Banerjee R.
S-adenosylmethionine stabilizes cystathionine beta-synthase and modulates redox capacity.
Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6489-94.

89)
Newsome WP, Warskulat U, Noé B, Wettstein M, Stoll B, Gerok W and Häussinger D.
Modulation of phosphoenplpyruvate carboxykinase levels by the hepatocellular hydration state.
Biochem J 304: 555-560, 1994.

90)
Warskulat U, Newsome W, Noé B, Stoll B and Häussinger D.
Anisoosmoticregulation of hepatic gene expression.
Biol Chem Hoppe Seyler 377: 57-65, 1996.

91)
Weik C, Warskulat U, Bode JG, Peters-Regehr T and Häussinger D.
Compatible organic osmolytes in rat liver sinusoidal endothelial cells.
Hepatology 27: 569-575, 1998.

92)
Zhang F, Warskulat U, Wettstein M and Häussinger D.
Identification of betaine as an osmolyte in rat liver macrophages (Kupffer cells).
Gastroenterology 110: 1543-1552, 1996.

93)
Peters-Regehr T, Bode JG, Kubitz R and Häussinger D.
Organic osmolyte transport in quiescent and activated rat hepatic stellate cells (Ito cells).
Hepatology 29: 173-180, 1999.

94)
Häussinger D, Kubitz R, Reinehr R, Bode JG and Schliess, F.
Molecular aspects of medicine: from experimental to clinical hepatology.
JMAM 25: 221-360, 2004.

95)
Reinehr RM, Graf D, Fischer R, Schliess F and Häussinger D.
Hyperosmolarity triggers CD95 membrane trafficking and sensitizes rat
hepatocytes towards CD95L-induced apoptosis.
Hepatology 36: 602-614, 2002.

96)
Lornejad-Schäfer MR, Schäfer C, Richter L, Grune T, Häussinger D, and
Schliess F.
Osmotic regulation of MG-132-induced MAP-kinase phosphatase MKP-1 expression in H4IIE rat hepatoma cells.
Cell Physiol Biochem 16: 193-206, 2005.
Lizenz:In Copyright
Urheberrechtsschutz
Fachbereich / Einrichtung:Mathematisch- Naturwissenschaftliche Fakultät » WE Biologie
Dokument erstellt am:22.01.2009
Dateien geändert am:12.01.2009
Promotionsantrag am:10.09.2008
Datum der Promotion:10.11.2008
english
Benutzer
Status: Gast
Aktionen