Dokument: Diabetes subtyping for precision medicine – From practical implementation to methodological challenges

Titel:Diabetes subtyping for precision medicine – From practical implementation to methodological challenges
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=71595
URN (NBN):urn:nbn:de:hbz:061-20251210-140100-4
Kollektion:Dissertationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Mori, Tim [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]1,22 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 01.12.2025 / geändert 01.12.2025
Beitragende: Kuß, Oliver [Gutachter]
Hoyer, Annika [Gutachter]
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibung:There is growing interest in precision medicine to optimise the treatment of people living with diabetes. Recent research has focused on complementing the classification into type 1 and type 2 diabetes with a more nuanced subtyping approach. In particular, it has been proposed to subdivide type 2 diabetes into mild (age-related, obesity-related) and severe (insulin-deficient, insulin-resistant) subtypes.

However, no software tools are currently available to support this reclassification of diabetes in routine clinical care. Moreover, some individuals may not be clearly assignable to any of the proposed subtypes, an issue that has not yet been systematically investigated. The aim of this work was therefore to (i) develop a user-friendly software implementation to enable diabetes subtyping in clinical practice, and (ii) propose a novel method to quantify classification uncertainty in type 2 diabetes subtypes.

It was shown that (i) the newly developed DDZ Diabetes-Cluster-Tool provides clinicians with a practical means of assigning individuals to diabetes subtypes, and (ii) the normalised relative entropy provides a measure to quantify classification certainty on a scale from 0 (complete uncertainty) to 1 (complete certainty). Among individuals with newly diagnosed type 2 diabetes from the German Diabetes Study, the median normalised relative entropy was 0.127 (95% confidence interval: 0.119, 0.135), indicating substantial classification uncertainty.

In conclusion, the DDZ Diabetes-Cluster-Tool is the first user-friendly software solution to enable diabetes subtyping in routine clinical care. At the same time, the results suggest that the proposed reclassification may offer only limited value for precision medicine due to uncertainty in subtype assignments.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Sonstige Einrichtungen/Externe » An-Institute » Deutsches Diabetes-Zentrum
Dokument erstellt am:10.12.2025
Dateien geändert am:10.12.2025
Promotionsantrag am:12.08.2025
Datum der Promotion:18.11.2025
english
Benutzer
Status: Gast
Aktionen