Dokument: Analyse der tumorspezifischen zytotoxischen Wirkung von neuen Klasse-I HDAC-Inhibitoren auf Urothelkarzinom-Zellen

Titel:Analyse der tumorspezifischen zytotoxischen Wirkung von neuen Klasse-I HDAC-Inhibitoren auf Urothelkarzinom-Zellen
Weiterer Titel:Analysis of the tumor-specific cytotoxic effect of new class I HDAC inhibitors on urothelial carcinoma cells
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=71295
URN (NBN):urn:nbn:de:hbz:061-20251124-110325-8
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Tanjaya, Fenny [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]7,21 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 11.11.2025 / geändert 11.11.2025
Beitragende:Priv.-Doz. Dr. rer. nat. Hoffmann, Michèle [Gutachter]
Prof. Dr. Kurz, Thomas [Gutachter]
Stichwörter:Histondeacetylase-Inhibitor, Urothelkarzinom, Epigenetik, Kombinationstherapie, Cisplatin
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Chemoresistenz ist nach wie vor eine große klinische Herausforderung bei der Behandlung von Patienten mit Urothelkarzinomen (UC). Daher besteht ein dringender Bedarf an neuen Therapieansätzen oder Kombinationspartnern, die die Wirkung von Cisplatin verbessern. Der Einsatz von epigenetischen Inhibitoren zusammen mit Cisplatin als Kombinationstherapie könnte die Wirkung von Cisplatin synergistisch verstärken. In früheren Studien der Arbeitsgruppe Harnblasenkarzinom wurden kommerzielle Histondeacetylasen-Inhibitoren (HDACi) wie Romidepsin aufgrund ihrer Wirkung auf die DNA-Schadensreaktion als vielversprechende Kandidaten identifiziert. In dieser Arbeit wurden neu entwickelte HDACi aus AG Kurz im Institut für Pharmazeutische und Medizinische Chemie auf ihre Eignung für die Behandlung von UC-Zelllinien untersucht, wobei insbesondere Substanzen mit einem vergleichbaren Wirkmechanismus wie Romidepsin, aber mit geringerer normaler Toxizität gesucht wurden.

Nach einem Screening von 235 HDACi in fünf verschiedenen Urothelkarzinom-Zelllinien (UCCs) und gutartigen HBLAK-Zellen wurden die zehn besten Kandidaten durch MTT-Tests validiert, wobei die drei wirksamsten Kandidaten eine ausgeprägtere tumorspezifische Wirkung zeigten. Ihre Auswirkungen auf die Zellzyklusprogression und die Apoptose wurde mit Hilfe von Durchflusszytometrie und Caspase-Tests analysiert. Veränderungen der DNA-Schadensreaktion wurden mittels Western Blot, Immunozytochemie und RT-PCR bestimmt. Die synergistischen Effekte in Kombination mit Cisplatin wurden mit der Chou-Talalay-Methode berechnet, und die Enzymspezifität der Inhibitoren wurde durch Western Blot bestimmt.

Die IC50-Werte der neuen HDACi DDK122, KSK43 und YAK40 waren in den UCCs UM-UC-3, J82 und SW-1710 niedriger als in benignen HBLAK-Zellen. Alle HDACi induzierten G2/M-Zellzyklusarrest und Zelltod in einer zelllinienabhängigen Weise, wobei in HBLAK-Zellen kein solcher Effekte beobachtet wurde. Die Behandlung mit DDK122 ergab ähnlich starke Wirkungen wie Romidepsin und beeinflusste auch die Expression von Regulatoren, die an der DNA-Replikation und Zytokinese beteiligt sind. Die Kombination von DDK122 mit Cisplatin führte zu einer synergistischen Reduktion der Zellviabilität in UM-UC-3-Zellen.

Es konnten neu entwickelte HDACi identifiziert werden, insbesondere DDK122, die eine ausgeprägtere tumorspezifische Wirkung und Synergie mit Cisplatin zeigten. Dies macht sie zu vielversprechenden Kandidaten für einen innovativen Kombinationstherapieansatz bei Urothelkarzinomen.

Chemoresistance remains a major clinical challenge in the treatment of patients with urothelial carcinoma (UC). Therefore, there is an urgent need for new therapeutic approaches or suitable combination partners to improve cisplatin efficacy. Combination of epigenetic inhibitors and cisplatin was reported to demonstrate a synergistic effect enhancing therapeutic efficiency. In previous studies by the bladder cancer research group, commercial histone deacetylase inhibitors (HDACi) such as romidepsin were identified as promising candidates due to their effect on DNA damage response. In this study, newly developed HDACi from AG Kurz of the Department of Pharmaceutical and Medical Chemistry were evaluated for their potential as novel treatments for UC. The focus was on identifying substances that share a similar mechanism of action with romidepsin but offer reduced toxicity to normal cells.

After screening 235 HDACi in five different urothelial carcinoma cell lines (UCCs) and benign HBLAK cells, the top ten candidates were validated by MTT assays. Three most potent candidates showing a more pronounced tumor-specific effect were identified. Effects on cell cycle progression and apoptosis were analysed by flow cytometry and caspase assays. Changes in the DNA damage response were determined by Western blot, immunocytochemistry and RT-PCR. Synergistic effects in combination with cisplatin were calculated using the Chou-Talalay method, and the enzyme specificity of the inhibitors was determined by Western blot.

The IC50 values of the novel HDACi: DDK122, KSK43 and YAK40 were lower in the UCCs UM-UC-3, J82 and SW-1710 than in benign HBLAK cells. All HDACi induced G2/M cell cycle arrest and cell death in a cell-line-dependent manner, whereas no such effect was observed in HBLAK cells. DDK122 treatment resulted in effects similar to those induced by romidepsin and also affected the expression of regulators involved in DNA replication and cytokinesis. The combination of DDK122 with cisplatin resulted in a synergistic reduction of cell viability in UM-UC-3 cells.

Newly developed HDACi, especially DDK122, were identified showing a more pronounced tumor-specific effect and synergy with cisplatin. This makes them promising candidates for an innovative combination therapy approach in UC.
Quelle:Akman, B., & Erkek-Ozhan, S. (2022). Urologic Cancers: Implications of Chromatin Modifier Mutations in Epigenetic Regulation of Bladder Cancer. Brisbane (AU).
Al Aboud, N.M., Tupper, C., & Jialal, I. (2023). StatPearls: Genetics, Epigenetic Mechanism. Treasure Island (FL).
Alves Avelar, L.A., Schrenk, C., Sönnichsen, M., Hamacher, A., Hansen, F.K., Schliehe-Diecks, J., et al. (2021). Synergistic induction of apoptosis in resistant head and neck carcinoma and leukemia by alkoxyamide-based histone deacetylase inhibitors. European journal of medicinal chemistry, 211, 113095.
Asfaha, Y., Schrenk, C., Alves Avelar, L.A., Lange, F., Wang, C., Bandolik, J.J., et al. (2020). Novel alkoxyamide-based histone deacetylase inhibitors reverse cisplatin resistance in chemoresistant cancer cells. Bioorganic & medicinal chemistry, 28(1), 115108.
Bartek, J., & Lukas, J. (2003). Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer cell, 3(5), 421–429.
Bartkova, J., Guldberg, P., Grønbaek, K., Koed, K., Primdahl, H., Møller, K., et al. (2004). Aberrations of the Chk2 tumour suppressor in advanced urinary bladder cancer. Oncogene, 23(52), 8545–8551.
Baylin, S.B., & Jones, P.A. (2016). Epigenetic Determinants of Cancer. Cold Spring Harbor perspectives in biology, 8(9).
Bhaskara, S., Chyla, B.J., Amann, J.M., Knutson, S.K., Cortez, D., Sun, Z.-W., et al. (2008). Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Molecular cell, 30(1), 61–72.
Bhaskara, S., Jacques, V., Rusche, J.R., Olson, E.N., Cairns, B.R., & Chandrasekharan, M.B. (2013). Histone deacetylases 1 and 2 maintain S-phase chromatin and DNA replication fork progression. Epigenetics & chromatin, 6(1), 27.
Bolden, J.E., Peart, M.J., & Johnstone, R.W. (2006). Anticancer activities of histone deacetylase inhibitors. Nature reviews. Drug discovery, 5(9), 769–784.
Boyault, C., Sadoul, K., Pabion, M., & Khochbin, S. (2007). HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene, 26(37), 5468–5476.
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 68(6), 394–424.
Buckwalter, J.M., Chan, W., Shuman, L., Wildermuth, T., Ellis-Mohl, J., Walter, V., et al. (2019). Characterization of Histone Deacetylase Expression Within In Vitro and In Vivo Bladder Cancer Model Systems. International journal of molecular sciences, 20(10).
Burgess, A., Ruefli, A., Beamish, H., Warrener, R., Saunders, N., Johnstone, R., et al. (2004). Histone deacetylase inhibitors specifically kill nonproliferating tumour cells. Oncogene, 23(40), 6693–6701.
Cai, B., Lyu, H., Huang, J., Wang, S., Lee, C.-K., Gao, C., et al. (2013). Combination of bendamustine and entinostat synergistically inhibits proliferation of multiple myeloma cells via induction of apoptosis and DNA damage response. Cancer letters, 335(2), 343–350.
Cai, X., Gao, J., Shi, C., Guo, W.Z., Guo, D., & Zhang, S. (2022). The role of NCAPG in various of tumors. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 155, 113635.
Cancer Genome Atlas Research Network (2014). Comprehensive molecular characterization of urothelial bladder carcinoma. Nature, 507(7492), 315–322.
Castedo, M., & Kroemer, G. (2004). La catastrophe mitotique: un cas particulier d'apoptose. Journal de la Societe de biologie, 198(2), 97–103.
Castedo, M., Perfettini, J.-L., Roumier, T., Valent, A., Raslova, H., Yakushijin, K., et al. (2004). Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene, 23(25), 4362–4370.
Chang, H.-Y., Shih, M.-H., Huang, H.-C., Tsai, S.-R., Juan, H.-F., & Lee, S.-C. (2013). Middle infrared radiation induces G2/M cell cycle arrest in A549 lung cancer cells. PloS one, 8(1), e54117.
Chang, P., Li, H., Hu, H., Li, Y., & Wang, T. (2021). The Role of HDAC6 in Autophagy and NLRP3 Inflammasome. Frontiers in immunology, 12, 763831.
Chou, T.-C. (2010). Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer research, 70(2), 440–446.
Cimini, D., Mattiuzzo, M., Torosantucci, L., & Degrassi, F. (2003). Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. Molecular biology of the cell, 14(9), 3821–3833.
Conti, C., Leo, E., Eichler, G.S., Sordet, O., Martin, M.M., Fan, A., et al. (2010). Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage. Cancer research, 70(11), 4470–4480.
Crowley, L.C., Marfell, B.J., Scott, A.P., & Waterhouse, N.J. (2016). Quantitation of Apoptosis and Necrosis by Annexin V Binding, Propidium Iodide Uptake, and Flow Cytometry. Cold Spring Harbor protocols, 2016(11).
Delport, A., & Hewer, R. (2022). A superior loading control for the cellular thermal shift assay. Scientific reports, 12(1), 6672.
Denu, R.A., Sass, M.M., Johnson, J.M., Potts, G.K., Choudhary, A., Coon, J.J., et al. (2019). Polo-like kinase 4 maintains centriolar satellite integrity by phosphorylation of centrosomal protein 131 (CEP131). The Journal of biological chemistry, 294(16), 6531–6549.
Diedrich, D., Hamacher, A., Gertzen, C.G.W., Alves Avelar, L.A., Reiss, G.J., Kurz, T., et al. (2016). Rational design and diversity-oriented synthesis of peptoid-based selective HDAC6 inhibitors. Chemical Communications, 52(15), 3219–3222.
Dobruch, J., & Oszczudłowski, M. (2021). Bladder Cancer: Current Challenges and Future Directions. Medicina (Kaunas, Lithuania), 57(8).
Dokmanovic, M., Clarke, C., & Marks, P.A. (2007). Histone deacetylase inhibitors: overview and perspectives. Molecular cancer research : MCR, 5(10), 981–989.
Eckschlager, T., Plch, J., Stiborova, M., & Hrabeta, J. (2017). Histone Deacetylase Inhibitors as Anticancer Drugs. International journal of molecular sciences, 18(7).
Fernandez, A., O'Leary, C., O'Byrne, K.J., Burgess, J., Richard, D.J., & Suraweera, A. (2021). Epigenetic Mechanisms in DNA Double Strand Break Repair: A Clinical Review. Frontiers in molecular biosciences, 8, 685440.
Fuino, L., Bali, P., Wittmann, S., Donapaty, S., Guo, F., Yamaguchi, H., et al. (2003). Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Molecular cancer therapeutics, 2(10), 971–984.
Gabrielli, B., Chia, K., & Warrener, R. (2011). Finally, how histone deacetylase inhibitors disrupt mitosis! Cell cycle (Georgetown, Tex.), 10(16), 2658–2661.
Gammoh, N., Du Lam, Puente, C., Ganley, I., Marks, P.A., & Jiang, X. (2012). Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death. Proceedings of the National Academy of Sciences of the United States of America, 109(17), 6561–6565.
Godinho, S.A., Picone, R., Burute, M., Dagher, R., Su, Y., Leung, C.T., et al. (2014). Oncogene-like induction of cellular invasion from centrosome amplification. Nature, 510(7503), 167–171.
Guo, G., Sun, X., Chen, C., Wu, S., Huang, P., Li, Z., et al. (2013). Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nature genetics, 45(12), 1459–1463.
Hans, F., & Dimitrov, S. (2001). Histone H3 phosphorylation and cell division. Oncogene, 20(24), 3021–3027.
Hattori, K., Takano, N., Kazama, H., Moriya, S., Miyake, K., Hiramoto, M., et al. (2021). Induction of synergistic non-apoptotic cell death by simultaneously targeting proteasomes with bortezomib and histone deacetylase 6 with ricolinostat in head and neck tumor cells. Oncology letters, 22(3), 680.
Hauf, S., Waizenegger, I.C., & Peters, J.M. (2001). Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science (New York, N.Y.), 293(5533), 1320–1323.
Hendzel, M.J., Wei, Y., Mancini, M.A., van Hooser, A., Ranalli, T., Brinkley, B.R., et al. (1997). Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma, 106(6), 348–360.
Ho, T.C.S., Chan, A.H.Y., & Ganesan, A. (2020). Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight. Journal of medicinal chemistry, 63(21), 12460–12484.
Hoffmann, M.J., Meneceur, S., Hommel, K., Schulz, W.A., & Niegisch, G. (2021). Downregulation of Cell Cycle and Checkpoint Genes by Class I HDAC Inhibitors Limits Synergism with G2/M Checkpoint Inhibitor MK-1775 in Bladder Cancer Cells. Genes, 12(2).
Hoffmann, M.J., & Schulz, W.A. (2021). Alterations of Chromatin Regulators in the Pathogenesis of Urinary Bladder Urothelial Carcinoma. Cancers, 13(23).
Hölscher, A.S., Schulz, W.A., Pinkerneil, M., Niegisch, G., & Hoffmann, M.J. (2018). Combined inhibition of BET proteins and class I HDACs synergistically induces apoptosis in urothelial carcinoma cell lines. Clinical epigenetics, 10, 1.
Insinga, A., Monestiroli, S., Ronzoni, S., Gelmetti, V., Marchesi, F., Viale, A., et al. (2005). Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nature medicine, 11(1), 71–76.
Johnson, A.M., Bennett, P.V., Sanidad, K.Z., Hoang, A., Jardine, J.H., Keszenman, D.J., et al. (2021). Evaluation of Histone Deacetylase Inhibitors as Radiosensitizers for Proton and Light Ion Radiotherapy. Frontiers in oncology, 11, 735940.
Jung, K.H., Noh, J.H., Kim, J.K., Eun, J.W., Bae, H.J., Chang, Y.G., et al. (2012). Histone deacetylase 6 functions as a tumor suppressor by activating c-Jun NH2-terminal kinase-mediated beclin 1-dependent autophagic cell death in liver cancer. Hepatology (Baltimore, Md.), 56(2), 644–657.
Kachhap, S.K., Rosmus, N., Collis, S.J., Kortenhorst, M.S.Q., Wissing, M.D., Hedayati, M., et al. (2010). Downregulation of Homologous Recombination DNA Repair Genes by HDAC Inhibition in Prostate Cancer Is Mediated through the E2F1 Transcription Factor. PloS one, 5(6).
Kaletsch, A., Pinkerneil, M., Hoffmann, M.J., Jaguva Vasudevan, A.A., Wang, C., Hansen, F.K., et al. (2018). Effects of novel HDAC inhibitors on urothelial carcinoma cells. Clinical epigenetics, 10(1), 100.
Kelly, A.D., & Issa, J.-P.J. (2017). The promise of epigenetic therapy: reprogramming the cancer epigenome. Current opinion in genetics & development, 42, 68–77.
Kiemeney, L.A., Witjes, J.A., Verbeek, A.L., Heijbroek, R.P., & Debruyne, F.M. (1993). The clinical epidemiology of superficial bladder cancer. Dutch South-East Cooperative Urological Group. British journal of cancer, 67(4), 806–812.
Kim, M.S., Blake, M., Baek, J.H., Kohlhagen, G., Pommier, Y., & Carrier, F. (2003). Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer research, 63(21), 7291–7300.
Krumm, A., Barckhausen, C., Kücük, P., Tomaszowski, K.-H., Loquai, C., Fahrer, J., et al. (2016). Enhanced Histone Deacetylase Activity in Malignant Melanoma Provokes RAD51 and FANCD2-Triggered Drug Resistance. Cancer research, 76(10), 3067–3077.
Kubicek, S., Schirghuber, E., Klepsch, F., & Colinge, J. (2012). Epigenetik in der Onkologie. Wiener klinisches Magazin, 15(6), 10–18.
Kuo, L.J., & Yang, L.-X. (2008). Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In vivo (Athens, Greece), 22(3), 305–309.
Lahm, A., Paolini, C., Pallaoro, M., Nardi, M.C., Jones, P., Neddermann, P., et al. (2007). Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proceedings of the National Academy of Sciences of the United States of America, 104(44), 17335–17340.
Lee, J.-H., Choy, M.L., Ngo, L., Foster, S.S., & Marks, P.A. (2010). Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14639–14644.
Lehmann, M., Hoffmann, M.J., Koch, A., Ulrich, S.M., Schulz, W.A., & Niegisch, G. (2014). Histone deacetylase 8 is deregulated in urothelial cancer but not a target for efficient treatment. Journal of experimental & clinical cancer research : CR, 33, 59.
Leitlinienprogramm Onkologie (2020). S3-Leitlinie Früherkennung, Diagnose, Therapie und Nachsorge des Harnblasenkarzinoms. Leitlinienprogramm Onkologie. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.leitlinienprogramm-onkologie.de/fileadmin/user_upload/Downloads/Leitlinien/Blasenkarzinom/Version_2.0/LL_Harnblasenkarzinom_Langversion_2.0.pdf. Zugegriffen: 3. April 2023.
Lenis, A.T., Lec, P.M., Chamie, K., & Mshs, M.D. (2020). Bladder Cancer: A Review. JAMA, 324(19), 1980–1991.
Lindl, T. (2000). Zell- und Gewebekultur: Einführung in die Grundlagen sowie ausgewählte Methoden und Anwendungen. Heidelberg, Berlin: Spektrum, Akad. Verl.
Liu, D., Abbosh, P., Keliher, D., Reardon, B., Miao, D., Mouw, K., et al. (2017). Mutational patterns in chemotherapy resistant muscle-invasive bladder cancer. Nature communications, 8(1), 2193.
Liu, Y., He, G., Wang, Y., Guan, X., Pang, X., & Zhang, B. (2013). MCM-2 is a therapeutic target of Trichostatin A in colon cancer cells. Toxicology letters, 221(1), 23–30.
Liu, Y.-L., Yang, P.-M., Shun, C.-T., Wu, M.-S., Weng, J.-R., & Chen, C.-C. (2010). Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma. Autophagy, 6(8), 1057–1065.
Luo, Y., & Li, H. (2020). Structure-Based Inhibitor Discovery of Class I Histone Deacetylases (HDACs). International journal of molecular sciences, 21(22).
Maes, K., Smedt, E. de, Lemaire, M., Raeve, H. de, Menu, E., van Valckenborgh, E., et al. (2014). The role of DNA damage and repair in decitabine-mediated apoptosis in multiple myeloma. Oncotarget, 5(10), 3115–3129.
Meng, X., Lu, H., & Shen, Z. (2004). BCCIP functions through p53 to regulate the expression of p21Waf1/Cip1. Cell cycle (Georgetown, Tex.), 3(11), 1457–1462.
Merighi, A., Gionchiglia, N., Granato, A., & Lossi, L. (2021). The Phosphorylated Form of the Histone H2AX (γH2AX) in the Brain from Embryonic Life to Old Age. Molecules (Basel, Switzerland), 26(23).
Natarajan, U., Venkatesan, T., Radhakrishnan, V., Samuel, S., & Rathinavelu, A. (2018). Differential Mechanisms of Cell Death Induced by HDAC Inhibitor SAHA and MDM2 Inhibitor RG7388 in MCF-7 Cells. Cells, 8(1).
Niegisch, G., Knievel, J., Koch, A., Hader, C., Fischer, U., Albers, P., et al. (2013). Changes in histone deacetylase (HDAC) expression patterns and activity of HDAC inhibitors in urothelial cancers. Urologic oncology, 31(8), 1770–1779.
Nikolova, T., Kiweler, N., & Krämer, O.H. (2017). Interstrand Crosslink Repair as a Target for HDAC Inhibition. Trends in pharmacological sciences, 38(9), 822–836.
Ocker, M., & Schneider-Stock, R. (2007). Histone deacetylase inhibitors: signalling towards p21cip1/waf1. The international journal of biochemistry & cell biology, 39(7-8), 1367–1374.
O'Connor, M.J. (2015). Targeting the DNA Damage Response in Cancer. Molecular cell, 60(4), 547–560.
Patel, V.G., Oh, W.K., & Galsky, M.D. (2020). Treatment of muscle-invasive and advanced bladder cancer in 2020. CA: a cancer journal for clinicians, 70(5), 404–423.
Pauer, L.R., Olivares, J., Cunningham, C., Williams, A., Grove, W., Kraker, A., et al. (2004). Phase I study of oral CI-994 in combination with carboplatin and paclitaxel in the treatment of patients with advanced solid tumors. Cancer investigation, 22(6), 886–896.
Pinkerneil, M., Hoffmann, M.J., Deenen, R., Köhrer, K., Arent, T., Schulz, W.A., et al. (2016a). Inhibition of Class I Histone Deacetylases 1 and 2 Promotes Urothelial Carcinoma Cell Death by Various Mechanisms. Molecular cancer therapeutics, 15(2), 299–312.
Pinkerneil, M., Hoffmann, M.J., Kohlhof, H., Schulz, W.A., & Niegisch, G. (2016b). Evaluation of the Therapeutic Potential of the Novel Isotype Specific HDAC Inhibitor 4SC-202 in Urothelial Carcinoma Cell Lines. Targeted oncology, 11(6), 783–798.
Pinkerneil, M., Hoffmann, M.J., Schulz, W.A., & Niegisch, G. (2017). HDACs and HDAC Inhibitors in Urothelial Carcinoma - Perspectives for an Antineoplastic Treatment. Current medicinal chemistry, 24(37), 4151–4165.
Porten, S.P. (2018). Epigenetic Alterations in Bladder Cancer. Current urology reports, 19(12), 102.
Porter, N.J., Osko, J.D., Diedrich, D., Kurz, T., Hooker, J.M., Hansen, F.K., et al. (2018). Histone Deacetylase 6-Selective Inhibitors and the Influence of Capping Groups on Hydroxamate-Zinc Denticity. Journal of medicinal chemistry, 61(17), 8054–8060.
Promega Corporation (2023a). CellTiter-Glo® Luminescent Cell Viability Assay: Instructions for Use of Products G7570, G7571, G7572 and G7573. Promega Corporation. https://www.promega.de/-/media/files/resources/protocols/technical-bulletins/0/celltiter-glo-luminescent-cell-viability-assay-protocol.pdf?rev=30e8ec640fdd4866b207e28c0cbc497c&sc_lang=en. Zugegriffen: 30. Mai 2024.
Promega Corporation (2023b). Caspase-Glo® 3/7 Assay: Instructions for Use of Products G8090, G8091, G8092 and G8093. Promega Corporation. https://www.promega.de/-/media/files/resources/protocols/technical-bulletins/101/caspase-glo-3-7-assay-protocol.pdf?rev=1f820c7a060d4994a70245f7b858a0da&sc_lang=en. Zugegriffen: 30. Mai 2024.
QIAGEN (2023). RNeasy® Mini Handbook. QIAGEN. https://www.qiagen.com/ch/resources/download.aspx?id=14e7cf6e-521a-4cf7-8cbc-bf9f6fa33e24&lang=en. Zugegriffen: 30. Mai 2024.
Qiu, L., Burgess, A., Fairlie, D.P., Leonard, H., Parsons, P.G., & Gabrielli, B.G. (2000). Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Molecular biology of the cell, 11(6), 2069–2083.
Redon, C.E., Nakamura, A.J., Zhang, Y., Ji, J., Bonner, W.M., Kinders, R., et al. (2010). Histone γH2AX and Poly(ADP ribose) as Clinical Pharmacodynamic Biomarkers. Clinical cancer research : an official journal of the American Association for Cancer Research, 16(18), 4532–4542.
Riccardi, C., & Nicoletti, I. (2006). Analysis of apoptosis by propidium iodide staining and flow cytometry. Nature protocols, 1(3), 1458–1461.
Robert, C., Nagaria, P.K., Pawar, N., Adewuyi, A., Gojo, I., Meyers, D.J., et al. (2016). Histone deacetylase inhibitors decrease NHEJ both by acetylation of repair factors and trapping of PARP1 at DNA double-strand breaks in chromatin. Leukemia research, 45, 14–23.
Roos, W.P., & Krumm, A. (2016). The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair. Nucleic acids research, 44(21), 10017–10030.
Rosik, L., Niegisch, G., Fischer, U., Jung, M., Schulz, W.A., & Hoffmann, M.J. (2014). Limited efficacy of specific HDAC6 inhibition in urothelial cancer cells. Cancer biology & therapy, 15(6), 742–757.
Rzechorzek, N.J., Hardwick, S.W., Jatikusumo, V.A., Chirgadze, D.Y., & Pellegrini, L. (2020). CryoEM structures of human CMG-ATPγS-DNA and CMG-AND-1 complexes. Nucleic acids research, 48(12), 6980–6995.
Sharan, R.N., Vaiphei, S.T., Nongrum, S., Keppen, J., & Ksoo, M. (2015). Consensus reference gene(s) for gene expression studies in human cancers: end of the tunnel visible? Cellular oncology (Dordrecht), 38(6), 419–431.
Shechter, D., Dormann, H.L., Allis, C.D., & Hake, S.B. (2007). Extraction, purification and analysis of histones. Nature protocols, 2(6), 1445–1457.
Skowron, M.A., Melnikova, M., van Roermund, J.G.H., Romano, A., Albers, P., Thomale, J., et al. (2018). Multifaceted Mechanisms of Cisplatin Resistance in Long-Term Treated Urothelial Carcinoma Cell Lines. International journal of molecular sciences, 19(2).
Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., et al. (1985). Measurement of protein using bicinchoninic acid. Analytical biochemistry, 150(1), 76–85.
Solta, A., Boettiger, K., Kovács, I., Lang, C., Megyesfalvi, Z., Ferk, F., et al. (2023). Entinostat Enhances the Efficacy of Chemotherapy in Small Cell Lung Cancer Through S-phase Arrest and Decreased Base Excision Repair. Clinical cancer research : an official journal of the American Association for Cancer Research, 29(22), 4644–4659.
Stengel, K.R., & Hiebert, S.W. (2015). Class I HDACs Affect DNA Replication, Repair, and Chromatin Structure: Implications for Cancer Therapy. Antioxidants & redox signaling, 23(1), 51–65.
Stenzel, K., Hamacher, A., Hansen, F.K., Gertzen, C.G.W., Senger, J., Marquardt, V., et al. (2017). Alkoxyurea-Based Histone Deacetylase Inhibitors Increase Cisplatin Potency in Chemoresistant Cancer Cell Lines. Journal of medicinal chemistry, 60(13), 5334–5348.
Stepanenko, A.A., & Dmitrenko, V.V. (2015). Pitfalls of the MTT assay: Direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene, 574(2), 193–203.
Sunada, S., Saito, H., Zhang, D., Xu, Z., & Miki, Y. (2021). CDK1 inhibitor controls G2/M phase transition and reverses DNA damage sensitivity. Biochemical and biophysical research communications, 550, 56–61.
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians, 71(3), 209–249.
Teoh, J.Y.-C., Huang, J., Ko, W.Y.-K., Lok, V., Choi, P., Ng, C.-F., et al. (2020). Global Trends of Bladder Cancer Incidence and Mortality, and Their Associations with Tobacco Use and Gross Domestic Product Per Capita. European urology, 78(6), 893–906.
The Global Cancer Observatory (2024). Bladder. https://gco.iarc.who.int/media/globocan/factsheets/cancers/30-bladder-fact-sheet.pdf. Zugegriffen: 29. Mai 2024.
Thompson, D., Lawrentschuk, N., & Bolton, D. (2023). New Approaches to Targeting Epigenetic Regulation in Bladder Cancer. Cancers, 15(6).
Thy, S., Hommel, A., Meneceur, S., Bartkowiak, A.L., Schulz, W.A., Niegisch, G., et al. (2021). Epigenetic Treatment of Urothelial Carcinoma Cells Sensitizes to Cisplatin Chemotherapy and PARP Inhibitor Treatment. Cancers, 13(6).
Tomoyasu, C., Kikuchi, K., Kaneda, D., Yagyu, S., Miyachi, M., Tsuchiya, K., et al. (2019). OBP‑801, a novel histone deacetylase inhibitor, induces M‑phase arrest and apoptosis in rhabdomyosarcoma cells. Oncology reports, 41(1), 643–649.
Vermes, I., Haanen, C., Steffens-Nakken, H., & Reutelingsperger, C. (1995). A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. Journal of immunological methods, 184(1), 39–51.
Vollmer, J., Ecker, J., Hielscher, T., Valinciute, G., Ridinger, J., Jamaladdin, N., et al. (2023). Class I HDAC inhibition reduces DNA damage repair capacity of MYC-amplified medulloblastoma cells. Journal of neuro-oncology, 164(3), 617–632.
Wang, X., & Zhao, J. (2022). Targeted Cancer Therapy Based on Acetylation and Deacetylation of Key Proteins Involved in Double-Strand Break Repair. Cancer management and research, 14, 259–271.
Wang, Y., Liu, F., Fang, C., Xu, L., Chen, L., Xu, Z., et al. (2021). Combination of rapamycin and SAHA enhanced radiosensitization by inducing autophagy and acetylation in NSCLC. Aging, 13(14), 18223–18237.
Warrener, R., Beamish, H., Burgess, A., Waterhouse, N.J., Giles, N., Fairlie, D., et al. (2003). Tumor cell-selective cytotoxicity by targeting cell cycle checkpoints. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 17(11), 1550–1552.
West, A.C., & Johnstone, R.W. (2014). New and emerging HDAC inhibitors for cancer treatment. The Journal of clinical investigation, 124(1), 30–39.
Witt, O., Deubzer, H.E., Milde, T., & Oehme, I. (2009). HDAC family: What are the cancer relevant targets? Cancer letters, 277(1), 8–21.
Zannini, L., Delia, D., & Buscemi, G. (2014). CHK2 kinase in the DNA damage response and beyond. Journal of Molecular Cell Biology, 6(6), 442–457.
Zhang, X.-H., Rao, M., Loprieato, J.A., Hong, J.A., Zhao, M., Chen, G.-Z., et al. (2008). Aurora A, Aurora B and survivin are novel targets of transcriptional regulation by histone deacetylase inhibitors in non-small cell lung cancer. Cancer biology & therapy, 7(9), 1388–1397.
Zhang, Y., & Hunter, T. (2013). Roles of Chk1 in Cell Biology and Cancer Therapy. International journal of cancer. Journal international du cancer, 134(5).
Zhao, J., Xie, C., Edwards, H., Wang, G., Taub, J.W., & Ge, Y. (2017). Histone deacetylases 1 and 2 cooperate in regulating BRCA1, CHK1, and RAD51 expression in acute myeloid leukemia cells. Oncotarget, 8(4), 6319–6329.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:24.11.2025
Dateien geändert am:24.11.2025
Promotionsantrag am:08.07.2025
Datum der Promotion:04.11.2025
english
Benutzer
Status: Gast
Aktionen