Dokument: Statuserhebung zum Stellenwert,zur Qualität und zur Verfügbarkeit der MRT und MRT-gestützten Biopsie der Prostata in Deutschland

Titel:Statuserhebung zum Stellenwert,zur Qualität und zur Verfügbarkeit der MRT und MRT-gestützten Biopsie der Prostata in Deutschland
Weiterer Titel:Evaluation of the current status, significance, and availability of prostate MRI und MRI guided biopsy in Germany
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=70929
URN (NBN):urn:nbn:de:hbz:061-20251024-165951-8
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Schweyen, Caroline Marie [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]3,10 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 21.10.2025 / geändert 21.10.2025
Beitragende:Prof. Dr. med. Schimmöller, Lars [Gutachter]
PD Dr. med. Oezel, Lisa [Gutachter]
Stichwörter:mpMRT,MRT,Prostata
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Die multiparametrische MRT-Untersuchung der Prostata (mpMRT) hat in den letzten 10 Jahren in
Deutschland nicht zuletzt durch die Integration in die klinische Primärdiagnostik gemäß S3 Leitlinie
einen stetig zunehmenden Stellenwert in der Karzinomdiagnostik erlangt. Dies wiederum hat Einfluss
auf das Angebot der Methode in der radiologischen Patientenversorgung mit sich gebracht. Die
Evidenz zeigt, dass die Detektionsrate von klinisch signifikanten Tumoren der Prostata maßgeblich
von der Qualität der Durchführung und Befundung abhängt.
Ziel der vorliegenden Arbeit war es mit einer prospektiven quantitativen fragebogen-basierten Studie
den Stellenwert, die Verfügbarkeit und die Qualität der MRT der Prostata in Deutschland im Jahr 2023
zu untersuchen und mit früheren Studien zu vergleichen. Weiterhin sollten anhand der
Befragungsergebnisse mögliche Optimierungsansätze formuliert werden.
Radiolog*innen wurden über die Deutsche Röntgengesellschaft (DRG) und über den Berufsverband
Deutscher Radiologen (BDR) mittels Link zur Teilnahme an der web-basierten Online-Befragung
eingeladen. Analysiert wurden Fragen zur technischen Untersuchungsqualität, zur Verfügbarkeit, zum
Qualifikationslevel der Befunder und zum interdisziplinären Setting zwischen Radiolog*innen und
Urolog*innen. Die Antworten wurden mittels der Software REDCap1 erstellt und verwaltet.
Final ausgewertet wurden 182 Fragebögen. Es gingen Antworten aus allen 10 Postleitzonen
Deutschlands ein mit einer hohen Beteiligung der Universitätskliniken (>60%) und Krankenhäusern der
Maximalversorgung (knapp 50%). Die niedergelassenen Radiolog*innen waren mit ca.12% im
Verhältnis unterrepräsentiert, obwohl in dieser Befragung nominell 111 Fragebögen (60%) von Praxen
und MVZ ausgewertet wurden (111/916) [3]. 43% der Studienteilnehmer*innen hatten ein Q1-Zertifikat,
weitere 43% Q2 und 10% ein Qualitätstestat des BDR. Die Mehrheit der Antwortenden (90%) empfand
die mangelnde Abrechenbarkeit der Prostata-MRT als sehr problematisch.
Bei 47% der Befragten erfolgte eine Fallbesprechung in einem interdisziplinären Tumorboard,
bei 44% erfolgte das selten und bei 12% fand kein interdisziplinärer Austausch statt. Die klinische
Relevanz der MRT der Prostata wurde auf einer Skala von 0%(niedrig) bis 100%(hoch) im Mittel
mit 84 % ± 16% bewertet, während die Akzeptanz in der Urologie im Mittelwert auf 75 % ± 21%
eingeschätzt wurde. Die größten Schwierigkeiten sahen die meisten Teilnehmer*innen im fehlenden
klinischen Feedback (59%) sowie in fehlenden klinischen Informationen (42 %) und in einer
unzureichenden Abrechenbarkeit (90%). Die Methode wurde als klinisch relevant und ihre Aussagekraft
als valide eingeschätzt mit entsprechend höherer Akzeptanz in der Urologie. Eine Qualitätssteigerung
der mpMRT kann aus radiologischer Sicht am ehesten durch aussagekräftige Vorbefunde,
interdisziplinäre Rückmeldung und Diskussion über Biopsieergebnisse und einer verstärkten
Fortbildung in der Urologie erreicht werden.

Multiparametric MRI examination of the prostate (mpMRI) has become increasingly important in
carcinoma diagnostics in Germany over the last 10 years, not least due to its integration into clinical
primary diagnostics in accordance with the S3 guideline. This in turn has had an impact on the availability
of the method in radiological patient care. The evidence shows that the detection rate of clinically
significant tumors of the prostate depends largely on the quality of performance and reporting.
The aim of this study was to use a prospective quantitative questionnaire-based study to investigate the
significance, availability and quality of prostate MRI in Germany in 2023 and to compare it with previous
studies. Furthermore, the survey results were used to formulate possible optimization approaches.
Radiologists were invited to participate in the web-based online survey via the German Radiological
Society (DRG) and the Professional Association of German Radiologists (BDR) using a link. The survey
analyzed questions on technical examination quality, availability, the level of qualification of the
examiners and the interdisciplinary setting between radiologists and urologists. The responses were
created and managed using the REDCap2 software.
A total of 182 questionnaires were finally evaluated. Responses were received from all 10 postal zones
in Germany, with a high level of participation from university hospitals (>60%) and maximum care
hospitals (just under 50%). Radiologists in private practice were proportionally underrepresented at
approx. 12%, although a nominal 111 questionnaires (60%) from practices and MVZs were evaluated
in this survey (111/916) [3]. 43% of the study participants had a Q1 certificate, a further 43% Q2 and
10% had a quality certificate from the BDR. The majority of respondents (90%) found the lack of
reimbursement for prostate MRI to be very problematic. 47% of respondents had a case discussion in
an interdisciplinary tumor board, in 44% this was rarely the case and in 12% there was no
interdisciplinary exchange. The clinical relevance of MRI of the prostate was rated on a scale from 0%
(low) to 100% (high) with an average of 84% ± 16%. 84% ± 16%, while the mean acceptance rate in
urology was estimated at 75% ± 21%.
Most participants saw the greatest difficulties in the lack of clinical feedback (59%), the lack of clinical
information (42%) and insufficient reimbursement (90%). The method was assessed as clinically
relevant and its informative value as valid, with correspondingly higher acceptance in urology. From a
radiological point of view, the best way to improve the quality of mpMRI is through meaningful
preliminary findings, interdisciplinary feedback and discussion of biopsy results and increased training
in urology.
Quelle:Literaturverzeichnis 1. Franiel, T., et al., mpMRI of the Prostate (MR-Prostatography): Updated Recommendations of the DRG and BDR on Patient Preparation and Scanning Protocol. Rofo, 2021. 193(7): p. 763-777. 2. Thomas, C. and A.J. Schrader, [New S3 guideline prostate cancer 2021 (version 6.2)- What has changed in advanced prostate cancer?]. Urologie, 2023. 62(2): p. 171-175. 3. AWMF, S3_LL Prostatakarzinom 2024. 2024. 7. 4. Oerther, B., et al., Update on PI-RADS Version 2.1 Diagnostic Performance Benchmarks for Prostate MRI: Systematic Review and Meta-Analysis. Radiology, 2024. 312(2): p. e233337. 5. Fazekas, T., et al., Magnetic Resonance Imaging in Prostate Cancer Screening: A Systematic Review and Meta-Analysis. JAMA Oncol, 2024. 10(6): p. 745-754. 6. Bundesamt, D.S., Statistischer Bericht-Kostenstruktur im medizinischen Bereich (2022). 2022, DESTATIS: online. 7. Leitlinie S3 Prostatakarzinom_Kurzversion_6.2.pdf. 8. Mottet, N., et al., EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer- 2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol, 2021. 79(2): p. 243-262. 9. Mueller-Lisse, U., et al., MRI of the Prostate in Germany: Online Survey among Radiologists. RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, 2015. 187(08): p. 703-711. 10. Kasivisvanathan, V., et al., MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N Engl J Med, 2018. 378(19): p. 1767-1777. 11. Drost, F.H., et al., Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database Syst Rev, 2019. 4(4): p. CD012663. 12. Rouvière, O., et al., Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol, 2019. 20(1): p. 100-109. 13. Prostate cancer Research International: Active Surveillance (PRIAS). 2020. 14. Internetportal, K.O. Basis-Informationen Krebs. 2021 [cited 2024 12.08.]; Available from: https://www.krebsgesellschaft.de/onko-internetportal/basis-informationen- krebs/krebsarten/prostatakrebs/definition-und-haeufigkeit.html 15. dkfz. Prostatakrebs: Vorsorge und Früherkennung. 2025 [cited 2025 13.3.]; Available from: https://www.krebsinformationsdienst.de/prostatakrebs/frueherkennung. 16. Zeegers, M.P., A. Jellema, and H. Ostrer, Empiric risk of prostate carcinoma for relatives of patients with prostate carcinoma: a meta-analysis. Cancer, 2003. 97(8): p. 1894-903. 17. Johns, L.E. and R.S. Houlston, A systematic review and meta-analysis of familial prostate cancer risk. BJU Int, 2003. 91(9): p. 789-94. 18. Blondin, D., Schimmöller,L.,Quentin,M., Prostata-MRT und MRT-gestützte Biopsie. Vol. 2. 2020: UNI-MED 19. Moore, C.M., et al., Prevalence of MRI lesions in men responding to a GP-led invitation for a prostate health check: a prospective cohort study. BMJ Oncology, 2023.46 20. Hoogendam, A., F. Buntinx, and H.C. de Vet, The diagnostic value of digital rectal examination in primary care screening for prostate cancer: a meta-analysis. Fam Pract, 1999. 16(6): p. 621-6. 21. Krilaviciute, A., et al., Digital Rectal Examination Is Not a Useful Screening Test for Prostate Cancer. Eur Urol Oncol, 2023. 6(6): p. 566-573. 22. Kindermann, W., et al., [Influencing of the PSA concentration in serum by physical exercise (especially bicycle riding)]. Urologe A, 2011. 50(2): p. 188-96. 23. Osses, D.F., et al., Equivocal PI-RADS Three Lesions on Prostate Magnetic Resonance Imaging: Risk Stratification Strategies to Avoid MRI-Targeted Biopsies. J Pers Med, 2020. 10(4). 24. Leitlinie Prostatakarzinom_Langversion_6.2.pdf. 25. Zattoni, F., et al., Transperineal Versus Transrectal Magnetic Resonance Imaging- targeted Prostate Biopsy: A Systematic Review and Meta-analysis of Prospective Studies. Eur Urol Oncol, 2024. 26. Prof.Dr. Dirk Blondin, P.-D.D.L.S., Priv.-Doz.Dr.Michael Quentin, Prostata-MRT und MRT-gestützte Biopsie. Science, ed. Unimed. Vol. 2. 2020. 27. Turkbey, B., . 2019. 28. Handke, A.E., et al., Systematische oder gezielte Fusionsbiopsie der Prostata. Die Urologie, 2023. 62(5): p. 464-472. 29. de Rooij, M., et al., ESUR/ESUI consensus statements on multi-parametric MRI for the detection of clinically significant prostate cancer: quality requirements for image acquisition, interpretation and radiologists’ training. European Radiology, 2020. 30(10): p. 5404-5416. 30. Stone, L., The IMPACT of BRCA2 in prostate cancer. Nature Reviews Urology, 2019. 16(11): p. 639-639. 31. Turkbey, B., et al., Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol, 2019. 76(3): p. 340-351. 32. Sackett, J., et al., Quality of Prostate MRI: Is the PI-RADS Standard Sufficient? Acad Radiol, 2021. 28(2): p. 199-207. 33. . 34. Stabile, A., et al., Factors Influencing Variability in the Performance of Multiparametric Magnetic Resonance Imaging in Detecting Clinically Significant Prostate Cancer: A Systematic Literature Review. Eur Urol Oncol, 2020. 3(2): p. 145- 167. 35. de Rooij, M., et al., ESUR/ESUI consensus statements on multi-parametric MRI for the detection of clinically significant prostate cancer: quality requirements for image acquisition, interpretation and radiologists' training. Eur Radiol, 2020. 30(10): p. 5404-5416. 36. Venderink, W., et al., Multiparametric Magnetic Resonance Imaging for the Detection of Clinically Significant Prostate Cancer: What Urologists Need to Know. Part 3: Targeted Biopsy. Eur Urol, 2020. 77(4): p. 481-490. 37. Radiology, E.s.o.U.R.A.A.C.o., Revisions in PIRADS v2.1, R.i.t.S. Map, Editor. 2024. 38. Deng, F., PI-RADS v2.1 flowchart P.-R.v.f.c. study, Editor. 2024, Radiopaedia.org 39. Wu, L.-M., et al., The Clinical Value of Diffusion-Weighted Imaging in Combination With T2-Weighted Imaging in Diagnosing Prostate Carcinoma: A Systematic Review and Meta-Analysis. American Journal of Roentgenology, 2012. 199(1): p. 103-110. 40. Gupta, R.T., et al., Multiparametric prostate MRI: focus on T2-weighted imaging and role in staging of47 41. Saifeng Liu*a, H.Z.b., Yesu Fengc, Wei Lid, Prostate Cancer Diagnosis using Deep Learning with 3D Multiparametric MRI. 2017. 42. Gavade, A.B., et al., Automated Diagnosis of Prostate Cancer Using mpMRI Images: A Deep Learning Approach for Clinical Decision Support. Computers, 2023. 12(8): p. 152. 43. Maurer, M.H. and J.T. Heverhagen, Diffusion weighted imaging of the prostate- principles, application, and advances. Transl Androl Urol, 2017. 6(3): p. 490-498. 44. Pallares, J., et al., Study of microvessel density and the expression of the angiogenic factors VEGF, bFGF and the receptors Flt-1 and FLK-1 in benign, premalignant and malignant prostate tissues. Histol Histopathol, 2006. 21(8): p. 857-65. 45. Weinreb, J.C., et al., PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2. Eur Urol, 2016. 69(1): p. 16-40. 46. Ziayee, F., et al., Impact of qualitative, semi-quantitative, and quantitative analyses of dynamic contrast-enhanced magnet resonance imaging on prostate cancer detection. PLoS One, 2021. 16(4): p. e0249532. 47. Paesano, N., et al., Concordance Between the Expert Reading of Biparametric-MRI and the Nonexpert Multiparametric-MRI for the Detection of Clinically Significant Prostate Cancer: Clinical Implications. Clin Genitourin Cancer, 2024. 22(6): p. 102233. 48. Ziayee, F., et al., Benefit of dynamic contrast-enhanced (DCE) imaging for prostate cancer detection depending on readers experience in prostate MRI. Clin Radiol, 2024. 79(3): p. e468-e474. 49. Schlemmer, H.-P., Multiparametrische MRT der Prostata. Der Radiologe, 2017. 57(8): p. 621-630. 50. Lambert, L., et al., The impact of modifiable factors on image quality of prostate magnetic resonance imaging and PI-RADS scores. Quant Imaging Med Surg, 2025. 15(3): p. 2433-2443. 51. (DRG), D.R.e.V. AG Uroradiologie und Urogenitaldiagnostik. [PDF File] 2024 [cited 2024 30.10.2024]; Available from: https://www.ag-uro.drg.de/de- DE/4287/dokumente-und-formulare/. 52. BDR. Update zum Testatverfahren mpMR Prostatografie [website] 2023 [cited 2025 10.02.]; Available from: http://radiologenverband.de/#inhalte/2023-01-16/5/update- zum-testatverfahren-mpmr-prostatografie. 53. Moldovan, P.C., et al., What Is the Negative Predictive Value of Multiparametric Magnetic Resonance Imaging in Excluding Prostate Cancer at Biopsy? A Systematic Review and Meta-analysis from the European Association of Urology Prostate Cancer Guidelines Panel. Eur Urol, 2017. 72(2): p. 250-266. 54. Giganti, F. and C. Allen, Imaging quality and prostate MR: it is time to improve. British Journal of Radiology, 2020. 94(1118). 55. Apfelbeck, M., et al., Sonographie der Prostata. Der Urologe, 2022. 61(4): p. 365- 373. 56. Tirumani, S.H., et al., Head-to-head comparison of prostate MRI using an endorectal coil versus a non-endorectal coil: meta-analysis of diagnostic performance in staging T3 prostate cancer. Clin Radiol, 2020. 75(2): p. 157.e9-157.e19. 57. Lewis, S., et al., Prostate MRI using a rigid two-channel phased-array endorectal coil: comparison with phased array coil acquisition at 3 T. Cancer Imaging, 2022. 2248 58. Giganti, F., et al., Prostate MRI quality: a critical review of the last 5 years and the role of the PI-QUAL score. Br J Radiol, 2022. 95(1131): p. 20210415. 59. Schröder, F.H., et al., Screening and prostate-cancer mortality in a randomized European study. N Engl J Med, 2009. 360(13): p. 1320-8. 60. Li, T., S. Nalavenkata, and J. Fainberg, Imaging in Diagnosis and Active Surveillance for Prostate Cancer: A Review. JAMA Surg, 2025. 160(1): p. 93-99. 61. Turkbey, B., et al., Prostate cancer: can multiparametric MR imaging help identify patients who are candidates for active surveillance? Radiology, 2013. 268(1): p. 144- 52. 62. Amin, A., et al., The Magnetic Resonance Imaging in Active Surveillance (MRIAS) Trial: Use of Baseline Multiparametric Magnetic Resonance Imaging and Saturation Biopsy to Reduce the Frequency of Surveillance Prostate Biopsies. J Urol, 2020. 203(5): p. 910-917. 63. Pesapane, F., et al., T-staging of prostate cancer: Identification of useful signs to standardize detection of posterolateral extraprostatic extension on prostate MRI. Clin Imaging, 2020. 59(1): p. 1-7. 64. Dell'atti, L., Biparametric MRI for Local Staging of Prostate Cancer: Current Status and Future Applications. Anticancer Res, 2024. 44(2): p. 463-470. 65. de Rooij, M., et al., Accuracy of Magnetic Resonance Imaging for Local Staging of Prostate Cancer: A Diagnostic Meta-analysis. Eur Urol, 2016. 70(2): p. 233-45. 66. Wibmer, A., et al., Diagnosis of Extracapsular Extension of Prostate Cancer on Prostate MRI: Impact of Second-Opinion Readings by Subspecialized Genitourinary Oncologic Radiologists. AJR Am J Roentgenol, 2015. 205(1): p. W73-8. 67. D'Agostino, D., et al., "In-Bore" MRI-Guided Prostate Biopsy for Prostate Cancer Diagnosis: Results from 140 Consecutive Patients. Curr Urol, 2020. 14(1): p. 22-31. 68. Falagario, U.G., et al., Prostate cancer detection and complications of MRI-targeted prostate biopsy using cognitive registration, software-assisted image fusion or in-bore guidance: a systematic review and meta-analysis of comparative studies. Prostate Cancer Prostatic Dis, 2024. 69. Schimmöller, L., et al., MRI-Guided In-Bore Biopsy: Differences Between Prostate Cancer Detection and Localization in Primary and Secondary Biopsy Settings. American Journal of Roentgenology, 2016. 206(1): p. 92-99. 70. Çetin, S., et al., Comparison of rigid and elastic registration methods in software- based targeted prostate biopsy: a multicenter cohort study. Turk J Med Sci, 2024. 54(6): p. 1327-1334. 71. Williams, C., et al., Why Does Magnetic Resonance Imaging-Targeted Biopsy Miss Clinically Significant Cancer? J Urol, 2022. 207(1): p. 95-107. 72. Schouten, M.G., et al., Why and Where do We Miss Significant Prostate Cancer with Multi-parametric Magnetic Resonance Imaging followed by Magnetic Resonance- guided and Transrectal Ultrasound-guided Biopsy in Biopsy-naive Men? Eur Urol, 2017. 71(6): p. 896-903. 73. van der Leest, M., et al., Head-to-head Comparison of Transrectal Ultrasound-guided Prostate Biopsy Versus Multiparametric Prostate Resonance Imaging with Subsequent Magnetic Resonance-guided Biopsy in Biopsy-naive Men with Elevated Prostate- specific Antigen: A Large Prospective Multicenter Clinical Study. Eur Urol, 2019. 75(4): p. 570-578. 74. Wegelin, O., et al., Comparing Three Different Techniques for Magnetic Resonance Imaging49 Resonance Imaging-transrectal Ultrasound fusion versus Cognitive Registration. Is There a Preferred Technique? Eur Urol, 2017. 71(4): p. 517-531. 75. Scheenen, T.W., et al., Discriminating cancer from noncancer tissue in the prostate by 3-dimensional proton magnetic resonance spectroscopic imaging: a prospective multicenter validation study. Invest Radiol, 2011. 46(1): p. 25-33. 76. Pokorny, M.R., et al., Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. Eur Urol, 2014. 66(1): p. 22-9. 77. Bass, E.J., et al., Diagnostic accuracy of magnetic resonance imaging targeted biopsy techniques compared to transrectal ultrasound guided biopsy of the prostate: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis, 2022. 25(2): p. 174-179. 78. Schouten, M.G., et al., Why and Where do We Miss Significant Prostate Cancer with Multi-parametric Magnetic Resonance Imaging followed by Magnetic Resonance- guided and Transrectal Ultrasound-guided Biopsy in Biopsy-naïve Men? Eur Urol, 2017. 71(6): p. 896-903. 79. Brembilla, G., et al., Interreader variability in prostate MRI reporting using Prostate Imaging Reporting and Data System version 2.1. Eur Radiol, 2020. 30(6): p. 3383- 3392. 80. Ullrich, T. and L. Schimmöller, Perspective: a critical assessment of PI-RADS 2.1. Abdom Radiol (NY), 2020. 45(12): p. 3961-3968. 81. Giganti, F., et al., Prostate Imaging Quality (PI-QUAL): A New Quality Control Scoring System for Multiparametric Magnetic Resonance Imaging of the Prostate from the PRECISION trial. Eur Urol Oncol, 2020. 3(5): p. 615-619. 82. Giganti, F., et al., Global Variation in Magnetic Resonance Imaging Quality of the Prostate. Radiology, 2023. 309(1): p. e231130. 83. Ullrich, T., et al., Magnetic resonance imaging of the prostate at 1.5 versus 3.0T: A prospective comparison study of image quality. Eur J Radiol, 2017. 90: p. 192-197. 84. Valentin, B., et al., Magnetic resonance imaging improves the prediction of tumor staging in localized prostate cancer. Abdom Radiol (NY), 2021. 46(6): p. 2751-2759. 85. Beetz, N.L., et al., Inter-Reader Variability Using PI-RADS v2 Versus PI-RADS v2.1: Most New Disagreement Stems from Scores 1 and 2. Rofo, 2022. 194(8): p. 852-861. 86. Boschheidgen, M., et al., MRI characteristics and oncological follow-up of patients with ISUP grade group 4 or 5 prostate cancer. Abdom Radiol (NY), 2024. 49(1): p. 192-201. 87. Ullrich, T., et al., Current Utilization and Acceptance of Multiparametric MRI in the Diagnosis of Prostate Cancer. A Regional Survey. Rofo, 2018. 190(5): p. 419-426. 88. Oliveira, T., et al., The Role of Multiparametric MRI in the Local Staging of Prostate Cancer. Front Biosci (Elite Ed), 2023. 15(3): p. 21. 89. Quentin, M., et al., Pre-operative magnetic resonance imaging can predict prostate cancer with risk for positive surgical margins. Abdom Radiol (NY), 2022. 47(7): p. 2486-2493. 90. Di Campli, E., et al., Diagnostic accuracy of biparametric vs multiparametric MRI in clinically significant prostate cancer: Comparison between readers with different experience. Eur J Radiol, 2018. 101: p. 17-23. 91. Asif, A., et al., Comparing biparametric to multiparametric MRI in the diagnosis of clinically significant prostate cancer in biopsy50 international, multicentre, non-inferiority within-patient, diagnostic yield trial protocol. BMJ Open, 2023. 13(4): p. e070280. 92. Girometti, R., et al., Evolution of prostate MRI: from multiparametric standard to less-is-better and different-is better strategies. Eur Radiol Exp, 2019. 3(1): p. 5. 93. van der Leest, M., et al., High Diagnostic Performance of Short Magnetic Resonance Imaging Protocols for Prostate Cancer Detection in Biopsy-naïve Men: The Next Step in Magnetic Resonance Imaging Accessibility. Eur Urol, 2019. 76(5): p. 574-581. 94. Klingebiel, M., et al., Data on the detection of clinically significant prostate cancer by magnetic resonance imaging (MRI)-guided targeted and systematic biopsy. Data Brief, 2022. 45: p. 108683. 95. Schoots, I.G., et al., Reduction of MRI-targeted biopsies in men with low-risk prostate cancer on active surveillance by stratifying to PI-RADS and PSA-density, with different thresholds for significant disease. Transl Androl Urol, 2018. 7(1): p. 132- 144. 96. Camacho, A., et al., PI-RADS 3 score: A retrospective experience of clinically significant prostate cancer detection. BJUI Compass, 2023. 4(4): p. 473-481. 97. Dörfler, S., et al., Verlaufsuntersuchungen von Patienten der PI-RADS-Kategorie 3: Was ist das zu empfehlende Kontrollintervall? Rofo, 2020. 192(S 01): p. WISS.3. 98. Yang, S., et al., Combining clinical and MRI data to manage PI-RADS 3 lesions and reduce excessive biopsy. Transl Androl Urol, 2020. 9(3): p. 1252-1261. 99. Boschheidgen, M., et al., Single center analysis of an advisable control interval for follow-up of patients with PI-RADS category 3 in multiparametric MRI of the prostate. Sci Rep, 2022. 12(1): p. 6746. 100. Quentin, M., et al., MRI in-bore biopsy following MRI/US fusion-guided biopsy in patients with persistent suspicion of clinically significant prostate cancer. Eur J Radiol, 2024. 175: p. 111436. 101. Siddiqui, M.M., et al., Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. Jama, 2015. 313(4): p. 390-7. 102. Adams, E.S., et al., Image-guided multiparametric magnetic resonance imaging- transrectal ultrasound fusion biopsy augmented with a sextant versus an extended template random biopsy: Comparison of cancer detection rates, complication and functional outcomes. Prostate, 2024. 103. Leuchtweis, I., et al., [Outpatient before inpatient treatment?-Reality of care and economic analysis for minor urological interventions in Germany between 2013 and 2018]. Urologie, 2022. 61(11): p. 1229-1236. 104. KBV. Weitere Maßnahmen zur Förderung ambulanter Operationen beschlossen. Praxisnachrichten [website] 2024 [cited 2024 08.07.2024]; Available from: https://www.kbv.de/html/1150_67155.php. 105. Bewertungsausschuss, Beschluss des Bewertungsausschusses nach § 87 Abs. 1 Satz 1 SGB V in seiner 596. Sitzung am 15. Juni 2022 zum Ergebnis des Prüfverfahrens gemäß § 6 Absatz 1 II. Kapitel der Verfahrensordnung des Bewertungsausschusses i. V. m. § 87 Abs. 3e Satz 4 SGB V mit Wirkung zum 15. Juni 2022. 2022, Institut des BewertungsausschussesInstitut des Bewertungsausschusses: https://institut- ba.de/ba/babeschluesse/2023-09-25_ba672.pdf. 106. GmbH, M.h.m. Besondere Versorgung bei Verdacht auf oder gesicherter Diagnose Prostatakarzinom. [Webpage] 2024 [cited 2024 02.04.2024]; Available from: https://mediqx.de/vertraege/#GWQ_Prostata51 107. Mediqx. [Website] 2024 [cited 2024 05.09.]; Available from: https://mediqx.de/vertraege/#GWQ_Prostata. 108. Faria, R., et al., Optimising the Diagnosis of Prostate Cancer in the Era of Multiparametric Magnetic Resonance Imaging: A Cost-effectiveness Analysis Based on the Prostate MR Imaging Study (PROMIS). Eur Urol, 2018. 73(1): p. 23-30. 109. IQWIG. Prostatakarzinomscreening mittels PSA-Test: Nutzen wiegt den Schaden nicht auf. 2020 [cited 2025 13.3.]; Available from: https://www.iqwig.de/presse/pressemitteilungen/pressemitteilungen- detailseite_9991.html. 110. Ilic, D., et al., Screening for prostate cancer. Cochrane Database Syst Rev, 2013. 2013(1): p. Cd004720. 111. Gatti, M., et al., Prostate cancer detection with biparametric magnetic resonance imaging (bpMRI) by readers with different experience: performance and comparison with multiparametric (mpMRI). Abdom Radiol (NY), 2019. 44(5): p. 1883-1893. 112. Woo, S., et al., Head-to-Head Comparison Between Biparametric and Multiparametric MRI for the Diagnosis of Prostate Cancer: A Systematic Review and Meta-Analysis. American Journal of Roentgenology, 2018. 211(5): p. W226-W241. 113. Hötker, A.M., et al., Improving workflow in prostate MRI: AI-based decision-making on biparametric or multiparametric MRI. Insights into Imaging, 2021. 12(1): p. 112. 114. Winkel, D.J., et al., A Novel Deep Learning Based Computer-Aided Diagnosis System Improves the Accuracy and Efficiency of Radiologists in Reading Biparametric Magnetic Resonance Images of the Prostate: Results of a Multireader, Multicase Study. Invest Radiol, 2021. 56(10): p. 605-613. 115. Van Booven, D.J., et al., A Systematic Review of Artificial Intelligence in Prostate Cancer.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät » Institute » Institut für Diagnostische Radiologie
Dokument erstellt am:24.10.2025
Dateien geändert am:24.10.2025
Promotionsantrag am:16.04.2025
Datum der Promotion:07.10.2025
english
Benutzer
Status: Gast
Aktionen