Dokument: Anterolaterale subthalamische Theta Stimulation verbessert die Wortflüssigkeit bei Morbus Parkinson
Titel: | Anterolaterale subthalamische Theta Stimulation verbessert die Wortflüssigkeit bei Morbus Parkinson |
Weiterer Titel: | Antero-Lateral Subthalamic Nucleus Theta Stimulation Improves Verbal Fluency in Parkinson's Disease |
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=70549 |
URN (NBN): | urn:nbn:de:hbz:061-20250827-115734-8 |
Kollektion: | Dissertationen |
Sprache: | Deutsch |
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation |
Medientyp: | Text |
Autor: | Schönwald, Hannah Vivian [Autor] |
Dateien: | Die Dateien dieses Dateibereiches sind derzeit nicht frei zugänglich. Klicken Sie hier, um sich mit zusätzlichen Rechten beim Dokumentenserver anzumelden! |
Beitragende: | Prof. Dr. med. Schnitzler, Alfons [Gutachter] Prof. Dr. med. Vesper, Jan [Gutachter] |
Stichwörter: | Morbus Parkinson, tiefe Hirnstimulation, Wortflüssigkeit |
Dokumententyp (erweitert): | Dissertation |
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit |
Beschreibungen: | Die hochfrequente tiefe Hirnstimulation des Nucleus subthalamicus verbessert die
motorischen Symptome bei Parkinson Patient*innen. Während die therapeutische hochfrequente Stimulation mit einer Verschlechterung der Wortflüssigkeit assoziiert wird, hat die niedrigfrequente Stimulation positive Auswirkungen auf die Wortflüssigkeit. Die anatomischen Erkenntnisse über den optimalen Stimulationsort, der diesem positiven Effekt zugrunde liegt, sind jedoch widersprüchlich und frühere Studien waren häufig durch mangelnde Verblindung und Kontrolle von Medikamentenwirkungen begrenzt. Diese Arbeit untersucht die richtungsabhängigen und ortsspezifischen Effekte der niedrigfrequenten tiefen Hirnstimulation (Theta-Frequenz) auf die Wortflüssigkeit. In einem doppelt verblindeten Cross-over-Design wurde die Wortflüssigkeit bei 20 Parkinson Patient:innen unter linkshemisphärischer tiefer Hirnstimulation getestet. Um die Richtungsspezifität der Theta-Stimulation auf die Wortflüssigkeit zu untersuchen, wurden fünf Stimulationsbedingungen getestet: Omnidirektionale Stimulation, die drei direktionalen Stimulationsmöglichkeiten und das Stimulations-Off. Die Ergebnisse wurden in einem linear gemischten Modell statistisch untersucht. In einem zweiten Schritt wurden die Stimulationselektroden mithilfe von prä- und postoperativen CT und MRT-Bildern lokalisiert und die elektrischen Felder für jede Stimulationsbedingung berechnet. Mithilfe des probabilistischen Sweet-Spot-Mappings konnten Voxel mit signifikanten Veränderungen der Wortflüssigkeit identifiziert werden. Diese Arbeit liefert erste Belege dafür, dass sich unter direktionaler tiefer Hirnstimulation der individuell besten Orientierung mit Theta-Frequenz die Leistung der Wortflüssigkeit im Vergleich zu omnidirektionaler Stimulation und dem Stimulations-Off verbessert. Der Stimulationseffekt folgt dabei einem Gradienten von medial nach antero-lateral, wobei eine stärkere Verbesserung der Wortflüssigkeit an der Grenze zwischen motorischem und assoziativem Teil des Nucleus subthalamicus beobachtet wurde. Die Ergebnisse unterstützen die Vorstellung von stimulationsortspezifischen Effekten der tiefen Hirnstimulation im anterolateralen Nucleus subthalamicus und könnten wertvoll sein, um negative Effekte der hochfrequenten Stimulation auf die Wortflüssigkeit auszugleichen.High-frequency deep brain stimulation of the subthalamic nucleus improves motor symptoms in patients with Parkinson9s Disease. While therapeutic high frequency stimulation has been associated with a deterioration of verbal fluency, low frequency stimulation has positive effects on verbal fluency performance. Yet, anatomical findings on the optimal stimulation site underlying these beneficial effects are inconsistent and prior protocols were often limited due to a lack of blinding and control for medication effects. In this prospective single-center study we aimed to investigate stimulation directiondependent and site-specific effects of theta frequency deep brain stimulation on verbal fluency performance. In a double-blinded cross-over design we tested the effects of left subthalamic theta stimulation on verbal fluency in 20 patients with Parkinson9s disease. Patients were tested during omnidirectional and each of the three directional stimulation conditions as well as off stimulation to explore the directional specificity of theta stimulation on verbal fluency outcomes using linear mixed effects models. In a second step, the deep brain stimulation leads were localized using pre- and postoperative CT and MRI images and electric fields for each stimulation condition were calculated. We employed probabilistic sweet spot mapping to identify voxels with significant change in verbal fluency. Our findings demonstrate that with the best directional stimulation setting, verbal fluency improved significantly in comparison to the stimulation off and omnidirectional stimulation conditions. The stimulation effect on verbal fluency follows a medial to antero-lateral gradient with higher verbal fluency improvement observed on the border between motor and associative subparts of the subthalamic nucleus. We provide first evidence that directional theta frequency deep brain stimulation improves verbal fluency performance compared to omnidirectional and off conditions. Our results support the notion of stimulation site specific effects of deep brain stimulation within the antero-lateral subthalamic nucleus and may be valuable to counterbalance negative effects of high frequency stimulation on verbal fluency outcomes. |
Quelle: | 1. Schoenwald H, Bahners BH, Kannenberg S, et al. Antero-Lateral Subthalamic
Nucleus Theta Stimulation Improves Verbal Fluency in Parkinson9s Disease. Movement Disorders. 2025;40(6):1195-1199. doi:10.1002/mds.30185 2. Deuschl G, Krack P, Bötzel K, et al. A Randomized Trial of Deep-Brain Stimulation for Parkinson9s Disease. N Engl J Med. 2006;(355(9)):96-908. doi:https:// doi.org/10.1056/NEJMoa060281 3. Limousin P, Krack P, Pollak P, et al. Electrical Stimulation of the Subthalamic Nucleus in Advanced Parkinson9s Disease. N Engl J Med. 1998;339(16):1105-1111. doi:10.1056/NEJM199810153391603 4. Krack P, Volkmann J, Tinkhauser G, Deuschl G. Deep Brain Stimulation in Movement Disorders: From Experimental Surgery to Evidence-Based Therapy. Movement Disorders. 2019;34(12):1795-1810. doi:10.1002/mds.27860 5. Saint-Cyr JA. Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson9s disease. Brain. 2000;123(10):2091-2108. doi:10.1093/brain/123.10.2091 6. Højlund A, Petersen MV, Sridharan KS, Østergaard K. Worsening of Verbal Fluency After Deep Brain Stimulation in Parkinson9s Disease: A Focused Review. Computational and Structural Biotechnology Journal. 2017;15:68-74. doi:10.1016/j.csbj.2016.11.003 7. Mossner JM, Chou KL, Maher AH, Persad CC, Patil PG. Localization of motor and verbal fluency effects in subthalamic DBS for Parkinson9s disease. Parkinsonism & Related Disorders. 2020;79:55-59. doi:10.1016/j.parkreldis.2020.08.023 8. Witt K, Daniels C, Reiff J, et al. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson9s disease: a randomised, multicentre study. The Lancet Neurology. 2008;7(7):605-614. doi:10.1016/S1474-4422(08)70114-5 9. Henry JD, Crawford JR. Verbal fluency deficits in Parkinson9s disease: A metaanalysis. J Int Neuropsychol Soc. 2004;10(4):608-622. doi:10.1017/S1355617704104141 10. Herrera E, Cuetos F, Ribacoba R. Verbal fluency in Parkinson9s disease patients on/off dopamine medication. Neuropsychologia. 2012;50(14):3636-3640. doi:10.1016/j.neuropsychologia.2012.09.016 11. Paulesu, E., Goldacre, B., Scifo, P., Cappa, S. F., Gilardi, M. C.,, Castiglioni, I., et al. (1997). Functional heterogeneity of left inferior frontal cortex as revealed by fMRI. Neuro Report. 1997;(8):2011-2016. 12. Rende B, Ramsberger G, Miyake A. Commonalities and differences in the working memory components underlying letter and category fluency tasks: A dual-task investigation. Neuropsychology. 2002;16(3):309-321. doi:10.1037/0894-4105.16.3.309 13. Robinson G, Shallice T, Bozzali M, Cipolotti L. The differing roles of the frontal cortex in fluency tests. Brain. 2012;135(7):2202-2214. doi:10.1093/brain/aws142 14. Salehi N, Nahrgang S, Petershagen W, et al. Theta frequency deep brain stimulation in the subthalamic nucleus improves working memory in Parkinson9s disease. 15 Brain. 2024;147(4):1190-1196. doi:10.1093/brain/awad433 15. Wojtecki L, Timmermann L, Jörgens S, et al. Frequency-Dependent Reciprocal Modulation of Verbal Fluency and Motor Functions in Subthalamic Deep Brain Stimulation. Archives of Neurology. 2006;63(9):1273-1276. doi:10.1001/archneur.63.9.1273 16. Lee DJ, Drummond NM, Saha U, et al. Acute low frequency dorsal subthalamic nucleus stimulation improves verbal fluency in Parkinson9s disease. Brain Stimulation. 2021;14(4):754-760. doi:10.1016/j.brs.2021.04.016 17. Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson9s disease. The Lancet Neurology. 2009;8:15. doi:10.1016/S1474-4422(08)70291-6 18. Wojtecki L, Elben S, Vesper J, Schnitzler A. The rhythm of the executive gate of speech: subthalamic low-frequency oscillations increase during verbal generation. European Journal of Neuroscience. 2017;45(9):1200-1211. doi:10.1111/ejn.13429 19. John KD, Wylie SA, Dawant BM, et al. Deep brain stimulation effects on verbal fluency dissociated by target and active contact location. Ann Clin Transl Neurol. 2021;8(3):613-622. doi:10.1002/acn3.51304 20. Bruno S, Nikolov P, Hartmann CJ, et al. Directional Deep Brain Stimulation of the Thalamic Ventral Intermediate Area for Essential Tremor Increases Therapeutic Window. Neuromodulation: Technology at the Neural Interface. 2021;24(2):343-352. doi:10.1111/ner.13234 21. Kühn AA, Volkmann J. Innovations in deep brain stimulation methodology. Movement Disorders. 2017;32(1):11-19. doi:10.1002/mds.26703 22. Schnitzler A, Mir P, Brodsky MA, et al. Directional Deep Brain Stimulation for Parkinson9s Disease: Results of an International Crossover Study With Randomized, Double-Blind Primary Endpoint. Neuromodulation: Technology at the Neural Interface. 2022;25(6):817-828. doi:10.1111/ner.13407 23. Steigerwald F, Müller L, Johannes S, Matthies C, Volkmann J. Directional deep brain stimulation of the subthalamic nucleus: A pilot study using a novel neurostimulation device. Movement Disorders. 2016;31(8):1240-1243. doi:10.1002/mds.26669 24. Mattis S. Dementia Rating Scale (DRS). Published online 1988. 25. Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment: MoCA: A brief screening tool for MCI. Journal of the American Geriatrics Society. 2005;53(4):695-699. doi:10.1111/j.1532-5415.2005.53221.x 26. Aschenbrenner S, Tucha O, Lange KW. Regensburger Wortflüssigkeits-Test: RWT. Hogrefe, Verlag für Psychologie; 2000. 27. Moro E, Esselink RJA, Xie J, Hommel M, Benabid AL, Pollak P. The impact on Parkinson9s disease of electrical parameter settings in STN stimulation. Neurology. 2002;59(5):706-713. doi:10.1212/WNL.59.5.706 28. Koss AM, Alterman RL, Tagliati M, Shils JL. Calculating total electrical energy delivered by deep brain stimulation systems. Ann Neurol. 2005;58(1):168-168. 16 doi:10.1002/ana.20525 29. Horn A, Li N, Dembek TA, et al. Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. NeuroImage. 2019;184:293-316. doi:10.1016/j.neuroimage.2018.08.068 30. Horn A, Kühn AA. Lead-DBS: A toolbox for deep brain stimulation electrode localizations and visualizations. NeuroImage. 2015;107:127-135. doi:10.1016/j.neuroimage.2014.12.002 31. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage. 2011;54(3):2033-2044. doi:10.1016/j.neuroimage.2010.09.025 32. Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL. Unbiased average age-appropriate atlases for pediatric studies. NeuroImage. 2011;54(1):313-327. doi:10.1016/j.neuroimage.2010.07.033 33. Avants B, Epstein C, Grossman M, Gee J. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis. 2008;12(1):26-41. doi:10.1016/j.media.2007.06.004 34. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: A general linear approach. Hum Brain Mapp. 1994;2(4):189-210. doi:10.1002/hbm.460020402 35. Ewert S, Plettig P, Li N, et al. Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity. NeuroImage. 2018;170:271-282. doi:10.1016/j.neuroimage.2017.05.015 36. Husch A, V. Petersen M, Gemmar P, Goncalves J, Hertel F. PaCER - A fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation. NeuroImage: Clinical. 2018;17:80-89. doi:10.1016/j.nicl.2017.10.004 37. Dembek TA, Hoevels M, Hellerbach A, et al. Directional DBS leads show large deviations from their intended implantation orientation. Parkinsonism & Related Disorders. 2019;67:117-121. doi:10.1016/j.parkreldis.2019.08.017 38. Sitz A, Hoevels M, Hellerbach A, et al. Determining the orientation angle of directional leads for deep brain stimulation using computed tomography and digital x-ray imaging: A phantom study. Medical Physics. 2017;44(9):4463-4473. doi:10.1002/mp.12424 39. Treu S, Strange B, Oxenford S, et al. Deep brain stimulation: Imaging on a group level. NeuroImage. 2020;219:117018. doi:10.1016/j.neuroimage.2020.117018 40. Baniasadi M, Proverbio D, Gonçalves J, Hertel F, Husch A. FastField: An opensource toolbox for efficient approximation of deep brain stimulation electric fields. NeuroImage. 2020;223:117330. doi:10.1016/j.neuroimage.2020.117330 41. Astrom M, Diczfalusy E, Martens H, Wardell K. Relationship between Neural Activation and Electric Field Distribution during Deep Brain Stimulation. IEEE Trans Biomed Eng. 2015;62(2):664-672. doi:10.1109/TBME.2014.2363494 42. Jergas H, Petry-Schmelzer JN, Hannemann J, et al. One side effect 3 two 17 networks? Lateral and postero-medial stimulation spreads induce dysarthria in subthalamic deep brain stimulation for Parkinson9s Disease. medRxiv. Published online January 1, 2023:2023.04.26.23289100. doi:10.1101/2023.04.26.23289100 43. Dembek TA, Roediger J, Horn A, et al. Probabilistic sweet spots predict motor outcome for deep brain stimulation in Parkinson disease. Annals of Neurology. 2019;86(4):527-538. doi:10.1002/ana.25567 44. Aron AR, Herz DM, Brown P, Forstmann BU, Zaghloul K. Frontosubthalamic Circuits for Control of Action and Cognition. J Neurosci. 2016;36(45):11489-11495. doi:10.1523/JNEUROSCI.2348-16.2016 45. Bahners BH, Waterstraat G, Kannenberg S, et al. Electrophysiological characterization of the hyperdirect pathway and its functional relevance for subthalamic deep brain stimulation. Experimental Neurology. 2022;352:114031. doi:10.1016/j.expneurol.2022.114031 46. Kelley R, Flouty O, Emmons EB, et al. A human prefrontal-subthalamic circuit for cognitive control. Brain. 2018;141(1):205-216. doi:10.1093/brain/awx300 47. Horn A, Neumann WJ, Degen K, Schneider GH, Kühn AA. Toward an electrophysiological <sweet spot= for deep brain stimulation in the subthalamic nucleus: Subcortical Mapping of Beta Band Activity in Parkinson9s Disease. Hum Brain Mapp. 2017;(38):3377-3390. doi:10.1002/hbm.23594 48. Feldmann LK, Lofredi R, Neumann WJ, et al. Toward therapeutic electrophysiology: beta-band suppression as a biomarker in chronic local field potential recordings. npj Parkinsons Dis. 2022;8(1):44. doi:10.1038/s41531-022-00301-2 |
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz |
Fachbereich / Einrichtung: | Medizinische Fakultät » Institute » Institut für Medizinische Psychologie |
Dokument erstellt am: | 27.08.2025 |
Dateien geändert am: | 27.08.2025 |
Promotionsantrag am: | 11.04.2025 |
Datum der Promotion: | 19.08.2025 |