Dokument: Anterolaterale subthalamische Theta Stimulation verbessert die Wortflüssigkeit bei Morbus Parkinson

Titel:Anterolaterale subthalamische Theta Stimulation verbessert die Wortflüssigkeit bei Morbus Parkinson
Weiterer Titel:Antero-Lateral Subthalamic Nucleus Theta Stimulation Improves Verbal Fluency in Parkinson's Disease
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=70549
URN (NBN):urn:nbn:de:hbz:061-20250827-115734-8
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Schönwald, Hannah Vivian [Autor]
Dateien:Die Dateien dieses Dateibereiches sind derzeit nicht frei zugänglich.
Klicken Sie hier, um sich mit zusätzlichen Rechten beim Dokumentenserver anzumelden!
Beitragende:Prof. Dr. med. Schnitzler, Alfons [Gutachter]
Prof. Dr. med. Vesper, Jan [Gutachter]
Stichwörter:Morbus Parkinson, tiefe Hirnstimulation, Wortflüssigkeit
Dokumententyp (erweitert):Dissertation
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Die hochfrequente tiefe Hirnstimulation des Nucleus subthalamicus verbessert die
motorischen Symptome bei Parkinson Patient*innen. Während die therapeutische
hochfrequente Stimulation mit einer Verschlechterung der Wortflüssigkeit assoziiert wird,
hat die niedrigfrequente Stimulation positive Auswirkungen auf die Wortflüssigkeit. Die
anatomischen Erkenntnisse über den optimalen Stimulationsort, der diesem positiven
Effekt zugrunde liegt, sind jedoch widersprüchlich und frühere Studien waren häufig durch
mangelnde Verblindung und Kontrolle von Medikamentenwirkungen begrenzt.
Diese Arbeit untersucht die richtungsabhängigen und ortsspezifischen Effekte der
niedrigfrequenten tiefen Hirnstimulation (Theta-Frequenz) auf die Wortflüssigkeit. In einem
doppelt verblindeten Cross-over-Design wurde die Wortflüssigkeit bei 20 Parkinson
Patient:innen unter linkshemisphärischer tiefer Hirnstimulation getestet. Um die
Richtungsspezifität der Theta-Stimulation auf die Wortflüssigkeit zu untersuchen, wurden
fünf Stimulationsbedingungen getestet: Omnidirektionale Stimulation, die drei direktionalen
Stimulationsmöglichkeiten und das Stimulations-Off. Die Ergebnisse wurden in einem linear
gemischten Modell statistisch untersucht. In einem zweiten Schritt wurden die
Stimulationselektroden mithilfe von prä- und postoperativen CT und MRT-Bildern lokalisiert
und die elektrischen Felder für jede Stimulationsbedingung berechnet. Mithilfe des
probabilistischen Sweet-Spot-Mappings konnten Voxel mit signifikanten Veränderungen
der Wortflüssigkeit identifiziert werden.
Diese Arbeit liefert erste Belege dafür, dass sich unter direktionaler tiefer Hirnstimulation
der individuell besten Orientierung mit Theta-Frequenz die Leistung der Wortflüssigkeit im
Vergleich zu omnidirektionaler Stimulation und dem Stimulations-Off verbessert. Der
Stimulationseffekt folgt dabei einem Gradienten von medial nach antero-lateral, wobei eine
stärkere Verbesserung der Wortflüssigkeit an der Grenze zwischen motorischem und
assoziativem Teil des Nucleus subthalamicus beobachtet wurde.
Die Ergebnisse unterstützen die Vorstellung von stimulationsortspezifischen Effekten der
tiefen Hirnstimulation im anterolateralen Nucleus subthalamicus und könnten wertvoll sein,
um negative Effekte der hochfrequenten Stimulation auf die Wortflüssigkeit auszugleichen.

High-frequency deep brain stimulation of the subthalamic nucleus improves motor
symptoms in patients with Parkinson9s Disease. While therapeutic high frequency
stimulation has been associated with a deterioration of verbal fluency, low frequency
stimulation has positive effects on verbal fluency performance. Yet, anatomical findings on
the optimal stimulation site underlying these beneficial effects are inconsistent and prior
protocols were often limited due to a lack of blinding and control for medication effects.
In this prospective single-center study we aimed to investigate stimulation directiondependent
and site-specific effects of theta frequency deep brain stimulation on verbal
fluency performance. In a double-blinded cross-over design we tested the effects of left
subthalamic theta stimulation on verbal fluency in 20 patients with Parkinson9s disease.
Patients were tested during omnidirectional and each of the three directional stimulation
conditions as well as off stimulation to explore the directional specificity of theta stimulation
on verbal fluency outcomes using linear mixed effects models. In a second step, the deep
brain stimulation leads were localized using pre- and postoperative CT and MRI images
and electric fields for each stimulation condition were calculated. We employed probabilistic
sweet spot mapping to identify voxels with significant change in verbal fluency.
Our findings demonstrate that with the best directional stimulation setting, verbal fluency
improved significantly in comparison to the stimulation off and omnidirectional stimulation
conditions.
The stimulation effect on verbal fluency follows a medial to antero-lateral gradient with
higher verbal fluency improvement observed on the border between motor and associative
subparts of the subthalamic nucleus.
We provide first evidence that directional theta frequency deep brain stimulation improves
verbal fluency performance compared to omnidirectional and off conditions. Our results
support the notion of stimulation site specific effects of deep brain stimulation within the
antero-lateral subthalamic nucleus and may be valuable to counterbalance negative effects
of high frequency stimulation on verbal fluency outcomes.
Quelle:1. Schoenwald H, Bahners BH, Kannenberg S, et al. Antero-Lateral Subthalamic
Nucleus Theta Stimulation Improves Verbal Fluency in Parkinson9s Disease. Movement
Disorders. 2025;40(6):1195-1199. doi:10.1002/mds.30185
2. Deuschl G, Krack P, Bötzel K, et al. A Randomized Trial of Deep-Brain Stimulation
for Parkinson9s Disease. N Engl J Med. 2006;(355(9)):96-908. doi:https://
doi.org/10.1056/NEJMoa060281
3. Limousin P, Krack P, Pollak P, et al. Electrical Stimulation of the Subthalamic
Nucleus in Advanced Parkinson9s Disease. N Engl J Med. 1998;339(16):1105-1111.
doi:10.1056/NEJM199810153391603
4. Krack P, Volkmann J, Tinkhauser G, Deuschl G. Deep Brain Stimulation in
Movement Disorders: From Experimental Surgery to Evidence-Based Therapy. Movement
Disorders. 2019;34(12):1795-1810. doi:10.1002/mds.27860
5. Saint-Cyr JA. Neuropsychological consequences of chronic bilateral stimulation of
the subthalamic nucleus in Parkinson9s disease. Brain. 2000;123(10):2091-2108.
doi:10.1093/brain/123.10.2091
6. Højlund A, Petersen MV, Sridharan KS, Østergaard K. Worsening of Verbal
Fluency After Deep Brain Stimulation in Parkinson9s Disease: A Focused Review.
Computational and Structural Biotechnology Journal. 2017;15:68-74.
doi:10.1016/j.csbj.2016.11.003
7. Mossner JM, Chou KL, Maher AH, Persad CC, Patil PG. Localization of motor and
verbal fluency effects in subthalamic DBS for Parkinson9s disease. Parkinsonism &
Related Disorders. 2020;79:55-59. doi:10.1016/j.parkreldis.2020.08.023
8. Witt K, Daniels C, Reiff J, et al. Neuropsychological and psychiatric changes after
deep brain stimulation for Parkinson9s disease: a randomised, multicentre study. The
Lancet Neurology. 2008;7(7):605-614. doi:10.1016/S1474-4422(08)70114-5
9. Henry JD, Crawford JR. Verbal fluency deficits in Parkinson9s disease: A metaanalysis.
J Int Neuropsychol Soc. 2004;10(4):608-622. doi:10.1017/S1355617704104141
10. Herrera E, Cuetos F, Ribacoba R. Verbal fluency in Parkinson9s disease patients
on/off dopamine medication. Neuropsychologia. 2012;50(14):3636-3640.
doi:10.1016/j.neuropsychologia.2012.09.016
11. Paulesu, E., Goldacre, B., Scifo, P., Cappa, S. F., Gilardi, M. C.,, Castiglioni, I., et
al. (1997). Functional heterogeneity of left inferior frontal cortex as revealed by fMRI.
Neuro Report. 1997;(8):2011-2016.
12. Rende B, Ramsberger G, Miyake A. Commonalities and differences in the working
memory components underlying letter and category fluency tasks: A dual-task
investigation. Neuropsychology. 2002;16(3):309-321. doi:10.1037/0894-4105.16.3.309
13. Robinson G, Shallice T, Bozzali M, Cipolotti L. The differing roles of the frontal
cortex in fluency tests. Brain. 2012;135(7):2202-2214. doi:10.1093/brain/aws142
14. Salehi N, Nahrgang S, Petershagen W, et al. Theta frequency deep brain
stimulation in the subthalamic nucleus improves working memory in Parkinson9s disease.
15
Brain. 2024;147(4):1190-1196. doi:10.1093/brain/awad433
15. Wojtecki L, Timmermann L, Jörgens S, et al. Frequency-Dependent Reciprocal
Modulation of Verbal Fluency and Motor Functions in Subthalamic Deep Brain
Stimulation. Archives of Neurology. 2006;63(9):1273-1276.
doi:10.1001/archneur.63.9.1273
16. Lee DJ, Drummond NM, Saha U, et al. Acute low frequency dorsal subthalamic
nucleus stimulation improves verbal fluency in Parkinson9s disease. Brain Stimulation.
2021;14(4):754-760. doi:10.1016/j.brs.2021.04.016
17. Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the
subthalamic nucleus for the treatment of Parkinson9s disease. The Lancet Neurology.
2009;8:15. doi:10.1016/S1474-4422(08)70291-6
18. Wojtecki L, Elben S, Vesper J, Schnitzler A. The rhythm of the executive gate of
speech: subthalamic low-frequency oscillations increase during verbal generation.
European Journal of Neuroscience. 2017;45(9):1200-1211. doi:10.1111/ejn.13429
19. John KD, Wylie SA, Dawant BM, et al. Deep brain stimulation effects on verbal
fluency dissociated by target and active contact location. Ann Clin Transl Neurol.
2021;8(3):613-622. doi:10.1002/acn3.51304
20. Bruno S, Nikolov P, Hartmann CJ, et al. Directional Deep Brain Stimulation of the
Thalamic Ventral Intermediate Area for Essential Tremor Increases Therapeutic Window.
Neuromodulation: Technology at the Neural Interface. 2021;24(2):343-352.
doi:10.1111/ner.13234
21. Kühn AA, Volkmann J. Innovations in deep brain stimulation methodology.
Movement Disorders. 2017;32(1):11-19. doi:10.1002/mds.26703
22. Schnitzler A, Mir P, Brodsky MA, et al. Directional Deep Brain Stimulation for
Parkinson9s Disease: Results of an International Crossover Study With Randomized,
Double-Blind Primary Endpoint. Neuromodulation: Technology at the Neural Interface.
2022;25(6):817-828. doi:10.1111/ner.13407
23. Steigerwald F, Müller L, Johannes S, Matthies C, Volkmann J. Directional deep
brain stimulation of the subthalamic nucleus: A pilot study using a novel neurostimulation
device. Movement Disorders. 2016;31(8):1240-1243. doi:10.1002/mds.26669
24. Mattis S. Dementia Rating Scale (DRS). Published online 1988.
25. Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment,
MoCA: A Brief Screening Tool For Mild Cognitive Impairment: MoCA: A brief screening
tool for MCI. Journal of the American Geriatrics Society. 2005;53(4):695-699.
doi:10.1111/j.1532-5415.2005.53221.x
26. Aschenbrenner S, Tucha O, Lange KW. Regensburger Wortflüssigkeits-Test:
RWT. Hogrefe, Verlag für Psychologie; 2000.
27. Moro E, Esselink RJA, Xie J, Hommel M, Benabid AL, Pollak P. The impact on
Parkinson9s disease of electrical parameter settings in STN stimulation. Neurology.
2002;59(5):706-713. doi:10.1212/WNL.59.5.706
28. Koss AM, Alterman RL, Tagliati M, Shils JL. Calculating total electrical energy
delivered by deep brain stimulation systems. Ann Neurol. 2005;58(1):168-168.
16
doi:10.1002/ana.20525
29. Horn A, Li N, Dembek TA, et al. Lead-DBS v2: Towards a comprehensive pipeline
for deep brain stimulation imaging. NeuroImage. 2019;184:293-316.
doi:10.1016/j.neuroimage.2018.08.068
30. Horn A, Kühn AA. Lead-DBS: A toolbox for deep brain stimulation electrode
localizations and visualizations. NeuroImage. 2015;107:127-135.
doi:10.1016/j.neuroimage.2014.12.002
31. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible
evaluation of ANTs similarity metric performance in brain image registration. NeuroImage.
2011;54(3):2033-2044. doi:10.1016/j.neuroimage.2010.09.025
32. Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL. Unbiased
average age-appropriate atlases for pediatric studies. NeuroImage. 2011;54(1):313-327.
doi:10.1016/j.neuroimage.2010.07.033
33. Avants B, Epstein C, Grossman M, Gee J. Symmetric diffeomorphic image
registration with cross-correlation: Evaluating automated labeling of elderly and
neurodegenerative brain. Medical Image Analysis. 2008;12(1):26-41.
doi:10.1016/j.media.2007.06.004
34. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ.
Statistical parametric maps in functional imaging: A general linear approach. Hum Brain
Mapp. 1994;2(4):189-210. doi:10.1002/hbm.460020402
35. Ewert S, Plettig P, Li N, et al. Toward defining deep brain stimulation targets in
MNI space: A subcortical atlas based on multimodal MRI, histology and structural
connectivity. NeuroImage. 2018;170:271-282. doi:10.1016/j.neuroimage.2017.05.015
36. Husch A, V. Petersen M, Gemmar P, Goncalves J, Hertel F. PaCER - A fully
automated method for electrode trajectory and contact reconstruction in deep brain
stimulation. NeuroImage: Clinical. 2018;17:80-89. doi:10.1016/j.nicl.2017.10.004
37. Dembek TA, Hoevels M, Hellerbach A, et al. Directional DBS leads show large
deviations from their intended implantation orientation. Parkinsonism & Related Disorders.
2019;67:117-121. doi:10.1016/j.parkreldis.2019.08.017
38. Sitz A, Hoevels M, Hellerbach A, et al. Determining the orientation angle of
directional leads for deep brain stimulation using computed tomography and digital x-ray
imaging: A phantom study. Medical Physics. 2017;44(9):4463-4473.
doi:10.1002/mp.12424
39. Treu S, Strange B, Oxenford S, et al. Deep brain stimulation: Imaging on a group
level. NeuroImage. 2020;219:117018. doi:10.1016/j.neuroimage.2020.117018
40. Baniasadi M, Proverbio D, Gonçalves J, Hertel F, Husch A. FastField: An opensource
toolbox for efficient approximation of deep brain stimulation electric fields.
NeuroImage. 2020;223:117330. doi:10.1016/j.neuroimage.2020.117330
41. Astrom M, Diczfalusy E, Martens H, Wardell K. Relationship between Neural
Activation and Electric Field Distribution during Deep Brain Stimulation. IEEE Trans
Biomed Eng. 2015;62(2):664-672. doi:10.1109/TBME.2014.2363494
42. Jergas H, Petry-Schmelzer JN, Hannemann J, et al. One side effect 3 two
17
networks? Lateral and postero-medial stimulation spreads induce dysarthria in
subthalamic deep brain stimulation for Parkinson9s Disease. medRxiv. Published online
January 1, 2023:2023.04.26.23289100. doi:10.1101/2023.04.26.23289100
43. Dembek TA, Roediger J, Horn A, et al. Probabilistic sweet spots predict motor
outcome for deep brain stimulation in Parkinson disease. Annals of Neurology.
2019;86(4):527-538. doi:10.1002/ana.25567
44. Aron AR, Herz DM, Brown P, Forstmann BU, Zaghloul K. Frontosubthalamic
Circuits for Control of Action and Cognition. J Neurosci. 2016;36(45):11489-11495.
doi:10.1523/JNEUROSCI.2348-16.2016
45. Bahners BH, Waterstraat G, Kannenberg S, et al. Electrophysiological
characterization of the hyperdirect pathway and its functional relevance for subthalamic
deep brain stimulation. Experimental Neurology. 2022;352:114031.
doi:10.1016/j.expneurol.2022.114031
46. Kelley R, Flouty O, Emmons EB, et al. A human prefrontal-subthalamic circuit for
cognitive control. Brain. 2018;141(1):205-216. doi:10.1093/brain/awx300
47. Horn A, Neumann WJ, Degen K, Schneider GH, Kühn AA. Toward an
electrophysiological <sweet spot= for deep brain stimulation in the subthalamic nucleus:
Subcortical Mapping of Beta Band Activity in Parkinson9s Disease. Hum Brain Mapp.
2017;(38):3377-3390. doi:10.1002/hbm.23594
48. Feldmann LK, Lofredi R, Neumann WJ, et al. Toward therapeutic
electrophysiology: beta-band suppression as a biomarker in chronic local field potential
recordings. npj Parkinsons Dis. 2022;8(1):44. doi:10.1038/s41531-022-00301-2
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät » Institute » Institut für Medizinische Psychologie
Dokument erstellt am:27.08.2025
Dateien geändert am:27.08.2025
Promotionsantrag am:11.04.2025
Datum der Promotion:19.08.2025
english
Benutzer
Status: Gast
Aktionen