Dokument: Deep-Learning-based Automated Identification of Ventriculoperitoneal-Shunt Valve Models from Skull X-rays

Titel:Deep-Learning-based Automated Identification of Ventriculoperitoneal-Shunt Valve Models from Skull X-rays
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=69997
URN (NBN):urn:nbn:de:hbz:061-20250626-112145-6
Kollektion:Publikationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Texte » Artikel, Aufsatz
Medientyp:Text
Autoren: Vach, Marius [Autor]
Weiss, Daniel [Autor]
Ivan, Vivien Lorena [Autor]
Boschenriedter, Christian [Autor]
Wolf, Luisa [Autor]
Beez, Thomas [Autor]
Hofmann, Björn Bastian [Autor]
Rubbert, Christian [Autor]
Caspers, Julian [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]1,48 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 26.06.2025 / geändert 26.06.2025
Stichwörter:Hydrocephalus, Computational Neural Networks, Ventriculoperitoneal Shunt, X-Ray, Deep Learning
Beschreibung:Introduction

Ventriculoperitoneal shunts (VPS) are an essential part of the treatment of hydrocephalus, with numerous valve models available with different ways of indicating pressure levels. The model types often need to be identified on X‑rays to assess pressure levels using a matching template. Artificial intelligence (AI), in particular deep learning, is ideally suited to automate repetitive tasks such as identifying different VPS valve models. The aim of this work was to investigate whether AI, in particular deep learning, allows the identification of VPS models in cranial X‑rays.
Methods

959 cranial X‑rays of patients with a VPS were included and reviewed for image quality and complete visualization of VPS valves. The images included four VPS model types: Codman Hakim (n = 774, 81%), Codman Certas Plus (n = 117, 12%), Sophysa Sophy Mini SM8 (n = 35, 4%) and proGAV 2.0 (n = 33, 3%). A Convolutional Neural Network (CNN) was trained using stratified five-fold cross-validation to classify the four VPS model types in the dataset. A finetuned CNN pretrained on the ImageNet dataset as well as a model trained from scratch were compared. The averaged performance and uncertainty metrics were evaluated across the cross-validation splits.
Results

The fine-tuned model identified VPS valve models with a mean accuracy of 0.98 ± 0.01, macro-averaged F1 score of 0.93 ± 0.04, a recall of 0.94 ± 0.03 and a precision of 0.95 ± 0.08 across the five cross-validation splits.
Conclusion

Automatic classification of VPS valve models in skull X‑rays, using fully automatable preprocessing steps and a CNN, is feasible. This is an encouraging finding to further explore the possibility of automating VPS valve model identification and pressure level reading in skull X‑rays.
Rechtliche Vermerke:Originalveröffentlichung:
Vach, M., Weiß, D. A., Ivan, V. L., Boschenriedter, C., Wolf, L., Beez, T., Hofmann, B. B., Rubbert, C., & Caspers, J. (2025). Deep-Learning-based Automated Identification of Ventriculoperitoneal-Shunt Valve Models from Skull X-rays. Clinical Neuroradiology, 35(2), 347–354. https://doi.org/10.1007/s00062-024-01490-4
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:26.06.2025
Dateien geändert am:26.06.2025
english
Benutzer
Status: Gast
Aktionen