Dokument: Zytoarchitektonische Kartierung des menschlichen anterioren Gyrus fusiformis und Sulcus occipitotemporalis
Titel: | Zytoarchitektonische Kartierung des menschlichen anterioren Gyrus fusiformis und Sulcus occipitotemporalis | |||||||
Weiterer Titel: | Cytoarchitectonic mapping of the human anterior fusiform gyrus and occipitotemporal sulcus | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=69856 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20250617-111430-4 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Dietermann, Manuel Johannes [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. med. Amunts, Katrin [Gutachter] Prof. Dr.med. Dr.rer.pol. Caspers, Svenja [Gutachter] | |||||||
Stichwörter: | Zytoarchitektur, Human brain mapping, Gyrus fusiformis, Sulcus occipitotemporalis, ventral pathway, Gesichtserkennung, Julich Brain Atlas | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Der ventrale occipitotemporale Kortex des menschlichen Gehirns ist Teil des „Was“-Pfades („what“ pathway), der zentrale Funktionen wie Gesichtserkennung, Körpererkennung und Worterkennung topografisch bündelt. Der anteriore Gyrus fusiformis (aFG) und der angrenzende Sulcus occipitotemporalis (OTS) innerhalb dieser Region sind bisher weder in ihrer strukturellen noch in ihrer funktionellen Parzellierung ausreichend verstanden. Historische Hirnkarten werden diesem Kortexabschnitt mit mehrdeutigen und voneinander abweichenden Darstellungen nicht gerecht. Gleichzeitig sind bisherige Erkenntnisse zum funktionellen Beitrag des aFG und OTS im Vergleich zu Nachbarregionen unzureichend. Gegenstand dieser Arbeit war die Erstellung einer verlässlichen und detaillierten Hirnkarte des aFG und OTS auf Basis einer statistisch reproduzierbaren Analyse digitalisierter, hochaufgelöster, histologisch bearbeiteter Hirnschnitte von zehn post mortem Gehirnen. Die Definition von Grenzen neuer Hirnareale erfolgte anhand des Vergleichs benachbarter Grauwertindex (GLI)-Profile, die die zytoarchitektonischen Eigenschaften neuer Areale entlang der kortikalen Tiefe widerspiegeln. Mit dieser Methode konnten in allen untersuchten Gehirnen zwei Areale identifiziert werden: FG5 und OTS1. FG5 bedeckte dabei oberflächennahe Anteile des aFG, während OTS1 posterolateral angrenzend vor allem innerhalb des OTS lokalisiert war. Eine hierarchische Clusteranalyse der mittleren GLI-Profile der neuen Areale mit denen topografisch nah gelegener Areale zeigte besondere Ähnlichkeit von FG5 und OTS1 zueinander sowie zu den okzipital benachbarten Arealen des mittleren Gyrus fusiformis. Die Auswertung der volumetrischen Daten der neuen Areale zeigte keine Unterschiede zwischen männlichen und weiblichen Gehirnen sowie zwischen den linken und rechten Hemisphären der Stichprobe. Die 3D-Rekonstruktion, Normalisierung für die Referenzgehirne MNI Colin27 und ICBM152casym und Superposition der Arealkarten resultierten in Wahrscheinlichkeitskarten, die die interindividuelle topografische Variabilität der neuen Areale visualisierten. Zur besseren Vergleichbarkeit mit existierenden Hirnkarten der Region wurden nicht-überlappende Maximale Wahrscheinlichkeitskarten erstellt. Darüber hinaus wurde mit Hilfe eines auf Convolutional Neural Networks basierenden Deep Learning Tools eine Schnitt-für-Schnitt Kartierung und hochauflösende Rekonstruktion der Areale im BigBrain 1 Modell generiert. Die Karten von FG5 und OTS1 zeigten eine detailliertere und verlässliche strukturelle Aufteilung des aFG und OTS gegenüber historischen Hirnkarten. Eine erste Gegenüberstellung mit Ergebnissen funktionell orientierter Studien ließ eine Beteiligung der Areale in den höheren visuellen Verarbeitungsprozessen wie Gesichtserkennung vermuten. Die Karten wurden für den Julich Brain Atlas registriert, welcher eine umfassende mikroanatomische Referenz der zytoarchitektonischen Parzellierung des menschlichen Gehirns darstellt und die multimodale, adaptive und flexible Nutzung der Karten von FG5 und OTS1 ermöglicht.The ventral occipitotemporal cortex of the human brain is part of the ‘what’ pathway, which topographically bundles central brain functions such as face recognition, body recognition and word recognition. The anterior fusiform gyrus (aFG) and the adjacent occipitotemporal sulcus (OTS) within this region are poorly understood, both in terms of their structural and functional decomposition. Historical brain maps do not do justice to this section of the cortex with ambiguous and discrepant representations. Additionally, previous findings on the functional contribution of the aFG and OTS are insufficient in comparison to neighboring regions. The aim of this project was to create a reliable and detailed brain map of the aFG and OTS based on a statistically reproducible analysis on digitized high-resolution histological brain sections in ten postmortem brains. The definition of borders between brain areas was based on the comparison of neighboring Grey Level Index (GLI) profiles, which reflect the cytoarchitectonic properties of new areas along the cortical depth. Using this method, two areas were identified in all brains analyzed: FG5 and OTS1. FG5 covered parts of the aFG near the brain surface, while OTS1 was located posterolaterally adjacent, mainly within the OTS. Hierarchical cluster analysis of the mean GLI profiles of the new areas and those of topographically nearby areas showed that both areas were particularly similar to each other, as well as to the occipitally adjacent areas of the middle fusiform gyrus. Analysis of the volumetric data of the new areas showed no differences between male and female brains and between the left and right hemispheres of the sample. 3D-reconstruction, normalization for the reference brains MNI Colin27 and ICBM152casym and superposition of the areal maps resulted in probability maps visualizing the interindividual topographic variability of the new areas. Non-overlapping maximum probability maps were generated for better comparability with existing brain maps of the region. In addition, a deep learning tool based on convolutional neural networks was used to generate a slice-by-slice mapping and high-resolution reconstruction of the areas in the BigBrain 1 model. The maps of FG5 and OTS1 represented a more detailed and reliable structural subdivision of the aFG and OTS compared to historical brain maps. A first comparison with results of functionally oriented studies suggested an involvement of the areas in higher visual processing such as face recognition. The maps were registered for the Julich Brain Atlas, which provides a comprehensive microanatomical reference of the cytoarchitectonic parcellation of the human brain and enables the multimodal, adaptive and flexible use of the maps of FG5 and OTS1. | |||||||
Quelle: | ALLISON, T., PUCE, A., SPENCER, D. D. & MCCARTHY, G. 1999. Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. Cereb Cortex, 9, 415-30. DOI:10.1093/cercor/9.5.415
AMUNTS, K., ARMSTRONG, E., MALIKOVIC, A., HÖMKE, L., MOHLBERG, H., SCHLEICHER, A. & ZILLES, K. 2007a. Gender-specific left-right asymmetries in human visual cortex. J Neurosci, 27, 1356-64. DOI:10.1523/jneurosci.4753-06.2007 AMUNTS, K., HAWRYLYCZ, M. J., VAN ESSEN, D. C., VAN HORN, J. D., HAREL, N., POLINE, J. B., DE MARTINO, F., BJAALIE, J. G., DEHAENE-LAMBERTZ, G., DEHAENE, S., VALDES-SOSA, P., THIRION, B., ZILLES, K., HILL, S. L., ABRAMS, M. B., TASS, P. A., VANDUFFEL, W., EVANS, A. C. & EICKHOFF, S. B. 2014. Interoperable atlases of the human brain. NeuroImage, 99, 525-532. DOI:10.1016/j.neuroimage.2014.06.010 AMUNTS, K., LEPAGE, C., BORGEAT, L., MOHLBERG, H., DICKSCHEID, T., ROUSSEAU, M. E., BLUDAU, S., BAZIN, P. L., LEWIS, L. B., OROS-PEUSQUENS, A. M., SHAH, N. J., LIPPERT, T., ZILLES, K. & EVANS, A. C. 2013. BigBrain: an ultrahigh-resolution 3D human brain model. Science, 340, 1472-5. DOI:10.1126/science.1235381 AMUNTS, K., MALIKOVIC, A., MOHLBERG, H., SCHORMANN, T. & ZILLES, K. 2000. Brodmann's areas 17 and 18 brought into stereotaxic space-where and how variable? Neuroimage, 11, 66-84. DOI:10.1006/nimg.1999.0516 AMUNTS, K., MOHLBERG, H., BLUDAU, S. & ZILLES, K. 2020. Julich-Brain: A 3D probabilistic atlas of the human brain's cytoarchitecture. Science, 369, 988-992. DOI:10.1126/science.abb4588 AMUNTS, K., SCHLEICHER, A., BÜRGEL, U., MOHLBERG, H., UYLINGS, H. B. & ZILLES, K. 1999. Broca's region revisited: cytoarchitecture and intersubject variability. J Comp Neurol, 412, 319-41. DOI:10.1002/(sici)1096-9861(19990920)412:2<319::aid-cne10>3.0.co;2-7 AMUNTS, K., SCHLEICHER, A. & ZILLES, K. 2007b. Cytoarchitecture of the cerebral cortex—More than localization. NeuroImage, 37, 1061-1065. DOI:10.1016/j.neuroimage.2007.02.037 AMUNTS, K., WEISS, P. H., MOHLBERG, H., PIEPERHOFF, P., EICKHOFF, S., GURD, J. M., MARSHALL, J. C., SHAH, N. J., FINK, G. R. & ZILLES, K. 2004. Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—The roles of Brodmann areas 44 and 45. NeuroImage, 22, 42-56. DOI:10.1016/j.neuroimage.2003.12.031 AMUNTS, K. & ZILLES, K. 2007. Multimodaler Atlas des menschlichen Gehirns: Ein Weg zur integrierten Struktur-Funktionsanalyse. e-Neuroforum, 13, 112-121. AMUNTS, K. & ZILLES, K. 2015. Architectonic Mapping of the Human Brain beyond Brodmann. Neuron, 88, 1086-1107. DOI:10.1016/j.neuron.2015.12.001 AXELROD, V. & YOVEL, G. 2013. The challenge of localizing the anterior temporal face area: A possible solution. NeuroImage, 81, 371-380. DOI:10.1016/j.neuroimage.2013.05.015 BAILEY, P. & VON BONIN, G. 1951. The Isocortex of Man. University of Illinois. Urbana. BARTON, J. J. 2008. Structure and function in acquired prosopagnosia: lessons from a series of 10 patients with brain damage. J Neuropsychol, 2, 197-225. DOI:10.1348/174866407x214172 BENTIN, S., ALLISON, T., PUCE, A., PEREZ, E. & MCCARTHY, G. 1996. Electrophysiological Studies of Face Perception in Humans. J Cogn Neurosci, 8, 551-565. DOI:10.1162/jocn.1996.8.6.551 BINNEY, R. J., EMBLETON, K. V., JEFFERIES, E., PARKER, G. J. & RALPH, M. A. 2010. The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. Cereb Cortex, 20, 2728-38. DOI:10.1093/cercor/bhq019 BLUDAU, S., EICKHOFF, S. B., MOHLBERG, H., CASPERS, S., LAIRD, A. R., FOX, P. T., SCHLEICHER, A., ZILLES, K. & AMUNTS, K. 2014. Cytoarchitecture, probability maps and functions of the human frontal pole. Neuroimage, 93 Pt 2, 260-75. DOI:10.1016/j.neuroimage.2013.05.052 BLUDAU, S., MUHLEISEN, T. W., EICKHOFF, S. B., HAWRYLYCZ, M. J., CICHON, S. & AMUNTS, K. 2018. Integration of transcriptomic and cytoarchitectonic data implicates a role for MAOA and TAC1 in the limbic-cortical network. Brain Struct Funct, 223, 2335-2342. DOI:10.1007/s00429-018-1620-6 BOUVIER, S. E. & ENGEL, S. A. 2006. Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cereb Cortex, 16, 183-91. DOI:10.1093/cercor/bhi096 BRANDSTETTER, A., BOLAKHRIF, N., SCHIFFER, C., DICKSCHEID, T., MOHLBERG, H. & AMUNTS, K. Deep learning-supported cytoarchitectonic mapping of the human lateral geniculate body in the BigBrain. Brain-Inspired Computing: 4th International Workshop, BrainComp 2019, Cetraro, Italy, July 15–19, 2019, Revised Selected Papers 4, 2021. Springer International Publishing, 22-32. BRODMANN, K. 1909. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues, Leipzig, Barth. BRUNO, A., BLUDAU, S., MOHLBERG, H. & AMUNTS, K. 2022. Cytoarchitecture, intersubject variability, and 3D mapping of four new areas of the human anterior prefrontal cortex. Front Neuroanat, 16, 915877. DOI:10.3389/fnana.2022.915877 CASPERS, J., PALOMERO-GALLAGHER, N., CASPERS, S., SCHLEICHER, A., AMUNTS, K. & ZILLES, K. 2015. Receptor architecture of visual areas in the face and word-form recognition region of the posterior fusiform gyrus. Brain Struct Funct, 220, 205-19. DOI:10.1007/s00429-013-0646-z CASPERS, J., ZILLES, K., EICKHOFF, S. B., SCHLEICHER, A., MOHLBERG, H. & AMUNTS, K. 2013. Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus. Brain Struct Funct, 218, 511-26. DOI:10.1007/s00429-012-0411-8 CASPERS, S., GEYER, S., SCHLEICHER, A., MOHLBERG, H., AMUNTS, K. & ZILLES, K. 2006. The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage, 33, 430-48. DOI:10.1016/j.neuroimage.2006.06.054 CHAN, A. W. & DOWNING, P. E. 2011. Faces and eyes in human lateral prefrontal cortex. Front Hum Neurosci, 5, 51. DOI:10.3389/fnhum.2011.00051 COHEN, A. L., SOUSSAND, L., CORROW, S. L., MARTINAUD, O., BARTON, J. J. S. & FOX, M. D. 2019. Looking beyond the face area: lesion network mapping of prosopagnosia. Brain, 142, 3975-3990. DOI:10.1093/brain/awz332 COHEN, L. & DEHAENE, S. 2004. Specialization within the ventral stream: the case for the visual word form area. Neuroimage, 22, 466-76. DOI:10.1016/j.neuroimage.2003.12.049 COHEN, L., DEHAENE, S., NACCACHE, L., LEHÉRICY, S., DEHAENE-LAMBERTZ, G., HÉNAFF, M. A. & MICHEL, F. 2000. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain, 123 ( Pt 2), 291-307. DOI:10.1093/brain/123.2.291 DADI, K., VAROQUAUX, G., MACHLOUZARIDES-SHALIT, A., GORGOLEWSKI, K. J., WASSERMANN, D., THIRION, B. & MENSCH, A. 2020. Fine-grain atlases of functional modes for fMRI analysis. Neuroimage, 221, 117126. DOI:10.1016/j.neuroimage.2020.117126 DAMASIO, A. R., DAMASIO, H. & VAN HOESEN, G. W. 1982. Prosopagnosia: anatomic basis and behavioral mechanisms. Neurology, 32, 331-41. DOI:10.1212/wnl.32.4.331 DAVIES-THOMPSON, J., PANCAROGLU, R. & BARTON, J. 2014. Acquired prosopagnosia: structural basis and processing impairments. Front Biosci (Elite Ed), 6, 159-74. DOI:10.2741/e699 DEVLIN, J. T., RUSSELL, R. P., DAVIS, M. H., PRICE, C. J., WILSON, J., MOSS, H. E., MATTHEWS, P. M. & TYLER, L. K. 2000. Susceptibility-induced loss of signal: comparing PET and fMRI on a semantic task. Neuroimage, 11, 589-600. DOI:10.1006/nimg.2000.0595 DICARLO, J. J., ZOCCOLAN, D. & RUST, N. C. 2012. How does the brain solve visual object recognition? Neuron, 73, 415-34. DOI:10.1016/j.neuron.2012.01.010 DIETERMANN, M., MOHLBERG, H., BLUDAU, S. & AMUNTS, K. 2025a. Probabilistic cytoarchitectonic map of Area FG5 (FusG) (v7.0) [Data set]. EBRAINS. DOI:10.25493/N8GG-QPV DIETERMANN, M., MOHLBERG, H., BLUDAU, S. & AMUNTS, K. 2025b. Probabilistic cytoarchitectonic map of Area OTS1 (OTS) (v7.0) [Data set] EBRAINS. DOI:10.25493/4ZAW-SFU DUCHAINE, B. & YOVEL, G. 2015. A Revised Neural Framework for Face Processing. Annu Rev Vis Sci, 1, 393-416. DOI:10.1146/annurev-vision-082114-035518 EICKHOFF, S., WALTERS, N. B., SCHLEICHER, A., KRIL, J., EGAN, G. F., ZILLES, K., WATSON, J. D. & AMUNTS, K. 2005a. High-resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex. Hum Brain Mapp, 24, 206-15. DOI:10.1002/hbm.20082 EICKHOFF, S. B., STEPHAN, K. E., MOHLBERG, H., GREFKES, C., FINK, G. R., AMUNTS, K. & ZILLES, K. 2005b. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage, 25, 1325-35. DOI:10.1016/j.neuroimage.2004.12.034 EPSTEIN, R., HARRIS, A., STANLEY, D. & KANWISHER, N. 1999. The parahippocampal place area: recognition, navigation, or encoding? Neuron, 23, 115-25. DOI:10.1016/s0896-6273(00)80758-8 EVANS, A. C., JANKE, A. L., COLLINS, D. L. & BAILLET, S. 2012. Brain templates and atlases. Neuroimage, 62, 911-22. DOI:10.1016/j.neuroimage.2012.01.024 FAIRHALL, S. L. & ISHAI, A. 2007. Effective connectivity within the distributed cortical network for face perception. Cereb Cortex, 17, 2400-6. DOI:10.1093/cercor/bhl148 FEINBERG, D. A. & YACOUB, E. 2012. The rapid development of high speed, resolution and precision in fMRI. NeuroImage, 62, 720-725. DOI:10.1016/j.neuroimage.2012.01.049 FINZI, D., GOMEZ, J., NORDT, M., REZAI, A. A., POLTORATSKI, S. & GRILL-SPECTOR, K. 2021. Differential spatial computations in ventral and lateral face-selective regions are scaffolded by structural connections. Nat Commun, 12, 2278. DOI:10.1038/s41467-021-22524-2 FISCHL, B., RAJENDRAN, N., BUSA, E., AUGUSTINACK, J., HINDS, O., YEO, B. T., MOHLBERG, H., AMUNTS, K. & ZILLES, K. 2008. Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex, 18, 1973-80. DOI:10.1093/cercor/bhm225 FOSTER, C., ZHAO, M., BOLKART, T., BLACK, M. J., BARTELS, A. & BÜLTHOFF, I. 2022. The neural coding of face and body orientation in occipitotemporal cortex. Neuroimage, 246, 118783. DOI:10.1016/j.neuroimage.2021.118783 FREIWALD, W. A. 2020. The neural mechanisms of face processing: cells, areas, networks, and models. Curr Opin Neurobiol, 60, 184-191. DOI:10.1016/j.conb.2019.12.007 GAUTHIER, I., SKUDLARSKI, P., GORE, J. C. & ANDERSON, A. W. 2000a. Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci, 3, 191-7. DOI:10.1038/72140 GAUTHIER, I. & TARR, M. J. 2016. Visual Object Recognition: Do We (Finally) Know More Now Than We Did? Annu Rev Vis Sci, 2, 377-396. DOI:10.1146/annurev-vision-111815-114621 GAUTHIER, I., TARR, M. J., MOYLAN, J., SKUDLARSKI, P., GORE, J. C. & ANDERSON, A. W. 2000b. The fusiform "face area" is part of a network that processes faces at the individual level. J Cogn Neurosci, 12, 495-504. DOI:10.1162/089892900562165 GLASSER, M. F. & VAN ESSEN, D. C. 2011. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci, 31, 11597-616. DOI:10.1523/jneurosci.2180-11.2011 GOULAS, A., ZILLES, K. & HILGETAG, C. C. 2018. Cortical Gradients and Laminar Projections in Mammals. Trends Neurosci, 41, 775-788. DOI:10.1016/j.tins.2018.06.003 GRILL-SPECTOR, K. 2003. The neural basis of object perception. Curr Opin Neurobiol, 13, 159-66. DOI:10.1016/s0959-4388(03)00040-0 GRILL-SPECTOR, K. & WEINER, K. S. 2014. The functional architecture of the ventral temporal cortex and its role in categorization. Nat Rev Neurosci, 15, 536-48. DOI:10.1038/nrn3747 GRILL-SPECTOR, K., WEINER, K. S., KAY, K. & GOMEZ, J. 2017. The Functional Neuroanatomy of Human Face Perception. Annu Rev Vis Sci, 3, 167-196. DOI:10.1146/annurev-vision-102016-061214 GUEVARA, M., ROMÁN, C., HOUENOU, J., DUCLAP, D., POUPON, C., MANGIN, J. F. & GUEVARA, P. 2017. Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography. Neuroimage, 147, 703-725. DOI:10.1016/j.neuroimage.2016.11.066 HAGEN, S., JACQUES, C., MAILLARD, L., COLNAT-COULBOIS, S., ROSSION, B. & JONAS, J. 2020. Spatially Dissociated Intracerebral Maps for Face- and House-Selective Activity in the Human Ventral Occipito-Temporal Cortex. Cereb Cortex, 30, 4026-4043. DOI:10.1093/cercor/bhaa022 HOFFMAN, E. A. & HAXBY, J. V. 2000. Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat Neurosci, 3, 80-4. DOI:10.1038/71152 HÖMKE, L., AMUNTS, K., BÖNIG, L., FRETZ, C., BINKOFSKI, F., ZILLES, K. & WEDER, B. 2009. Analysis of lesions in patients with unilateral tactile agnosia using cytoarchitectonic probabilistic maps. Hum Brain Mapp, 30, 1444-56. DOI:10.1002/hbm.20617 HUSCHKE, E. 1854. Schaedel, Hirn und Seele des Menschen und der Thiere nach Alter, Geschlecht und Race: dargestellt nach neuen Methoden und Untersuchungen, Mauke. JACQUES, C., JONAS, J., COLNAT-COULBOIS, S., MAILLARD, L. & ROSSION, B. 2022. Low and high frequency intracranial neural signals match in the human associative cortex. Elife, 11. DOI:10.7554/eLife.76544 JENKINSON, M., BECKMANN, C. F., BEHRENS, T. E., WOOLRICH, M. W. & SMITH, S. M. 2012. FSL. Neuroimage, 62, 782-90. DOI:10.1016/j.neuroimage.2011.09.015 JONAS, J., DESCOINS, M., KOESSLER, L., COLNAT-COULBOIS, S., SAUVÉE, M., GUYE, M., VIGNAL, J. P., VESPIGNANI, H., ROSSION, B. & MAILLARD, L. 2012. Focal electrical intracerebral stimulation of a face-sensitive area causes transient prosopagnosia. Neuroscience, 222, 281-8. DOI:10.1016/j.neuroscience.2012.07.021 JONAS, J., JACQUES, C., LIU-SHUANG, J., BRISSART, H., COLNAT-COULBOIS, S., MAILLARD, L. & ROSSION, B. 2016. A face-selective ventral occipito-temporal map of the human brain with intracerebral potentials. Proc Natl Acad Sci U S A, 113, E4088-97. DOI:10.1073/pnas.1522033113 JONAS, J. & ROSSION, B. 2021. Intracerebral electrical stimulation to understand the neural basis of human face identity recognition. European Journal of Neuroscience, 54, 4197-4211. DOI:10.1111/ejn.15235 JONAS, J., ROSSION, B., BRISSART, H., FRISMAND, S., JACQUES, C., HOSSU, G., COLNAT-COULBOIS, S., VESPIGNANI, H., VIGNAL, J. P. & MAILLARD, L. 2015. Beyond the core face-processing network: Intracerebral stimulation of a face-selective area in the right anterior fusiform gyrus elicits transient prosopagnosia. Cortex, 72, 140-155. DOI:10.1016/j.cortex.2015.05.026 JONES, S. E., BUCHBINDER, B. R. & AHARON, I. 2000. Three-dimensional mapping of cortical thickness using Laplace's equation. Hum Brain Mapp, 11, 12-32. DOI:10.1002/1097-0193(200009)11:1<12::aid-hbm20>3.0.co;2-k KANWISHER, N., MCDERMOTT, J. & CHUN, M. M. 1997. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci, 17, 4302-11. DOI:10.1523/jneurosci.17-11-04302.1997 KESSLER, R., RUSCH, K. M., WENDE, K. C., SCHUSTER, V. & JANSEN, A. 2021. Revisiting the effective connectivity within the distributed cortical network for face perception. Neuroimage: Reports, 1, 100045. DOI:10.1016/j.ynirp.2021.100045 KIWITZ, K., BRANDSTETTER, A., SCHIFFER, C., BLUDAU, S., MOHLBERG, H., OMIDYEGANEH, M., MASSICOTTE, P. & AMUNTS, K. 2022. Cytoarchitectonic Maps of the Human Metathalamus in 3D Space. Front Neuroanat, 16, 837485. DOI:10.3389/fnana.2022.837485 KONKLE, T. & OLIVA, A. 2012. A Real-World Size Organization of Object Responses in Occipitotemporal Cortex. Neuron, 74, 1114-1124. DOI:10.1016/j.neuron.2012.04.036 KRAUSE, D. & THÖRNIG, P. 2018. JURECA: modular supercomputer at Jülich Supercomputing Centre. Journal of large-scale research facilities JLSRF, 4, A132-A132. KRAVITZ, D. J., SALEEM, K. S., BAKER, C. I., UNGERLEIDER, L. G. & MISHKIN, M. 2013. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci, 17, 26-49. DOI:10.1016/j.tics.2012.10.011 KUSKOWSKI, M. A. & PARDO, J. V. 1999. The role of the fusiform gyrus in successful encoding of face stimuli. Neuroimage, 9, 599-610. DOI:10.1006/nimg.1999.0442 LACADIE, C. M., FULBRIGHT, R. K., RAJEEVAN, N., CONSTABLE, R. T. & PAPADEMETRIS, X. 2008. More accurate Talairach coordinates for neuroimaging using non-linear registration. Neuroimage, 42, 717-25. DOI:10.1016/j.neuroimage.2008.04.240 LACHAUX, J. P., RUDRAUF, D. & KAHANE, P. 2003. Intracranial EEG and human brain mapping. Journal of Physiology-Paris, 97, 613-628. DOI:10.1016/j.jphysparis.2004.01.018 LERMA-USABIAGA, G., CARREIRAS, M. & PAZ-ALONSO, P. M. 2018. Converging evidence for functional and structural segregation within the left ventral occipitotemporal cortex in reading. Proc Natl Acad Sci U S A, 115, E9981-e9990. DOI:10.1073/pnas.1803003115 LORENZ, S., WEINER, K. S., CASPERS, J., MOHLBERG, H., SCHLEICHER, A., BLUDAU, S., EICKHOFF, S. B., GRILL-SPECTOR, K., ZILLES, K. & AMUNTS, K. 2017. Two New Cytoarchitectonic Areas on the Human Mid-Fusiform Gyrus. Cereb Cortex, 27, 373-385. DOI:10.1093/cercor/bhv225 MAHALANOBIS, P. C., MAJUMDAR, D. N., YEATTS, M. W. M. & RAO, C. R. 1949. Anthropometric Survey of the United Provinces, 1941: A Statistical Study. Sankhyā: The Indian Journal of Statistics Vol. 9, Parts 2 & 3, 89-324. MALACH, R., LEVY, I. & HASSON, U. 2002. The topography of high-order human object areas. Trends Cogn Sci, 6, 176-184. DOI:10.1016/s1364-6613(02)01870-3 MALIKOVIC, A., AMUNTS, K., SCHLEICHER, A., MOHLBERG, H., EICKHOFF, S. B., WILMS, M., PALOMERO-GALLAGHER, N., ARMSTRONG, E. & ZILLES, K. 2007. Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. Cereb Cortex, 17, 562-74. DOI:10.1093/cercor/bhj181 MALIKOVIC, A., AMUNTS, K., SCHLEICHER, A., MOHLBERG, H., KUJOVIC, M., PALOMERO-GALLAGHER, N., EICKHOFF, S. B. & ZILLES, K. 2016. Cytoarchitecture of the human lateral occipital cortex: mapping of two extrastriate areas hOc4la and hOc4lp. Brain Struct Funct, 221, 1877-97. DOI:10.1007/s00429-015-1009-8 MEADOWS, J. C. 1974. The anatomical basis of prosopagnosia. Journal of Neurology, Neurosurgery & Psychiatry, 37, 489-501. DOI:10.1136/jnnp.37.5.489 MERKER, B. 1983. Silver staining of cell bodies by means of physical development. J Neurosci Methods, 9, 235-41. DOI:10.1016/0165-0270(83)90086-9 MION, M., PATTERSON, K., ACOSTA-CABRONERO, J., PENGAS, G., IZQUIERDO-GARCIA, D., HONG, Y. T., FRYER, T. D., WILLIAMS, G. B., HODGES, J. R. & NESTOR, P. J. 2010. What the left and right anterior fusiform gyri tell us about semantic memory. Brain, 133, 3256-68. DOI:10.1093/brain/awq272 NASR, S., LIU, N., DEVANEY, K. J., YUE, X., RAJIMEHR, R., UNGERLEIDER, L. G. & TOOTELL, R. B. 2011. Scene-selective cortical regions in human and nonhuman primates. J Neurosci, 31, 13771-85. DOI:10.1523/jneurosci.2792-11.2011 NASR, S. & TOOTELL, R. B. 2012. Role of fusiform and anterior temporal cortical areas in facial recognition. Neuroimage, 63, 1743-53. DOI:10.1016/j.neuroimage.2012.08.031 OJEMANN, J. G., AKBUDAK, E., SNYDER, A. Z., MCKINSTRY, R. C., RAICHLE, M. E. & CONTURO, T. E. 1997. Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage, 6, 156-67. DOI:10.1006/nimg.1997.0289 OMIDYEGANEH, M., LEPAGE, C., WAGSTYL, K., SPITZER, H., DICKSCHEID, T., AMUNTS, K. & EVANS, A. Non-linear registration of 1μm Histology Sections into 3D 20μm BigBrain Space. 26th Annual Meeting of the Organization for Human Brain Mapping, 2020. PAQUOLA, C., ROYER, J., LEWIS, L. B., LEPAGE, C., GLATARD, T., WAGSTYL, K., DEKRAKER, J., TOUSSAINT, P. J., VALK, S. L., COLLINS, L., KHAN, A. R., AMUNTS, K., EVANS, A. C., DICKSCHEID, T. & BERNHARDT, B. 2021. The BigBrainWarp toolbox for integration of BigBrain 3D histology with multimodal neuroimaging. Elife, 10. DOI:10.7554/eLife.70119 PEELEN, M. V. & DOWNING, P. E. 2005. Selectivity for the Human Body in the Fusiform Gyrus. Journal of Neurophysiology, 93, 603-608. DOI:10.1152/jn.00513.2004 PERSICHETTI, A. S., DENNING, J. M., GOTTS, S. J. & MARTIN, A. 2021. A Data-Driven Functional Mapping of the Anterior Temporal Lobes. J Neurosci, 41, 6038-6049. DOI:10.1523/jneurosci.0456-21.2021 PINSK, M. A., ARCARO, M., WEINER, K. S., KALKUS, J. F., INATI, S. J., GROSS, C. G. & KASTNER, S. 2009. Neural Representations of Faces and Body Parts in Macaque and Human Cortex: A Comparative fMRI Study. Journal of Neurophysiology, 101, 2581-2600. DOI:10.1152/jn.91198.2008 PITCHER, D., DILKS, D. D., SAXE, R. R., TRIANTAFYLLOU, C. & KANWISHER, N. 2011. Differential selectivity for dynamic versus static information in face-selective cortical regions. Neuroimage, 56, 2356-63. DOI:10.1016/j.neuroimage.2011.03.067 PRICE, C. J. & DEVLIN, J. T. 2011. The interactive account of ventral occipitotemporal contributions to reading. Trends Cogn Sci, 15, 246-53. DOI:10.1016/j.tics.2011.04.001 PUCE, A., ALLISON, T. & MCCARTHY, G. 1999. Electrophysiological studies of human face perception. III: Effects of top-down processing on face-specific potentials. Cereb Cortex, 9, 445-58. DOI:10.1093/cercor/9.5.445 PYLES, J. A., VERSTYNEN, T. D., SCHNEIDER, W. & TARR, M. J. 2013. Explicating the face perception network with white matter connectivity. PLoS One, 8, e61611. DOI:10.1371/journal.pone.0061611 RAJIMEHR, R., YOUNG, J. C. & TOOTELL, R. B. 2009. An anterior temporal face patch in human cortex, predicted by macaque maps. Proc Natl Acad Sci U S A, 106, 1995-2000. DOI:10.1073/pnas.0807304106 RALPH, M. A., JEFFERIES, E., PATTERSON, K. & ROGERS, T. T. 2017. The neural and computational bases of semantic cognition. Nat Rev Neurosci, 18, 42-55. DOI:10.1038/nrn.2016.150 RETZIUS, G. 1896. Das Menschenhirn: Studien in der makroskopischen Morphologie, Stockholm, Kgl Burchdr. P. A. Norstedt und Söner. ROSE, M. 1927. Gyrus limbicus anterior and Regio regrosplenialis (Cortex holoprototychos quinquestratificatus): Vergleichende Architektonik bei Tier und Mensch. Journal für Psychologie und Neurologie, 35, 65-173. ROSE, M. 1928. Die Inselrinden des Menschen und der Tiere, Journal für Psychologie und Neurologie. ROSSION, B. 2022. What makes us human? Face identity recognition. The Routledge Handbook of Semiosis and the Brain. Routledge. ROSSION, B., HANSEEUW, B. & DRICOT, L. 2012. Defining face perception areas in the human brain: a large-scale factorial fMRI face localizer analysis. Brain Cogn, 79, 138-57. DOI:10.1016/j.bandc.2012.01.001 ROSSION, B., JACQUES, C. & JONAS, J. 2024. The anterior fusiform gyrus: The ghost in the cortical face machine. Neuroscience & Biobehavioral Reviews, 158, 105535. DOI:10.1016/j.neubiorev.2024.105535 ROSSION, B. & LOCHY, A. 2022. Is human face recognition lateralized to the right hemisphere due to neural competition with left-lateralized visual word recognition? A critical review. Brain Structure and Function, 227, 599-629. DOI:10.1007/s00429-021-02370-0 ROSSION, B., SCHILTZ, C., ROBAYE, L., PIRENNE, D. & CROMMELINCK, M. 2001. How does the brain discriminate familiar and unfamiliar faces?: a PET study of face categorical perception. J Cogn Neurosci, 13, 1019-34. DOI:10.1162/089892901753165917 ROSSION, B., TORFS, K., JACQUES, C. & LIU-SHUANG, J. 2015. Fast periodic presentation of natural images reveals a robust face-selective electrophysiological response in the human brain. J Vis, 15, 15.1.18. DOI:10.1167/15.1.18 ROTTSCHY, C., EICKHOFF, S. B., SCHLEICHER, A., MOHLBERG, H., KUJOVIC, M., ZILLES, K. & AMUNTS, K. 2007. Ventral visual cortex in humans: cytoarchitectonic mapping of two extrastriate areas. Hum Brain Mapp, 28, 1045-59. DOI:10.1002/hbm.20348 SARKISSOV, S., FILIMONOFF, I., KONONOWA, E., PREOBRASCHENSKAJA, I. & KUKUEW, L. 1955. Atlas of the cytoarchitectonics of the human cerebral cortex. Moscow: Medgiz, 20. SCHIFFER, C., SPITZER, H., KIWITZ, K., UNGER, N., WAGSTYL, K., EVANS, A. C., HARMELING, S., AMUNTS, K. & DICKSCHEID, T. 2021. Convolutional neural networks for cytoarchitectonic brain mapping at large scale. NeuroImage, 240, 118327. DOI:10.1016/j.neuroimage.2021.118327 SCHLEICHER, A., AMUNTS, K., GEYER, S., KOWALSKI, T., SCHORMANN, T., PALOMERO-GALLAGHER, N. & ZILLES, K. 2000. A stereological approach to human cortical architecture: identification and delineation of cortical areas. Journal of Chemical Neuroanatomy, 20, 31-47. DOI:10.1016/S0891-0618(00)00076-4 SCHLEICHER, A., AMUNTS, K., GEYER, S., MOROSAN, P. & ZILLES, K. 1999. Observer-independent method for microstructural parcellation of cerebral cortex: A quantitative approach to cytoarchitectonics. Neuroimage, 9, 165-77. DOI:10.1006/nimg.1998.0385 SCHLEICHER, A., MOROSAN, P., AMUNTS, K. & ZILLES, K. 2009. Quantitative architectural analysis: a new approach to cortical mapping. J Autism Dev Disord, 39, 1568-81. DOI:10.1007/s10803-009-0790-8 SCHLEICHER, A., PALOMERO-GALLAGHER, N., MOROSAN, P., EICKHOFF, S. B., KOWALSKI, T., DE VOS, K., AMUNTS, K. & ZILLES, K. 2005. Quantitative architectural analysis: a new approach to cortical mapping. Anat Embryol (Berl), 210, 373-86. DOI:10.1007/s00429-005-0028-2 SCHLEICHER, A. & ZILLES, K. 1990. A quantitative approach to cytoarchitectonics: analysis of structural inhomogeneities in nervous tissue using an image analyser. J Microsc, 157, 367-81. DOI:10.1111/j.1365-2818.1990.tb02971.x SCHOBER, M., AXER, M., HUYSEGOMS, M., SCHUBERT, N., AMUNTS, K. & DICKSCHEID, T. Morphing image masks for stacked histological sections using laplace’s equation. Bildverarbeitung für die Medizin 2016: Algorithmen–Systeme–Anwendungen, 2016. Springer, 146-151. SCHWARZLOSE, R. F., BAKER, C. I. & KANWISHER, N. 2005. Separate face and body selectivity on the fusiform gyrus. J Neurosci, 25, 11055-9. DOI:10.1523/jneurosci.2621-05.2005 SHIMOTAKE, A., MATSUMOTO, R., UENO, T., KUNIEDA, T., SAITO, S., HOFFMAN, P., KIKUCHI, T., FUKUYAMA, H., MIYAMOTO, S., TAKAHASHI, R., IKEDA, A. & LAMBON RALPH, M. A. 2015. Direct Exploration of the Role of the Ventral Anterior Temporal Lobe in Semantic Memory: Cortical Stimulation and Local Field Potential Evidence From Subdural Grid Electrodes. Cereb Cortex, 25, 3802-17. DOI:10.1093/cercor/bhu262 STENGER, S., BLUDAU, S., MOHLBERG, H. & AMUNTS, K. 2022. Cytoarchitectonic parcellation and functional characterization of four new areas in the caudal parahippocampal cortex. Brain Struct Funct, 227, 1439-1455. DOI:10.1007/s00429-021-02441-2 STEPHAN, H. 1975. Allocortex. Berlin: Springer, 35. TSAO, D. Y., MOELLER, S. & FREIWALD, W. A. 2008. Comparing face patch systems in macaques and humans. Proceedings of the National Academy of Sciences, 105, 19514-19519. DOI:doi:10.1073/pnas.0809662105 UNGERLEIDER, L. G. & HAXBY, J. V. 1994. ‘What’and ‘where’in the human brain. Current opinion in neurobiology, 4, 157-165. UYLINGS, H. B., ZILLES, K. & RAJKOWSKA, G. 1999. Optimal staining methods for delineation of cortical areas and neuron counts in human brains. Neuroimage, 9, 439-45. DOI:10.1006/nimg.1999.0417 VOGT, C. & VOGT, O. 1919. Allgemeinere Ergebnisse unserer Hirnforschung, Verlag von J. A. Barth. VOLFART, A., YAN, X., MAILLARD, L., COLNAT-COULBOIS, S., HOSSU, G., ROSSION, B. & JONAS, J. 2022. Intracerebral electrical stimulation of the right anterior fusiform gyrus impairs human face identity recognition. Neuroimage, 250, 118932. DOI:10.1016/j.neuroimage.2022.118932 VON BONIN, G. & BAILEY, P. 1961. Pattern of the cerebral isocortex, S. Karger. VON ECONOMO, C. & KOSKINAS, G. N. 1925. Die Cytoarchitektonik der Hirnrinde des erwachsen Menschen. [Vol. 1], Vienna. WANDELL, B. A., RAUSCHECKER, A. M. & YEATMAN, J. D. 2012. Learning to see words. Annu Rev Psychol, 63, 31-53. DOI:10.1146/annurev-psych-120710-100434 WARD, J. H. 1963. Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58, 236-244. DOI:10.1080/01621459.1963.10500845 WEINER, K. S. 2019. The Mid-Fusiform Sulcus (sulcus sagittalis gyri fusiformis). Anat Rec (Hoboken), 302, 1491-1503. DOI:10.1002/ar.24041 WEINER, K. S., BARNETT, M. A., WITTHOFT, N., GOLARAI, G., STIGLIANI, A., KAY, K. N., GOMEZ, J., NATU, V. S., AMUNTS, K., ZILLES, K. & GRILL-SPECTOR, K. 2018. Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation. Neuroimage, 170, 373-384. DOI:10.1016/j.neuroimage.2017.04.040 WEINER, K. S., GOLARAI, G., CASPERS, J., CHUAPOCO, M. R., MOHLBERG, H., ZILLES, K., AMUNTS, K. & GRILL-SPECTOR, K. 2014. The mid-fusiform sulcus: a landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex. Neuroimage, 84, 453-65. DOI:10.1016/j.neuroimage.2013.08.068 WEINER, K. S. & GRILL-SPECTOR, K. 2010. Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. NeuroImage, 52, 1559-1573. DOI:10.1016/j.neuroimage.2010.04.262 WEINER, K. S. & ZILLES, K. 2016. The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia, 83, 48-62. DOI:10.1016/j.neuropsychologia.2015.06.033 WHITE, A. L., PALMER, J., BOYNTON, G. M. & YEATMAN, J. D. 2019. Parallel spatial channels converge at a bottleneck in anterior word-selective cortex. Proc Natl Acad Sci U S A, 116, 10087-10096. DOI:10.1073/pnas.1822137116 WISER, A. K., ANDREASEN, N., O'LEARY, D. S., CRESPO-FACORRO, B., BOLES-PONTO, L. L., WATKINS, G. L. & HICHWA, R. D. 2000. Novel vs. well-learned memory for faces: a positron emission tomography study. J Cogn Neurosci, 12, 255-66. DOI:10.1162/089892900562084 WREE, A., SCHLEICHER, A. & ZILLES, K. 1982. Estimation of volume fractions in nervous tissue with an image analyzer. J Neurosci Methods, 6, 29-43. DOI:10.1016/0165-0270(82)90014-0 YEATMAN, J. D. & WHITE, A. L. 2021. Reading: The Confluence of Vision and Language. Annu Rev Vis Sci, 7, 487-517. DOI:10.1146/annurev-vision-093019-113509 ZHEN, Z., YANG, Z., HUANG, L., KONG, X. Z., WANG, X., DANG, X., HUANG, Y., SONG, Y. & LIU, J. 2015. Quantifying interindividual variability and asymmetry of face-selective regions: a probabilistic functional atlas. Neuroimage, 113, 13-25. DOI:10.1016/j.neuroimage.2015.03.010 ZILLES, K. & AMUNTS, K. 2009. Receptor mapping: architecture of the human cerebral cortex. Current Opinion in Neurology, 22, 331-339. DOI:10.1097/WCO.0b013e32832d95db ZILLES, K., ARMSTRONG, E., SCHLEICHER, A. & KRETSCHMANN, H. J. 1988. The human pattern of gyrification in the cerebral cortex. Anat Embryol (Berl), 179, 173-9. DOI:10.1007/bf00304699 ZILLES, K., PALOMERO-GALLAGHER, N. & AMUNTS, K. 2015a. Cytoarchitecture and Maps of the Human Cerebral Cortex. In: TOGA, A. W. (ed.) Brain Mapping. Waltham: Academic Press. DOI:10.1016/B978-0-12-397025-1.00207-4 ZILLES, K., PALOMERO-GALLAGHER, N. & AMUNTS, K. 2015b. Myeloarchitecture and Maps of the Cerebral Cortex. In: TOGA, A. W. (ed.) Brain Mapping. Waltham: Academic Press. DOI:10.1016/B978-0-12-397025-1.00209-8 7 | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät » Institute » C. u. O. Vogt-Institut für Hirnforschung | |||||||
Dokument erstellt am: | 17.06.2025 | |||||||
Dateien geändert am: | 17.06.2025 | |||||||
Promotionsantrag am: | 10.01.2025 | |||||||
Datum der Promotion: | 10.06.2025 |