Dokument: Arretierung embryonaler Rattenkardiomyozyten induziert den Titin-Turnover unter Beteilung intrazellulärer Systeme der Protein-Qualitätskontrolle
Titel: | Arretierung embryonaler Rattenkardiomyozyten induziert den Titin-Turnover unter Beteilung intrazellulärer Systeme der Protein-Qualitätskontrolle | |||||||
Weiterer Titel: | Arrest of embryonic rat cardiomyocytes induces titin turnover involving intracellular protein quality control systems | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=69854 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20250616-082016-7 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Weber, Sina [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Martina Krüger [Gutachter] PD Dr. Doreen Floß [Gutachter] Kötter, Sebastian [Beitragender] | |||||||
Stichwörter: | Titin, Proteinqualitätskontrolle, Proteasom, Ubiquitin, Autophagie, Myokard, Sarkomer | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Das Muskelprotein Titin ist mit einer Größe von 3-3,7 MDa das größte bekannte Protein. Lokalisiert ist es innerhalb der kleinsten kontraktilen Einheit der quergestreiften Herz- und Skelettmuskulatur, dem Sarkomer. Die zwei im Herzen vorkommenden Isoformen sind die längere und elastischere Isoform N2BA und die kürzere und steifere Isoform N2B. Während der embryonalen Entwicklung wird zunächst eine embryonale N2BA-Isoform exprimiert, welche postnatal durch adulte N2BA- und N2B-Isoformen ersetzt wird. Der Abbau von Titin stellt aufgrund seiner festen Verankerung im Sarkomer und der Größe des Proteins eine komplexe Aufgabe für die Zelle dar. Die an diesem Prozess beteiligten molekularen Mechanismen sind noch nicht vollständig verstanden und waren daher Gegenstand dieser Arbeit. In vorherigen Arbeiten konnte gezeigt werden, dass den intrazellulären Abbausystemen, das Ubiquitin-Proteasom-System (UPS) und die Autophagie, hierbei eine entscheidende Rolle zukommt, weshalb wir deren Beteiligung am Abbau Titins untersuchten. Indem wir spontan kontrahierende embryonale Rattenkardiomyozyten durch Kultivierung Ansätzen mit KCL,- und Blebbistatin-versetztem Nährmedien mechanisch arretierten, sollte ein durch Nicht-Nutzung beschleunigter Abbau des kontraktilen Apparats erreicht werden. So konnten wir zeigen, dass das Titin-Degradationsprodukt in arretierten Zellen vermehrt anfällt und das Titin bevorzugt gegenüber anderen Sarkomerproteinen abgebaut wird. Wir fertigten biochemische Analysen verschiedener Autophagie- und Proteasomenmarker-, sowie Marker beteiligter Signaltransduktionswege an und analysierten den Ubiquitinierungsstatus Titins über eine Kultivierungsdauer von 15 Tagen. Die Arretierung der Zellen ging mit vermehrter Ubiquitinierung Titins und mit einem beschleunigten Isoformen-switch einher. Es konnte eine Verringerung der Aktivität proteasomaler Enzyme gemessen werden, während es zu einem Anstieg eines proteasomalen Markerproteins kam. Da wir einen sequenziellen Abbau der verschiedenen Titindomänen vermuteten, analysierten wir die Strukturveränderung der Zellen, indem wir Immunfluoreszenzfärbungen anfertigten. Hier zeigte sich kein klares Bild einer sequenziellen Degradation. Zusammenfassend konnten wir nachweisen, dass durch die Arretierung der kontraktilen Zellen der Titinturnover induziert werden kann und es zu einem beschleunigten Isoformen-switch kommt. Hierdurch erlangen die Zellen vorzeitig ihre adulte Isoformenkomposition. Es kommt weiter zu einem Anstieg ubiquitinierten Titins, was auf eine Beteiligung der intrazellulären Abbausystemen hinweist.With its size of 3-3,7 MDa, the muscle protein Titin is the largest known protein in humans. It is localised within the smallest contractile unit of the striated heart- and skeletal muscle, the sarcomere in heart muscle tissue. Titin is expressed as two major isoforms- the longer and more compliant isoform N2BA and the shorter and stiffer isoform N2B. During embryonic development a embryonic N2BA isoform is expressed, which is replaced in the perinatal period by adult N2BA- and N2B-isoforms. Due to its massive size and its tight incorporation within the sarcomere Titin degradation is a complex task for the cell and the molecular mechanisms involved in titin turnover are not fully understood. In this work we aimed to investigate the Titin degradation especially regarding the impact of systems of protein quality control. Previous research could already show that the two important systems of protein quality control, the Ubiquitin-Proteasom-System (UPS) and the Autophagy, play central roles in this process. By cultivation of spontaneously contracting embryonic rat cardiomyocytes in KCL- and Blebbistatin-containing media, we achieved the mechanical arrest of the cells. Cardiomyocyte arrest accelerated the degradation of the contractile machinery of the muscle cells, due to the resulting non-usage of the contractile machinery. That way we could show a higher production of the Titin degradation product T2 in arrested cells and a preferred degradation of Titin over other sarcomere proteins. We also investigated different marker proteins for the protein quality control systems autophagy and UPS, along with proteins important for signal transduction. Furthermore, we analysed the ubiquitination levels of Titin, using Western blot analysis. We performed our analysis over a cultivation duration of 15 days and found higher ubiquitination levels of Titin and an accelerated embryonic isoform-switch. Furthermore, we aimed to measure the activity of the proteasome to find out more about the role of the UPS within the degradation process of Titin. For the observed period, we could observe decreased proteasomal enzyme activity in arrested cells, while we could show elevated levels of a proteasomal marker protein. Assuming a sequential degradation of the different Titin domains, we analysed structural alterations in arrested cells, using immunofluorescent staining and microscopy. Here we could not show such a sequential degradation. Summarizing our results, we could show that mechanical arrest, either caused by treating the cells with KCL or Blebbistatin, induces Titin turnover and the Titin isoform-switch. An increase of ubiquitinated titin indicates the involvement of autophagy and the UPS. | |||||||
Quelle: | 1. Pettinato, A.M., F.A. Ladha, and J.T. Hinson, The Cardiac Sarcomere and Cell Cycle. Curr Cardiol Rep, 2022. 24(6): p. 623-630.
2. Henderson, C.A., et al., Overview of the Muscle Cytoskeleton. Compr Physiol, 2017. 7(3): p. 891-944. 3. Boateng, S.Y. and P.H. Goldspink, Assembly and maintenance of the sarcomere night and day. Cardiovasc Res, 2008. 77(4): p. 667-75. 4. Wang, Z., et al., The molecular basis for sarcomere organization in vertebrate skeletal muscle. Cell, 2021. 184(8): p. 2135-2150.e13. 5. Lange, S., E. Ehler, and M. Gautel, From A to Z and back? Multicompartment proteins in the sarcomere. Trends Cell Biol, 2006. 16(1): p. 11-8. 6. Mao, Z. and F. Nakamura, Structure and Function of Filamin C in the Muscle Z-Disc. Int J Mol Sci, 2020. 21(8). 7. Kötter, S., C. Andresen, and M. Krüger, Titin: central player of hypertrophic signaling and sarcomeric protein quality control. Biol Chem, 2014. 395(11): p. 1341-52. 8. Tskhovrebova, L. and J. Trinick, Roles of titin in the structure and elasticity of the sarcomere. J Biomed Biotechnol, 2010. 2010: p. 612482. 9. Bang, M.L., et al., The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res, 2001. 89(11): p. 1065-72. 10. Krüger, M. and W.A. Linke, The giant protein titin: a regulatory node that integrates myocyte signaling pathways. J Biol Chem, 2011. 286(12): p. 9905-12. 11. Gautel, M. and K. Djinović-Carugo, The sarcomeric cytoskeleton: from molecules to motion. J Exp Biol, 2016. 219(Pt 2): p. 135-45. 12. Gautel, M., Cytoskeletal protein kinases: titin and its relations in mechanosensing. Pflugers Arch, 2011. 462(1): p. 119-34. 13. Tskhovrebova, L. and J. Trinick, Titin: properties and family relationships. Nat Rev Mol Cell Biol, 2003. 4(9): p. 679-89. 14. Witt, C.C., et al., Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. Embo j, 2006. 25(16): p. 3843-55. 15. Linke, W.A., et al., Towards a molecular understanding of the elasticity of titin. J Mol Biol, 1996. 261(1): p. 62-71. 16. Guo, W., et al., RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med, 2012. 18(5): p. 766-73. 17. Li, S., et al., Rbm20 regulates titin alternative splicing as a splicing repressor. Nucleic Acids Res, 2013. 41(4): p. 2659-72. 18. Freiburg, A., et al., Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res, 2000. 86(11): p. 1114-21. 19. Ottenheijm, C.A., et al., Tuning passive mechanics through differential splicing of titin during skeletal muscle development. Biophys J, 2009. 97(8): p. 2277-86. 20. Opitz, C.A., et al., Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ Res, 2004. 94(7): p. 967-75. 21. Neagoe, C., et al., Titin isoform switch in ischemic human heart disease. Circulation, 2002. 106(11): p. 1333-41. 22. Loescher, C.M., A.J. Hobbach, and W.A. Linke, Titin (TTN): from molecule to modifications, mechanics, and medical significance. Cardiovasc Res, 2022. 118(14): p. 2903-2918. 23. Ehler, E. and M. Gautel, The sarcomere and sarcomerogenesis. Adv Exp Med Biol, 2008. 642: p. 1-14. 24. Wang, K., R. Ramirez-Mitchell, and D. Palter, Titin is an extraordinarily long, flexible, and slender myofibrillar protein. Proc Natl Acad Sci U S A, 1984. 81(12): p. 3685-9. 25. Yamasaki, R., et al., Protein kinase A phosphorylates titin's cardiac-specific N2B domain and reduces passive tension in rat cardiac myocytes. Circ Res, 2002. 90(11): p. 1181-8. 26. Krüger, M., et al., Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circ Res, 2009. 104(1): p. 87-94. 27. Kötter, S., et al., Differential changes in titin domain phosphorylation increase myofilament stiffness in failing human hearts. Cardiovasc Res, 2013. 99(4): p. 648-56. 28. Hidalgo, C.G., et al., The multifunctional Ca(2+)/calmodulin-dependent protein kinase II delta (CaMKIIδ) phosphorylates cardiac titin's spring elements. J Mol Cell Cardiol, 2013. 54: p. 90-7. 29. Raskin, A., et al., A novel mechanism involving four-and-a-half LIM domain protein-1 and extracellular signal-regulated kinase-2 regulates titin phosphorylation and mechanics. J Biol Chem, 2012. 287(35): p. 29273-84. 30. Hamdani, N., et al., Crucial role for Ca2(+)/calmodulin-dependent protein kinase-II in regulating diastolic stress of normal and failing hearts via titin phosphorylation. Circ Res, 2013. 112(4): p. 664-74. 31. Krüger, M. and W.A. Linke, Titin-based mechanical signalling in normal and failing myocardium. J Mol Cell Cardiol, 2009. 46(4): p. 490-8. 32. Hunter, J.J. and K.R. Chien, Signaling pathways for cardiac hypertrophy and failure. N Engl J Med, 1999. 341(17): p. 1276-83. 33. Kötter, S. and M. Krüger, Protein Quality Control at the Sarcomere: Titin Protection and Turnover and Implications for Disease Development. Front Physiol, 2022. 13: p. 914296. 34. Ciechanover, A. and Y.T. Kwon, Protein Quality Control by Molecular Chaperones in Neurodegeneration. Front Neurosci, 2017. 11: p. 185. 35. Amm, I., T. Sommer, and D.H. Wolf, Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim Biophys Acta, 2014. 1843(1): p. 182-96. 36. Kwon, Y.T. and A. Ciechanover, The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. Trends Biochem Sci, 2017. 42(11): p. 873-886. 37. Weissman, A.M., Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol, 2001. 2(3): p. 169-78. 38. Su, H. and X. Wang, The ubiquitin-proteasome system in cardiac proteinopathy: a quality control perspective. Cardiovasc Res, 2010. 85(2): p. 253-62. 39. Pickart, C.M., Mechanisms underlying ubiquitination. Annu Rev Biochem, 2001. 70: p. 503-33. 40. Semple, C.A., The comparative proteomics of ubiquitination in mouse. Genome Res, 2003. 13(6b): p. 1389-94. 41. Heinemeyer, W., et al., The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J Biol Chem, 1997. 272(40): p. 25200-9. 42. Nandi, D., et al., The ubiquitin-proteasome system. J Biosci, 2006. 31(1): p. 137-55. 43. Schalla, Der Einfluss eines hyperkaliämischen Zellarrests auf die Degradation und den Isoform-Switch des Titinfilaments in embryonalen Rattenkardiomyozyten, in Dissertation. 2021. 44. Glick, D., S. Barth, and K.F. Macleod, Autophagy: cellular and molecular mechanisms. J Pathol, 2010. 221(1): p. 3-12. 45. Portbury, A.L., M.S. Willis, and C. Patterson, Tearin' up my heart: proteolysis in the cardiac sarcomere. J Biol Chem, 2011. 286(12): p. 9929-34. 46. Tannous, P., et al., Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation, 2008. 117(24): p. 3070-8. 47. Parzych, K.R. and D.J. Klionsky, An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal, 2014. 20(3): p. 460-73. 48. Boya, P., F. Reggiori, and P. Codogno, Emerging regulation and functions of autophagy. Nat Cell Biol, 2013. 15(7): p. 713-20. 49. Kabeya, Y., et al., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo j, 2000. 19(21): p. 5720-8. 50. Shaid, S., et al., Ubiquitination and selective autophagy. Cell Death Differ, 2013. 20(1): p. 21-30. 51. Bjørkøy, G., et al., p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol, 2005. 171(4): p. 603-14. 52. Kirkin, V., et al., A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell, 2009. 33(4): p. 505-16. 53. Pankiv, S., et al., p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem, 2007. 282(33): p. 24131-45. 54. Chen, L., et al., CAPN3: A muscle‑specific calpain with an important role in the pathogenesis of diseases (Review). Int J Mol Med, 2021. 48(5). 55. Ono, Y. and H. Sorimachi, Calpains: an elaborate proteolytic system. Biochim Biophys Acta, 2012. 1824(1): p. 224-36. 56. Ali, M.A., et al., Titin is a target of matrix metalloproteinase-2: implications in myocardial ischemia/reperfusion injury. Circulation, 2010. 122(20): p. 2039-47. 57. Kötter, S., et al., Human myocytes are protected from titin aggregation-induced stiffening by small heat shock proteins. J Cell Biol, 2014. 204(2): p. 187-202. 58. Müller, A.E., et al., Acute exercise modifies titin phosphorylation and increases cardiac myofilament stiffness. Front Physiol, 2014. 5: p. 449. 59. Tian, L.F., et al., MDM2 interacts with and downregulates a sarcomeric protein, TCAP. Biochem Biophys Res Commun, 2006. 345(1): p. 355-61. 60. Witt, S.H., et al., MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination. J Mol Biol, 2005. 350(4): p. 713-22. 61. Lange, S., et al., The kinase domain of titin controls muscle gene expression and protein turnover. Science, 2005. 308(5728): p. 1599-603. 62. Fareed, M.U., et al., Treatment of rats with calpain inhibitors prevents sepsis-induced muscle proteolysis independent of atrogin-1/MAFbx and MuRF1 expression. Am J Physiol Regul Integr Comp Physiol, 2006. 290(6): p. R1589-97. 63. Hayashi, C., et al., Multiple molecular interactions implicate the connectin/titin N2A region as a modulating scaffold for p94/calpain 3 activity in skeletal muscle. J Biol Chem, 2008. 283(21): p. 14801-14. 64. Barta, J., et al., Calpain-1-sensitive myofibrillar proteins of the human myocardium. Mol Cell Biochem, 2005. 278(1-2): p. 1-8. 65. Adewale, A.O. and Y.H. Ahn, Titin N2A Domain and Its Interactions at the Sarcomere. Int J Mol Sci, 2021. 22(14). 66. Linke, W.A. and N. Hamdani, Gigantic business: titin properties and function through thick and thin. Circ Res, 2014. 114(6): p. 1052-68. 67. Zou, J., et al., An internal promoter underlies the difference in disease severity between N- and C-terminal truncation mutations of Titin in zebrafish. Elife, 2015. 4: p. e09406. 68. Bers, D.M., Cardiac excitation-contraction coupling. Nature, 2002. 415(6868): p. 198-205. 69. Squire, J., Special Issue: The Actin-Myosin Interaction in Muscle: Background and Overview. Int J Mol Sci, 2019. 20(22). 70. Hearse, D.J., D.A. Stewart, and M.V. Braimbridge, Hypothermic arrest and potassium arrest: metabolic and myocardial protection during elective cardiac arrest. Circ Res, 1975. 36(4): p. 481-9. 71. Roman, B.I., S. Verhasselt, and C.V. Stevens, Medicinal Chemistry and Use of Myosin II Inhibitor ( S)-Blebbistatin and Its Derivatives. J Med Chem, 2018. 61(21): p. 9410-9428. 72. Fedorov, V.V., et al., Application of blebbistatin as an excitation-contraction uncoupler for electrophysiologic study of rat and rabbit hearts. Heart Rhythm, 2007. 4(5): p. 619-26. 73. Wu, X., et al., Physical mapping of four porcine 20S proteasome core complex genes (PSMA1, PSMA2, PSMA3 and PSMA6). Cytogenet Genome Res, 2005. 108(4): p. 363. 74. Albornoz, N., et al., Cellular Responses to Proteasome Inhibition: Molecular Mechanisms and Beyond. Int J Mol Sci, 2019. 20(14). 75. Rudolph, F., et al., Resolving titin's lifecycle and the spatial organization of protein turnover in mouse cardiomyocytes. Proc Natl Acad Sci U S A, 2019. 116(50): p. 25126-25136. 76. Chen, S.P., et al., Decline in titin content in rat skeletal muscle after denervation. Muscle Nerve, 2005. 32(6): p. 798-807. 77. Toursel, T., et al., Passive tension of rat skeletal soleus muscle fibers: effects of unloading conditions. J Appl Physiol (1985), 2002. 92(4): p. 1465-72. 78. Ulanova, A., et al., Effect of L-Arginine on Titin Expression in Rat Soleus Muscle After Hindlimb Unloading. Front Physiol, 2019. 10: p. 1221. 79. Krüger, M., et al., Thyroid hormone regulates developmental titin isoform transitions via the phosphatidylinositol-3-kinase/ AKT pathway. Circ Res, 2008. 102(4): p. 439-47. 80. Krüger, M., et al., Insulin signaling regulates cardiac titin properties in heart development and diabetic cardiomyopathy. J Mol Cell Cardiol, 2010. 48(5): p. 910-6. 81. Gotzmann, M., et al., Alterations in Titin Properties and Myocardial Fibrosis Correlate With Clinical Phenotypes in Hemodynamic Subgroups of Severe Aortic Stenosis. JACC Basic Transl Sci, 2018. 3(3): p. 335-346. 82. Legerlotz, K., et al., Botulinum toxin-induced paralysis leads to slower myosin heavy chain isoform composition and reduced titin content in juvenile rat gastrocnemius muscle. Muscle Nerve, 2009. 39(4): p. 472-9. 83. Zhu, C., et al., RBM20 is an essential factor for thyroid hormone-regulated titin isoform transition. J Mol Cell Biol, 2015. 7(1): p. 88-90. 84. Lang, F., et al., Dynamic changes in the mouse skeletal muscle proteome during denervation-induced atrophy. Dis Model Mech, 2017. 10(7): p. 881-896. 85. Xu, P., et al., Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell, 2009. 137(1): p. 133-45. 86. Müller, E., et al., E3-ligase knock down revealed differential titin degradation by autopagy and the ubiquitin proteasome system. Sci Rep, 2021. 11(1): p. 21134. 87. Centner, T., et al., Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol, 2001. 306(4): p. 717-26. 88. Witt, S.H., et al., MURF-1 and MURF-2 Target a Specific Subset of Myofibrillar Proteins Redundantly: Towards Understanding MURF-dependent Muscle Ubiquitination. Journal of Molecular Biology, 2005. 350(4): p. 713-722. 89. van der Pijl, R.J., H.L. Granzier, and C.A.C. Ottenheijm, Diaphragm contractile weakness due to reduced mechanical loading: role of titin. Am J Physiol Cell Physiol, 2019. 317(2): p. C167-c176. 90. Lange, S., et al., The Kinase Domain of Titin Controls Muscle Gene Expression and Protein Turnover. 2005. 308(5728): p. 1599-1603. 91. Xiang, H., et al., Targeting autophagy-related protein kinases for potential therapeutic purpose. Acta Pharm Sin B, 2020. 10(4): p. 569-581. 92. Zhou, J., et al., Titin truncations lead to impaired cardiomyocyte autophagy and mitochondrial function in vivo. Hum Mol Genet, 2019. 28(12): p. 1971-1981. | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Bezug: | 04/2021-06/2025 | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 16.06.2025 | |||||||
Dateien geändert am: | 16.06.2025 | |||||||
Promotionsantrag am: | 11.02.2025 | |||||||
Datum der Promotion: | 10.06.2025 |