Dokument: Korrelation funktioneller Lungenkapazität und präoperativer Lungenfunktion bei Patient:innen, die sich nicht-kardialen Operationen mit erhöhtem Risiko unterziehen : METS-Spiros : Spirometire-Substudie zur internationalen Multizenter-Studie MET-REPAIR
Titel: | Korrelation funktioneller Lungenkapazität und präoperativer Lungenfunktion bei Patient:innen, die sich nicht-kardialen Operationen mit erhöhtem Risiko unterziehen : METS-Spiros : Spirometire-Substudie zur internationalen Multizenter-Studie MET-REPAIR | |||||||
Weiterer Titel: | Correlation of functional lung capacity and preoperative lung function in patients undergoing high risk non-cardiac surgery | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=69759 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20250630-075251-3 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Sawitzki, Leander [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Prof. Dr. Meyer, Tanja [Gutachter] Prof. Dr. phil. Pollok, Bettina [Gutachter] | |||||||
Stichwörter: | Lungenfunktion, präoperative Lungenfunktion, metabolisch Äquivalente, funktionelle Kapazität, Met-Spiros | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Zusammenfassung
Metabolische Äquivalente (METs) werden verwendet, um den Energieverbrauch ver-schiedener körperlicher Aktivitäten vergleichen zu können. In der Anästhesie wird durch METs die Belastbarkeit von Patient:innen vor Operationen eingeschätzt. Die internationale Multizenter Studie “MET-REPAIR“ beschäftigte sich mit der Frage, ob mithilfe von METs, durch präoperative Fragebögen von Patient:innen ermittelt, das Auftreten von kardiovaskulären Komplikationen und Letalität bei nicht-herzchirurgischen Eingriffen abgeschätzt werden kann. Die vorliegende Arbeit erhob als sogenannte Substudie zusätzlich präoperativ die spirometrische Lungenfunktion. In Studien sind Zusammenhänge zwischen der Lungenfunktion, gemessen als Einse-kundenkapazität (FEV1), und der Leistungsfähigkeit von Patient:innen beschrieben. Meist erfolgten sie an Patient:innen mit Lungenerkrankungen und zeigten, dass die körperliche Belastbarkeit mit der FEV1 korreliert. Auch bei gesunden Personen korre-liert die FEV1 signifikant mit stark energiebeanspruchenden Aktivitäten. Nicht be-kannt ist, ob bei Patient:innen, die sich einer nicht-herzchirurgischen elektiven Opera-tion unterziehen, ein Zusammenhang zwischen einer präoperativ reduzierten Lungen-funktion und der körperlichen Belastbarkeit, gemessen in METs, besteht. Im Rahmen der hier vorliegenden Studie wurde untersucht, inwieweit die körperliche Belastbarkeit und die ermittelten METs mit der präoperativen Lungenfunktion korrelieren. Nach aktueller Leitlinie gilt der Grenzwert von < 4 METs als Indikator für ein erhöhtes Ri-siko für postoperative Komplikationen. Als weiterführende Fragestellung wurde unter-sucht, ob durch die präoperative Lungenfunktion eine Trennschärfe bezüglich des Cutt-off-Wertes von METs > 4 besteht. In der Studie wurden 208 Patient:innen eingeschlossen und bei 207 spirometrische Daten erhoben. 121 Personen waren männlich (59 %), 86 weiblich (41 %), das Alter betrug im Median 72 Jahre. Die Auswertung der Spirometriedaten erfolgte nach Al-tersgruppen (< 65 Jahren, ≥ 65 Jahren) und nach Geschlecht. Bestimmt wurden die FEV1, FVC, FEV1/FVC, FEV1 % und FVC % des Sollwertes. Die absolute FVC war in der Gruppe < 65 Jahre signifikant höher, die FEV1/FVC war in der Gruppe > 65 Jahren signifikant höher, die FEV1 und FVC waren bei Männern signifikant höher als bei Frauen, die FEV1 % des Sollwertes und FVC % des Sollwertes waren bei Frauen signi-fikant höher. In der Analyse der MET-Repair-Daten zur körperlichen Belastbarkeit mit der Lungenfunktion wurde keine signifikante Korrelation festgestellt. Eine ROC-Analyse ergab ebenfalls keinen Hinweis auf einen direkten Zusammenhang der FEV1 mit dem Grenzwert METs > 4. Abschließend konnte keine Korrelation der Lungen-funktion, gemessen als FEV1 und FVC, und der körperlichen Belastbarkeit, gemessen in METs, nachgewiesen werden. Somit ergibt sich nach diesen Ergebnissen keine Empfehlung zur präoperativen Lun-genfunktionsmessung vor einer nicht-herzchirurgischen elektiven Operation.Abstract Metabolic equivalents (METs) are used to compare the energy consumption of differ-ent physical activities. In anesthesia, METs are used to assess the physical capacity of patients before operations. The international multicenter study “MET-REPAIR” dealt with the question of whether METs, determined by preoperative questionnaires of pa-tients, can be used to estimate the occurrence of cardiovascular complications and mortality in non-cardiac surgery. As a so-called sub-study, the present study also rec-orded spirometric lung function preoperatively. Studies have described correlations between lung function, measured as one-second capacity (FEV1), and the physical capacity of patients. Most of these studies were car-ried out on patients with lung diseases and showed that physical capacity correlates with FEV1. FEV1 also correlates significantly with high-energy activities in healthy individuals. It is not known whether there is a correlation between preoperatively re-duced lung function and physical capacity, measured in METs, in patients undergoing non-cardiac elective surgery. The present study investigated the extent to which physi-cal capacity and the METs determined correlate with preoperative lung function. Ac-cording to current guidelines, a threshold value of < 4 METs is considered an indicator of an increased risk of postoperative complications. As a further question, it was in-vestigated whether the preoperative lung function provides a discriminatory power with regard to the cut-off value of METs > 4. The study included 208 patients and spirometric data was collected from 207. 121 people were male (59%), 86 female (41%), the median age was 72 years. The spirome-try data was analyzed according to age groups (< 65 years, ≥ 65 years) and gender. The FEV1, FVC, FEV1/FVC, FEV1 % and FVC % of the expected value were determined. The absolute FVC was significantly higher in the group < 65 years, the FEV1/FVC was significantly higher in the group > 65 years, the FEV1 and FVC were significantly higher in men than in women, the FEV1% of the expected value and FVC% of the ex-pected value were significantly higher in women. In the analysis of MET-repair data on physical capacity with lung function, no significant correlation was found. A ROC analysis also showed no evidence of a direct correlation between FEV1 and the METs > 4 threshold. Finally, no correlation between lung function, measured as FEV1 and FVC, and physical capacity, measured in METs, could be demonstrated. Thus, these results do not provide a recommendation for preoperative lung function measurement prior to elective non-cardiac surgery. | |||||||
Quelle: | Literatur- und Quellenverzeichnis
1. Weiser, T.G., et al., Estimate of the global volume of surgery in 2012: an assessment supporting improved health outcomes. Lancet, 2015. 385 Suppl 2: p. S11. 2. Weiser, T.G., et al., An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet, 2008. 372(9633): p. 139-144. 3. Rose, J., et al., Estimated need for surgery worldwide based on prevalence of diseases: a modelling strategy for the WHO Global Health Estimate. Lancet Glob Health, 2015. 3 Suppl 2(Suppl 2): p. S13-20. 4. Kristensen, S.D., et al., 2014 ESC/ESA Guidelines on non-cardiac surgery: cardiovascular assessment and management: The Joint Task Force on non-cardiac surgery: cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur Heart J, 2014. 35(35): p. 2383-431. 5. Vascular Events in Noncardiac Surgery Patients Cohort Evaluation Study, I., et al., Association between complications and death within 30 days after noncardiac surgery. CMAJ, 2019. 191(30): p. E830-E837. 6. L'Italien, G.J., et al., Development and validation of a Bayesian model for perioperative cardiac risk assessment in a cohort of 1,081 vascular surgical candidates. J Am Coll Cardiol, 1996. 27(4): p. 779-86. 7. Mangano, D.T., et al., Effect of atenolol on mortality and cardiovascular morbidity after noncardiac surgery. Multicenter Study of Perioperative Ischemia Research Group. N Engl J Med, 1996. 335(23): p. 1713-20. 8. Botto, F., et al., Myocardial injury after noncardiac surgery: a large, international, prospective cohort study establishing diagnostic criteria, characteristics, predictors, and 30-day outcomes. Anesthesiology, 2014. 120(3): p. 564-78. 9. Thygesen, K., et al., Third universal definition of myocardial infarction. J Am Coll Cardiol, 2012. 60(16): p. 1581-98. 10. Fleisher, L.A., et al., 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation, 2014. 130(24): p. e278-333. 11. Blair, S.N., et al., Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA, 1996. 276(3): p. 205-10. 12. Lee, H.M., et al., Impact of lung-function measures on cardiovascular disease events in older adults with metabolic syndrome and diabetes. Clin Cardiol, 2018. 41(7): p. 959-965. 13. Schott, K., et al., [Social Differences in Physical Activity among Adolescents in Germany: Analyses Based on Information Concerning the Metabolic Equivalent of Task (MET)]. Gesundheitswesen, 2016. 78(10): p. 630-636. 14. Caspersen, C.J., K.E. Powell, and G.M. Christenson, Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep, 1985. 100(2): p. 126-31. 15. Ainsworth, B.E., et al., 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc, 2011. 43(8): p. 1575-81. 16. Ainsworth, B.E., et al., Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc, 2000. 32(9 Suppl): p. S498-504. 17. Ainsworth, B.E., et al., Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc, 1993. 25(1): p. 71-80. 18. Kodama, S., et al., Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA, 2009. 301(19): p. 2024-35. 19. Wilson, P.W., et al., Prediction of coronary heart disease using risk factor categories. Circulation, 1998. 97(18): p. 1837-47. 20. Kurtz, A., Funktionelle Anatomie der Lunge, in Physiologie, H.-C. Pape, A. Kurtz, and S. Silbernagl, Editors. 2023, Georg Thieme Verlag KG. 21. Schmitz, F., Lunge (Pulmo), in Duale Reihe Anatomie, G. Aumüller, et al., Editors. 2020, Georg Thieme Verlag KG. 22. Wikicommons, Gross Lunganatomy. 2024. 23. Kurtz, A., Lungenvolumina, in Physiologie, H.-C. Pape, A. Kurtz, and S. Silbernagl, Editors. 2018, Georg Thieme Verlag. 24. Lang, H., Anatomie und PhysiologiePhysiologieder Atmung, in Beatmung für Einsteiger: Theorie und Praxis für die Gesundheits- und Krankenpflege, H. Lang, Editor. 2020, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 3-17. 25. Criée, C.P., et al., Leitlinie zur Spirometrie. Pneumologie, 2015. 69(03): p. 147-164. 26. Miller, M.R., et al., Standardisation of spirometry. Eur Respir J, 2005. 26(2): p. 319-38. 27. Criée, C.P., et al., Aktuelle Empfehlungen zur Lungenfunktionsdiagnostik: Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin (DGP), Deutsche Atemwegsliga (DAL), Deutsche Lungenstiftung (DLS) sowie Deutsche Gesellschaft für Arbeitsmedizin und Umweltmedizin (D. Atemwegs- und Lungenkrankheiten, 2024. 50(03): p. 111-184. 28. Brunelli, A., et al., ERS/ESTS clinical guidelines on fitness for radical therapy in lung cancer patients (surgery and chemo-radiotherapy). Eur Respir J, 2009. 34(1): p. 17-41. 29. Pierce, R.J., et al., Preoperative risk evaluation for lung cancer resection: predicted postoperative product as a predictor of surgical mortality. Am J Respir Crit Care Med, 1994. 150(4): p. 947-55. 30. De Hert, S., et al., Pre-operative evaluation of adults undergoing elective noncardiac surgery: Updated guideline from the European Society of Anaesthesiology. Eur J Anaesthesiol, 2018. 35(6): p. 407-465. 31. Ulmer, W.T.e.a., 8 Spirometrie, in Die Lungenfunktion. 2003, Georg Thieme Verlag KG: Stuttgart. 32. Liou, T.G. and R.E. Kanner, Spirometry. Clin Rev Allergy Immunol, 2009. 37(3): p. 137-52. 33. Kurtz, A., Obstruktive und restriktive Störungen, in Physiologie, H.-C. Pape, A. Kurtz, and S. Silbernagl, Editors. 2018, Georg Thieme Verlag. 34. Pellegrino, R., et al., Interpretative strategies for lung function tests. Eur Respir J, 2005. 26(5): p. 948-68. 35. Hankinson, J.L., J.R. Odencrantz, and K.B. Fedan, Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med, 1999. 159(1): p. 179-87. 36. Reilly, D.F., et al., Self-reported exercise tolerance and the risk of serious perioperative complications. Arch Intern Med, 1999. 159(18): p. 2185-92. 37. Moran, J., et al., Role of cardiopulmonary exercise testing as a risk-assessment method in patients undergoing intra-abdominal surgery: a systematic review. Br J Anaesth, 2016. 116(2): p. 177-91. 38. American Society of Anesthesiologists, C.o.E., ASA Physical Status Classification System. 2020. 39. Gupta, P.K., et al., Development and validation of a risk calculator for prediction of cardiac risk after surgery. Circulation, 2011. 124(4): p. 381-7. 40. Lee, T.H., et al., Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation, 1999. 100(10): p. 1043-9. 41. Duceppe, E., et al., Canadian Cardiovascular Society Guidelines on Perioperative Cardiac Risk Assessment and Management for Patients Who Undergo Noncardiac Surgery. Canadian Journal of Cardiology, 2017. 33(1): p. 17-32. 42. Glance, L.G., et al., Impact of the Choice of Risk Model for Identifying Low-risk Patients Using the 2014 American College of Cardiology/American Heart Association Perioperative Guidelines. Anesthesiology, 2018. 129(5): p. 889-900. 43. Dindo, D., N. Demartines, and P.A. Clavien, Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg, 2004. 240(2): p. 205-13. 44. Criee, C.P., et al., [Recommendations on spirometry by Deutsche Atemwegsliga]. Pneumologie, 2006. 60(9): p. 576-84. 45. Zierle-Ghosh, A. and A. Jan, Physiology, Body Mass Index, in StatPearls. 2024: Treasure Island (FL) ineligible companies. Disclosure: Arif Jan declares no relevant financial relationships with ineligible companies. 46. Garrow, J.S. and J. Webster, Quetelet's index (W/H2) as a measure of fatness. Int J Obes, 1985. 9(2): p. 147-53. 47. Heinrich Matthys, W.S., Klinische Pneumologie. 4 ed. 2008: Springer Berlin, Heidelberg. XVI, 754. 48. Mann, H.B. and D.R. Whitney, On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. The Annals of Mathematical Statistics, 1947. 18(1): p. 50-60. 49. Zweig, M.H. and G. Campbell, Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem, 1993. 39(4): p. 561-77. 50. Cohen, J., Statistical power analysis for the behavioral sciences. 2nd ed. 1988, Hillsdale, N.J.: L. Erlbaum Associates. xxi, 567 p. 51. Ware, J.H., et al., Longitudinal and cross-sectional estimates of pulmonary function decline in never-smoking adults. Am J Epidemiol, 1990. 132(4): p. 685-700. 52. Thomas, E.T., et al., Rate of normal lung function decline in ageing adults: a systematic review of prospective cohort studies. BMJ Open, 2019. 9(6): p. e028150. 53. Sharma, G. and J. Goodwin, Effect of aging on respiratory system physiology and immunology. Clin Interv Aging, 2006. 1(3): p. 253-60. 54. Enright, P.L., et al., Respiratory muscle strength in the elderly. Correlates and reference values. Cardiovascular Health Study Research Group. Am J Respir Crit Care Med, 1994. 149(2 Pt 1): p. 430-8. 55. Quanjer, P.H., et al., Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J, 2012. 40(6): p. 1324-43. 56. Kerstjens, H.A., et al., Decline of FEV1 by age and smoking status: facts, figures, and fallacies. Thorax, 1997. 52(9): p. 820-7. 57. Bates, D.V., P.T. Macklem, and R.V. Christie, Respiratory function in disease; an introduction to the integrated study of the lung. 2d ed. 1971, Philadelphia,: Saunders. xxi, 584 p. 58. Silvestre, O.M., et al., Declining Lung Function and Cardiovascular Risk: The ARIC Study. J Am Coll Cardiol, 2018. 72(10): p. 1109-1122. 59. Medbo, A. and H. Melbye, Lung function testing in the elderly--can we still use FEV1/FVC<70% as a criterion of COPD? Respir Med, 2007. 101(6): p. 1097-105. 60. Ching, S.M., et al., FEV1 and total Cardiovascular mortality and morbidity over an 18 years follow-up Population-Based Prospective EPIC-NORFOLK Study. BMC Public Health, 2019. 19(1): p. 501. 61. Quanjer, P.H., et al., Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl, 1993. 16: p. 5-40. 62. Lee, K., et al., Gender differences in pulmonary function, physical activity, and quality of life of patients with COPD based on data from the Korea National Health and Nutrition Examination Survey 2015 to 2019 from the Perspective of Pulmonary Rehabilitation. Medicine (Baltimore), 2022. 101(44): p. e31413. 63. Dominelli, P.B., et al., Sex differences in large conducting airway anatomy. J Appl Physiol (1985), 2018. 125(3): p. 960-965. 64. Sheel, A.W., et al., Evidence for dysanapsis using computed tomographic imaging of the airways in older ex-smokers. J Appl Physiol (1985), 2009. 107(5): p. 1622-8. 65. Akinbami, L.J. and X. Liu, Chronic obstructive pulmonary disease among adults aged 18 and over in the United States, 1998-2009. NCHS Data Brief, 2011(63): p. 1-8. 66. Mannino, D.M., et al., Chronic obstructive pulmonary disease surveillance--United States, 1971-2000. Respir Care, 2002. 47(10): p. 1184-99. 67. Thurlbeck, W.M., Postnatal human lung growth. Thorax, 1982. 37(8): p. 564-71. 68. Martin, T.R., et al., Airway size is related to sex but not lung size in normal adults. J Appl Physiol (1985), 1987. 63(5): p. 2042-7. 69. Sin, D.D., R.L. Jones, and S.F. Man, Obesity is a risk factor for dyspnea but not for airflow obstruction. Arch Intern Med, 2002. 162(13): p. 1477-81. 70. Bolton, J.W., et al., Stair climbing as an indicator of pulmonary function. Chest, 1987. 92(5): p. 783-8. 71. Kubori, Y., et al., Association between Pulmonary Function and Stair-Climbing Test Results after Lung Resection: A Pilot Study. Can Respir J, 2018. 2018: p. 1925028. 72. Luzak, A., et al., Association of physical activity with lung function in lung-healthy German adults: results from the KORA FF4 study. BMC Pulm Med, 2017. 17(1): p. 215. 73. Fuertes, E., et al., Leisure-time vigorous physical activity is associated with better lung function: the prospective ECRHS study. Thorax, 2018. 73(4): p. 376. 74. Cheng, Y.J., et al., Effects of physical activity on exercise tests and respiratory function. Br J Sports Med, 2003. 37(6): p. 521-8. 75. Landi, F., et al., Relationship between pulmonary function and physical performance among community-living people: results from Look-up 7+ study. J Cachexia Sarcopenia Muscle, 2020. 11(1): p. 38-45. 76. Vanhees, L., et al., How to assess physical activity? How to assess physical fitness? Eur J Cardiovasc Prev Rehabil, 2005. 12(2): p. 102-14. 77. Kingston, A., et al., Projections of multi-morbidity in the older population in England to 2035: estimates from the Population Ageing and Care Simulation (PACSim) model. Age Ageing, 2018. 47(3): p. 374-380. 78. Barnett, K., et al., Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet, 2012. 380(9836): p. 37-43. 79. Enright, P.L., et al., Quality of spirometry performed by 13,599 participants in the World Trade Center Worker and Volunteer Medical Screening Program. Respir Care, 2010. 55(3): p. 303-9. 80. Fischer, N., B. Weber, and H. Riechelmann, [Presbycusis - Age Related Hearing Loss]. Laryngorhinootologie, 2016. 95(7): p. 497-510. 81. Klesges, R.C., et al., The accuracy of self-reports of physical activity. Med Sci Sports Exerc, 1990. 22(5): p. 690-7. 82. Winters-Hart, C.S., et al., Validity of a questionnaire to assess historical physical activity in older women. Med Sci Sports Exerc, 2004. 36(12): p. 2082-7. | |||||||
Rechtliche Vermerke: | Siehe eidesstaatliche Versicherung (gem. §7 (2) PO) | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Bezug: | 2018 bis 2024 | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 30.06.2025 | |||||||
Dateien geändert am: | 30.06.2025 | |||||||
Promotionsantrag am: | 16.10.2024 | |||||||
Datum der Promotion: | 20.05.2025 |