Dokument: Aktives Targeting von Perfluorkarbon-Nanoemulsionen zur Ansteuerung humaner CD4(+) T-Zellen in vitro

Titel:Aktives Targeting von Perfluorkarbon-Nanoemulsionen zur Ansteuerung humaner CD4(+) T-Zellen in vitro
Weiterer Titel:Active Targeting of Perfluorocarbon-Nanoemulsions for labelling human CD4(+) T-cells in vitro
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=69645
URN (NBN):urn:nbn:de:hbz:061-20250520-104713-3
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Wittke, Georgina Chiarella [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]3,52 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 18.05.2025 / geändert 18.05.2025
Beitragende:PD Dr. Sebastian Temme [Gutachter]
Prof. Dr. Flögel, Ulrich [Gutachter]
Stichwörter:Targeting; PFCs; Molekulare Kardiologie
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Das Immunsystem ist die wesentliche Barriere unseres Organismus zur Bekämpfung von Patho-genen. Zahlreiche Zellgruppen agieren in seinem Rahmen autonom durch ihre spezifischen Funktionen, wobei die interzellulären Interaktionen ebenso relevant für den Erfolg der Immun-abwehrfunktionen sind. Insbesondere die CD4(+) T-Zellen spielen eine zentrale Rolle in der Regu-lation der Immunantwort und der Vermeidung von Autoimmunreaktionen, da ihre Fähigkeit zum Klassentausch entscheidend für die Anpassung an unterschiedliche Pathogene und Umge-bungsbedingungen ist. Die Visualisierung von T-Zellen, insbesondere der CD4(+) T-Zellen, gewinnt daher im Kontext von Entzündungsprozessen und Autoimmunerkrankungen eine große klinische Bedeutung. Das Hauptziel der vorliegenden Arbeit liegt sowohl in der Optimierung der Visuali-sierung als auch in der Verbesserung der Markierungsspezifität von CD4(+) T-Zellen in der 19F-Magnetresonanztomographie (19F-MRT). Aufgrund ihrer Nichtinvasivität ist die MRT ein belieb-tes bildgebendes Verfahren für die medizinische Diagnostik. Der Einsatz nichttoxischer fluorba-sierter Kontrastmittel, in diesem Fall sind dies Perfluorkarbon-Nanoemulsionen (PFCs), soll diese in ihrer Genauigkeit und Effizienz ergänzen. Die Arbeit setzt sich aus mehreren Schritten zu-sammen, die sich auf die Untersuchung des passiven und aktiven Aufnahmeverhaltens von PFCs durch die Zielzellen konzentrieren. Im ersten Schritt wurde hierzu die passive PFC-Aufnahme durch Leukozyten untersucht. Dabei wurde geprüft, wie die Zellen die PFCs ohne zusätzliche Modifikationen aufnehmen. Auch der Einfluss einer PEGylierung der Partikel auf die Partikelin-korporation wurde analysiert. So konnte mit einer PEGylierung der Partikel von 20 mol% die Aufnahme durch phagozytisch aktive Zellen erfolgreich gehemmt werden. Innerhalb dieser Ar-beit wurde zudem auf Grundlage einer Biotin-Avidin-Kopplungsstrategie ein Targeting-System zur Markierung von CD4(+) T-Zellen mit biotinylierten PFCs etabliert. Einer der hierfür wichtigsten Schritte stellte die Biotinylierung der Nanopartikel dar, welche mittels anschließender MR-Bildgebung bestätigt wurde. Auch die Bindung biotinylierter Anti-CD4-Antikörper an die T-Zell-Oberfläche erwies sich als erfolgreich. Im aktiven Targeting der PFCs ließ sich eine präferierte Partikelinkorporation biotinylierter PFCs durch CD4(+) T-Zellen darstellen und die Biotin-Avidin-Kopplung zwischen Zellen und PFCs bestätigen.
Insgesamt liefert diese Arbeit somit wichtige Erkenntnisse zur Optimierung bildgebender Verfah-ren und zur zielgerichteten Darstellung spezifischer Zellpopulationen. Für zukünftige Projekte wird eine Überarbeitung der Targeting-Strategie empfohlen, um eine noch präzisere und spezifi-schere Bindung der Partikel an CD4(+) T-Zellen zu erreichen. Die gewonnenen Erkenntnisse kön-nen langfristig zur Verbesserung diagnostischer und therapeutischer Ansätze beitragen, indem sie eine genauere Visualisierung von Immunzellen ermöglichen.

The immune system is the essential barrier of our organism to combat pathogens. Numerous cell groups act autonomously within its framework through their specific functions, whereby the intercellular interactions are just as relevant for the success of immune defence functions. CD4(+) T cells in particular play a central role in the regulation of the immune response and the avoidance of autoimmune reactions, as their ability to switch classes is decisive for the adaptation to different pathogens and environmental conditions. Therefore, the visualisation of T cells, especially CD4(+) T cells, is of great clinical importance in the context of inflammatory processes and autoimmune diseases. The main aim of the present work is to optimise the visualisation and to improve the labelling specificity of CD4(+) T cells in 19F magnetic resonance imaging (19F MRI). Due to its non-invasiveness, MRI is a popular imaging technique for medical diagnostics. The use of non-toxic fluorine-based contrast agents, in this case perfluorocarbon nanoemulsions (PFCs), is intended to complement it in terms of accuracy and efficiency. The work consists of several steps which focus on the investigation of the passive and active uptake behaviour of PFCs by the target cells. In the first step, passive PFC uptake by leukocytes was investigated. This involves examining how the cells take up the PFCs without additional modifications. The influence of PEGylation of the particles on particle incorporation by the leukocytes was also analysed. Particle-PEGylation of 20 mol% suppressed the uptake by phagocytically active cells successfully. Within this work, a targeting system for labelling CD4(+) T cells with biotinylated PFCs was also established using a biotin-avidin coupling strategy. The biotinylation of the nanoparticles was one of the most important steps in this process, which was confirmed by subsequent MR imaging. The binding of biotinylated anti-CD4 antibodies to the T-cell surface also proved to be successful. In the active targeting of PFCs, a preferential particle incorporation of biotinylated PFCs by CD4(+) T cells was demonstrated, thus confirming the biotin-avidin interaction between cells and PFCs.
In summary, this work provides important insights into the optimisation of imaging techniques and the targeted imaging of specific cell populations. For future projects, a revision of the targeting strategy is recommended in order to achieve even more precise and specific binding of the particles to CD4(+) T cells. In the long term, the knowledge gained can contribute to the improvement of diagnostic and therapeutic approaches by enabling more precise visualisation of immune cells.
Quelle:1. Parkin J, Cohen B. An overview of the immune system. Lancet. 2001 Jun 2;357(9270):1777-89. doi: 10.1016/S0140-6736(00)04904-7. PMID: 11403834.
2. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev. 2012;249(1):158-175. doi:10.1111/j.1600-065X.2012.01146.x
3. Locati M, Curtale G, Mantovani A. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu Rev Pathol. 2020 Jan 24;15:123-147. doi: 10.1146/annurev-pathmechdis-012418-012718. Epub 2019 Sep 17. PMID: 31530089; PMCID: PMC7176483.
4. Lameijer MA, Tang J, Nahrendorf M, Beelen RH, Mulder WJ. Monocytes and macrophages as nanomedicinal targets for improved diagnosis and treatment of disease. Expert Rev Mol Diagn. 2013 Jul;13(6):567-80. doi: 10.1586/14737159.2013.819216. PMID: 23895127; PMCID: PMC4110962.
5. Noris M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol. 2013 Nov;33(6):479-92. doi: 10.1016/j.semnephrol.2013.08.001. PMID: 24161035; PMCID: PMC3820029.
6. McComb S, Thiriot A, Akache B, Krishnan L, Stark F. Introduction to the Immune System. Methods Mol Biol. 2019;2024:1-24. Doi: 10.1007/978-1-4939-9597-4_1. PMID: 31364040.
7. Yatim KM, Lakkis FG. A brief journey through the immune system. Clin J Am Soc Nephrol. 2015 Jul 7;10(7):1274-81. doi: 10.2215/CJN.10031014. Epub 2015 Apr 6. PMID: 25845377; PMCID: PMC4491295.
8. Cancro MP, Tomayko MM. Memory B cells and plasma cells: The differentiative continuum of humoral immunity. Immunol Rev. 2021 Sep;303(1):72-82. doi: 10.1111/imr.13016. Epub 2021 Aug 15. PMID: 34396546.
9. Kumar BV, Connors T, Farber DL. Human T cell development, localization, and function throughout life. Immunity. 2018;48(2):202-213. doi:10.1016/j.immuni.2018.01.007
10. Zúñiga-Pflücker JC. T-cell development made simple. Nat Rev Immunol. 2004 Jan;4(1):67-72. doi: 10.1038/nri1257. PMID: 14704769.
11. Zhu J, Paul WE. CD4 T cells: fates, functions, and faults. Blood. 2008;112(5):1557-1569. doi:10.1182/blood-2008-05-078154
12. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136(7):2348-2357.
13. Bluestone JA, Mackay CR, O’Shea JJ, Stockinger B. The functional plasticity of T cell subsets. Nat Rev Immunol. 2009;9(11):811-816. doi:10.1038/nri2654
14. Luckheeram RV, Zhou R, Verma AD, Xia B. CD4+T Cells: Differentiation and Functions. Clin Dev Immunol. 2012;2012:925135. doi:10.1155/2012/925135
15. Zhu J. T Helper Cell Differentiation, Heterogeneity, and Plasticity. Cold Spring Harb Perspect Biol. 2018 Oct 1;10(10):a030338. doi: 10.1101/cshperspect.a030338. PMID: 28847903; PMCID: PMC6169815.
16. Ruterbusch M, Pruner KB, Shehata L, Pepper M. In Vivo CD4+ T Cell Differentiation and Function: Revisiting the Th1/Th2 Paradigm. Annu Rev Immunol. 2020 Apr 26;38:705-725. doi: 10.1146/annurev-immunol-103019-085803. PMID: 32340571.
17. Cosmi L, Maggi L, Santarlasci V, Liotta F, Annunziato F. T helper cells plasticity in inflammation. Cytometry A. 2014;85(1):36-42. doi:10.1002/cyto.a.22348
18. Zhou L, Chong MM, Littman DR. Plasticity of CD4+ T cell lineage differentiation. Immunity. 2009 May;30(5):646-55. doi: 10.1016/j.immuni.2009.05.001. PMID: 19464987.
19. Kleinewietfeld M, Hafler DA. The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin Immunol. 2013;25(4):305-312. doi:10.1016/j.smim.2013.10.009
20. Tsuji M, Komatsu N, Kawamoto S, Suzuki K, Kanagawa O, Honjo T, Hori S, Fagarasan S. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science. 2009 Mar 13;323(5920):1488-92. doi: 10.1126/science.1169152. PMID: 19286559.
21. Xu L, Kitani A, Fuss I, Strober W. Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol. 2007 Jun 1;178(11):6725-9. doi: 10.4049/jimmunol.178.11.6725. PMID: 17513718.
22. Santos-Zas I, Lemarié J, Tedgui A, Ait-Oufella H. Adaptive Immune Responses Contribute to Post-ischemic Cardiac Remodeling. Front Cardiovasc Med. 2019;5:198. doi:10.3389/fcvm.2018.00198
23. Sharir R, Semo J, Shimoni S, et al. Experimental Myocardial Infarction Induces Altered Regulatory T Cell Hemostasis, and Adoptive Transfer Attenuates Subsequent Remodeling. Lees JR, ed. PLoS ONE. 2014;9(12):e113653. doi:10.1371/journal.pone.0113653
24. Hofmann U, Frantz S. Role of T-cells in myocardial infarction. Eur Heart J. 2016;37(11):873-879. doi:10.1093/eurheartj/ehv639
25. Zhang M, Zhang S. T Cells in Fibrosis and Fibrotic Diseases. Front Immunol. 2020;11:1142. doi:10.3389/fimmu.2020.01142
26. Antonioli L, Pacher P, Vizi ES, Haskó G. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 2013;19(6):355-367. doi:10.1016/j.molmed.2013.03.005
27. Grover P, Goel PN, Greene MI. Regulatory T Cells: Regulation of Identity and Function. Front Immunol. 2021;12:750542. doi:10.3389/fimmu.2021.750542
28. Choo EH, Lee JH, Park EH, et al. Infarcted Myocardium-Primed Dendritic Cells Improve Remodeling and Cardiac Function After Myocardial Infarction by Modulating the Regulatory T Cell and Macrophage Polarization. Circulation. 2017;135(15):1444-1457. doi:10.1161/CIRCULATIONAHA.116.023106
29. Rieckmann M, Delgobo M, Gaal C, et al. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J Clin Invest. 129(11):4922-4936. doi:10.1172/JCI123859
30. Bansal SS, Ismahil MA, Goel M, Zhou G, Rokosh G, Hamid T, Prabhu SD. Dysfunctional and Proinflammatory Regulatory T-Lymphocytes Are Essential for Adverse Cardiac Remodeling in Ischemic Cardiomyopathy. Circulation. 2019 Jan 8;139(2):206-221. doi: 10.1161/CIRCULATIONAHA.118.036065. PMID: 30586716; PMCID: PMC6322956.
31. Berezin AE, Berezin AA. Adverse Cardiac Remodelling after Acute Myocardial Infarction: Old and New Biomarkers. Dis Markers. 2020 Jun 12;2020:1215802. doi: 10.1155/2020/1215802. PMID: 32626540; PMCID: PMC7306098.
32. Sanderson MJ, Smith I, Parker I, Bootman MD. Fluorescence microscopy. Cold Spring Harb Protoc. 2014 Oct 1;2014(10):pdb.top071795. doi: 10.1101/pdb.top071795. PMID: 25275114; PMCID: PMC4711767.
33. Thurau SR, Mempel TR, Flügel A, Diedrichs-Möhring M, Krombach F, Kawakami N, Wildner G. The fate of autoreactive, GFP+ T cells in rat models of uveitis analyzed by intravital fluorescence microscopy and FACS. Int Immunol. 2004 Nov;16(11):1573-82. doi: 10.1093/intimm/dxh158. Epub 2004 Sep 6. PMID: 15351788.
34. McKinnon KM. Flow Cytometry: An Overview. Curr Protoc Immunol. 2018 Feb 21;120:5.1.1-5.1.11. doi: 10.1002/cpim.40. PMID: 29512141; PMCID: PMC5939936.
35. Yaghoubi SS, Campbell DO, Radu CG, Czernin J. Positron Emission Tomography Reporter Genes and Reporter Probes: Gene and Cell Therapy Applications. Theranostics. 2012;2(4):374-391. doi:10.7150/thno.3677
36. Islam A, Pishesha N, Harmand TJ, et al. Converting an Anti-Mouse CD4 Monoclonal Antibody into an scFv Positron Emission Tomography Imaging Agent for Longitudinal Monitoring of CD4 + T Cells. J Immunol. 2021;207(5):1468-1477. doi:10.4049/jimmunol.2100274
37. Yaghoubi SS, Jensen MC, Satyamurthy N, et al. Non-Invasive Detection of Therapeutic Cytolytic T Cells with [18F]FHBG Positron Emission Tomography in a Glioma Patient. Nat Clin Pract Oncol. 2009;6(1):53-58. doi:10.1038/ncponc1278
38. Bannas P, Graumann O, Peldschus K, et al. Qualitative und quantitative Analysen von T-Zellen in einem klinischen 3T MR-Tomographen durch eine neue Antikörper basierte Markierung mit superparamagnetischen Eisenoxidpartikeln. RöFo - Fortschritte Auf Dem Geb Röntgenstrahlen Bildgeb Verfahr. 2009;181(3):A1. doi:10.1055/s-0029-1208327
39. Tirotta I, Dichiarante V, Pigliacelli C, et al. 19F Magnetic Resonance Imaging (MRI): From Design of Materials to Clinical Applications. Chem Rev. 2015;115(2):1106-1129. doi:10.1021/cr500286d
40. Grover VP, Tognarelli JM, Crossey MM, Cox IJ, Taylor-Robinson SD, McPhail MJ. Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. J Clin Exp Hepatol. 2015 Sep;5(3):246-55. doi: 10.1016/j.jceh.2015.08.001. Epub 2015 Aug 20. PMID: 26628842; PMCID: PMC4632105.
41. Ahrens ET, Bulte JWM. Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol. 2013;13(10):10.1038/nri3531. doi:10.1038/nri3531
42. Güden-Silber T, Temme S, Jacoby C, Flögel U. Biomedical 19F MRI Using Perfluorocarbons. Methods Mol Biol Clifton NJ. 2018;1718:235-257. doi:10.1007/978-1-4939-7531-0_14
43. Flögel U, Ding Z, Hardung H, et al. In vivo monitoring of inflammation after cardiac and cerebral ischemia by 19F magnetic resonance imaging. Circulation. 2008;118(2):140-148. doi:10.1161/CIRCULATIONAHA.107.737890
44. Jacoby C, Borg N, Heusch P, et al. Visualization of immune cell infiltration in experimental viral myocarditis by 19F MRI in vivo. Magn Reson Mater Phys Biol Med. 2014;27(1):101-106. doi:10.1007/s10334-013-0391-6
45. Torchilin VP. Drug targeting. Eur J Pharm Sci. 2000 Oct;11 Suppl 2:S81-91. doi: 10.1016/s0928-0987(00)00166-4. PMID: 11033430.
46. Clemons TD, Singh R, Sorolla A, Chaudhari N, Hubbard A, Iyer KS. Distinction Between Active and Passive Targeting of Nanoparticles Dictate Their Overall Therapeutic Efficacy. Langmuir. 2018;34(50):15343-15349. doi:10.1021/acs.langmuir.8b02946
47. Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185-1198. doi:10.1111/jphp.13098
48. Alavi M, Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab Pers Ther. 2019;34(1). doi:10.1515/dmpt-2018-0032
49. Thorek DLJ, Chen AK, Czupryna J, Tsourkas A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng. 2006;34(1):23-38. doi:10.1007/s10439-005-9002-7
50. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101-124. doi:10.1038/s41573-020-0090-8
51. Jain A, Cheng K. The Principles and Applications of Avidin-Based Nanoparticles in Drug Delivery and Diagnosis. J Control Release Off J Control Release Soc. 2017;245:27-40. doi:10.1016/j.jconrel.2016.11.016
52. León-Del-Río A. Biotin in metabolism, gene expression, and human disease. J Inherit Metab Dis. 2019 Jul;42(4):647-654. doi: 10.1002/jimd.12073. Epub 2019 Mar 19. PMID: 30746739.
53. Peterson CT, Rodionov DA, Osterman AL, Peterson SN. B Vitamins and Their Role in Immune Regulation and Cancer. Nutrients. 2020 Nov 4;12(11):3380. doi: 10.3390/nu12113380. PMID: 33158037; PMCID: PMC7693142.
54. Zempleni J, Wijeratne SS, Hassan YI. Biotin. Biofactors. 2009 Jan-Feb;35(1):36-46. doi: 10.1002/biof.8. PMID: 19319844; PMCID: PMC4757853.
55. González M, Argaraña CE, Fidelio GD. Extremely high thermal stability of streptavidin and avidin upon biotin binding. Biomol Eng. 1999 Dec 31;16(1-4):67-72. doi: 10.1016/s1050-3862(99)00041-8. PMID: 10796986.
56. Rybak JN, Scheurer SB, Neri D, Elia G. Purification of biotinylated proteins on streptavidin resin: a protocol for quantitative elution. Proteomics. 2004 Aug;4(8):2296-9. doi: 10.1002/pmic.200300780. PMID: 15274123.
57. Lesch HP, Kaikkonen MU, Pikkarainen JT, Ylä-Herttuala S. Avidin-biotin technology in targeted therapy. Expert Opin Drug Deliv. 2010;7(5):551-564. doi:10.1517/17425241003677749
58. Kalofonos HP, Rusckowski M, Siebecker DA, et al. Imaging of Tumor in Patients with Indium-111-Labeled Biotin and Streptavidin-Conjugated Antibodies: Preliminary Communication. J Nucl Med. 1990;31(11):1791-1796.
59. Walker L, Kulomaa MS, Bebok Z, et al. Development of drug targeting based on recombinant expression of the chicken avidin gene. J Drug Target. 1996;4(1):41-49. doi:10.3109/10611869609046259
60. Waehler R, Russell SJ, Curiel DT. Engineering targeted viral vectors for gene therapy. Nat Rev Genet. 2007;8(8):573-587. doi:10.1038/nrg2141
61. Huang B, Abraham WD, Zheng Y, Bustamante López SC, Luo SS, Irvine DJ. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci Transl Med. 2015;7(291):291ra94. doi:10.1126/scitranslmed.aaa5447
62. Moro M, Pelagi M, Fulci G, et al. Tumor Cell Targeting with Antibody-Avidin Complexes and Biotinylated Tumor Necrosis Factor α1. Cancer Res. 1997;57(10):1922-1928.
63. Grapentin C, Mayenfels F, Barnert S, et al. Optimization of Perfluorocarbon Nanoemulsions for Molecular Imaging by 19F MRI.; 2014.
64. Temme S, Grapentin C, Quast C, et al. Noninvasive Imaging of Early Venous Thrombosis by 19F Magnetic Resonance Imaging With Targeted Perfluorocarbon Nanoemulsions. Circulation. 2015;131(16):1405-1414. doi:10.1161/CIRCULATIONAHA.114.010962
65. Conniot J, Silva JM, Fernandes JG, et al. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem. 2014;2:105. doi:10.3389/fchem.2014.00105
66. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28-51. doi:10.1016/j.addr.2015.09.012
67. Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew Chem Int Ed. 2010;49(36):6288-6308. doi:10.1002/anie.200902672
68. Schöttler S, Becker G, Winzen S, et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat Nanotechnol. 2016;11(4):372-377. doi:10.1038/nnano.2015.330
69. Polydispersity Index - an overview | ScienceDirect Topics. Accessed October 14, 2024. https://www.sciencedirect.com/topics/engineering/polydispersity-index
70. Murphy K, Weaver C. Janeway Immunologie. Springer; 2018. doi:10.1007/978-3-662-56004-4
71. Uribe-Querol E, Rosales C. Phagocytosis: Our Current Understanding of a Universal Biological Process. Front Immunol. 2020;11:1066. doi:10.3389/fimmu.2020.01066
72. Gordon S. Phagocytosis: An Immunobiologic Process. Immunity. 2016;44(3):463-475. doi:10.1016/j.immuni.2016.02.026
73. Zelepukin IV, Shevchenko KG, Deyev SM. Rediscovery of mononuclear phagocyte system blockade for nanoparticle drug delivery. Nat Commun. 2024;15:4366. doi:10.1038/s41467-024-48838-5
74. De Jong WH, Borm PJ. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine. 2008;3(2):133-149.
75. Trotter J, Pantel AR, Teo BKK, et al. Positron Emission Tomography (PET)/Computed Tomography (CT) Imaging in Radiation Therapy Treatment Planning: A Review of PET Imaging Tracers and Methods to Incorporate PET/CT. Adv Radiat Oncol. 2023;8(5). doi:10.1016/j.adro.2023.101212
76. Wallyn J, Anton N, Akram S, Vandamme TF. Biomedical Imaging: Principles, Technologies, Clinical Aspects, Contrast Agents, Limitations and Future Trends in Nanomedicines. Pharm Res. 2019;36(6):78. doi:10.1007/s11095-019-2608-5
77. Srikar R, Upendran A, Kannan R. Polymeric nanoparticles for molecular imaging. WIREs Nanomedicine Nanobiotechnology. 2014;6(3):245-267. doi:10.1002/wnan.1259
78. Bouvain P, Temme S, Flögel U. Hot spot 19F magnetic resonance imaging of inflammation. WIREs Nanomedicine Nanobiotechnology. 2020;12(6):e1639. doi:10.1002/wnan.1639
79. Straub T, Nave J, Bouvain P, et al. MRI-based molecular imaging of epicardium-derived stromal cells (EpiSC) by peptide-mediated active targeting. Sci Rep. 2020;10:21669. doi:10.1038/s41598-020-78600-y
80. Ebner B, Behm P, Jacoby C, et al. Early Assessment of Pulmonary Inflammation By 19F MRI In Vivo. Circ Cardiovasc Imaging. 2010;3(2):202-210. doi:10.1161/CIRCIMAGING.109.902312
81. Chen J, Pan H, Lanza GM, Wickline SA. Perfluorocarbon Nanoparticles for Physiological and Molecular Imaging and Therapy. Adv Chronic Kidney Dis. 2013;20(6):466-478. doi:10.1053/j.ackd.2013.08.004
82. Ahrens ET, Zhong J. In vivo MRI cell tracking using perfluorocarbon probes and fluorine-19 detection. NMR Biomed. 2013;26(7):860-871. doi:10.1002/nbm.2948
83. Jacoby C, Temme S, Mayenfels F, et al. Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity. NMR Biomed. 2014;27(3):261-271. doi:10.1002/nbm.3059
84. Janjic JM, Ahrens ET. Fluorine-containing nanoemulsions for MRI cell tracking. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(5):492-501. doi:10.1002/wnan.35
85. Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res. 2008;25(8):1815-1821. doi:10.1007/s11095-008-9562-y
86. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Controlled Release. 2010;145(3):182-195. doi:10.1016/j.jconrel.2010.01.036
87. Malkawi A, Alrabadi N, Kennedy RA. Dual-Acting Zeta-Potential-Changing Micelles for Optimal Mucus Diffusion and Enhanced Cellular Uptake after Oral Delivery. Pharmaceutics. 2021;13(7):974. doi:10.3390/pharmaceutics13070974
88. Rabinovitch M. Professional and non-professional phagocytes: an introduction. Trends Cell Biol. 1995;5(3):85-87. doi:10.1016/S0962-8924(00)88955-2
89. Mohamed M, Abu Lila AS, Shimizu T, et al. PEGylated liposomes: immunological responses. Sci Technol Adv Mater. 2019;20(1):710-724. doi:10.1080/14686996.2019.1627174
90. Caballero R, González-Gamboa I, Craig S, Steinmetz N. Linear and multivalent PEGylation of the tobacco mosaic virus and the effects on its biological properties. Front Virol. 2023;3. doi:10.3389/fviro.2023.1184095
91. Khutoryanskiy VV. Beyond PEGylation: Alternative surface-modification of nanoparticles with mucus-inert biomaterials. Adv Drug Deliv Rev. 2018;124:140-149. doi:10.1016/j.addr.2017.07.015
92. Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93-102. doi:10.1016/j.ijpharm.2005.10.010
93. Roser M, Fischer D, Kissel T. Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm. 1998;46(3):255-263. doi:10.1016/S0939-6411(98)00038-1
94. Li PY, Bearoff F, Zhu P, et al. PEGylation enables subcutaneously administered nanoparticles to induce antigen-specific immune tolerance. J Control Release Off J Control Release Soc. 2021;331:164-175. doi:10.1016/j.jconrel.2021.01.013
95. Hak S, Garaiova Z, Olsen LT, Nilsen AM, de Lange Davies C. The Effects of oil-in-Water Nanoemulsion Polyethylene Glycol Surface Density on Intracellular Stability, Pharmacokinetics, and Biodistribution in Tumor Bearing Mice. Pharm Res. 2015;32(4):1475-1485. doi:10.1007/s11095-014-1553-6
96. Henry CE, Wang YY, Yang Q, et al. Anti-PEG antibodies alter the mobility and biodistribution of densely PEGylated nanoparticles in mucus. Acta Biomater. 2016;43:61-70. doi:10.1016/j.actbio.2016.07.019
97. Rabanel JM, Hildgen P, Banquy X. Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. J Controlled Release. 2014;185:71-87. doi:10.1016/j.jconrel.2014.04.017
98. Crisafulli S, Cutroneo PM, Luxi N, et al. Is PEGylation of Drugs Associated with Hypersensitivity Reactions? An Analysis of the Italian National Spontaneous Adverse Drug Reaction Reporting System. Drug Saf. 2023;46(4):343-355. doi:10.1007/s40264-023-01277-5
99. Bigini P, Gobbi M, Bonati M, et al. The role and impact of polyethylene glycol on anaphylactic reactions to COVID-19 nano-vaccines. Nat Nanotechnol. 2021;16(11):1169-1171. doi:10.1038/s41565-021-01001-3
100. Chen C, Qi J, Wang J. Anaphylaxis caused by pegylated recombinant human granulocyte colony-stimulating factor. J Oncol Pharm Pract Off Publ Int Soc Oncol Pharm Pract. 2023;29(3):727-730. doi:10.1177/10781552221112323
101. Kozma GT, Shimizu T, Ishida T, Szebeni J. Anti-PEG antibodies: Properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv Drug Deliv Rev. 2020;154-155:163-175. doi:10.1016/j.addr.2020.07.024
102. Shiraishi K, Yokoyama M. Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review. Sci Technol Adv Mater. 2019;20(1):324-336. doi:10.1080/14686996.2019.1590126
103. Chen H, Zhang Q. Polypeptides as alternatives to PEGylation of therapeutic agents. Expert Opin Drug Deliv. 2024;21(1):1-12. doi:10.1080/17425247.2023.2297937
104. Grund S, Bauer M, Fischer D. Polymers in Drug Delivery—State of the Art and Future Trends. Adv Eng Mater. 2011;13(3):B61-B87. doi:10.1002/adem.201080088
105. Avidin, NeutrAvidinTM Biotin-binding Protein. Accessed August 1, 2024. https://www.thermofisher.com/order/catalog/product/de/de/A2666
106. Regnier FE, Cho W. Chapter 13 - Affinity Targeting Schemes for Biomarker Research. In: Issaq HJ, Veenstra TD, eds. Proteomic and Metabolomic Approaches to Biomarker Discovery. Academic Press; 2013:197-224. doi:10.1016/B978-0-12-394446-7.00013-3
107. Jain A, Barve A, Zhao Z, Jin W, Cheng K. Comparison of avidin, neutravidin, and streptavidin as nanocarriers for efficient siRNA Delivery. Mol Pharm. 2017;14(5):1517-1527. doi:10.1021/acs.molpharmaceut.6b00933
108. Park SC, Kim YM, Kim NH, et al. Targeted doxorubicin delivery based on avidin-biotin technology in cervical tumor cells. Macromol Res. 2017;25(9):882-889. doi:10.1007/s13233-017-5100-2
109. Sharma R, Barth BM, Altinoğlu Eİ, et al. Bioconjugation of Calcium Phosphate Nanoparticles for Selective Targeting of Human Breast and Pancreatic Cancers In Vivo. ACS Nano. 2010;4(3):1279-1287. doi:10.1021/nn901297q
110. Ncobeni N, Torre BG de la, Albericio F, Kruger HG, Parboosing R. Active targeting of CD4+ T lymphocytes by PEI-capped, peptide-functionalized gold nanoparticles. Nanotechnology. 2022;33(40):405101. doi:10.1088/1361-6528/ac7885
111. Dinauer N, Balthasar S, Weber C, Kreuter J, Langer K, von Briesen H. Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Biomaterials. 2005;26(29):5898-5906. doi:10.1016/j.biomaterials.2005.02.038
112. Lakowicz JR, ed. Principles of Fluorescence Spectroscopy. Springer US; 2006. doi:10.1007/978-0-387-46312-4
113. Tripathi R, Guglani A, Ghorpade R, Wang B. Biotin conjugates in targeted drug delivery: is it mediated by a biotin transporter, a yet to be identified receptor, or (an)other unknown mechanism(s)? J Enzyme Inhib Med Chem. 38(1):2276663. doi:10.1080/14756366.2023.2276663
114. Stanley JS, Mock DM, Griffin JB, Zempleni J. Biotin Uptake into Human Peripheral Blood Mononuclear Cells Increases Early in the Cell Cycle, Increasing Carboxylase Activities,. J Nutr. 2002;132(7):1854-1859.
115. Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S. Role of Nanoparticle Size, Shape and Surface Chemistry in Oral Drug Delivery. J Control Release Off J Control Release Soc. 2016;238:176-185. doi:10.1016/j.jconrel.2016.07.051
116. Doose S, Neuweiler H, Sauer M. Fluorescence Quenching by Photoinduced Electron Transfer: A Reporter for Conformational Dynamics of Macromolecules. ChemPhysChem. 2009;10(9-10):1389-1398. doi:10.1002/cphc.200900238
117. Zborowski M, Chalmers JJ. Magnetic Cell Sorting. In: Burns R, ed. Immunochemical Protocols. Humana Press; 2005:291-300. doi:10.1385/1-59259-873-0:291
118. Kim IJ, Xu Y, Nam KH. Metal-Induced Fluorescence Quenching of Photoconvertible Fluorescent Protein DendFP. Molecules. 2022;27(9):2922. doi:10.3390/molecules27092922
119. Leppiniemi J, Meir A, Kähkönen N, et al. The highly dynamic oligomeric structure of bradavidin II is unique among avidin proteins. Protein Sci Publ Protein Soc. 2013;22(7):980-994. doi:10.1002/pro.2281
120. Zou L, Peng Q, Wang P, Zhou B. Progress in Research and Application of HIV-1 TAT-Derived Cell-Penetrating Peptide. J Membr Biol. 2017;250(2):115-122. doi:10.1007/s00232-016-9940-z
121. Xie J, Bi Y, Zhang H, et al. Cell-Penetrating Peptides in Diagnosis and Treatment of Human Diseases: From Preclinical Research to Clinical Application. Front Pharmacol. 2020;11:697. doi:10.3389/fphar.2020.00697
122. Hingorani DV, Chapelin F, Stares E, Adams SR, Okada H, Ahrens ET. Cell penetrating peptide functionalized perfluorocarbon nanoemulsions for targeted cell labeling and enhanced fluorine-19 MRI detection. Magn Reson Med. 2020;83(3):974-987. doi:10.1002/mrm.27988
123. Wu Q, Liu J, Wang X, et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng Online. 2020;19(1):9. doi:10.1186/s12938-020-0752-0
124. Ma C, Peng Y, Li H, Chen W. Organ-on-a-Chip: A new paradigm for drug development. Trends Pharmacol Sci. 2021;42(2):119-133. doi:10.1016/j.tips.2020.11.009
125. Tseng CL, Wang TW, Dong GC, et al. Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting. Biomaterials. 2007;28(27):3996-4005. doi:10.1016/j.biomaterials.2007.05.006
126. Zeta Potential An Introduction in 30 Minutes. Accessed December 11, 2024. https://www.semanticscholar.org/paper/Zeta-Potential-An-Introduction-in-30-Minutes/ce38d81ee8d3f5f2a6bef221ed3e5e22b3f3378e
127. Nienhaus F, Colley D, Jahn A, et al. Phagocytosis of a PFOB-Nanoemulsion for 19F Magnetic Resonance Imaging: First Results in Monocytes of Patients with Stable Coronary Artery Disease and ST-Elevation Myocardial Infarction. Molecules. 2019;24(11):2058. doi:10.3390/molecules24112058
128. Becker K, Ding Z, Bouvain P, et al. Inflammatory stimuli impact on cellular uptake and biodistribution of perfluorocarbon nanoemulsions. J Leukoc Biol. Published online September 16, 2024:qiae199. doi:10.1093/jleuko/qiae199
129. Najahi-Missaoui W, Arnold RD, Cummings BS. Safe Nanoparticles: Are We There Yet? Int J Mol Sci. 2020;22(1):385. doi:10.3390/ijms22010385
130. Østergaard ME, Jackson M, Low A, et al. Conjugation of hydrophobic moieties enhances potency of antisense oligonucleotides in the muscle of rodents and non-human primates. Nucleic Acids Res. 2019;47(12):6045-6058. doi:10.1093/nar/gkz360
131. Wada S, Yasuhara H, Wada F, et al. Evaluation of the effects of chemically different linkers on hepatic accumulations, cell tropism and gene silencing ability of cholesterol-conjugated antisense oligonucleotides. J Control Release Off J Control Release Soc. 2016;226:57-65. doi:10.1016/j.jconrel.2016.02.007
132. Wang X, Temme S, Grapentin C, et al. Fluorine‐19 Magnetic Resonance Imaging of Activated Platelets. J Am Heart Assoc Cardiovasc Cerebrovasc Dis. 2020;9(18):e016971. doi:10.1161/JAHA.120.016971
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Bezug:10/2021 - 04/25
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:20.05.2025
Dateien geändert am:20.05.2025
Promotionsantrag am:12.01.2025
Datum der Promotion:24.04.2025
english
Benutzer
Status: Gast
Aktionen