Dokument: Regulation des Transkriptionsfaktors Grainyhead-like 3 durch Pflanzeninhaltsstoffe in Endothelzellen
Titel: | Regulation des Transkriptionsfaktors Grainyhead-like 3 durch Pflanzeninhaltsstoffe in Endothelzellen | |||||||
Weiterer Titel: | Regulation of the transcription factor Grainyhead-like 3 by plant-derived agents in endothelial cells | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=69460 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20250429-111342-1 | |||||||
Kollektion: | Dissertationen | |||||||
Sprache: | Deutsch | |||||||
Dokumententyp: | Wissenschaftliche Abschlussarbeiten » Dissertation | |||||||
Medientyp: | Text | |||||||
Autor: | Vierkant, Annika [Autor] | |||||||
Dateien: |
| |||||||
Beitragende: | Altschmied, Joachim [Gutachter] Prof. Dr. Gödecke Axel [Gutachter] | |||||||
Stichwörter: | Koffein; Curcumin; Seneszenz; Grainyhead-like 3; GRHL3; Endothel | |||||||
Dewey Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit | |||||||
Beschreibungen: | Kardiovaskuläre Erkrankungen sind die häufigste Todesursache weltweit. Bei deren
Entstehung spielt endotheliale Dysfunktion, die durch eine verminderte NO-Produktion und Migrationsfähigkeit von Endothelzellen (EZ) gekennzeichnet ist, eine wichtige Rolle. Bei der endothelialen Dysfunktion, die mit einer chronischen Entzündung einhergeht, kommt es auch zum Auftreten von Stress-induzierter Seneszenz der EZ. Seneszente Zellen haben einen veränderten Metabolismus und sind in ihrer ursprünglichen Funktion eingeschränkt. Der Pflanzeninhaltsstoff Curcumin wird seit Jahrtausenden in der traditionellen asiatischen Medizin eingesetzt. Zahlreiche Studien zeigen, dass Curcumin die Endothelfunktion verbessert. Kaffeekonsum ist in großen epidemiologischen Studien mit einer reduzierten kardiovaskulären Mortalität assoziiert. Koffein, der Hauptwirkstoff von Kaffee, erhöhte in Studien die NO-Produktion von EZ. Der Transkriptionsfaktor Grainyhead-like 3 (GRHL3) ist essenziell für die Funktion der EZ, indem er die endotheliale NO-Synthase (eNOS) aktiviert und so die NO-Produktion und Migration verstärkt. In dieser Arbeit wurde untersucht, ob Curcumin und/oder Koffein den Transkriptionsfaktor GRHL3 in EZ regulieren. Zudem sollte untersucht werden, ob GRHL3 in Stress-induzierter Seneszenz in EZ reguliert ist und ob Koffein einen Einfluss auf Stress-induzierte Seneszenz in EZ hat. Hierfür wurden humane EZ mit Curcumin oder Koffein für 24 h inkubiert. Sowohl die Behandlung mit Curcumin als auch mit Koffein führte zu einer Zunahme der GRHL3-Menge im Immunoblot verglichen mit den Kontrollen. Die Koffein-Behandlung führte auch zu einer Zunahme der grhl3 Expression in der semiquantitativen real-time PCR. Um Stressinduzierte Seneszenz zu erzeugen, wurden EZ zwei Wochen lang mit H2O2 behandelt. Der Nachweis der Seneszenz-Induktion durch H2O2 wurde durch die Hochregulation von nukleärem p21 und die Herunterregulation von eNOS nachgewiesen. Gleichzeitig zeigte sich ein Verlust der GRHL3-Proteinmenge im Immunoblot. Bei gleichzeitiger Behandlung mit Koffein wurde weder die p21 Proteinmengen hochreguliert, noch kam es zu einer Veränderung von GRHL3 und eNOS im Vergleich zur Kontrolle. Aus den Ergebnissen lässt sich folgern: Erstens regulieren Curcumin und Koffein den vasoprotektiven Transkriptionsfaktor GRHL3 in EZ hoch. Zweitens ist GRHL3 in Stress-induzierter Seneszenz herunterreguliert. Drittens verhindert Koffein Stress-induzierte Seneszenz in EZ durch Erhaltung der Proteinmengen von GRHL3 und eNOS. Die Pflanzeninhaltsstoffe Curcumin und Koffein könnten langfristig neue Optionen in der Prävention und Therapie von kardiovaskulären Erkrankungen darstellen.Cardiovascular diseases (CVDs) are the leading cause of death across the globe. Endothelial dysfunction, which is characterized by reduced NO production and migratory capacity of endothelial cells (EC), plays an important role in their development. Endothelial dysfunction, that goes along with chronic inflammation, also encompasses the occurrence of stress-induced senescence of EC. Senescent cells have an altered metabolism and are impaired in their original functions. The plant compound curcumin has been used in traditional Asian medicine for thousands of years. In many studies curcumin has been shown to improve endothelial function. Coffee consumption has been associated with reduced cardiovascular mortality in large epidemiological studies. Studies have shown that caffeine, the main active ingredient in coffee, increases NO production of EC. The transcription factor Grainyhead-like 3 (GRHL3) is essential for EC function as it activates endothelial NO synthase (eNOS), thereby enhancing NO production and migration. In this study it was investigated whether curcumin and/or caffeine regulate the transcription factor GRHL3 in EC. In addition, it was investigated if GRHL3 is regulated in stress-induced senescence in EC and if caffeine has an influence on stress-induced endothelial cell senescence. Therefore, human EC were incubated for 24 h with curcumin or caffeine, respectively. Curcumin and caffeine treatment both lead to an increase of GRHL3 protein level compared to controls in immunoblot analysis. Caffeine treatment also led to an increase of grhl3 expression in semiquantitative real-time PCR. To induce stress-induced senescence, EC were treated with H2O2 for two weeks. Senescence induction by H2O2 was proven by upregulation of nuclear p21 and downregulation of eNOS. Concomitantly, GRHL3 protein levels were reduced as shown by immunoblot. Simultaneous treatment with caffeine did not lead to upregulation of p21 protein levels compared to controls, and, moreover, GRHL3 and eNOS protein levels were unaltered. From these results the following conclusions can be drawn: Firstly, curcumin and caffeine both upregulate the vasoprotective transcription factor GRHL3 in EC. Secondly, GRHL3 is downregulated in stress-induced EC senescence. Thirdly, caffeine prevents stress-induced senescence in EC by sustaining GRHL3 and eNOS protein levels. In the long run, the plant compounds curcumin and caffeine could therefore offer new options in the prevention and therapy of CVDs. | |||||||
Quelle: | 1. WHO, Fact sheet Cardiovascular diseases (CVDs). 2021: p. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds), 30.03.2022.
2. Timmis, A., et al., European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur Heart J, 2020. 41(1): p. 12-85. 3. Wilkins, E., et al., European Cardiovascular Disease Statistics. European Heart Network, Brussels, 2017. 4. Statistisches Bundesamt, Ausblick auf die Bevölkerungsentwicklung in Deutschland und den Bundesländern nach dem Corona-Jahr 2020. 2021. 5. North, B.J. and D.A. Sinclair, The intersection between aging and cardiovascular disease. Circ Res, 2012. 110(8): p. 1097-108. 6. Libby, P., The changing landscape of atherosclerosis. Nature, 2021. 592(7855): p. 524-533. 7. Gimbrone, M.A., Jr. and G. García-Cardeña, Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res, 2016. 118(4): p. 620-36. 8. Visseren, F.L.J., et al., 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J, 2021. 42(34): p. 3227-3337. 9. Lichtenstein, A.H., et al., 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement From the American Heart Association. Circulation, 2021. 144(23): p. e472-e487. 10. Farrokh, S., et al., Critical regulators of endothelial cell functions: for a change being alternative. Antioxid Redox Signal, 2015. 22(14): p. 1212-29. 11. Gross, P.L. and W.C. Aird, The endothelium and thrombosis. Semin Thromb Hemost, 2000. 26(5): p. 463-78. 12. Pober, J.S. and W.C. Sessa, Evolving functions of endothelial cells in inflammation. Nat Rev Immunol, 2007. 7(10): p. 803-15. 13. Panieri, E. and M.M. Santoro, ROS signaling and redox biology in endothelial cells. Cell Mol Life Sci, 2015. 72(17): p. 3281-303. 14. Pfeifer, A., et al., Defective smooth muscle regulation in cGMP kinase I-deficient mice. Embo j, 1998. 17(11): p. 3045-51. 15. Morbidelli, L., S. Donnini, and M. Ziche, Role of nitric oxide in the modulation of angiogenesis. Curr Pharm Des, 2003. 9(7): p. 521-30. 16. Haendeler, J., et al., Effects of redox-related congeners of NO on apoptosis and caspase-3 activity. Nitric Oxide, 1997. 1(4): p. 282-93. 17. Radomski, M.W., R.M. Palmer, and S. Moncada, Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet, 1987. 2(8567): p. 1057-8. 18. De Caterina, R., et al., Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest, 1995. 96(1): p. 60-8. 19. Celermajer, D.S., et al., Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol, 1994. 24(6): p. 1468-74. 20. Alley, H., et al., Ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery in clinical research. J Vis Exp, 2014(92): p. e52070. 21. Furchgott, R.F. and J.V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980. 288(5789): p. 373-6. 22. Wilson, C., M.D. Lee, and J.G. McCarron, Acetylcholine released by endothelial cells facilitates flow-mediated dilatation. J Physiol, 2016. 594(24): p. 7267-7307. 23. Stuehr, D.J., Structure-function aspects in the nitric oxide synthases. Annu Rev Pharmacol Toxicol, 1997. 37: p. 339-59. 24. Fleming, I. and R. Busse, Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol, 2003. 284(1): p. R1-12. 25. Alp, N.J. and K.M. Channon, Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler Thromb Vasc Biol, 2004. 24(3): p. 413-20. 26. Vásquez-Vivar, J., et al., Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci U S A, 1998. 95(16): p. 9220-5. 27. Donato, A.J., et al., Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol, 2015. 89(Pt B): p. 122-35. 28. Hoffmann, J., et al., Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ Res, 2001. 89(8): p. 709-15. 29. Celermajer, D.S., et al., Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol, 1994. 24(2): p. 471-6. 30. Madamanchi, N.R. and M.S. Runge, Redox signaling in cardiovascular health and disease. Free Radic Biol Med, 2013. 61: p. 473-501. 31. Yamawaki, H., J. Haendeler, and B.C. Berk, Thioredoxin: a key regulator of cardiovascular homeostasis. Circ Res, 2003. 93(11): p. 1029-33. 32. Torzewski, M., et al., Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol, 2007. 27(4): p. 850-7. 33. Fukai, T. and M. Ushio-Fukai, Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal, 2011. 15(6): p. 1583-606. 34. Gorgoulis, V., et al., Cellular Senescence: Defining a Path Forward. Cell, 2019. 179(4): p. 813-827. 35. Muñoz-Espín, D. and M. Serrano, Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol, 2014. 15(7): p. 482-96. 36. Hayflick, L. and P.S. Moorhead, The serial cultivation of human diploid cell strains. Exp Cell Res, 1961. 25: p. 585-621. 37. Harley, C.B., A.B. Futcher, and C.W. Greider, Telomeres shorten during ageing of human fibroblasts. Nature, 1990. 345(6274): p. 458-60. 38. Dumont, P., et al., Appearance of biomarkers of in vitro ageing after successive stimulation of WI-38 fibroblasts with IL-1alpha and TNF-alpha: senescence associated beta-galactosidase activity and morphotype transition. J Anat, 2000. 197 Pt 4(Pt 4): p. 529-37. 39. Moiseeva, O., et al., Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol, 2009. 29(16): p. 4495-507. 40. Acosta, J.C., et al., A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol, 2013. 15(8): p. 978-90. 41. Höhn, A., et al., Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol, 2017. 11: p. 482-501. 42. Ogrodnik, M., Cellular aging beyond cellular senescence: Markers of senescence prior to cell cycle arrest in vitro and in vivo. Aging Cell, 2021. 20(4): p. e13338. 43. Xiong, Y., et al., p21 is a universal inhibitor of cyclin kinases. Nature, 1993. 366(6456): p. 701-4. 44. Kurz, D.J., et al., Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci, 2000. 113 ( Pt 20): p. 3613-22. 45. McHugh, D. and J. Gil, Senescence and aging: Causes, consequences, and therapeutic avenues. J Cell Biol, 2018. 217(1): p. 65-77. 46. Storer, M., et al., Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell, 2013. 155(5): p. 1119-30. 47. Muñoz-Espín, D., et al., Programmed cell senescence during mammalian embryonic development. Cell, 2013. 155(5): p. 1104-18. 48. Serrano, M., et al., Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 1997. 88(5): p. 593-602. 49. Demaria, M., et al., An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell, 2014. 31(6): p. 722-33. 50. Palmer, A.K., et al., Cellular senescence: at the nexus between ageing and diabetes. Diabetologia, 2019. 62(10): p. 1835-1841. 51. Melk, A., et al., Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int, 2004. 65(2): p. 510-20. 52. Sousa-Victor, P., et al., Geriatric muscle stem cells switch reversible quiescence into senescence. Nature, 2014. 506(7488): p. 316-21. 53. Minamino, T. and I. Komuro, Vascular cell senescence: contribution to atherosclerosis. Circ Res, 2007. 100(1): p. 15-26. 54. Jia, G., et al., Endothelial cell senescence in aging-related vascular dysfunction. Biochim Biophys Acta Mol Basis Dis, 2019. 1865(7): p. 1802-1809. 55. Minamino, T., et al., Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation, 2002. 105(13): p. 1541-4. 56. Matsushita, H., et al., eNOS activity is reduced in senescent human endothelial cells: Preservation by hTERT immortalization. Circ Res, 2001. 89(9): p. 793-8. 57. Ammon, H.P. and M.A. Wahl, Pharmacology of Curcuma longa. Planta Med, 1991. 57(1): p. 1-7. 58. Aggarwal, B.B. and K.B. Harikumar, Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol, 2009. 41(1): p. 40-59. 59. Tang, M. and C. Taghibiglou, The Mechanisms of Action of Curcumin in Alzheimer's Disease. J Alzheimers Dis, 2017. 58(4): p. 1003-1016. 60. Ghanaatian, N., et al., Curcumin as a therapeutic candidate for multiple sclerosis: Molecular mechanisms and targets. J Cell Physiol, 2019. 234(8): p. 12237-12248. 61. Ram, A., M. Das, and B. Ghosh, Curcumin attenuates allergen-induced airway hyperresponsiveness in sensitized guinea pigs. Biol Pharm Bull, 2003. 26(7): p. 1021-4. 62. Pourhabibi-Zarandi, F., S. Shojaei-Zarghani, and M. Rafraf, Curcumin and rheumatoid arthritis: A systematic review of literature. Int J Clin Pract, 2021. 75(10): p. e14280. 63. Kumar, S., et al., Curcumin for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev, 2012. 10: p. Cd008424. 64. Marton, L.T., et al., The Effects of Curcumin on Diabetes Mellitus: A Systematic Review. Front Endocrinol (Lausanne), 2021. 12: p. 669448. 65. Cox, F.F., et al., Protective Effects of Curcumin in Cardiovascular Diseases-Impact on Oxidative Stress and Mitochondria. Cells, 2022. 11(3). 66. Schraufstatter, E. and H. Bernt, Antibacterial action of curcumin and related compounds. Nature, 1949. 164(4167): p. 456. 67. Giordano, A. and G. Tommonaro, Curcumin and Cancer. Nutrients, 2019. 11(10). 68. Pourbagher-Shahri, A.M., et al., Curcumin and cardiovascular diseases: Focus on cellular targets and cascades. Biomed Pharmacother, 2021. 136: p. 111214. 69. Kadam, S., et al., Curcumin reverses diabetes-induced endothelial progenitor cell dysfunction by enhancing MnSOD expression and activity in vitro and in vivo. J Tissue Eng Regen Med, 2018. 12(7): p. 1594-1607. 70. Ouyang, J., et al., Curcumin Protects Human Umbilical Vein Endothelial Cells against H2O2-Induced Cell Injury. Pain Res Manag, 2019. 2019: p. 3173149. 71. Fang, X.D., et al., Curcumin ameliorates high glucose-induced acute vascular endothelial dysfunction in rat thoracic aorta. Clin Exp Pharmacol Physiol, 2009. 36(12): p. 1177-82. 72. Fleenor, B.S., et al., Curcumin ameliorates arterial dysfunction and oxidative stress with aging. Exp Gerontol, 2013. 48(2): p. 269-76. 73. You, J., et al., Curcumin induces therapeutic angiogenesis in a diabetic mouse hindlimb ischemia model via modulating the function of endothelial progenitor cells. Stem Cell Res Ther, 2017. 8(1): p. 182. 74. Oliver, J.M., et al., Novel Form of Curcumin Improves Endothelial Function in Young, Healthy Individuals: A Double-Blind Placebo Controlled Study. J Nutr Metab, 2016. 2016: p. 1089653. 75. Santos-Parker, J.R., et al., Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress. Aging (Albany NY), 2017. 9(1): p. 187-208. 76. Liu, B., et al., Monocarbonyl curcumin analog A2 potently inhibits angiogenesis by inducing ROS-dependent endothelial cell death. Acta Pharmacol Sin, 2019. 40(11): p. 1412-1423. 77. Grabowska, W., et al., Curcumin induces senescence of primary human cells building the vasculature in a DNA damage and ATM-independent manner. Age (Dordr), 2015. 37(1): p. 9744. 78. Vyas, D., et al., To study the effect of curcumin on the growth properties of circulating endothelial progenitor cells. In Vitro Cell Dev Biol Anim, 2015. 51(5): p. 488-94. 79. Brinkmann, V., et al., Aryl Hydrocarbon Receptor-Dependent and -Independent Pathways Mediate Curcumin Anti-Aging Effects. Antioxidants (Basel), 2022. 11(4). 80. Dei Cas, M. and R. Ghidoni, Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients, 2019. 11(9). 81. Freedman, N.D., et al., Association of coffee drinking with total and cause-specific mortality. N Engl J Med, 2012. 366(20): p. 1891-904. 82. Gunter, M.J., et al., Coffee Drinking and Mortality in 10 European Countries: A Multinational Cohort Study. Ann Intern Med, 2017. 167(4): p. 236-247. 83. Greenberg, J.A., et al., Caffeinated beverage intake and the risk of heart disease mortality in the elderly: a prospective analysis. Am J Clin Nutr, 2007. 85(2): p. 392-8. 84. Paganini-Hill, A., C.H. Kawas, and M.M. Corrada, Non-alcoholic beverage and caffeine consumption and mortality: the Leisure World Cohort Study. Prev Med, 2007. 44(4): p. 305-10. 85. Greenberg, J.A., G. Chow, and R.C. Ziegelstein, Caffeinated coffee consumption, cardiovascular disease, and heart valve disease in the elderly (from the Framingham Study). Am J Cardiol, 2008. 102(11): p. 1502-8. 86. Andersen, L.F., et al., Consumption of coffee is associated with reduced risk of death attributed to inflammatory and cardiovascular diseases in the Iowa Women's Health Study. Am J Clin Nutr, 2006. 83(5): p. 1039-46. 87. van Dongen, L.H., et al., Coffee consumption after myocardial infarction and risk of cardiovascular mortality: a prospective analysis in the Alpha Omega Cohort. Am J Clin Nutr, 2017. 106(4): p. 1113-1120. 88. Di Maso, M., et al., Caffeinated Coffee Consumption and Health Outcomes in the US Population: A Dose-Response Meta-Analysis and Estimation of Disease Cases and Deaths Avoided. Adv Nutr, 2021. 12(4): p. 1160-1176. 89. Kim, Y., Y. Je, and E. Giovannucci, Coffee consumption and all-cause and cause-specific mortality: a meta-analysis by potential modifiers. Eur J Epidemiol, 2019. 34(8): p. 731-752. 90. Spyridopoulos, I., et al., Caffeine enhances endothelial repair by an AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol, 2008. 28(11): p. 1967-74. 91. Wang, L.T., et al., Caffeine promotes angiogenesis through modulating endothelial mitochondrial dynamics. Acta Pharmacol Sin, 2021. 42(12): p. 2033-2045. 92. Ale-Agha, N., et al., CDKN1B/p27 is localized in mitochondria and improves respiration-dependent processes in the cardiovascular system-New mode of action for caffeine. PLoS Biol, 2018. 16(6): p. e2004408. 93. Umemura, T., et al., Effects of acute administration of caffeine on vascular function. Am J Cardiol, 2006. 98(11): p. 1538-41. 94. Shechter, M., et al., Impact of acute caffeine ingestion on endothelial function in subjects with and without coronary artery disease. Am J Cardiol, 2011. 107(9): p. 1255-61. 95. Daly, J.W., Caffeine analogs: biomedical impact. Cell Mol Life Sci, 2007. 64(16): p. 2153-69. 96. Fisone, G., A. Borgkvist, and A. Usiello, Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci, 2004. 61(7-8): p. 857-72. 97. Banerjee, P., et al., Fatal caffeine intoxication: a series of eight cases from 1999 to 2009. J Forensic Sci, 2014. 59(3): p. 865-8. 98. Tao, L., et al., Caffeine promotes the expression of telomerase reverse transcriptase to regulate cellular senescence and aging. Food Funct, 2021. 12(7): p. 2914-2924. 99. Zhan, H., et al., Ataxia telangiectasia mutated (ATM)-mediated DNA damage response in oxidative stress-induced vascular endothelial cell senescence. J Biol Chem, 2010. 285(38): p. 29662-70. 100. Li, Y.F., et al., Caffeine Protects Skin from Oxidative Stress-Induced Senescence through the Activation of Autophagy. Theranostics, 2018. 8(20): p. 5713-5730. 101. Roeder, R.G., Transcriptional regulation and the role of diverse coactivators in animal cells. FEBS Lett, 2005. 579(4): p. 909-15. 102. Ting, S.B., et al., The identification and characterization of human Sister-of-Mammalian Grainyhead (SOM) expands the grainyhead-like family of developmental transcription factors. Biochem J, 2003. 370(Pt 3): p. 953-62. 103. Wilanowski, T., et al., A highly conserved novel family of mammalian developmental transcription factors related to Drosophila grainyhead. Mech Dev, 2002. 114(1-2): p. 37-50. 104. Bray, S.J. and F.C. Kafatos, Developmental function of Elf-1: an essential transcription factor during embryogenesis in Drosophila. Genes Dev, 1991. 5(9): p. 1672-83. 105. Uv, A.E., C.R. Thompson, and S.J. Bray, The Drosophila tissue-specific factor Grainyhead contains novel DNA-binding and dimerization domains which are conserved in the human protein CP2. Mol Cell Biol, 1994. 14(6): p. 4020-31. 106. Ting, S.B., et al., Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3. Nat Med, 2003. 9(12): p. 1513-9. 107. Carpinelli, M.R., et al., Grainyhead-like Transcription Factors in Craniofacial Development. J Dent Res, 2017. 96(11): p. 1200-1209. 108. Ting, S.B., et al., A homolog of Drosophila grainy head is essential for epidermal integrity in mice. Science, 2005. 308(5720): p. 411-3. 109. Hislop, N.R., et al., Grhl3 and Lmo4 play coordinate roles in epidermal migration. Dev Biol, 2008. 321(1): p. 263-72. 110. Caddy, J., et al., Epidermal wound repair is regulated by the planar cell polarity signaling pathway. Dev Cell, 2010. 19(1): p. 138-47. 111. Lukosz, M., et al., The transcription factor Grainyhead like 3 (GRHL3) affects endothelial cell apoptosis and migration in a NO-dependent manner. Biochem Biophys Res Commun, 2011. 412(4): p. 648-53. 112. Guardiola-Serrano, F., et al., Gene trapping identifies a putative tumor suppressor and a new inducer of cell migration. Biochem Biophys Res Commun, 2008. 376(4): p. 748-52. 113. Haendeler, J., et al., Two isoforms of Sister-Of-Mammalian Grainyhead have opposing functions in endothelial cells and in vivo. Arterioscler Thromb Vasc Biol, 2013. 33(7): p. 1639-46. 114. Jander, K., et al., Extra-Nuclear Functions of the Transcription Factor Grainyhead-Like 3 in the Endothelium-Interaction with Endothelial Nitric Oxide Synthase. Antioxidants (Basel), 2021. 10(3). 115. Alidadi, M., et al., The Effect of Curcumin Supplementation on Pulse Wave Velocity in Patients with Metabolic Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. Adv Exp Med Biol, 2021. 1308: p. 1-11. 116. Kroneis, T., et al., Global preamplification simplifies targeted mRNA quantification. Sci Rep, 2017. 7: p. 45219. 117. Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 2001. 29(9): p. e45. 118. Merk, D., et al., Caffeine Inhibits Oxidative Stress- and Low Dose Endotoxemia-Induced Senescence-Role of Thioredoxin-1. Antioxidants (Basel), 2023. 12(6). 119. Shishodia, S., Molecular mechanisms of curcumin action: gene expression. Biofactors, 2013. 39(1): p. 37-55. 120. Sun, Y., et al., Curcumin Attenuates Hydrogen Peroxide-Induced Premature Senescence via the Activation of SIRT1 in Human Umbilical Vein Endothelial Cells. Biol Pharm Bull, 2015. 38(8): p. 1134-41. 121. Cox, F.F., Effects of curcumin on endothelial cells. 2021. 122. Truzzi, F., et al., An Overview on Dietary Polyphenols and Their Biopharmaceutical Classification System (BCS). Int J Mol Sci, 2021. 22(11). 123. Moghaddam, N.S.A., et al., Hormetic effects of curcumin: What is the evidence? J Cell Physiol, 2019. 234(7): p. 10060-10071. 124. Lima, C.F., C. Pereira-Wilson, and S.I. Rattan, Curcumin induces heme oxygenase-1 in normal human skin fibroblasts through redox signaling: relevance for anti-aging intervention. Mol Nutr Food Res, 2011. 55(3): p. 430-42. 125. Son, S., et al., Curcumin Stimulates Proliferation of Spinal Cord Neural Progenitor Cells via a Mitogen-Activated Protein Kinase Signaling Pathway. J Korean Neurosurg Soc, 2014. 56(1): p. 1-4. 126. Stohs, S.J., et al., Highly Bioavailable Forms of Curcumin and Promising Avenues for Curcumin-Based Research and Application: A Review. Molecules, 2020. 25(6). 127. Matsuoka, S., et al., Caffeine induces apoptosis of human umbilical vein endothelial cells through the caspase-9 pathway. Gynecol Endocrinol, 2006. 22(1): p. 48-53. 128. Li, H., et al., Caffeine-induced endothelial cell death and the inhibition of angiogenesis. Anat Cell Biol, 2013. 46(1): p. 57-67. 129. Svilaas, A., et al., Intakes of antioxidants in coffee, wine, and vegetables are correlated with plasma carotenoids in humans. J Nutr, 2004. 134(3): p. 562-7. 130. Cani, P.D., et al., Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007. 56(7): p. 1761-72. 131. Vasa, M., et al., Nitric oxide activates telomerase and delays endothelial cell senescence. Circ Res, 2000. 87(7): p. 540-2. 132. Saleh, T., L. Tyutyunyk-Massey, and D.A. Gewirtz, Tumor Cell Escape from Therapy-Induced Senescence as a Model of Disease Recurrence after Dormancy. Cancer Res, 2019. 79(6): p. 1044-1046. 133. Patel, P.L., et al., Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence. Proc Natl Acad Sci U S A, 2016. 113(34): p. E5024-33. 134. Zvereva, M.I., D.M. Shcherbakova, and O.A. Dontsova, Telomerase: structure, functions, and activity regulation. Biochemistry (Mosc), 2010. 75(13): p. 1563-83. 135. Naderi, S.H., J.P. Bestwick, and D.S. Wald, Adherence to drugs that prevent cardiovascular disease: meta-analysis on 376,162 patients. Am J Med, 2012. 125(9): p. 882-7.e1. 136. Chowdhury, R., et al., Adherence to cardiovascular therapy: a meta-analysis of prevalence and clinical consequences. Eur Heart J, 2013. 34(38): p. 2940-8. 137. Arnett, D.K., et al., 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol, 2019. 74(10): p. 1376-1414. 138. Salas-Salvadó, J., et al., Mediterranean Diet and Cardiovascular Disease Prevention: What Do We Know? Prog Cardiovasc Dis, 2018. 61(1): p. 62-67. | |||||||
Rechtliche Vermerke: | Teile dieser Arbeit wurden veröffentlicht:
Cox, F.F.*, Misiou, A.*, Vierkant, A., Ale-Agha, N., Grandoch, M., Haendeler, J., Altschmied, J., (2022), Protective Effects of Curcumin in Cardiovascular Diseases-Impact on Oxidative Stress and Mitochondria. Cells, (11, 3), 342. Merk, D.*, Greulich, J.*, Vierkant, A., Cox, F., Eckermann, O., von Ameln, F., Dyballa-Rukes, N., Altschmied, J., Ale-Agha, N., Jakobs, P., Haendeler, J., (2023), Caffeine Inhibits Oxidative Stress- and Low Dose Endotoxemia-Induced Senescence-Role of Thioredoxin-1, Antioxidants (12, 6), 1244. | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Fachbereich / Einrichtung: | Medizinische Fakultät | |||||||
Dokument erstellt am: | 29.04.2025 | |||||||
Dateien geändert am: | 29.04.2025 | |||||||
Promotionsantrag am: | 02.12.2024 | |||||||
Datum der Promotion: | 10.04.2025 |