Dokument: Frühe Nachblutungen nach Kranioplastiken - eine retrospektive Analyse

Titel:Frühe Nachblutungen nach Kranioplastiken - eine retrospektive Analyse
Weiterer Titel:Early Postoperative Hemorrhage After Cranioplasty – A Retrospective Analysis
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=69356
URN (NBN):urn:nbn:de:hbz:061-20250423-110953-5
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Hepner, Fabienne [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]11,80 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 14.04.2025 / geändert 14.04.2025
Beitragende:Prof. Dr. med. Dr. med. dent. Rana, Majeed [Gutachter]
Univ. Prof. Dr. med. Beez, Thomas [Betreuer/Doktorvater]
Prof. Dr. med. Beseoglu, Kerim [Betreuer/Doktorvater]
Stichwörter:Kranioplastik, Komplikationen, Nachblutungen, SHT, Dekompression, ICB
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Die dekompressive Hemikraniektomie (DHC) ist ein Notfalleingriff zur Behandlung eines erhöhten intrakraniellen Drucks, der durch verschiedene Erkrankungen wie traumatische Hirnverletzungen, Hirninfarkte oder intrakranielle Blutungen verursacht werden kann. Nach der Akutphase ist eine Rekonstruktion des Schädels erforderlich. Dieser Eingriff geht unter anderem aufgrund der großen Wundfläche mit einer relevanten Komplikationsrate einher. Zu den häufigsten Komplikationen zählen Nachblutungen und Infektionen. Ziel dieser Dissertation war die Analyse der frühen postoperativen Nachblutung und ihrer Risikofaktoren.
In diese retrospektive monozentrische Studie wurden Patienten eingeschlossen, die eine kraniale Rekonstruktion nach DHC mit autologer oder alloplastischer Kranioplastik als Primärrekonstruktion erhielten. Ausgeschlossen wurden Patienten unter 18 Jahren, mit bifrontaler oder suboccipitaler Dekompression und mit supratentoriellen Kraniektomien, die in Größe oder Lage nicht der standardmäßigen DHC entsprachen. Als frühe postoperative Nachblutung wurde ein Ereignis definiert, das innerhalb von 72 Stunden nach der Operation auftrat und durch eine kraniale Computertomographie (CCT) festgestellt wurde. Es wurden intrazerebrale, subdurale, epidurale sowie subgaleale Blutungslokalisationen erfasst.
Es wurden 538 Patienten (57 % männlich, 43 % weiblich) nach DHC eingeschlossen, die zwischen 2007 und 2021 überwiegend wegen eines Schädel-Hirn-Traumas (34 %) und eines ischämischen Insults (36 %) operiert wurden. Eine autologe Kranioplastik wurde bei 438 Patienten durchgeführt (81 %) und eine alloplastische Kranioplastik bei 100 Patienten (19 %). Die Gesamtkomplikationsrate der frühen Nachblutungen betrug 21 % (115 Patienten), von denen 43 Patienten (37 %) eine chirurgische Revision benötigten, wobei das epidurale Hämatom die häufigste Komplikation war (64 %), gefolgt vom subduralen Hämatom (23 %), unabhängig vom Material der Kranioplastik (autologer Knochen vs. alloplastisches Transplantat, OR 0.64, p = 0.155). Die Hälfte aller Komplikationen trat innerhalb von 12 Stunden nach dem Eingriff auf, 90 % innerhalb von 29 Stunden. Für weitere Prädiktoren konnte im logistischen Regressionsmodell ebenfalls kein signifikanter Zusammenhang für die Assoziation einer frühen Nachblutung nach Kranioplastik ermittelt werden (Chi-Quadrat= 10,84, df= 9, p= 0,287, Nagelkerke R2= 0,031).
Bei 21 % der Patienten nach Kranioplastik trat eine frühe postoperative Nachblutung auf. Diese führte in 37 % der Fälle zu einer Revisionsoperation. Das epidurale Hämatom stellt die häufigste Art der Nachblutung dar (64 %). Risikofaktoren konnten in diesem Kollektiv nicht identifiziert werden.

Decompressive hemicraniectomy (DHC) is an emergency procedure to treat increased intracranial pressure, which can be caused by various conditions such as traumatic brain injury, cerebral infarction, or intracranial bleeding. After the acute phase, reconstruction of the skull is required. This procedure is associated with a relevant complication rate due to the large wound area, among other things.
The most common complications include secondary bleeding and infection. The aim of this dissertation was to analyze early postoperative bleeding and its risk factors.
Patients who underwent cranial reconstruction after DHC with autologous or alloplastic cranioplasty as primary reconstruction were included in this retrospective monocentric study. Patients under 18 years of age, with bifrontal or suboccipital decompression and with supratentorial craniectomies that did not correspond in size or position to standard DHC were excluded. Early postoperative hemorrhage was defined as an event that occurred within 72 hours of surgery and was detected by cranial computed tomography (CCT). Intracerebral, subdural, epidural and subgaleal bleeding localizations were recorded.
The study included 538 patients (57 % male, 43 % female) after DHC who underwent surgery between 2007 and 2021, mainly for traumatic brain injury (34 %) and ischemic insult (36 %). Autologous cranioplasty was performed in 438 patients (81 %) and alloplastic cranioplasty in 100 patients (19 %). The overall complication rate of early postoperative bleeding was 21 % (115 patients), of which 43 patients (37 %) required surgical revision, with epidural hematoma being the most common complication (64%), followed by subdural hematoma (23%), regardless of cranioplasty material (autologous bone vs. alloplastic graft, OR 0.64, p=0.155). Half of all complications occurred within 12 hours after the procedure, 90 % within 29 hours. For other predictors, the logistic regression model was unable to determine a significant correlation for the association of early postoperative bleeding after cranioplasty (Chi-square= 10.84, df= 9, p= 0.287, Nagelkerke R2= 0.031).
Early postoperative bleeding occurs in 21 % of patients after cranioplasty. This leads to revision surgery in 37 % of cases. Epidural hematoma is the most common type of postoperative hemorrhage (64 %). No risk factors could be identified in this group.
Quelle:1.Poeck, K., Raumfordernde intrakranielle Prozesse, in Neurologie. 1994, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 185-213.
2. Trepel, M., Neuroanatomie Struktur und Funktion. Vol. 6. 2015, München: Elsevier GmbH.
3. Hofer, M., CT-Kursbuch Ein Arbeitsbuch für den Einstieg in die Computertomographie. 9 ed. 2016, Düsseldorf: Didamed Verlag GmbH. 54-58.
4. Hui, C., P. Tadi, and L. Patti, Ischemic Stroke, in StatPearls. 2022, StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.: Treasure Island (FL).
5. Mader, F.M. and R. Schwenke. Schlaganfall S3-Leitlinie. 2020 02/2020 [cited 2022 02- 09-22].
6. Ringleb P., K.M., Jansen O., et al. Akuttherapie des ischämischen Schlaganfalls, S2e- Leitlinie,. Version 1.1 2022 02.12.2022]; Available from: www.dgn.org/leitlinien.
7. Simard, J.M., et al., Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol, 2007. 6(3): p. 258-68.
8. Hacke, W., Neurologie. Vol. 14. 2016, Heidelberg: Springer
9. Harscher, S., et al., Outcome after decompressive craniectomy in patients with severe
ischemic stroke. Acta Neurochir (Wien), 2006. 148(1): p. 31-7; discussion 37.
10. R. Firsching, E.R., U.M. Mauer, O.W. Sakowitz, M. Messing-Jünger, K. Engelhard für DGAI, P. Schwenkreis für DGN, J. Linn für DGNR und K. Schwerdtfeger. . Langfassung der Leitlinie "Schädel-Hirn-Trauma im Erwachsenenalter. 2015 02.05.2022]; Available
from: https://www.awmf.org/leitlinien/detail/ll/008-001.html.
11. Schirmer, M., Schädel-Hirn-Verletzungen, in Neurochirurgie. 2021. p. 157-179.
12. Ghajar, J., Traumatic brain injury. The Lancet, 2000. 356(9233): p. 923-929.
13. Teasdale, G. and B. Jennett, Assessment of coma and impaired consciousness. A
practical scale. Lancet, 1974. 2(7872): p. 81-4.
14. Koivikko, P., et al., Potential of heart fatty-acid binding protein, neurofilament light,
interleukin-10 and S100 calcium-binding protein B in the acute diagnostics and severity
assessment of traumatic brain injury. Emerg Med J, 2022. 39(3): p. 206-212.
15. Maegele, M., et al., The Incidence and Management of Moderate to Severe Head Injury.
Dtsch Arztebl Int, 2019. 116(10): p. 167-173.
16. Bullock, M.R., et al., Surgical management of acute epidural hematomas.
Neurosurgery, 2006. 58(3 Suppl): p. S7-15; discussion Si-iv.
17. Schünke, M., et al., Prometheus LernAtlas der Anatomie Kopf, Hals und
Neuroanatomie. Vol. 3. 2012, Stuttgart: Georg Thieme Verlag.
18. Linn, J., M. Wiesmann, and H. Brückmann, Atlas Klinische Neuroradiologie des Gehirns.
2011, Springer: Berlin.
19. Oczenski, W., Atmen- Atemhilfen. 2008, Thieme: Stuttgart. p. 436-438.
20. Zweckberger, K., et al., Intrakranielle Druck-Volumen-Beziehung. Der Anaesthesist,
2009. 58(4): p. 392-397.
21. al., H.H.e. Intrakranieller Druckk (ICP), S1 Leitlinie 2018 2022-05-17].
22. Cossu, G., et al., Intracranial pressure and outcome in critically ill patients with
aneurysmal subarachnoid hemorrhage: a systematic review. Minerva Anestesiol, 2016.
23. Zeiler, F.A., et al., Patient-specific ICP Epidemiologic Thresholds in Adult Traumatic Brain Injury: A CENTER-TBI Validation Study. J Neurosurg Anesthesiol, 2021. 33(1): p.
28-38.
56
24. Greenberg, M., Handbook of Neurosurgery. 9 ed. Vol. 9. 2020, New York: Thieme. 1781.
25. Dinallo, S. and M. Waseem, Cushing Reflex, in StatPearls. 2022, StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.: Treasure Island (FL).
26. Schwab, S., et al., Neurointensiv. 2015, Springer Medizin Heidelberg. p. 185-199.
27. Greiner, C., Indikation und Durchführung der dekompressiven Kraniektomie. 2008,
Georg Thieme Stuttgart.
28. Carney, N., et al., Guidelines for the Management of Severe Traumatic Brain Injury,
Fourth Edition. Neurosurgery, 2017. 80(1): p. 6-15.
29. Khellaf, A., D.Z. Khan, and A. Helmy, Recent advances in traumatic brain injury. J
Neurol, 2019. 266(11): p. 2878-2889.
30. Corbett, D. and J. Thornhill, Temperature modulation (hypothermic and hyperthermic
conditions) and its influence on histological and behavioral outcomes following
cerebral ischemia. Brain Pathol, 2000. 10(1): p. 145-52.
31. Anton JV, W.P. Dekompressive Kraniektomie in der Neurotraumatologie. 2015 [cited
2022 2022-05-18]; Available from: https://www.kup.at/kup/pdf/12695.pdf.
32. Beez, T., et al., Decompressive craniectomy for acute ischemic stroke. Crit Care, 2019.
23(1): p. 209.
33. Rochlin, D.H., et al., Adult Cranioplasty and Perioperative Patient Safety: Does Plastic
Surgery Facility Volume Matter? J Craniofac Surg, 2021. 32(1): p. 120-124.
34. Karasin, B., et al., Decompressive Hemicraniectomy for Middle Cerebral Artery Stroke:
Indications and Perioperative Care. AORN J, 2021. 114(1): p. 34-46.
35. Brown, D.A. and E.F. Wijdicks, Decompressive craniectomy in acute brain injury. Handb
Clin Neurol, 2017. 140: p. 299-318.
36. Jabbarli, R., et al., Size does matter: The role of decompressive craniectomy extent for
outcome after aneurysmal subarachnoid hemorrhage. Eur J Neurol, 2021. 28(7): p.
2200-2207.
37. Tagliaferri, F., et al., Decompressive craniectomies, facts and fiction: a retrospective
analysis of 526 cases. Acta Neurochir (Wien), 2012. 154(5): p. 919-26.
38. Steiger, H.-J., et al., Manual Neurochirurgie. 3 ed. 2006: ecomed Medizin. 576.
39. Ernst, G., F. Qeadan, and A.P. Carlson, Subcutaneous bone flap storage after
emergency craniectomy: cost-effectiveness and rate of resorption. J Neurosurg, 2018.
129(6): p. 1604-1610.
40. Malcolm, J.G., et al., Early Cranioplasty is Associated with Greater Neurological
Improvement: A Systematic Review and Meta-Analysis. Neurosurgery, 2018. 82(3): p.
278-288.
41. Honeybul, S., et al., The impact of cranioplasty on neurological function. Br J Neurosurg,
2013. 27(5): p. 636-41.
42. Halani, S.H., et al., Effects of Cranioplasty on Cerebral Blood Flow Following
Decompressive Craniectomy: A Systematic Review of the Literature. Neurosurgery,
2017. 81(2): p. 204-216.
43. Winkler, P.A., et al., Influence of cranioplasty on postural blood flow regulation,
cerebrovascular reserve capacity, and cerebral glucose metabolism. J Neurosurg, 2000.
93(1): p. 53-61.
44. Hutchinson, P.J., et al., Consensus statement from the International Consensus Meeting
on the Role of Decompressive Craniectomy in the Management of Traumatic Brain Injury : Consensus statement. Acta Neurochir (Wien), 2019. 161(7): p. 1261-1274.
57

45. Kuo, J.R., et al., Neurological improvement after cranioplasty - analysis by transcranial doppler ultrasonography. J Clin Neurosci, 2004. 11(5): p. 486-9.
46. Grant, F.C. and N.C. Norcross, REPAIR OF CRANIAL DEFECTS BY CRANIOPLASTY. Ann Surg, 1939. 110(4): p. 488-512.
47. Yamaura, A. and H. Makino, Neurological deficits in the presence of the sinking skin flap following decompressive craniectomy. Neurol Med Chir (Tokyo), 1977. 17(1 Pt 1): p. 43-53.
48. Ozoner, B., Cranioplasty Following Severe Traumatic Brain Injury: Role in Neurorecovery. Curr Neurol Neurosci Rep, 2021. 21(11): p. 62.
49. Picard, N., The syndrome of the trephined. J Neurosci Rural Pract, 2015. 6(3): p. 298-9.
50. Honeybul, S., Neurological susceptibility to a skull defect. Surg Neurol Int, 2014. 5: p.
83.
51. Tora, M.S., et al., Complication Rates in Early Versus Late Cranioplasty-A 14-Year
Single-Center Case Series. Oper Neurosurg (Hagerstown), 2021. 20(4): p. 389-396.
52. Aloraidi, A., et al., Effect of cranioplasty timing on the functional neurological outcome
and postoperative complications. Surg Neurol Int, 2021. 12: p. 264.
53. Sahoo, N.K., et al., Complications of Cranioplasty. J Craniofac Surg, 2018. 29(5): p. 1344-
1348.
54. Alexander König, U.S., Neurochirurgische Therapie Des Schädel-Hirn-Traumas. 2019.
55. Sauvigny, T., et al., A multicenter cohort study of early complications after cranioplasty:
results of the German Cranial Reconstruction Registry. J Neurosurg, 2021: p. 1-8.
56. Beseoglu, K. and J. Cornelius, SOP Kranioplastie 2018 Verfahrensanweisung
Kranioplastie beim Erwachsenen. 2018: Düsseldorf.
57. Aydin, S., et al., Cranioplasty: Review of materials and techniques. J Neurosci Rural
Pract, 2011. 2(2): p. 162-7.
58. Shah, A.M., H. Jung, and S. Skirboll, Materials used in cranioplasty: a history and
analysis. Neurosurg Focus, 2014. 36(4): p. E19.
59. Sanan, A. and S.J. Haines, Repairing holes in the head: a history of cranioplasty.
Neurosurgery, 1997. 40(3): p. 588-603.
60. Aydin, H.E., et al., Importance of Three-Dimensional Modeling in Cranioplasty. J
Craniofac Surg, 2019. 30(3): p. 713-715.
61. Flanigan, P., V.R. Kshettry, and E.C. Benzel, World War II, tantalum, and the evolution
of modern cranioplasty technique. Neurosurg Focus, 2014. 36(4): p. E22.
62. Alkhaibary, A., et al., Cranioplasty: A Comprehensive Review of the History, Materials,
Surgical Aspects, and Complications. World Neurosurg, 2020. 139: p. 445-452.
63. Khader, B.A. and M.R. Towler, Materials and techniques used in cranioplasty fixation:
A review. Mater Sci Eng C Mater Biol Appl, 2016. 66: p. 315-322.
64. Zanotti, B., et al., Cranioplasty: Review of Materials. J Craniofac Surg, 2016. 27(8): p.
2061-2072.
65. Breusch, S.J. and K.D. Kühn, [Bone cements based on polymethylmethacrylate].
Orthopade, 2003. 32(1): p. 41-50.
66. Chiang, C.C., et al., Cytotoxicity and cell response of preosteoblast in calcium sulfate-
augmented PMMA bone cement. Biomed Mater, 2021. 16(5).
67. Biomet, Z. HTR-PMMA Patient-Matched Implant. 2023 [cited 2023 16.01.23];
Available from: https://www.zimmerbiomet.eu/en/products-and- solutions/specialties/cmf/htr-pmma-patient-matched-implant.html#indications.
58

68. Eppley, B.L., M. Kilgo, and J.J. Coleman, 3rd, Cranial reconstruction with computer- generated hard-tissue replacement patient-matched implants: indications, surgical technique, and long-term follow-up. Plast Reconstr Surg, 2002. 109(3): p. 864-71.
69. Panayotov, I.V., et al., Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med, 2016. 27(7): p. 118.
70. Kuttenberger, J.J. and N. Hardt, Long-term results following reconstruction of craniofacial defects with titanium micro-mesh systems. J Craniomaxillofac Surg, 2001. 29(2): p. 75-81.
71. Hanko, M., et al., Analysis of clinical efficiency and early postoperative complications after cranioplasty. Bratisl Lek Listy, 2021. 122(7): p. 461-468.
72. Wachter, D., et al., Cranioplasty after decompressive hemicraniectomy: underestimated surgery-associated complications? Clin Neurol Neurosurg, 2013. 115(8): p. 1293-7.
73. Zanaty, M., et al., Complications following cranioplasty: incidence and predictors in 348 cases. J Neurosurg, 2015. 123(1): p. 182-8.
74. Honeybul, S. and K.M. Ho, Cranioplasty: morbidity and failure. Br J Neurosurg, 2016. 30(5): p. 523-8.
75. Lindner, D., et al., Cranioplasty using custom-made hydroxyapatite versus titanium: a randomized clinical trial. J Neurosurg, 2017. 126(1): p. 175-183.
76. Chaled, A.F. Ergebnisse und Komplikationen der Kranioplastik nach dekompressiver Kraniektomie. 2021 03-06-2022]; Available from: https://docserv.uni- duesseldorf.de/servlets/DerivateServlet/Derivate62630/Chaled%2C%20Alexander%2 0Farid.pdf.
77. Sacco, R.L., et al., An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 2013. 44(7): p. 2064-89.
78. Steiner T., U. A., and e. al. Behandlung von spontanen intrazerebralen Blutungen, S2k- Leitlinie, 2021. Leitlinien für Diagnostik und Therapie in der Neurologie 2021; Available from: www.dgn.org/leitlinien aufgerufen am 02.06.2022
79. Shepetovsky, D., G. Mezzini, and L. Magrassi, Complications of cranioplasty in relationship to traumatic brain injury: a systematic review and meta-analysis. Neurosurg Rev, 2021. 44(6): p. 3125-3142.
80. Vahedi, K., et al., Sequential-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL Trial). Stroke, 2007. 38(9): p. 2506-17.
81. Hofmeijer, J., et al., Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction with Life-threatening Edema Trial [HAMLET]): a multicentre, open, randomised trial. Lancet Neurol, 2009. 8(4): p. 326-33.
82. Jüttler, E., et al., Decompressive Surgery for the Treatment of Malignant Infarction of the Middle Cerebral Artery (DESTINY): a randomized, controlled trial. Stroke, 2007. 38(9): p. 2518-25.
83. Vahedi, K., et al., Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol, 2007. 6(3): p. 215-22.
84. Jüttler, E., et al., DESTINY II: DEcompressive Surgery for the Treatment of malignant INfarction of the middle cerebral arterY II. Int J Stroke, 2011. 6(1): p. 79-86.
59

85. Jüttler, E., et al., Hemicraniectomy in older patients with extensive middle-cerebral- artery stroke. N Engl J Med, 2014. 370(12): p. 1091-100.
86. Hutchinson, P.J., et al., Trial of Decompressive Craniectomy for Traumatic Intracranial Hypertension. N Engl J Med, 2016. 375(12): p. 1119-30.
87. Cooper, D.J., et al., Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med, 2011. 364(16): p. 1493-502.
88. Kitagawa, R.S. and M.R. Bullock, Lessons from the DECRA study. World Neurosurg, 2013. 79(1): p. 82-4.
89. Goedemans, T., et al., Complications in cranioplasty after decompressive craniectomy: timing of the intervention. J Neurol, 2020. 267(5): p. 1312-1320.
90. Malcolm, J.G., et al., Complications following cranioplasty and relationship to timing: A systematic review and meta-analysis. J Clin Neurosci, 2016. 33: p. 39-51.
91. Morton, R.P., et al., Timing of cranioplasty: a 10.75-year single-center analysis of 754 patients. J Neurosurg, 2018. 128(6): p. 1648-1652.
92. Bhaskar, I.P., et al., Autogenous skull flaps stored frozen for more than 6 months: do they remain viable? J Clin Neurosci, 2011. 18(12): p. 1690-3.
93. Zhao, Y.H., et al., Earlier cranioplasty following posttraumatic craniectomy is associated with better neurological outcomes at one-year follow-up: a two-centre retrospective cohort study. Br J Neurosurg, 2020: p. 1-11.
94. Honeybul, S., et al., A randomised controlled trial comparing autologous cranioplasty with custom-made titanium cranioplasty: long-term follow-up. Acta Neurochir (Wien), 2018. 160(5): p. 885-891.
95. Piedra, M.P., A.N. Nemecek, and B.T. Ragel, Timing of cranioplasty after decompressive craniectomy for trauma. Surg Neurol Int, 2014. 5: p. 25.
96. Malcolm, J.G., et al., Autologous Cranioplasty is Associated with Increased Reoperation Rate: A Systematic Review and Meta-Analysis. World Neurosurg, 2018. 116: p. 60-68.
97. Belzberg, M., et al., Cranioplasty Outcomes From 500 Consecutive Neuroplastic Surgery Patients. J Craniofac Surg, 2022.
98. Coulter, I.C., et al., Routine but risky: a multi-centre analysis of the outcomes of cranioplasty in the Northeast of England. Acta Neurochir (Wien), 2014. 156(7): p. 1361- 8.
99. Kato, A., H. Morishima, and G. Nagashima, Unexpected complications immediately after cranioplasty. Acute Med Surg, 2017. 4(3): p. 316-321.
100. Chaturvedi, J., et al., Complications of cranioplasty after decompressive craniectomy for traumatic brain injury. Br J Neurosurg, 2016. 30(2): p. 264-8.
101. Borger, V., et al., Decompressive Craniectomy for Stroke: Early Cranioplasty Is a Predictor for Postoperative Complications. World Neurosurg, 2016. 92: p. 83-88.
102. Chang, V., et al., Outcomes of cranial repair after craniectomy. J Neurosurg, 2010. 112(5): p. 1120-4.
103. Brommeland, T., et al., Cranioplasty complications and risk factors associated with bone flap resorption. Scand J Trauma Resusc Emerg Med, 2015. 23: p. 75.
104. Klinger, D.R., et al., Autologous and acrylic cranioplasty: a review of 10 years and 258 cases. World Neurosurg, 2014. 82(3-4): p. e525-30.
105. Nam, H.H., et al., Complications of Cranioplasty Following Decompressive Craniectomy: Risk Factors of Complications and Comparison Between Autogenous and Artificial Bones. Korean J Neurotrauma, 2022. 18(2): p. 238-245.
60

106. Rickels, E., K. von Wild, and P. Wenzlaff, Head injury in Germany: A population-based prospective study on epidemiology, causes, treatment and outcome of all degrees of head-injury severity in two distinct areas. Brain Inj, 2010. 24(12): p. 1491-504.
107. Broughton, E., L. Pobereskin, and P.C. Whitfield, Seven years of cranioplasty in a regional neurosurgical centre. Br J Neurosurg, 2014. 28(1): p. 34-9.
108. Lillemäe, K., et al., Incidence of Postoperative Hematomas Requiring Surgical Treatment in Neurosurgery: A Retrospective Observational Study. World Neurosurg, 2017. 108: p. 491-497.
109. Roach, R.E., et al., Sex difference in the risk of recurrent venous thrombosis: a detailed analysis in four European cohorts. J Thromb Haemost, 2015. 13(10): p. 1815-22.
110. Martinez, C., et al., Epidemiology of first and recurrent venous thromboembolism: a population-based cohort study in patients without active cancer. Thromb Haemost, 2014. 112(2): p. 255-63.
111. Pabinger, I. and H. Grafenhofer, Thrombosis during pregnancy: risk factors, diagnosis and treatment. Pathophysiol Haemost Thromb, 2002. 32(5-6): p. 322-4.
112. Gorton, H.J., et al., Thromboelastography identifies sex-related differences in coagulation. Anesth Analg, 2000. 91(5): p. 1279-81.
113. Brandi, G., et al., Sex-related differences in postoperative complications following elective craniotomy for intracranial lesions: An observational study. Medicine (Baltimore), 2022. 101(27): p. e29267.
114. Albrecht, J.S., et al., Sex differences in mortality following isolated traumatic brain injury among older adults. J Trauma Acute Care Surg, 2016. 81(3): p. 486-92.
115. Raine, R., et al., Influence of patient gender on admission to intensive care. J Epidemiol Community Health, 2002. 56(6): p. 418-23.
116. Goto, Y., et al., Sex-specific differences in survival after out-of-hospital cardiac arrest: a nationwide, population-based observational study. Crit Care, 2019. 23(1): p. 263.
117. Paredes, I., et al., Cranioplasty after decompressive craniectomy. A prospective series analyzing complications and clinical improvement. Neurocirugia (Astur), 2015. 26(3): p. 115-25.
118. Schuss, P., et al., Bone flap resorption: risk factors for the development of a long-term complication following cranioplasty after decompressive craniectomy. J Neurotrauma, 2013. 30(2): p. 91-5.
119. Schwarz, F., et al., Cranioplasty after decompressive craniectomy: is there a rationale for an initial artificial bone-substitute implant? A single-center experience after 631 procedures. J Neurosurg, 2016. 124(3): p. 710-5.
120. Johnson, W.C., et al., Surface Area of Decompressive Craniectomy Predicts Bone Flap Failure after Autologous Cranioplasty: A Radiographic Cohort Study. Neurotrauma Rep, 2021. 2(1): p. 391-398.
121. Dobran, M., et al., Clinical and radiological risk factors of autograft cranioplasty resorption after decompressive craniectomy for traumatic brain injury. Clin Neurol Neurosurg, 2020. 196: p. 105979.
122. Krause-Titz, U.R., et al., Factors influencing the outcome (GOS) in reconstructive cranioplasty. Neurosurg Rev, 2016. 39(1): p. 133-9.
123. Armstrong, R.E. and M.F. Ellis, Determinants of 30-day Morbidity in Adult Cranioplasty: An ACS-NSQIP Analysis of 697 Cases. Plast Reconstr Surg Glob Open, 2019. 7(12): p. e2562.
124. Gonoi, W., et al., Age-related changes in regional brain volume evaluated by atlas- based method. Neuroradiology, 2010. 52(10): p. 865-73.
61

125. Courchesne, E., et al., Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology, 2000. 216(3): p. 672-82.
126. Zheng, F., et al., Early or late cranioplasty following decompressive craniotomy for traumatic brain injury: A systematic review and meta-analysis. J Int Med Res, 2018. 46(7): p. 2503-2512.
127. Archavlis, E. and M.C. Nievas, [Cranioplasty after supratentorial decompressive craniectomy: when is the optimal timing]. Nervenarzt, 2012. 83(6): p. 751-8.
128. Walcott, B.P., et al., Predictors of cranioplasty complications in stroke and trauma patients. J Neurosurg, 2013. 118(4): p. 757-62.
129. De Cola, M.C., et al., Timing for cranioplasty to improve neurological outcome: A systematic review. Brain Behav, 2018. 8(11): p. e01106.
130. Bender, A., et al., Early cranioplasty may improve outcome in neurological patients with decompressive craniectomy. Brain Inj, 2013. 27(9): p. 1073-9.
131. Hill, C.S., et al., Titanium cranioplasty and the prediction of complications. Br J Neurosurg, 2012. 26(6): p. 832-7.
132. Martin, K.D., et al., Autologous bone flap cranioplasty following decompressive craniectomy is combined with a high complication rate in pediatric traumatic brain injury patients. Acta Neurochir (Wien), 2014. 156(4): p. 813-24.
133. Lee, S.H., et al., Resorption of Autogenous Bone Graft in Cranioplasty: Resorption and Reintegration Failure. Korean J Neurotrauma, 2014. 10(1): p. 10-4.
134. Alkhaibary, A., et al., Predictors of Surgical Site Infection in Autologous Cranioplasty: A Retrospective Analysis of Subcutaneously Preserved Bone Flaps in Abdominal Pockets. World Neurosurg, 2020. 133: p. e627-e632.
135. Zhu, S., et al., Complications following titanium cranioplasty compared with nontitanium implants cranioplasty: A systematic review and meta-analysis. J Clin Neurosci, 2021. 84: p. 66-74.
136. Bader, E.R., et al., Factors predicting complications following cranioplasty. J Craniomaxillofac Surg, 2022. 50(2): p. 134-139.
137. Hohne, J., et al., Outcomes of Cranioplasty with Preformed Titanium versus Freehand Molded Polymethylmethacrylate Implants. J Neurol Surg A Cent Eur Neurosurg, 2018. 79(3): p. 200-205.
138. Hasbun, R., Healthcare-associated ventriculitis: current and emerging diagnostic and treatment strategies. Expert Rev Anti Infect Ther, 2021. 19(8): p. 993-999.
139. Sankey, E.W., et al., Anticoagulation for Hypercoagulable Patients Associated with Complications after Large Cranioplasty Reconstruction. Plast Reconstr Surg, 2016. 137(2): p. 595-607.
140. Wagner, K.R., et al., Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab, 2003. 23(6): p. 629-52.
141. Filipescu, D.C., et al., Perioperative management of antiplatelet therapy in noncardiac surgery. Curr Opin Anaesthesiol, 2020. 33(3): p. 454-462.
142. Plümer, L., et al., Aspirin Before Elective Surgery-Stop or Continue? Dtsch Arztebl Int, 2017. 114(27-28): p. 473-480.
143. Kristensen, S.D., et al., 2014 ESC/ESA Guidelines on non-cardiac surgery: cardiovascular assessment and management: The Joint Task Force on non-cardiac surgery: cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur Heart J, 2014. 35(35): p. 2383-431.
62

144. Rychen, J., et al., Risks and benefits of continuation and discontinuation of aspirin in elective craniotomies: a systematic review and pooled-analysis. Acta Neurochir (Wien), 2023. 165(1): p. 39-47.
145. Puckett, Y., et al., Safest Time to Resume Oral Anticoagulation in Patients with Traumatic Brain Injury. Cureus, 2018. 10(7): p. e2920.
146. Schwabe U, P.D., Ludwig W-D, Klauber J, Arzneiverordnungs-Report 2019. 2019, Springer: Berlin.
147. Wang, H., et al., Seizure After Cranioplasty: Incidence and Risk Factors. J Craniofac Surg, 2017. 28(6): p. e560-e564.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:23.04.2025
Dateien geändert am:23.04.2025
Promotionsantrag am:15.07.2024
Datum der Promotion:08.04.2025
english
Benutzer
Status: Gast
Aktionen