Dokument: Untersuchungen zum Mechanismus des IGF1-induzierten kardialen Funktionserhalts nach akutem Myokardinfarkt

Titel:Untersuchungen zum Mechanismus des IGF1-induzierten kardialen Funktionserhalts nach akutem Myokardinfarkt
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=69054
URN (NBN):urn:nbn:de:hbz:061-20250422-112542-3
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Boy, Johannes Alexander Tobias [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]5,20 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 16.03.2025 / geändert 16.03.2025
Beitragende:Prof. Dr. Gödecke, Axel [Gutachter]
Prof. Dr. Jung, Christian [Gutachter]
Dr. Temme, Sebastian [Gutachter]
Stichwörter:Myokardinfarkt, IGF1, kardiales Remodeling
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Im Jahr 2021 stellte die chronische ischämische Herzkrankheit in Deutschland mit circa 74.500 Sterbefällen die häufigste Todesursache dar, wobei etwa 45.000 Patienten an einem akuten Herzinfarkt verstarben. Infolge zahlreicher moderner Interventionstherapien und einer seit Jahren rückläufigen Mortalität nach einem akutem Myokardinfarkt entwickeln viele der Patienten, welche einen akuten Myokardinfarkt überleben, eine Herzinsuffizienz.
Der insulin-ähnliche Wachstumsfaktor 1 (IGF-1) scheint einen wichtigen Einfluss auf den Krankheitsverlauf nach einem Myokardinfarkt zu nehmen. So ist das Risiko, an einer ischämischen Herzerkrankung zu erkranken, bei einem niedrigen IGF-1-Serumspiegel erhöht. Zudem gibt es Hinweise darauf, dass IGF-1 kardioprotektiv wirkt und die kardiale Remodellierung nach einem Myokardinfarkt positiv beeinflusst. Unsere Arbeitsgruppe konnte in einem Mausmodell nachweisen, dass eine IGF-1-Gabe in der Reperfusion zu einem Erhalt der kardialen Pumpfunktion, einer reduzierten Narbengröße sowie einer gesteigerten Vaskularisierung eine Woche nach dem Myokardinfarkt führt. Dabei sind die molekularen und gewebsmorphologischen Wirkmechanismen infolge einer IGF-1-Gabe in der Frühphase noch nicht ausreichend verstanden.
Ziel dieser Arbeit war es daher, die frühen Effekte einer IGF-1-Kurzzeittherapie auf Zellproliferation, Angiogenese, Entzündungsreaktion sowie auf die Genexpression innerhalb der ersten Woche nach einem Myokardinfarkt im Tiermodell zu untersuchen. Hierfür wurde an Mäusen mittels einer Koronararterienligatur ein 45-minütiger Myokardinfarkt mit Reperfusion initiiert. Die Tiere der Interventionsgruppe erhielten IGF-1 (40 ng/g Bolus sowie 1 μg/g/d über 3 Tage). Die Herzen wurden nach 2, 3 oder 5 Tagen entnommen und immunhistochemisch gefärbt.
Die histologisch-morphometrischen Auswertungen zeigten zu den verschiedenen Zeitpunkten keine Unterschiede bezüglich der Zahl a) aller Zellen (DAPI), b) proliferierender Zellen (EdU) und c) Endothelzellen (CD31). Dabei erfolgte eine separate Auswertung der Regionen (1) Risikogebiet („area at risk“, AAR), (2) Randzone und (3) nicht-infarziertes Myokard (niM).
Die IGF-1-induzierten Effekte auf die Proliferation und Migration von Endothelzellen wurden im Rahmen eines translationalen Ansatzes mittels eines HUVEC-Zell-Migrationsassays in Zellkultur untersucht. Bei HUVEC-Zellen führte eine IGF-1-Gabe hinsichtlich des Migrationsverhaltens und der Proliferation zu keiner Änderung im Vergleich zur Kontrollmedium-Gabe. Auch nach Behandlung mit Makrophagenserum von IGF-1-behandelten Makrophagen änderten sich die Parameter nicht. Zur Untersuchung der IGF-1-bezogenen Immunantwort wurden Makrophagen (CD68) 5 Tage nach Myokardinfarkt immunhistochemisch gefärbt. Hierbei konnten in den verschiedenen Regionen keine Effekte einer IGF-1 Behandlung auf die Gesamtzahl der Makrophagen sowie auf die Makrophagen-Proliferation nachgewiesen werden.
Um auf molekularer Ebene Erkenntnisse über die dem IGF-1-Effekt zugrunde liegenden Mechanismen zu gewinnen, wurden Microarray-basiert kanonische Pathwayanalysen der Genexpression von Herzgewebe, welches 1, 2 oder 7 Tage nach Infarkt gewonnen wurde (AAR und niM), durchgeführt. Bei IGF-1-behandelten Mäusen zeigte sich in der AAR (Tag 1,2) eine abgeschwächte Aktivierung verschiedener Signalwege der Entzündungsreaktion, etwa bei der „Leukozytenmigration“, der „Aktivierung der Leukozyten“, oder der „Aktivierung myeloider Zellen“ gegenüber niM (Tag 7). Diese Effekte zeigten sich am deutlichsten an Tag eins nach Myokardinfarkt, nahmen an Tag zwei ab und waren an Tag sieben nicht mehr nachweisbar.
Schlussfolgerung: Eine IGF-1-Gabe nach einem Myokardinfarkt führt zu einer ausgeprägten Modulation der Expression von Genen, welche mit Entzündungsprozessen assoziiert sind. Da IGF-1 zu den Zeitpunkten 2, 3 und 5 Tage nach Infarkt keinen Effekt hinsichtlich angiogenetischer Prozesse hatte, erscheint es wahrscheinlich, dass diese erst zu einem späteren Zeitpunkt histologisch erfassbar in Erscheinung treten. Bei konstanter Makrophagenzahl nach IGF-1-Gabe 5 Tage nach Infarkt werden anstelle regional quantitativer Veränderungen qualitative Unterschiede des Makrophagenphänotyps vermutet. Weder die alleinige Gabe von IGF-1 noch die Gabe von Makrophagenserum IGF-1 behandelter Makrophagen führen zu einer Steigerung der Proliferationsrate und Migration humaner Endothelzellen, womit in vivo komplexere Wirkmechanismen zur Neovaskularisierung angenommen werden.

In 2021, chronic ischemic heart disease was the most common cause of death in Germany, with approximately 74,500 deaths, while 45,000 patients died from acute myocardial infarction. Despite numerous modern intervention therapies and a decrease in mortality after acute myocardial infarction, many of the patients who survive AMI develop heart failure.
Insulin-like growth factor 1 (IGF-1) appears to have an important influence on disease progression after myocardial infarction. IGF-1 significantly modulates disease progression after AMI. Low serum concentrations of IGF-1 increase the risk of ischemic heart disease. There is also evidence that IGF-1 has a cardioprotective effect and positively influences cardiac remodeling after myocardial infarction. In earlier studies, our research group demonstrated in a mouse model that IGF-1 administration starting with reperfusion leads to preservation of cardiac pump function, reduced scar size, and increased vascularization one week after myocardial infarction. The molecular and histological mechanisms of action resulting from IGF-1 administration in the early phase after myocardial infarction are poorly understood.
The aim of this project was to investigate the early effects of IGF-1 short-term therapy in an animal model on cell proliferation, angiogenesis, inflammatory response, and gene expression within the first week after myocardial infarction. For this purpose, we induced a 45-minute myocardial infarction with reperfusion via temporary ligation of the coronary artery in C57BL/6J mice. Animals in the intervention group received IGF-1 (40 ng/g bolus and 1 μg/g/d for 3 days). Hearts were harvested after 2, 3, or 5 days and immunohistochemically stained. A separate evaluation of the regions (1) area-at-risk (AAR), (2) border zone, and (3) non-infarcted myocardium (niM) was performed. Histology did not show differences in the number of a) all cells (DAPI), b) proliferating cells (5’-Ethynyl-2′-deoxyuridine, EdU), and c) endothelial cells (CD31) at the examined time points. To investigate the IGF-1-related immune response, hearts were immunostained for macrophages (CD68) 5 days after myocardial infarction. As a result, IGF-1 treatment did not change the total number of macrophages or macrophage proliferation in the different regions.
Another objective of this study was to explore how IGF-1 short-term therapy affects early cardiac gene expression following myocardial infarction. Therefore, we performed a spatial microarray-based canonical pathway analysis at different time points after AMI. To initiate a myocardial infarction, we used the mouse model with infarction/reperfusion as described above. After infarction, animals in the intervention group received IGF-1 (40 ng/g bolus and 1 μg/g/d for 3 days), and hearts were harvested 1, 2, or 7 days after infarction. AAR of IGF-1-treated and untreated mice on day 1, 2, and 7 was compared to niM on day 7 after infarction. IGF-1-treated mice showed attenuated activation of various signaling pathways of the inflammatory response, such as "leukocyte migration", "leukocyte activation", or "myeloid cell activation". These effects were most evident on day 1 after myocardial infarction, decreased on day 2, and were no longer detectable on day 7. Thus, it is likely that IGF-1 shows its underlying effects through an altered activation of immune cells.
Conclusion: The administration of IGF-1 following a myocardial infarction leads to a significant alteration in the expression of genes associated with inflammatory processes. As IGF-1 had no effect on angiogenic processes at the time points of 2, 3, and 5 days post-infarction, it is probable that histological detection of these effects will occur later. With constant macrophage numbers after IGF-1 administration 5 days after infarction, qualitative differences in macrophage phenotype are suspected instead of regional quantitative changes. Neither the administration of IGF-1 nor the application of serum from macrophages treated with IGF-1 led to an increase in the proliferation rate and migration of human endothelial cells, suggesting more complex mechanisms of action for neovascularization in vivo.
Quelle:1. Statistisches Bundesamt ZB. Sterbefälle (absolut, Sterbeziffer, Ränge, Anteile) für die 10/20/50/100 häufigsten Todesursachen (ab 1998). 2021.
2. Khan MA, Hashim MJ, Mustafa H, Baniyas MY, Al Suwaidi S, AlKatheeri
R, et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global
Burden of Disease Study. Cureus. 2020;12(7):e9349.
3. Skinner JS, Cooper A. Secondary prevention of ischaemic cardiac events.
BMJ Clin Evid. 2011;2011.
4. Nabel EG, Braunwald E. A tale of coronary artery disease and myocardial
infarction. N Engl J Med. 2012;366(1):54-63.
5. Fox KA, Steg PG, Eagle KA, Goodman SG, Anderson FA, Jr., Granger CB,
et al. Decline in rates of death and heart failure in acute coronary syndromes,
1999-2006. JAMA. 2007;297(17):1892-900.
6. Riede UN, Schaefer HE, Bianchi L, Böcking A, Böhm N. Allgemeine und
spezielle Pathologie: Thieme; 2004.
7. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation
and rupture. Circ Res. 2014;114(12):1852-66.
8. Wang JC, Normand SL, Mauri L, Kuntz RE. Coronary artery spatial
distribution of acute myocardial infarction occlusions. Circulation.
2004;110(3):278-84.
9. Krams M, Frahm SO, Kellner U, Mawrin C. Kurzlehrbuch Pathologie. 2.,
aktualisierte Auflage ed. Stuttgart ; New York: Georg Thieme Verlag; 2013.
10. Prabhu SD, Frangogiannis NG. The Biological Basis for Cardiac Repair
After Myocardial Infarction: From Inflammation to Fibrosis. Circ Res.
2016;119(1):91-112.
11. Swirski FK, Nahrendorf M. Cardioimmunology: the immune system in
cardiac homeostasis and disease. Nat Rev Immunol. 2018;18(12):733-44.
12. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T,
Figueiredo JL, et al. The healing myocardium sequentially mobilizes two
monocyte subsets with divergent and complementary functions. J Exp Med.
2007;204(12):3037-47.
13. Ong SB, Hernandez-Resendiz S, Crespo-Avilan GE, Mukhametshina RT,
Kwek XY, Cabrera-Fuentes HA, et al. Inflammation following acute myocardial
infarction: Multiple players, dynamic roles, and novel therapeutic opportunities.
Pharmacol Ther. 2018;186:73-87.
14. Yan X, Anzai A, Katsumata Y, Matsuhashi T, Ito K, Endo J, et al. Temporal
dynamics of cardiac immune cell accumulation following acute myocardial
infarction. J Mol Cell Cardiol. 2013;62:24-35.
15. Shinde AV, Frangogiannis NG. Fibroblasts in myocardial infarction: a role
in inflammation and repair. J Mol Cell Cardiol. 2014;70:74-82.
De Villiers C, Riley PR. Mouse models of myocardial infarction:
comparing permanent ligation and ischaemia-reperfusion. Dis Model Mech.
2020;13(11).
17. Cahill TJ, Choudhury RP, Riley PR. Heart regeneration and repair after
myocardial infarction: translational opportunities for novel therapeutics. Nat Rev
Drug Discov. 2017;16(10):699-717.
18. Vogel B, Claessen BE, Arnold SV, Chan D, Cohen DJ, Giannitsis E, et al.
ST-segment elevation myocardial infarction. Nat Rev Dis Primers. 2019;5(1):39.
19. Ibanez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for
myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 2015;65(14):1454-
71.
20. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med.
2007;357(11):1121-35.
21. Gamba L, Harrison M, Lien CL. Cardiac regeneration in model organisms.
Curr Treat Options Cardiovasc Med. 2014;16(3):288.
22. Beffagna G. Zebrafish as a Smart Model to Understand Regeneration After
Heart Injury: How Fish Could Help Humans. Front Cardiovasc Med. 2019;6:107.
23. Uygur A, Lee RT. Mechanisms of Cardiac Regeneration. Dev Cell.
2016;36(4):362-74.
24. Foglia MJ, Poss KD. Building and re-building the heart by cardiomyocyte
proliferation. Development. 2016;143(5):729-40.
25. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN,
et al. Transient regenerative potential of the neonatal mouse heart. Science.
2011;331(6020):1078-80.
26. Notari M, Ventura-Rubio A, Bedford-Guaus SJ, Jorba I, Mulero L, Navajas
D, et al. The local microenvironment limits the regenerative potential of the
mouse neonatal heart. Sci Adv. 2018;4(5):eaao5553.
27. Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D,
Canseco D, et al. Regulation of neonatal and adult mammalian heart regeneration
by the miR-15 family. Proc Natl Acad Sci U S A. 2013;110(1):187-92.
28. Bloom MW, Greenberg B, Jaarsma T, Januzzi JL, Lam CSP, Maggioni AP,
et al. Heart failure with reduced ejection fraction. Nat Rev Dis Primers.
2017;3:17058.
29. Frangogiannis NG. The extracellular matrix in myocardial injury, repair,
and remodeling. J Clin Invest. 2017;127(5):1600-12.
30. Frangogiannis NG. The mechanistic basis of infarct healing. Antioxid
Redox Signal. 2006;8(11-12):1907-39.
31. Dewald O, Ren G, Duerr GD, Zoerlein M, Klemm C, Gersch C, et al. Of
mice and dogs: species-specific differences in the inflammatory response
following myocardial infarction. Am J Pathol. 2004;164(2):665-77.
32. Frangogiannis NG. Regulation of the inflammatory response in cardiac
repair. Circ Res. 2012;110(1):159-73.
33. Chen B, Frangogiannis NG. Immune cells in repair of the infarcted
myocardium. Microcirculation. 2017;24(1).
34. Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: protagonists of infarct
inflammation and repair after myocardial infarction. Circulation.
2010;121(22):2437-45.
35. Chia S, Nagurney JT, Brown DF, Raffel OC, Bamberg F, Senatore F, et al.
Association of leukocyte and neutrophil counts with infarct size, left ventricular
function and outcomes after percutaneous coronary intervention for ST-elevation
myocardial infarction. Am J Cardiol. 2009;103(3):333-7.
36. Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in
myocardial infarction. Cardiovasc Res. 2002;53(1):31-47.
37. Christia P, Bujak M, Gonzalez-Quesada C, Chen W, Dobaczewski M,
Reddy A, et al. Systematic characterization of myocardial inflammation, repair,
and remodeling in a mouse model of reperfused myocardial infarction. J
Histochem Cytochem. 2013;61(8):555-70.
38. Anversa P, Olivetti G, Capasso JM. Cellular basis of ventricular remodeling
after myocardial infarction. Am J Cardiol. 1991;68(14):7D-16D.
39. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial
infarction: pathophysiology and therapy. Circulation. 2000;101(25):2981-8.
40. Sager HB, Hulsmans M, Lavine KJ, Moreira MB, Heidt T, Courties G, et
al. Proliferation and Recruitment Contribute to Myocardial Macrophage
Expansion in Chronic Heart Failure. Circ Res. 2016;119(7):853-64.
41. Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL.
Macrophages: An Inflammatory Link Between Angiogenesis and
Lymphangiogenesis. Microcirculation. 2016;23(2):95-121.
42. Heinen A, Nederlof R, Panjwani P, Spychala A, Tschaidse T, Reffelt H, et
al. IGF1 Treatment Improves Cardiac Remodeling after Infarction by Targeting
Myeloid Cells. Mol Ther. 2019;27(1):46-58.
43. Saetrum Opgaard O, Wang PH. IGF-I is a matter of heart. Growth Horm
IGF Res. 2005;15(2):89-94.
44. Hall K. Human somatomedin. Determination, occurrence, biological
activity and purification. Acta Endocrinol Suppl (Copenh). 1972;163:1052.
45. Juul A. Serum levels of insulin-like growth factor I and its binding proteins
in health and disease. Growth Horm IGF Res. 2003;13(4):113-70.
46. Salmon WD, Jr., Daughaday WH. A hormonally controlled serum factor
which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med.
1957;49(6):825-36.
47. Schimpff RM, Donnadieu M, Glasinovic JC, Warnet JM, Girard F. The
liver as a source of somatomedin. Acta Endocrinol (Copenh). 1976;83(2):365-72.
48. D'Ercole AJ, Applewhite GT, Underwood LE. Evidence that somatomedin
is synthesized by multiple tissues in the fetus. Dev Biol. 1980;75(2):315-28.
49. Jones JI, Clemmons DR. Insulin-like growth factors and their binding
proteins: biological actions. Endocr Rev. 1995;16(1):3-34.
50. Lee WS, Kim J. Insulin-like growth factor-1 signaling in cardiac aging.
Biochim Biophys Acta Mol Basis Dis. 2018;1864(5 Pt B):1931-8.
51. LeRoith D, Werner H, Beitner-Johnson D, Roberts CT, Jr. Molecular and
cellular aspects of the insulin-like growth factor I receptor. Endocr Rev.
1995;16(2):143-63.
52. Le Roith D, Bondy C, Yakar S, Liu JL, Butler A. The somatomedin
hypothesis: 2001. Endocr Rev. 2001;22(1):53-74.
53. Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg
J, et al. Analysis of the Human Tissue-specific Expression by Genome-wide
Integration of Transcriptomics and Antibody-based Proteomics. Mol Cell
Proteomics. 2014;13(2):397-406.
54. Le Roith D. Seminars in medicine of the Beth Israel Deaconess Medical
Center. Insulin-like growth factors. N Engl J Med. 1997;336(9):633-40.
55. Troncoso R, Ibarra C, Vicencio JM, Jaimovich E, Lavandero S. New
insights into IGF-1 signaling in the heart. Trends in endocrinology and
metabolism: TEM. 2014;25(3):128-37.
56. Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor
binding proteins. Endocr Rev. 2002;23(6):824-54.
57. Rajaram S, Baylink DJ, Mohan S. Insulin-like growth factor-binding
proteins in serum and other biological fluids: regulation and functions. Endocr
Rev. 1997;18(6):801-31.
58. Varma Shrivastav S, Bhardwaj A, Pathak KA, Shrivastav A. Insulin-Like
Growth Factor Binding Protein-3 (IGFBP-3): Unraveling the Role in Mediating
IGF-Independent Effects Within the Cell. Front Cell Dev Biol. 2020;8:286.
59. Sara VR, Hall K. Insulin-like growth factors and their binding proteins.
Physiol Rev. 1990;70(3):591-614.
60. Daughaday WH, Hall K, Raben MS, Salmon WD, Jr., van den Brande JL,
van Wyk JJ. Somatomedin: proposed designation for sulphation factor. Nature.
1972;235(5333):107.
61. Buerke M, Murohara T, Skurk C, Nuss C, Tomaselli K, Lefer AM.
Cardioprotective effect of insulin-like growth factor I in myocardial ischemia
followed by reperfusion. Proc Natl Acad Sci U S A. 1995;92(17):8031-5.
62. O'Sullivan JF, Leblond AL, Kelly G, Kumar AH, Metharom P, Buneker
CK, et al. Potent long-term cardioprotective effects of single low-dose insulinlike
growth factor-1 treatment postmyocardial infarction. Circ Cardiovasc Interv.
2011;4(4):327-35.
63. Ma QL, Yang TL, Yin JY, Peng ZY, Yu M, Liu ZQ, et al. Role of insulinlike
growth factor-1 (IGF-1) in regulating cell cycle progression. Biochem
Biophys Res Commun. 2009;389(1):150-5.
64. Litvinukova M, Talavera-Lopez C, Maatz H, Reichart D, Worth CL,
Lindberg EL, et al. Cells of the adult human heart. Nature. 2020;588(7838):466-
72.
65. Juul A, Bang P, Hertel NT, Main K, Dalgaard P, Jorgensen K, et al. Serum
insulin-like growth factor-I in 1030 healthy children, adolescents, and adults:
relation to age, sex, stage of puberty, testicular size, and body mass index. J Clin
Endocrinol Metab. 1994;78(3):744-52.
66. Juul A, Scheike T, Davidsen M, Gyllenborg J, Jorgensen T. Low serum
insulin-like growth factor I is associated with increased risk of ischemic heart
disease: a population-based case-control study. Circulation. 2002;106(8):939-44.
67. Vasan RS, Sullivan LM, D'Agostino RB, Roubenoff R, Harris T, Sawyer
DB, et al. Serum insulin-like growth factor I and risk for heart failure in elderly
individuals without a previous myocardial infarction: the Framingham Heart
Study. Ann Intern Med. 2003;139(8):642-8.
68. Bagno LL, Carvalho D, Mesquita F, Louzada RA, Andrade B, Kasai-
Brunswick TH, et al. Sustained IGF-1 Secretion by Adipose-Derived Stem Cells
Improves Infarcted Heart Function. Cell transplantation. 2016;25(9):1609-22.
69. Duerr RL, McKirnan MD, Gim RD, Clark RG, Chien KR, Ross J, Jr.
Cardiovascular effects of insulin-like growth factor-1 and growth hormone in
chronic left ventricular failure in the rat. Circulation. 1996;93(12):2188-96.
70. Duerr RL, Huang S, Miraliakbar HR, Clark R, Chien KR, Ross J, Jr.
Insulin-like growth factor-1 enhances ventricular hypertrophy and function during
the onset of experimental cardiac failure. J Clin Invest. 1995;95(2):619-27.
71. Boucher M, Pesant S, Lei YH, Nanton N, Most P, Eckhart AD, et al.
Simultaneous administration of insulin-like growth factor-1 and darbepoetin alfa
protects the rat myocardium against myocardial infarction and enhances
angiogenesis. Clin Transl Sci. 2008;1(1):13-20.
72. Kotlyar AA, Vered Z, Goldberg I, Chouraqui P, Nas D, Fridman E, et al.
Insulin-like growth factor I and II preserve myocardial structure in postinfarct
swine. Heart. 2001;86(6):693-700.
73. Santini MP, Tsao L, Monassier L, Theodoropoulos C, Carter J, Lara-Pezzi
E, et al. Enhancing repair of the mammalian heart. Circ Res. 2007;100(12):1732-
40.
74. Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human
endothelial cells derived from umbilical veins. Identification by morphologic and
immunologic criteria. J Clin Invest. 1973;52(11):2745-56.
75. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M,
et al. The RIN: an RNA integrity number for assigning integrity values to RNA
measurements. BMC Mol Biol. 2006;7:3.
76. Cheadle C, Vawter MP, Freed WJ, Becker KG. Analysis of microarray data
using Z score transformation. The Journal of molecular diagnostics : JMD.
2003;5(2):73-81.
77. Bach LA. Endothelial cells and the IGF system. J Mol Endocrinol.
2015;54(1):R1-13.
78. Badimon L, Borrell M. Microvasculature Recovery by Angiogenesis After
Myocardial Infarction. Curr Pharm Des. 2018;24(25):2967-73.
79. Ren G, Michael LH, Entman ML, Frangogiannis NG. Morphological
characteristics of the microvasculature in healing myocardial infarcts. J
Histochem Cytochem. 2002;50(1):71-9.
80. Frangogiannis NG, Mendoza LH, Lewallen M, Michael LH, Smith CW,
Entman ML. Induction and suppression of interferon-inducible protein 10 in
reperfused myocardial infarcts may regulate angiogenesis. FASEB J.
2001;15(8):1428-30.
81. Kluge A, Zimmermann R, Munkel B, Mohri M, Sack S, Schaper J, et al.
Insulin-like growth factor I is involved in inflammation linked angiogenic
processes after microembolisation in porcine heart. Cardiovasc Res.
1995;29(3):407-15.
82. Castellon R, Hamdi HK, Sacerio I, Aoki AM, Kenney MC, Ljubimov AV.
Effects of angiogenic growth factor combinations on retinal endothelial cells. Exp
Eye Res. 2002;74(4):523-35.
83. Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, et al.
Evidence that human cardiac myocytes divide after myocardial infarction. N Engl
J Med. 2001;344(23):1750-7.
84. Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, et al.
The role of macrophage phenotype in vascularization of tissue engineering
scaffolds. Biomaterials. 2014;35(15):4477-88.
85. Virag JI, Murry CE. Myofibroblast and endothelial cell proliferation during
murine myocardial infarct repair. Am J Pathol. 2003;163(6):2433-40.
86. Zeng B, Tong S, Ren X, Xia H. Cardiac cell proliferation assessed by EdU,
a novel analysis of cardiac regeneration. Cytotechnology. 2016;68(4):763-70.
87. Gallego-Colon E, Villalba M, Tonkin J, Cruz F, Bernal JA, Jimenez-
Borregureo LJ, et al. Intravenous delivery of adeno-associated virus 9-encoded
IGF-1Ea propeptide improves post-infarct cardiac remodelling. NPJ Regen Med.
2016;1:16001.
88. Salic A, Mitchison TJ. A chemical method for fast and sensitive detection
of DNA synthesis in vivo. Proc Natl Acad Sci U S A. 2008;105(7):2415-20.
89. Hsu TL, Hanson SR, Kishikawa K, Wang SK, Sawa M, Wong CH. Alkynyl
sugar analogs for the labeling and visualization of glycoconjugates in cells. Proc
Natl Acad Sci U S A. 2007;104(8):2614-9.
90. Wang Z, Koenig AL, Lavine KJ, Apte RS. Macrophage Plasticity and
Function in the Eye and Heart. Trends Immunol. 2019;40(9):825-41.
91. Sansonetti M, Waleczek FJG, Jung M, Thum T, Perbellini F. Resident
cardiac macrophages: crucial modulators of cardiac (patho)physiology. Basic Res
Cardiol. 2020;115(6):77.
92. Gallego-Colon E, Sampson RD, Sattler S, Schneider MD, Rosenthal N,
Tonkin J. Cardiac-Restricted IGF-1Ea Overexpression Reduces the Early
Accumulation of Inflammatory Myeloid Cells and Mediates Expression of
Extracellular Matrix Remodelling Genes after Myocardial Infarction. Mediators Inflamm. 2015;2015:484357.
Bilbao D, et al. Monocyte/Macrophage-derived IGF-1 Orchestrates Murine
Skeletal Muscle Regeneration and Modulates Autocrine Polarization. Mol Ther.
2015;23(7):1189-200.
94. Chistiakov DA, Killingsworth MC, Myasoedova VA, Orekhov AN,
Bobryshev YV. CD68/macrosialin: not just a histochemical marker. Lab Invest.
2017;97(1):4-13.
95. Betjes MG, Haks MC, Tuk CW, Beelen RH. Monoclonal antibody EBM11
(anti-CD68) discriminates between dendritic cells and macrophages after shortterm
culture. Immunobiology. 1991;183(1-2):79-87.
96. Iqbal AJ, McNeill E, Kapellos TS, Regan-Komito D, Norman S, Burd S, et
al. Human CD68 promoter GFP transgenic mice allow analysis of monocyte to
macrophage differentiation in vivo. Blood. 2014;124(15):e33-44.
97. Santini MP, Lexow J, Borsellino G, Slonimski E, Zarrinpashneh E,
Poggioli T, et al. IGF-1Ea induces vessel formation after injury and mediates bone
marrow and heart cross-talk through the expression of specific cytokines.
Biochem Biophys Res Commun. 2011;410(2):201-7.
98. Li J, Brown LF, Hibberd MG, Grossman JD, Morgan JP, Simons M. VEGF,
flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis.
Am J Physiol. 1996;270(5 Pt 2):H1803-11.
99. Schultz GS, Grant MB. Neovascular growth factors. Eye (Lond). 1991;5 (
Pt 2):170-80.
100. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of
angiogenesis. Nature. 2011;473(7347):298-307.
101. Rabinovsky ED. The multifunctional role of IGF-1 in peripheral nerve
regeneration. Neurol Res. 2004;26(2):204-10.
102. Nakao-Hayashi J, Ito H, Kanayasu T, Morita I, Murota S. Stimulatory
effects of insulin and insulin-like growth factor I on migration and tube formation
by vascular endothelial cells. Atherosclerosis. 1992;92(2-3):141-9.
103. Shigematsu S, Yamauchi K, Nakajima K, Iijima S, Aizawa T, Hashizume
K. IGF-1 regulates migration and angiogenesis of human endothelial cells. Endocr
J. 1999;46 Suppl:S59-62.
104. Jonkman JE, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, et
al. An introduction to the wound healing assay using live-cell microscopy. Cell
adhesion & migration. 2014;8(5):440-51.
105. Chen CW, Okada M, Proto JD, Gao X, Sekiya N, Beckman SA, et al.
Human pericytes for ischemic heart repair. Stem Cells. 2013;31(2):305-16.
106. Su H, Cantrell AC, Zeng H, Zhu SH, Chen JX. Emerging Role of Pericytes
and Their Secretome in the Heart. Cells. 2021;10(3).
107. Leid J, Carrelha J, Boukarabila H, Epelman S, Jacobsen SE, Lavine KJ.
Primitive Embryonic Macrophages are Required for Coronary Development and
Maturation. Circ Res. 2016;118(10):1498-511.
108. Bajpai G, Bredemeyer A, Li W, Zaitsev K, Koenig AL, Lokshina I, et al.
Tissue Resident CCR2- and CCR2+ Cardiac Macrophages Differentially
Orchestrate Monocyte Recruitment and Fate Specification Following Myocardial
Injury. Circ Res. 2019;124(2):263-78.
109. Liu J, Wang H, Li J. Inflammation and Inflammatory Cells in Myocardial
Infarction and Reperfusion Injury: A Double-Edged Sword. Clin Med Insights
Cardiol. 2016;10:79-84.
110. Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, et
al. Embryonic and adult-derived resident cardiac macrophages are maintained
through distinct mechanisms at steady state and during inflammation. Immunity.
2014;40(1):91-104.
111. Davani EY, Brumme Z, Singhera GK, Cote HC, Harrigan PR, Dorscheid
DR. Insulin-like growth factor-1 protects ischemic murine myocardium from
ischemia/reperfusion associated injury. Crit Care. 2003;7(6):R176-83.
112. Donath MY, Sutsch G, Yan XW, Piva B, Brunner HP, Glatz Y, et al. Acute
cardiovascular effects of insulin-like growth factor I in patients with chronic heart
failure. J Clin Endocrinol Metab. 1998;83(9):3177-83.
113. Caplice NM, DeVoe MC, Choi J, Dahly D, Murphy T, Spitzer E, et al.
Randomized placebo controlled trial evaluating the safety and efficacy of single
low-dose intracoronary insulin-like growth factor following percutaneous
coronary intervention in acute myocardial infarction (RESUS-AMI). American
heart journal. 2018;200:110-7.
114. Ruidavets JB, Luc G, Machez E, Genoux AL, Kee F, Arveiler D, et al.
Effects of insulin-like growth factor 1 in preventing acute coronary syndromes:
the PRIME study. Atherosclerosis. 2011;218(2):464-9.
115. Piccioli L, Arcopinto M, Salzano A, D'Assante R, Schiavo A, Stagnaro FM,
et al. The impairment of the Growth Hormone/Insulin-like growth factor 1 (IGF-
1) axis in heart failure: A possible target for future therapy. Monaldi archives for
chest disease = Archivio Monaldi per le malattie del torace. 2018;88(3):975.
116. Laughlin GA, Barrett-Connor E, Criqui MH, Kritz-Silverstein D. The
prospective association of serum insulin-like growth factor I (IGF-I) and IGFbinding
protein-1 levels with all cause and cardiovascular disease mortality in
older adults: the Rancho Bernardo Study. J Clin Endocrinol Metab.
2004;89(1):114-20.
117. Andreassen M, Raymond I, Kistorp C, Hildebrandt P, Faber J, Kristensen
LO. IGF1 as predictor of all cause mortality and cardiovascular disease in an
elderly population. European journal of endocrinology. 2009;160(1):25-31.
118. Collett-Solberg PF, Misra M, Drug, Therapeutics Committee of the Lawson
Wilkins Pediatric Endocrine S. The role of recombinant human insulin-like
growth factor-I in treating children with short stature. J Clin Endocrinol Metab.
2008;93(1):10-8.
119. Dewald O, Frangogiannis NG, Zoerlein MP, Duerr GD, Taffet G, Michael
LH, et al. A murine model of ischemic cardiomyopathy induced by repetitive ischemia and reperfusion. The Thoracic and cardiovascular surgeon.
2004;52(5):305-11.
120. Xu Z, Alloush J, Beck E, Weisleder N. A murine model of myocardial
ischemia-reperfusion injury through ligation of the left anterior descending artery.
J Vis Exp. 2014(86).
121. Richardson WJ, Clarke SA, Quinn TA, Holmes JW. Physiological
Implications of Myocardial Scar Structure. Compr Physiol. 2015;5(4):1877-909.
122. Li Q, Li B, Wang X, Leri A, Jana KP, Liu Y, et al. Overexpression of
insulin-like growth factor-1 in mice protects from myocyte death after infarction,
attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin
Invest. 1997;100(8):1991-9.
123. Ruparelia N, Godec J, Lee R, Chai JT, Dall'Armellina E, McAndrew D, et
al. Acute myocardial infarction activates distinct inflammation and proliferation
pathways in circulating monocytes, prior to recruitment, and identified through
conserved transcriptional responses in mice and humans. European heart journal.
2015;36(29):1923-34.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Bezug:2018-2025
Fachbereich / Einrichtung:Medizinische Fakultät » Institute » Institut für Herz- und Kreislaufphysiologie
Dokument erstellt am:22.04.2025
Dateien geändert am:22.04.2025
Promotionsantrag am:08.06.2024
Datum der Promotion:13.02.2025
english
Benutzer
Status: Gast
Aktionen