Dokument: Funktionelle Charakterisierung der site II Interaktion zwischen IL-12/IL-23p40 und IL-12Rb1

Titel:Funktionelle Charakterisierung der site II Interaktion zwischen IL-12/IL-23p40 und IL-12Rb1
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=69043
URN (NBN):urn:nbn:de:hbz:061-20250320-080516-6
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Georgy, Jacqueline [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]25,35 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 15.03.2025 / geändert 15.03.2025
Beitragende:PD Dr. Floß, Doreen M. [Gutachter]
Dr. Scheu, Stefanie [Gutachter]
Prof. Dr. rer. nat. Zielonka, Stefan [Gutachter]
Stichwörter:IL-12, IL-23, IL-12Rb1, IL-23R, IL-12Rb2, STAT, ERK, Siganltransduktion, Protein-Protein-Interaktion, site I-II-III Paradigma
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Interleukin (IL)-12 und IL-23 sind proinflammatorische Zytokine der IL-12 Familie und sind strukturell ähnlich aufgebaut. Allerdings haben sie unterschiedliche Funktionen im Immunsystem. Währenddessen IL-12 an der Differenzierung von TH1-Zellen und an der Abwehr von Tumorzellen beteiligt ist, spielt IL-23 bei der Regulierung der TH17-Antwort und bei der Pathogenese verschiedener Autoimmunkrankheiten eine entscheidende Rolle.
IL-12 (p35/p40) und IL-23 (p19/p40) bestehen beide aus der gemeinsamen β-Untereinheit p40 und einer zytokinspezifischen α-Untereinheit, p35 oder p19. Die Signaltransduktion erfolgt über den gemeinsamen IL-12 Rezeptor β1 (IL-12Rβ1) und den zytokinspezifischen IL-12 Rezeptor β2 (IL-12Rβ2) oder IL-23 Rezeptor (IL-23R). Die Signaltransduktion von IL-12 und IL-23 führt u.a. zur Aktivierung des JAK-STAT-Weges und MAPK-Weges. In Abwesenheit von der α-Untereinheit kann p40 Homodimere bilden, die p80 genannt werden.
Der Aufbau des IL-12 und IL-23 Zytokinrezeptorkomplex folgt dem site I-II-III Paradigma mit einer nicht-kanonischen site II. Im IL-23 Zytokinrezeptorkomplex bindet p19 über site I an p40. Die Interaktion von p19 mit dem IL-23R erfolgt über site III. An site II ist p19 nicht beteiligt. Stattdessen interagiert p40 mit IL-12Rβ1. Für site I und site III konnten bereits kritische Aminosäuren identifiziert werden. Des Weiteren konnten durch Mutation einzelner kritischer Aminosäuren von site I und site III inaktive IL-12 und IL-23 Varianten generiert werden.
Es konnten bereits kritische Aminosäuren in p40 für die site II Interaktion identifiziert werden: H216, K217, K219, W37 und F82. Um eine inaktive IL-23 Variante zu generieren, wurde zunächst die N-terminale Domäne von Hyper-IL-23, einem Fusionsprotein aus p19 und p40, näher analysiert. Nach der Stimulation von Ba/F3-gp130-mIL-12Rβ1-mIL-23R-Zellen mit konditionierten Zellkulturüberständen der p40-Deletionsvariante ΔM23-P39 im HIL-23 Fusionsprotein zeigte sich keine Proliferation der Zellen und keine Aktivierung der intrazellulären Signalwege. Des Weiteren kann ΔM23-P39 im HIL-23 Fusionsprotein nicht den IL-12Rβ1 binden. Daher sollten durch Generierung verschiedener Mutationen die N-terminalen Aminosäuren von p40 analysiert werden. Durch Punktmutation von Tryptophan 37 zu Lysin (W37K) in p40 konnte die Proliferation von Ba/F3-gp130-mIL-12Rβ1-mIL-23R-Zellen und die Aktivierung der intrazellulären Signalwege signifikant reduziert werden. Auch konnte p40 W37K nicht an IL-12Rβ1 binden. Durch Kombination der Punktmutationen W37K in p40 mit den benachbarten Aminosäuren D36K und T38K in p40 von HIL-23 und HIL-12 wurden inaktive IL-23 und IL-12 Varianten generiert, die weder die zelluläre Proliferation noch die Aktivierung von intrazellulären Signalwegen induzieren konnten. Auch wurde keine Interaktion mit dem IL-12Rβ1 nachgewiesen. P40 Homodimere, p80, binden mit hoher Affinität an IL-12Rβ1, allerdings konnte bisher keine funktionelle Aktivität des IL-12Rβ1 Homodimer gezeigt werden. P80 kann unter bestimmten Bedingungen die Signaltransduktion von IL-12 und IL-23 inhibieren. Nach Einbringung der Mutationen D36K/W37K/T38K in p80 zeigte sich keine Inhibition der Signaltransduktion von IL-12 und IL-23.
Zusammenfassend wurde W37 in p40 als kritische Aminosäure der site II zwischen p40 und dem IL-12Rβ1 bestätigt und die Mutationen p40 D36K/W37K/T38K führte in IL-12, IL-23 und p80 zu einer inaktiven Variante. Genaue Kenntnisse über den Aufbau des IL-12 und IL-23 Zytokinrezeptorkomplexes und für die Interaktion wichtige Aminosäuren können neue Ansatzpunkte in der Therapie von Krebs und Autoimmunkrankheiten darstellen.

IL-12 and IL-23 are proinflammatory cytokines and members of the IL-12 family. They have a similar structure but different functions in the immune system. IL-12 is involved in the differentiation of TH1-cells and in defense of tumor cells. IL-23 is important for TH17-cell differentiation and plays an important role in the pathogenesis of autoimmune diseases.
IL-12 (p35/p40) and IL-23 (p19/p40) consist of the common β-subunit p40 and the specific α- subunit p35 or p19. IL-12 and IL-23 signal via the common IL-12 receptor β1 (IL-12Rβ1) and the specific IL-12 receptor β2 (IL-12Rβ2) or IL-23 receptor (IL-23R). For example, they activate the JAK-STAT pathway and the MAPK pathway. In absence of p19 and p35, p40 can form homodimers, which are called p80.
Structure of IL-12 and IL-23 cytokine receptor complex follows the site I-II-III paradigm with a non-canonical site II interaction. In the IL-23 cytokine receptor complex p19 binds to p40 via site I and p19 binds to IL-23R via site III. The α-subunit p19 is not part of site II interaction. Instead, p40 binds to IL-12Rβ1 via site II. Critical amino acids have been identified for site I and III interaction. Point mutations of critical site I and site III amino acids led to inactive IL-12 and IL-23 variants.
In p40 critical amino acids for site II interaction have been identified: H216, K217, K219, W37 and F82. To generate an inactive site II variant, the N-terminal region of Hyper IL-23, a fusion protein combining p40 and p19, has been analysed. Ba/F3-gp130-mIL-12Rβ1-mIL-23R cells did not proliferate and intracellular pathways were not activated after stimulation with p40 deletion variant ΔM23-P39 in fusion protein HIL-23. In co-immunoprecipitation studies ΔM23-P39 in HIL-23 does not interact with IL-12Rβ1. Hence, amino acids of the N-terminal domain in p40 should be analysed through generation of point mutants in p40. Proliferation of Ba/F3-gp130-mIL-12Rβ1-mIL-23R cells and activation of signaling pathway was significantly reduced after stimulation with cell culture supernatant of W37 mutated p40. In co-immunoprecipitation studies HIL-23 W37 does not interact with IL-12Rβ1. Combination of W37K in p40 with point mutations of surrounding amino acids D36K and T38K in p40 leds to an inactive IL-12 and IL-23 variant, which could not induce proliferation and activation of signaling pathways and does not interact with IL-12Rβ1. P40 homodimers, p80, bind with high affinity to IL-12Rβ1. In functional analysis, IL-12Rβ1 homodimers are not biologically active. Under specific conditions p80 inhibits signal transduction of IL-12 and IL-23. p80 D36K/W37K/T38K could not inhibit signal transduction of IL-12 and IL-23.
Summarizing, p40W37 was confirmed as a critical amino acid for site II interaction with IL-12Rβ1. Interestingly, HIL-23 D36K/W37K/T38K, HIL-12 D36K/W37K/T38K and p80 D36K/W37K/T38K were identified as inactive IL-23, IL-12 and p80 variants. Precise knowledge of the structure of IL-23 and IL-12 cytokine receptor complex is important to develop therapeutic strategies against autoimmune diseases and cancer.
Quelle:1. Abdi, K. (2002) IL-12: The role of p40 versus p75. Scandinavian Journal of Immunology 56: 1-11
2. Floss, D. M., Moll, J. M., and Scheller, J. (2020) IL-12 and IL-23-Close Relatives with Structural Homologies but Distinct Immunological Functions. Cells 9: 2814
3. Tait Wojno, E. D., Hunter, C. A., and Stumhofer, J. S. (2019) The Immunobiology of the Interleukin-12 Family: Room for Discovery. Immunity 50: 851-870
4. Floss, D. M., and Scheller, J. (2019) Naturally occurring and synthetic constitutive-active cytokine receptors in disease and therapy. Cytokine and Growth Factor Reviews 47: 1-20
5. Rose-John, S., Scheller, J., and Schaper, F. (2015) "Family reunion"-A structured view on the composition of the receptor complexes of interleukin-6-type and interleukin-12-type cytokines. Cytokine and Growth Factor Reviews 26: 471-474
6. Floss, D. M., Moll, J. M., and Scheller, J. (2020) IL-12 and IL-23-Close Relatives with Structural Homologies but Distinct Immunological Functions. Cells 9: 2184
7. Gubler, U., Chua, A. O., Schoenhaut, D. S., Dwyer, C. M., McComas, W., Motyka, R., Nabavi, N., Wolitzky, A. G., Quinn, P. M., and Familletti, P. C. (1991) Coexpression of two distinct genes is required to generate secreted bioactive cytotoxic lymphocyte maturation factor. Proceedings of the National Academy of Sciences, USA 88: 4143-4147
8. Kobayashi, M., Fitz, L., Ryan, M., Hewick, R. M., Clark, S. C., Chan, S., Loudon, R., Sherman, F., Perussia, B., and Trinchieri, G. (1989) Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. Journal of Experimental Medicine 170: 827-845
9. Schoenhaut, D. S., Chua, A. O., Wolitzky, A. G., Quinn, P. M., Dwyer, C. M., McComas, W., Familletti, P. C., Gately, M. K., and Gubler, U. (1992) Cloning and expression of murine IL-12. Journal of Immunology 148: 3433-3440
10. Stern, A. S., Podlaski, F. J., Hulmes, J. D., Pan, Y. C., Quinn, P. M., Wolitzky, A. G., Familletti, P. C., Stremlo, D. L., Truitt, T., and Chizzonite, R. (1990) Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proceedings of the National Academy of Sciences, USA 87: 6808-6812
11. Wolf, S. F., Temple, P. A., Kobayashi, M., Young, D., Dicig, M., Lowe, L., Dzialo, R., Fitz, L., Ferenz, C., and Hewick, R. M. (1991) Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. Journal of Immunology 146: 3074-3081
12. Oppmann, B., Lesley, R., Blom, B., Timans, J. C., Xu, Y., Hunte, B., Vega, F., Yu, N., Wang, J., Singh, K., Zonin, F., Vaisberg, E., Churakova, T., Liu, M., Gorman, D., Wagner, J., Zurawski, S., Liu, Y., Abrams, J. S., Moore, K. W., Rennick, D., de Waal-Malefyt, R., Hannum, C., Bazan, J. F., and Kastelein, R. A. (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13: 715-725
13. Pflanz, S., Timans, J. C., Cheung, J., Rosales, R., Kanzler, H., Gilbert, J., Hibbert, L., Churakova, T., Travis, M., Vaisberg, E., Blumenschein, W. M., Mattson, J. D., Wagner, J. L., To, W., Zurawski, S., McClanahan, T. K., Gorman, D. M., Bazan, J. F., de Waal Malefyt, R., Rennick, D., and Kastelein, R. A. (2002) IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity 16: 779-790
14. Collison, L. W., Workman, C. J., Kuo, T. T., Boyd, K., Wang, Y., Vignali, K. M., Cross, R., Sehy, D., Blumberg, R. S., and Vignali, D. A. (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450: 566-569

15. Devergne, O., Birkenbach, M., and Kieff, E. (1997) Epstein-Barr virus-induced gene 3 and the p35 subunit of interleukin 12 form a novel heterodimeric hematopoietin. Proceedings of the National Academy of Sciences, USA 94: 12041-12046
16. Bridgewood, C., Alase, A., Watad, A., Wittmann, M., Cuthbert, R., and McGonagle, D. (2019) The IL-23p19/EBI3 heterodimeric cytokine termed IL-39 remains a theoretical cytokine in man. Inflammation Research 68: 423-426
17. Ramnath, D., Tunny, K., Hohenhaus, D. M., Pitts, C. M., Bergot, A. S., Hogarth, P. M., Hamilton, J. A., Kapetanovic, R., Sturm, R. A., Scholz, G. M., and Sweet, M. J. (2015) TLR3 drives IRF6-dependent IL-23p19 expression and p19/EBI3 heterodimer formation in keratinocytes. Immunology and Cell Biology 93: 771-779
18. Wang, X., Wei, Y., Xiao, H., Liu, X., Zhang, Y., Han, G., Chen, G., Hou, C., Ma, N., Shen, B., Li, Y., Egwuagu, C. E., and Wang, R. (2016) A novel IL-23p19/Ebi3 (IL-39) cytokine mediates inflammation in Lupus-like mice. European Journal of Immunology 46: 1343-1350
19. Flores, R. R., Kim, E., Zhou, L., Yang, C., Zhao, J., Gambotto, A., and Robbins, P. D. (2015) IL-Y, a synthetic member of the IL-12 cytokine family, suppresses the development of type 1 diabetes in NOD mice. European Journal of Immunology 45: 3114-3125
20. Wang, R. X., Yu, C. R., Mahdi, R. M., and Egwuagu, C. E. (2012) Novel IL27p28/IL12p40 cytokine suppressed experimental autoimmune uveitis by inhibiting autoreactive Th1/Th17 cells and promoting expansion of regulatory T cells. Journal of Biological Chemistry 287: 36012-36021
21. Hildenbrand, K., Aschenbrenner, I., Franke, F. C., Devergne, O., and Feige, M. J. (2022) Biogenesis and engineering of interleukin 12 family cytokines. Trends in Biochemical Sciences 47: 936-949
22. Ecoeur, F., Weiss, J., Schleeger, S., and Guntermann, C. (2020) Lack of evidence for expression and function of IL-39 in human immune cells. Public Library of Science ONE 15: e0242329
23. Nussrat, S. W., and Ad'hiah, A. H. (2023) Interleukin-39 is a novel cytokine associated with type 2 diabetes mellitus and positively correlated with body mass index. Endocrinology, Diabetes and Metabolism 6: e409
24. Presky, D. H., Yang, H., Minetti, L. J., Chua, A. O., Nabavi, N., Wu, C. Y., Gately, M. K., and Gubler, U. (1996) A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proceedings of the National Academy of Sciences, USA 93: 14002-14007
25. Parham, C., Chirica, M., Timans, J., Vaisberg, E., Travis, M., Cheung, J., Pflanz, S., Zhang, R., Singh, K. P., Vega, F., To, W., Wagner, J., O'Farrell, A. M., McClanahan, T., Zurawski, S., Hannum, C., Gorman, D., Rennick, D. M., Kastelein, R. A., de Waal Malefyt, R., and Moore, K. W. (2002) A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. Journal of Immunology 168: 5699-5708
26. Pflanz, S., Hibbert, L., Mattson, J., Rosales, R., Vaisberg, E., Bazan, J. F., Phillips, J. H., McClanahan, T. K., de Waal Malefyt, R., and Kastelein, R. A. (2004) WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. Journal of Immunology 172: 2225-2231
27. Collison, L. W., Delgoffe, G. M., Guy, C. S., Vignali, K. M., Chaturvedi, V., Fairweather, D., Satoskar, A. R., Garcia, K. C., Hunter, C. A., Drake, C. G., Murray, P. J., and Vignali, D. A. (2012) The composition and signaling of the IL-35 receptor are unconventional. Nature Immunology 13: 290-299
28. Lupardus, P. J., and Garcia, K. C. (2008) The structure of interleukin-23 reveals the molecular basis of p40 subunit sharing with interleukin-12. Journal of Molecular Biology 382: 931-941

29. Yoon, C., Johnston, S. C., Tang, J., Stahl, M., Tobin, J. F., and Somers, W. S. (2000) Charged residues dominate a unique interlocking topography in the heterodimeric cytokine interleukin-12. EMBO Journal 19: 3530-3541
30. Hasegawa, H., Mizoguchi, I., Chiba, Y., Ohashi, M., Xu, M., and Yoshimoto, T. (2016) Expanding Diversity in Molecular Structures and Functions of the IL-6/IL-12 Heterodimeric Cytokine Family. Frontiers in Immunology 7: 479
31. Chua, A. O., Chizzonite, R., Desai, B. B., Truitt, T. P., Nunes, P., Minetti, L. J., Warrier, R. R., Presky, D. H., Levine, J. F., and Gately, M. K. (1994) Expression cloning of a human IL-12 receptor component. A new member of the cytokine receptor superfamily with strong homology to gp130. Journal of Immunology 153: 128-136
32. Grotzinger, J. (2002) Molecular mechanisms of cytokine receptor activation. Biochimica et Biophysica Acta (BBA) 1592: 215-223
33. Jones, L. L., and Vignali, D. A. (2011) Molecular interactions within the IL-6/IL-12 cytokine/receptor superfamily. Journal of Immunology Research 51: 5-14
34. Schroder, J., Moll, J. M., Baran, P., Grotzinger, J., Scheller, J., and Floss, D. M. (2015) Non-canonical interleukin 23 receptor complex assembly: p40 protein recruits interleukin 12 receptor beta1 via site II and induces p19/interleukin 23 receptor interaction via site III. Journal of Biological Chemistry 290: 359-370
35. de Vos, A. M., Ultsch, M., and Kossiakoff, A. A. (1992) Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255: 306-312
36. Scheller, J., Ettich, J., Wittich, C., Pudewell, S., Floss, D. M., and Rafii, P. (2024) Exploring the landscape of synthetic IL-6-type cytokines. FEBS Journal 291: 2030-2050
37. Zhou, Y., Stevis, P. E., Cao, J., Saotome, K., Wu, J., Glatman Zaretsky, A., Haxhinasto, S., Yancopoulos, G. D., Murphy, A. J., Sleeman, M. W., Olson, W. C., and Franklin, M. C. (2023) Structural insights into the assembly of gp130 family cytokine signaling complexes. Science Advances 9: eade4395
38. Boulanger, M. J., Chow, D. C., Brevnova, E. E., and Garcia, K. C. (2003) Hexameric structure and assembly of the Interleukin-6/IL-6 alpha-receptor/gp130 complex. Science 300: 2101-2104
39. Moritz, R. L., Ward, L. D., Tu, G. F., Fabri, L. J., Ji, H., Yasukawa, K., and Simpson, R. J. (1999) The N-terminus of gp130 is critical for the formation of the high-affinity interleukin-6 receptor complex. Growth Factors 16: 265-278
40. Scheller, J., Berg, A., Moll, J. M., Floss, D. M., and Jungesblut, C. (2021) Current status and relevance of single nucleotide polymorphisms in IL-6-/IL-12-type cytokine receptors. Cytokine 148: 155550
41. Langrish, C. L., McKenzie, B. S., Wilson, N. J., de Waal Malefyt, R., Kastelein, R. A., and Cua, D. J. (2004) IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunological Reviews 202: 96-105
42. Glassman, C. R., Mathiharan, Y. K., Jude, K. M., Su, L., Panova, O., Lupardus, P. J., Spangler, J. B., Ely, L. K., Thomas, C., Skiniotis, G., and Garcia, K. C. (2021) Structural basis for IL-12 and IL-23 receptor sharing reveals a gateway for shaping actions on T versus NK cells. Cell 184: 983-999 e924
43. Esch, A., Masiarz, A., Mossner, S., Moll, J. M., Grotzinger, J., Schroder, J., Scheller, J., and Floss, D. M. (2020) Deciphering site 3 interactions of interleukin 12 and interleukin 23 with their cognate murine and human receptors. Journal of Biological Chemistry 295: 10478-10492
44. Jones, L. L., Chaturvedi, V., Uyttenhove, C., Van Snick, J., and Vignali, D. A. (2012) Distinct subunit pairing criteria within the heterodimeric IL-12 cytokine family. Molecular Immunology 51: 234-244


45. Bloch, Y., Felix, J., Merceron, R., Provost, M., Symakani, R. A., De Backer, R., Lambert, E., Mehdipour, A. R., and Savvides, S. N. (2024) Structures of complete extracellular receptor assemblies mediated by IL-12 and IL-23. Nature Structural & Molecular Biology 31: 591-597
46. Bloch, Y., Bouchareychas, L., Merceron, R., Skladanowska, K., Van den Bossche, L., Detry, S., Govindarajan, S., Elewaut, D., Haerynck, F., Dullaers, M., Adamopoulos, I. E., and Savvides, S. N. (2018) Structural activation of pro-inflammatory human cytokine IL-23 by cognate IL-23 receptor enables recruitment of the shared receptor IL-12Rbeta1. Immunity 48: 45-58 e46
47. Pastor-Fernandez, G., Mariblanca, I. R., and Navarro, M. N. (2020) Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities. Cells 9: 2044
48. Floss, D. M., Klocker, T., Schroder, J., Lamertz, L., Mrotzek, S., Strobl, B., Hermanns, H., and Scheller, J. (2016) Defining the functional binding sites of interleukin 12 receptor beta1 and interleukin 23 receptor to Janus kinases. Molecular Biology of the Cell 27: 2301-2316
49. Stark, G. R., and Darnell, J. E., Jr. (2012) The JAK-STAT pathway at twenty. Immunity 36: 503-514
50. Villarino, A. V., Kanno, Y., and O'Shea, J. J. (2017) Mechanisms and consequences of Jak-STAT signaling in the immune system. Nature Immunology 18: 374-384
51. Ortmann, R. A., Cheng, T., Visconti, R., Frucht, D. M., and O'Shea, J. J. (2000) Janus kinases and signal transducers and activators of transcription: their roles in cytokine signaling, development and immunoregulation. Arthritis Research & Therapy 2: 16-32
52. Hacker, H., and Karin, M. (2006) Regulation and function of IKK and IKK-related kinases. Science`s STKE: signal transduction knowledge enviroment 2006: re13
53. Ismail, H., Kang, B. H., Kim, J. S., Lee, J. H., Choi, I. W., Cha, G. H., Yuk, J. M., and Lee, Y. H. (2017) IL-12 and IL-23 Production in Toxoplasma gondii- or LPS-Treated Jurkat T Cells via PI3K and MAPK Signaling Pathways. Korean Journal of Parasitology 55: 613-622
54. Floss, D. M., Mrotzek, S., Klocker, T., Schroder, J., Grotzinger, J., Rose-John, S., and Scheller, J. (2013) Identification of canonical tyrosine-dependent and non-canonical tyrosine-independent STAT3 activation sites in the intracellular domain of the interleukin 23 receptor. Journal of Biological Chemistry 288: 19386-19400
55. Parkin, J., and Cohen, B. (2001) An overview of the immune system. Lancet 357: 1777-1789
56. Di Cesare, A., Di Meglio, P., and Nestle, F. O. (2009) The IL-23/Th17 axis in the immunopathogenesis of psoriasis. Journal of Investigative Dermatology 129: 1339-1350
57. Colombo, M. P., and Trinchieri, G. (2002) Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine and Growth Factor Reviews 13: 155-168
58. Szabo, S. J., Dighe, A. S., Gubler, U., and Murphy, K. M. (1997) Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. Journal of Experimental Medicine 185: 817-824
59. Trinchieri, G. (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Reviews: Immunology 3: 133-146
60. Ivanov, II, Zhou, L., and Littman, D. R. (2007) Transcriptional regulation of Th17 cell differentiation. Seminars in Immunology 19: 409-417
61. Floss, D. M., Schroder, J., Franke, M., and Scheller, J. (2015) Insights into IL-23 biology: From structure to function. Cytokine and Growth Factor Reviews 26: 569-578
62. Desmyter, A., Spinelli, S., Boutton, C., Saunders, M., Blachetot, C., de Haard, H., Denecker, G., Van Roy, M., Cambillau, C., and Rommelaere, H. (2017) Neutralization of human interleukin 23 by multivalent nanobodies explained by the structure of cytokine-nanobody complex. Frontiers in Immunology 8: 884
63. Liste, G., (2023), Ein unerwartetes Ende für Brazikumab, Gelbe Liste, 24.06.2024, https://www.gelbe-liste.de/gastroenterologie/ende-brazikumab
64. Noviello, D., Mager, R., Roda, G., Borroni, R. G., Fiorino, G., and Vetrano, S. (2021) The IL23-IL17 Immune Axis in the Treatment of Ulcerative Colitis: Successes, Defeats, and Ongoing Challenges. Frontiers in Immunology 12: 611256
65. Zhou, L., Wang, Y., Wan, Q., Wu, F., Barbon, J., Dunstan, R., Gauld, S., Konrad, M., Leys, L., McCarthy, R., Namovic, M., Nelson, C., Overmeyer, G., Perron, D., Su, Z., Wang, L., Westmoreland, S., Zhang, J., Zhu, R., and Veldman, G. (2021) A non-clinical comparative study of IL-23 antibodies in psoriasis. MAbs 13: 1964420
66. Korta, A., Kula, J., and Gomulka, K. (2023) The Role of IL-23 in the Pathogenesis and Therapy of Inflammatory Bowel Disease. International Journal of Molecular Sciences 24: 10172
67. Luo, J., Wu, S. J., Lacy, E. R., Orlovsky, Y., Baker, A., Teplyakov, A., Obmolova, G., Heavner, G. A., Richter, H. T., and Benson, J. (2010) Structural basis for the dual recognition of IL-12 and IL-23 by ustekinumab. Journal of Molecular Biology 402: 797-812
68. European Medicines Agency, (1995), Medicines, EMA, 20.01.2024, https://www.ema.europa.eu/en/medicines
69. Food and Drug Administration, (1996), Drugs@FDA: FDA-Approved Drugs, FDA, 20.01.2024, https://www.fda.gov/drugs/drug-approvals-and-databases/about-drugsfda
70. Parigi, T. L., Iacucci, M., and Ghosh, S. (2022) Blockade of IL-23: What is in the Pipeline? Journal of Crohn´s and Colitis 16: ii64-ii72
71. Wang, Y., Fan, Z., Shao, L., Kong, X., Hou, X., Tian, D., Sun, Y., Xiao, Y., and Yu, L. (2016) Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications. International Journal of Nanomedicine 11: 3287-3303
72. Keam, S. J. (2023) Ozoralizumab: First Approval. Drugs 83: 87-92
73. Belladonna, M. L., and Grohmann, U. (2013) Bioengineering heterodimeric cytokines: turning promiscuous proteins into therapeutic agents. Biotechnology and Genetic Engineering Reviews 29: 149-174
74. Ling, P., Gately, M. K., Gubler, U., Stern, A. S., Lin, P., Hollfelder, K., Su, C., Pan, Y. C., and Hakimi, J. (1995) Human IL-12 p40 homodimer binds to the IL-12 receptor but does not mediate biologic activity. Journal of Immunology 154: 116-127
75. Heinzel, F. P., Hujer, A. M., Ahmed, F. N., and Rerko, R. M. (1997) In vivo production and function of IL-12 p40 homodimers. Journal of Immunology 158: 4381-4388
76. Wang, X., Wilkinson, V. L., Podlaski, F. J., Wu, C., Stern, A. S., Presky, D. H., and Magram, J. (1999) Characterization of mouse interleukin-12 p40 homodimer binding to the interleukin-12 receptor subunits. European Journal of Immunology 29: 2007-2013
77. Engelowski, E., Schneider, A., Franke, M., Xu, H., Clemen, R., Lang, A., Baran, P., Binsch, C., Knebel, B., Al-Hasani, H., Moll, J. M., Floss, D. M., Lang, P. A., and Scheller, J. (2018) Synthetic cytokine receptors transmit biological signals using artificial ligands. Nature Communications 9: 2034
78. Gillessen, S., Carvajal, D., Ling, P., Podlaski, F. J., Stremlo, D. L., Familletti, P. C., Gubler, U., Presky, D. H., Stern, A. S., and Gately, M. K. (1995) Mouse interleukin-12 (IL-12) p40 homodimer: a potent IL-12 antagonist. European Journal of Immunology 25: 200-206
79. Pahan, K., Sheikh, F. G., Liu, X., Hilger, S., McKinney, M., and Petro, T. M. (2001) Induction of nitric-oxide synthase and activation of NF-kappaB by interleukin-12 p40 in microglial cells. Journal of Biological Chemistry 276: 7899-7905
80. Caveney, N. A., Glassman, C. R., Jude, K. M., Tsutsumi, N., and Garcia, K. C. (2022) Structure of the IL-27 quaternary receptor signaling complex. Elife 11: e78463
81. Jin, Y., Fyfe, P. K., Gardner, S., Wilmes, S., Bubeck, D., and Moraga, I. (2022) Structural insights into the assembly and activation of the IL-27 signaling complex. EMBO Reports 23: e55450

82. Skladanowska, K., Bloch, Y., Strand, J., White, K. F., Hua, J., Aldridge, D., Welin, M., Logan, D. T., Soete, A., Merceron, R., Murphy, C., Provost, M., Bazan, J. F., Hunter, C. A., Hill, J. A., and Savvides, S. N. (2022) Structural basis of activation and antagonism of receptor signaling mediated by interleukin-27. Cell Reports 41: 111490
83. Rakemann, T., Niehof, M., Kubicka, S., Fischer, M., Manns, M. P., Rose-John, S., and Trautwein, C. (1999) The designer cytokine hyper-interleukin-6 is a potent activator of STAT3-dependent gene transcription in vivo and in vitro. Journal of Biological Chemistry 274: 1257-1266
84. Georgy, J., Arlt, Y., Moll, J. M., Ouzin, M., Weitz, H. T., Gremer, L., Willbold, D., Grotzinger, J., Thives-Kurenbach, F., Scheller, J., and Floss, D. M. (2021) Tryptophan (W) at position 37 of murine IL-12/IL-23 p40 is mandatory for binding to IL-12Rbeta1 and subsequent signal transduction. Journal of Biological Chemistry 297: 101295
85. Hummel, T. M., Ackfeld, T., Schonberg, M., Ciupka, G., Schulz, F., Oberdoerster, A., Grotzinger, J., Scheller, J., and Floss, D. M. (2017) Synthetic Deletion of the Interleukin 23 Receptor (IL-23R) Stalk Region Led to Autonomous IL-23R Homodimerization and Activation. Molecular and Cellular Biology 37: e00014-00017
86. Metcalfe, R. D., Hanssen, E., Fung, K. Y., Aizel, K., Kosasih, C. C., Zlatic, C. O., Doughty, L., Morton, C. J., Leis, A. P., Parker, M. W., Gooley, P. R., Putoczki, T. L., and Griffin, M. D. W. (2023) Structures of the interleukin 11 signalling complex reveal gp130 dynamics and the inhibitory mechanism of a cytokine variant. Nature Communications 14: 7543
87. Jones, S. A., and Jenkins, B. J. (2018) Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nature Reviews Immunology 18: 773-789
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:20.03.2025
Dateien geändert am:20.03.2025
Promotionsantrag am:23.08.2024
Datum der Promotion:11.03.2025
english
Benutzer
Status: Gast
Aktionen