Dokument: Para-Abelian Varieties and Albanese Maps
Titel: | Para-Abelian Varieties and Albanese Maps | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=68986 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20250311-115458-9 | |||||||
Kollektion: | Publikationen | |||||||
Sprache: | Englisch | |||||||
Dokumententyp: | Wissenschaftliche Texte » Artikel, Aufsatz | |||||||
Medientyp: | Text | |||||||
Autoren: | Laurent, Bruno [Autor] Schröer, Stefan [Autor] | |||||||
Dateien: |
| |||||||
Stichwörter: | Picard schemes, Albanese maps, Group schemes, Para-abelian varieties | |||||||
Beschreibung: | We construct for every proper algebraic space over a ground field an Albanese map to a para-abelian variety, which is unique up to unique isomorphism. This holds in the absence of rational points or ample sheaves, and also for reducible or non-reduced spaces, under the mere assumption that the structure morphism is in Stein factorization. It also works under suitable assumptions in families. In fact the treatment of the relative setting is crucial, even to understand the situation over ground fields. This also ensures that Albanese maps are equivariant with respect to actions of group schemes. Our approach depends on the notion of families of para-abelian varieties, where each geometric fiber admits the structure of an abelian variety, and representability of tau-parts in relative Picard groups, together with structure results on algebraic groups. | |||||||
Rechtliche Vermerke: | Originalveröffentlichung.
Laurent, B., & Schröer, S. (2023). Para-Abelian Varieties and Albanese Maps. Bulletin of the Brazilian Mathematical Society, 55(1), Article 4. https://doi.org/10.1007/s00574-023-00378-0 | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Fachbereich / Einrichtung: | Mathematisch- Naturwissenschaftliche Fakultät | |||||||
Dokument erstellt am: | 11.03.2025 | |||||||
Dateien geändert am: | 11.03.2025 |