Dokument: Quantum description of Fermi arcs in Weyl semimetals in a magnetic field
Titel: | Quantum description of Fermi arcs in Weyl semimetals in a magnetic field | |||||||
URL für Lesezeichen: | https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=68560 | |||||||
URN (NBN): | urn:nbn:de:hbz:061-20250211-112208-0 | |||||||
Kollektion: | Publikationen | |||||||
Sprache: | Englisch | |||||||
Dokumententyp: | Wissenschaftliche Texte » Artikel, Aufsatz | |||||||
Medientyp: | Text | |||||||
Autoren: | Bauer, Tim [Autor] Buccheri, Francesco [Autor] Martino, Alessandro de [Autor] Egger, Reinhold [Autor] | |||||||
Dateien: |
| |||||||
Beschreibung: | For a Weyl semimetal (WSM) in a magnetic field, a semiclassical description of the Fermi-arc surface state dynamics is usually employed for explaining various unconventional magnetotransport phenomena, e.g., Weyl orbits, the three-dimensional quantum Hall effect, and the high transmission through twisted WSM interfaces. For a half-space geometry, we determine the low-energy quantum eigenstates for a four-band model of a WSM in a magnetic field perpendicular to the surface. The eigenstates correspond to in- and out-going chiral Landau level (LL) states, propagating (anti)parallel to the field direction near different Weyl nodes, which are coupled by evanescent surface-state contributions generated by all other LLs. These replace the Fermi arc in a magnetic field. Computing the phase shift accumulated between in- and out-going chiral LL states, we compare our quantum-mechanical results to semiclassical predictions. We find quantitative agreement between both approaches. | |||||||
Rechtliche Vermerke: | Originalveröffentlichung:
Bauer, T., Buccheri, F., De Martino, A., & Egger, R. (2024). Quantum description of Fermi arcs in Weyl semimetals in a magnetic field. Physical Review Research, 6(4), Article 043201. https://doi.org/10.1103/physrevresearch.6.043201 | |||||||
Lizenz: | ![]() Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz | |||||||
Fachbereich / Einrichtung: | Mathematisch- Naturwissenschaftliche Fakultät | |||||||
Dokument erstellt am: | 11.02.2025 | |||||||
Dateien geändert am: | 11.02.2025 |