Dokument: Einfluss perioperativer Faktoren auf das Patienten-Outcome nach Implantation eines Linksherzunterstützungssystems

Titel:Einfluss perioperativer Faktoren auf das Patienten-Outcome nach Implantation eines Linksherzunterstützungssystems
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=68428
URN (NBN):urn:nbn:de:hbz:061-20250206-141728-8
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Voit, Josephine Amelie Louisa [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]1,23 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 04.02.2025 / geändert 04.02.2025
Beitragende:Univ.-Prof. Dr. med. Aubin, Hug [Gutachter]
Prof. Dr. Dr. Huhn-Wientgen, Ragnar [Gutachter]
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Zusammenfassung
Der Einsatz linksventrikulärer Unterstützungssysteme (LVAD), als finale Therapiemaßnahme, sowie auch als überbrückende Option bis zu einer Herztransplantation, gewinnt immer mehr an Relevanz. Vorausgegangene Arbeiten legten den Schwerpunkt der LVAD Untersuchungen auf die Analyse mortalitätsbegünstigender Faktoren. Zuletzt rückten patientenzentrierte Endpunkte jedoch mehr in den Fokus und stellten eine gute Ergänzung zu harten Endpunkten dar. Aktuell ist die Datenlage für patientenzentrierte Endpunkte bei LVAD unzureichend. Diese retrospektive, monozentrische Kohorten Studie identifizierte perioperative Variablen, welche die Therapiebedürftigkeit innerhalb des ersten Jahres nach LVAD Implantation beeinflussten. Dies erfolgte anhand des patientenzentrierten Endpunktes Days Alive and Out of Hospital (DAOH). Zunächst wurde mittels einer univariaten Analyse der Einfluss zehn vorab definierter Variablen auf die DAOH untersucht. Anschließend erfolgte eine multivariate Analyse aller im univariaten Modell signifikanten Variablen. Ergänzend analysierte die Arbeit den Einfluss aller zehn Variablen auf die Ein-Jahres-Mortalität. Die Kohorte umfasste 227 LVAD Patienten. Sechs Variablen, darunter die chronische Nierenerkrankung, die präoperative mechanische Kreislaufunterstützung, ein Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) Stadium < 3, die intraoperative Implantation eines rechtsventrikulären Unterstützungssystems, die postoperative Nierenersatztherapie und die Tracheotomie, zeigten in der univariaten Analyse einen signifikanten Einfluss auf die DAOH. Die multivariate Analyse zeigte eine unabhängig voneinander existierende Assoziation von fünf der sechs Variablen mit einer reduzierten Anzahl an DAOH. Die Untersuchung der Ein-Jahres-Mortalität zeigte lediglich für die postoperative Nierenersatztherapie eine Signifikanz. Diese Studie identifiziert Faktoren, welche die Therapiebedürftigkeit nach LVAD Implantation beeinflussen. Ebenfalls zeigte sie eine Diskrepanz zwischen Mortalität und Lebensqualität nach LVAD Implantation. DAOH stellt einen validen, patientenzentrierten Endpunkt dar, welcher zukünftiger Forschung zu einem besseren Vergleich des Outcomes in Bezug auf die Therapiebedürftigkeit als Surrogat-Parameter für die Lebensqualität der Patienten dienen kann.

There is a tremendous increase in implantation of LVAD as bridge to transplant or destination therapy. The focus in preceding studies was the investigation of perioperative variables influencing mortality after left ventricular assisted device implantation. During the last years, patient centered endpoints became increasingly important complementing hard endpoints such as mortality analysis. Data concerning patient centered endpoints after LVAD implantation is insufficient. For this reason, it is necessary to identify and analyze perioperative factors influencing patients’ life after surgery. This retrospective single-center cohort study aimed to identify perioperative variables which had an impact on the patients’ quality of life. Therefore, quality of life was measured as DAOH within the first year after LVAD implantation. Initially we conducted an univariate analysis investigating the influence of 10 prespecified variables on DAOH. According to that a multivariate analysis conducting influence on DAOH involving previously significant variables was performed. Additionally, this study examined the impact of all variables on 1-year mortality. The cohort of this study included 227 patients. Regarding univariate analysis, six out of ten variables, including Chronic Kidney Disease (CKD), preoperative Mechanical Circulatory Support (pMCS), INTERMACS < 3, Right Ventricular Assist Device (RVAD) implantation, postoperative dialysis and tracheotomy, showed a significant influence on DAOH. Multivariate analysis showed an independent association with reduced DAOH for five out of six variables. The investigation of 1-year mortality revealed a significance only for postoperative dialysis demonstrating an increased mortality. This study identified numerous factors influencing quality of life after LVAD implantation. Furthermore, it showed discrepancy between mortality and quality of life after LVAD implantation. DAOH illustrates a patient centered endpoint which may contribute to a more comprehensive assessment of outcome concerning the patients’ life impact.
Quelle:1. Roth, S., et al., Days alive and out of hospital after left ventricular assist device implantation. ESC Heart Fail, 2022. 9(4): p. 2455-2463.
2. Miller, L.W. and M. Guglin, Patient selection for ventricular assist devices: a moving target. Journal of the American College of Cardiology, 2013. 61(12): p. 1209-1221.
3. Loghmanpour, N.A., et al., A new Bayesian network-based risk stratification model for prediction of short-term and long-term LVAD mortality. Asaio Journal, 2015. 61(3): p. 313-323.
4. Moonesinghe, S.R., et al., Systematic review and consensus definitions for the Standardised Endpoints in Perioperative Medicine initiative: patient-centred outcomes. British Journal of Anaesthesia, 2019. 123(5): p. 664-670.
5. Conrad, N., et al., Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet, 2018. 391(10120): p. 572-580.
6. McDonagh, T.A., et al., 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal, 2021. 42(36): p. 3599-3726.
7. Mosterd, A. and A.W. Hoes, Clinical epidemiology of heart failure. Heart, 2007. 93(9): p. 1137-46.
8. Roger, V.L., Epidemiology of heart failure. Circ Res, 2013. 113(6): p. 646-59.
9. Smeets, M., et al., Burden of heart failure in Flemish general practices: a registry-based study in the Intego database. BMJ Open, 2019. 9(1): p. e022972.
10. Virani, S.S., et al., Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation, 2020. 141(9): p. e139-e596.
11. Brouwers, F.P., et al., Incidence and epidemiology of new onset heart failure with preserved vs. reduced ejection fraction in a community-based cohort: 11-year follow-up of PREVEND. Eur Heart J, 2013. 34(19): p. 1424-31.
12. Meyer, S., et al., Sex differences in new-onset heart failure. Clin Res Cardiol, 2015. 104(4): p. 342-50.
13. Ponikowski, P., et al., 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European Journal of Heart Failure, 2016. 18(8): p. 891-975.
14. Bozkurt, B., et al., Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society
46
and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur J Heart Fail, 2021. 23(3): p. 352- 380.
15. Caraballo, C., et al., Clinical Implications of the New York Heart Association Classification. J Am Heart Assoc, 2019. 8(23): p. e014240.
16. Solomon, S.D., et al., Efficacy of Sacubitril/Valsartan Relative to a Prior
Decompensation: The PARADIGM-HF Trial. JACC Heart Fail, 2016.
4(10): p. 816-822.
17. Chioncel, O., et al., Epidemiology and one-year outcomes in patients
with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail, 2017. 19(12): p. 1574-1585.
18. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018. 392(10159): p. 1789-1858.
19. Ammar, K.A., et al., Prevalence and prognostic significance of heart failure stages: application of the American College of Cardiology/American Heart Association heart failure staging criteria in the community. Circulation, 2007. 115(12): p. 1563-70.
20. Rose, E.A., et al., Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med, 2001. 345(20): p. 1435-43.
21. Xanthakis, V., et al., Prevalence, Neurohormonal Correlates, and Prognosis of Heart Failure Stages in the Community. JACC Heart Fail, 2016. 4(10): p. 808-815.
22. Crespo-Leiro, M.G., et al., Advanced heart failure: a position statement of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail, 2018. 20(11): p. 1505-1535.
23. Miller, L., et al., Use of Ventricular Assist Devices and Heart Transplantation for Advanced Heart Failure. Circulation Research, 2019. 124(11): p. 1658-1678.
24. Molina, E.J., et al., The Society of Thoracic Surgeons Intermacs 2020 Annual Report. Ann Thorac Surg, 2021. 111(3): p. 778-792.
25. Briasoulis, A., et al., Trends in Utilization, Mortality, Major Complications, and Cost After Left Ventricular Assist Device Implantation in the United States (2009 to 2014). The American Journal of Cardiology, 2018. 121(10): p. 1214-1218.
26. Gustafsson, F. and J.G. Rogers, Left ventricular assist device therapy in advanced heart failure: patient selection and outcomes. European Journal of Heart Failure, 2017. 19(5): p. 595-602.
27. Tenge, T., et al., Impact of Left Ventricular Assist Devices on Days Alive and Out of Hospital in Hemodynamically Stable Patients with End-Stage Heart Failure: A Propensity Score Matched Study. Life (Basel), 2022. 12(12).
28. Lietz, K., et al., Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation, 2007. 116(5): p. 497-505.
47

29. Atluri, P., et al., Ventricular assist device implant in the elderly is associated with increased, but respectable risk: a multi-institutional study. The Annals of Thoracic Surgery, 2013. 96(1): p. 141-147.
30. Aubin, H., et al., A Suprainstitutional Network for Remote Extracorporeal Life Support: A Retrospective Cohort Study. JACC: Heart Failure, 2016. 4(9): p. 698-708.
31. O'Horo, J.C., et al., Left Ventricular Assist Device Infections: A Systematic Review. Asaio j, 2018. 64(3): p. 287-294.
32. Castrodeza, J., C. Ortiz-Bautista, and F. Fernández-Avilés, Continuous- flow left ventricular assist device: Current knowledge, complications, and future directions. Cardiol J, 2022. 29(2): p. 293-304.
33. Shah, P., et al., Diagnosis of hemolysis and device thrombosis with lactate dehydrogenase during left ventricular assist device support. J Heart Lung Transplant, 2014. 33(1): p. 102-4.
34. Uriel, N., et al., Device thrombosis in HeartMate II continuous-flow left ventricular assist devices: a multifactorial phenomenon. J Heart Lung Transplant, 2014. 33(1): p. 51-9.
35. Park, S.J., et al., Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy. Circ Heart Fail, 2012. 5(2): p. 241-8.
36. Schrottmaier, W.C., et al., Platelet activation at the onset of human endotoxemia is undetectable in vivo. Platelets, 2016. 27(5): p. 479-83.
37. Cogswell, R., R. John, and A. Shaffer, Right Ventricular Failure After Left Ventricular Assist Device. Cardiol Clin, 2020. 38(2): p. 219-225.
38. Bellavia, D., et al., Prediction of right ventricular failure after ventricular assist device implant: systematic review and meta-analysis of observational studies. Eur J Heart Fail, 2017. 19(7): p. 926-946.
39. Benjamin, M.M., et al., Association of preoperative duration of inotropy on prevalence of right ventricular failure following LVAD implantation. ESC Heart Fail, 2020. 7(4): p. 1949-1955.
40. Lampert, B.C. and J.J. Teuteberg, Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant, 2015. 34(9): p. 1123- 30.
41. Truby, L.K., et al., Aortic Insufficiency During Contemporary Left Ventricular Assist Device Support: Analysis of the INTERMACS Registry. JACC Heart Fail, 2018. 6(11): p. 951-960.
42. Sakatsume, K., et al., Association between the severity of acquired von Willebrand syndrome and gastrointestinal bleeding after continuous-flow left ventricular assist device implantation. Eur J Cardiothorac Surg, 2018. 54(5): p. 841-846.
43. Kataria, R. and U.P. Jorde, Gastrointestinal Bleeding During Continuous- Flow Left Ventricular Assist Device Support: State of the Field. Cardiol Rev, 2019. 27(1): p. 8-13.
44. Kanwar, M.K., et al., A Bayesian Model to Predict Survival After Left Ventricular Assist Device Implantation. JACC: Heart Failure, 2018. 6(9): p. 771-779.
45. Caraballo, C., et al., Clinical Outcomes After Left Ventricular Assist Device Implantation in Older Adults: An INTERMACS Analysis. JACC: Heart Failure, 2019. 7(12): p. 1069-1078.
48

46. Giede-Jeppe, A., et al., Management of Stroke in Patients with Left Ventricular Assist Devices. J Stroke Cerebrovasc Dis, 2020. 29(11): p. 105166.
47. Cowger, J., et al., Predicting survival in patients receiving continuous flow left ventricular assist devices: the HeartMate II risk score. J Am Coll Cardiol, 2013. 61(3): p. 313-21.
48. Teuteberg, J.J., et al., Risk assessment for continuous flow left ventricular assist devices: does the destination therapy risk score work? An analysis of over 1,000 patients. J Am Coll Cardiol, 2012. 60(1): p. 44- 51.
49. Thomas, S.S., et al., Pre-operative mortality risk assessment in patients with continuous-flow left ventricular assist devices: application of the HeartMate II risk score. J Heart Lung Transplant, 2014. 33(7): p. 675-81.
50. Cowger, J.A., et al., Quality of life and functional capacity outcomes in the MOMENTUM 3 trial at 6 months: A call for new metrics for left ventricular assist device patients. The Journal of Heart and Lung Transplantation, 2018. 37(1): p. 15-24.
51. Green, C.P., et al., Development and evaluation of the Kansas City Cardiomyopathy Questionnaire: a new health status measure for heart failure. J Am Coll Cardiol, 2000. 35(5): p. 1245-55.
52. Mehra, M.R., et al., A Fully Magnetically Levitated Left Ventricular Assist Device - Final Report. The New England Journal of Medicine, 2019. 380(17): p. 1618-1627.
53. Ariti, C.A., et al., Days alive and out of hospital and the patient journey in patients with heart failure: Insights from the candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) program. American Heart Journal, 2011. 162(5): p. 900-906.
54. Jerath, A., P.C. Austin, and D.N. Wijeysundera, Days Alive and Out of Hospital: Validation of a Patient-centered Outcome for Perioperative Medicine. Anesthesiology, 2019. 131(1): p. 84-93.
55. Ariti, C.A., et al., Days alive and out of hospital and the patient journey in patients with heart failure: Insights from the candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) program. Am Heart J, 2011. 162(5): p. 900-6.
56. Binanay, C., et al., Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. Jama, 2005. 294(13): p. 1625-33.
57. Wasywich, C.A., et al., Understanding changing patterns of survival and hospitalization for heart failure over two decades in New Zealand: utility of 'days alive and out of hospital' from epidemiological data. Eur J Heart Fail, 2010. 12(5): p. 462-8.
58. Xian, Y., et al., Patient-Centered Research into Outcomes Stroke Patients Prefer and Effectiveness Research: Implementing the patient- driven research paradigm to aid decision making in stroke care. Am Heart J, 2015. 170(1): p. 36-45, 45.e1-11.
59. Yu, A.Y.X., et al., Population-based study of home-time by stroke type and correlation with modified Rankin score. Neurology, 2017. 89(19): p. 1970-1976.
49

60. M'Pembele, R., et al., Life impact of VA-ECMO due to primary graft dysfunction in patients after orthotopic heart transplantation. ESC Heart Fail, 2022. 9(1): p. 695-703.
61. Myles, P.S., et al., Validation of days at home as an outcome measure after surgery: a prospective cohort study in Australia. BMJ Open, 2017. 7(8): p. e015828.
62. Chen, Y., J. Lawrence, and N. Stockbridge, Days alive out of hospital in heart failure: Insights from the PARADIGM-HF and CHARM trials. Am Heart J, 2021. 241: p. 108-119.
63. Muslem, R., et al., Effect of Age and Renal Function on Survival After Left Ventricular Assist Device Implantation. The American Journal of Cardiology, 2017. 120(12): p. 2221-2225.
64. Kiernan, M.S., et al., Preoperative Determinants of Quality of Life and Functional Capacity Response to Left Ventricular Assist Device Therapy. Journal of Cardiac Failure, 2016. 22(10): p. 797-805.
65. Pavol, M.A., et al., Cognition predicts days-alive-out-of-hospital after LVAD implantation. The International Journal of Artificial Organs, 2021. 44(12): p. 952-955.
66. Noly, P.-E., et al., Association of Days Alive and Out of the Hospital After Ventricular Assist Device Implantation With Adverse Events and Quality of Life. JAMA Surgery, 2023. 158(4): p. e228127-e228127.
67. Dunlay, S.M., et al., Frailty and outcomes after implantation of left ventricular assist device as destination therapy. J Heart Lung Transplant, 2014. 33(4): p. 359-65.
68. Forest, S.J., et al., Readmissions after ventricular assist device: etiologies, patterns, and days out of hospital. Ann Thorac Surg, 2013. 95(4): p. 1276-81.
69. Staffa, S.J., D.S. Kohane, and D. Zurakowski, Quantile Regression and Its Applications: A Primer for Anesthesiologists. Anesth Analg, 2019. 128(4): p. 820-830.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:06.02.2025
Dateien geändert am:06.02.2025
Promotionsantrag am:05.08.2024
Datum der Promotion:21.01.2025
english
Benutzer
Status: Gast
Aktionen