Dokument: Reproducibility and across-site transferability of an improved deep learning approach for aneurysm detection and segmentation in time-of-flight MR-angiograms

Titel:Reproducibility and across-site transferability of an improved deep learning approach for aneurysm detection and segmentation in time-of-flight MR-angiograms
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=68295
URN (NBN):urn:nbn:de:hbz:061-20250127-112456-6
Kollektion:Publikationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Texte » Artikel, Aufsatz
Medientyp:Text
Autoren: Vach, Marius [Autor]
Wolf, Luisa [Autor]
Weiss, Daniel [Autor]
Ivan, Vivien Lorena [Autor]
Hofmann, Björn B. [Autor]
Himmelspach, Ludmila [Autor]
Caspers, Julian [Autor]
Rubbert, Christian [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]1,57 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 27.01.2025 / geändert 27.01.2025
Stichwörter:Intracranial aneurysm, Reproducibility, Magnetic resonance angiography, Convolutional neural network, Deep learning
Beschreibung:This study aimed to (1) replicate a deep-learning-based model for cerebral aneurysm segmentation in TOF-MRAs, (2) improve the approach by testing various fully automatic pre-processing pipelines, and (3) rigorously validate the model’s transferability on independent, external test-datasets. A convolutional neural network was trained on 235 TOF-MRAs acquired on local scanners from a single vendor to segment intracranial aneurysms. Different pre-processing pipelines including bias field correction, resampling, cropping and intensity-normalization were compared regarding their effect on model performance. The models were tested on independent, external same-vendor and other-vendor test-datasets, each comprised of 70 TOF-MRAs, including patients with and without aneurysms. The best-performing model achieved excellent results on the external same-vendor test-dataset, surpassing the results of the previous publication with an improved sensitivity (0.97 vs. ~ 0.86), a higher Dice score coefficient (DSC, 0.60 ± 0.25 vs. 0.53 ± 0.31), and an improved false-positive rate (0.87 ± 1.35 vs. ~ 2.7 FPs/case). The model further showed excellent performance in the external other-vendor test-datasets (DSC 0.65 ± 0.26; sensitivity 0.92, 0.96 ± 2.38 FPs/case). Specificity was 0.38 and 0.53, respectively. Raising the voxel-size from 0.5 × 0.5×0.5 mm to 1 × 1×1 mm reduced the false-positive rate seven-fold. This study successfully replicated core principles of a previous approach for detecting and segmenting cerebral aneurysms in TOF-MRAs with a robust, fully automatable pre-processing pipeline. The model demonstrated robust transferability on two independent external datasets using TOF-MRAs from the same scanner vendor as the training dataset and from other vendors. These findings are very encouraging regarding the clinical application of such an approach.
Rechtliche Vermerke:Originalveröffentlichung:
Vach, M., Wolf, L., Weiß, D. A., Ivan, V. L., Hofmann, B. B., Himmelspach, L., Caspers, J., & Rubbert, C. (2024). Reproducibility and across-site transferability of an improved deep learning approach for aneurysm detection and segmentation in time-of-flight MR-angiograms. Scientific Reports, 14, Article 18749. https://doi.org/10.1038/s41598-024-68805-w
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:27.01.2025
Dateien geändert am:27.01.2025
english
Benutzer
Status: Gast
Aktionen