Dokument: Die Rolle der erythrozytären und endothelialen NOS3 in der Anämie und deren kardioprotektive Effekte nach myokardialer Ischämie/Reperfusionsschaden

Titel:Die Rolle der erythrozytären und endothelialen NOS3 in der Anämie und deren kardioprotektive Effekte nach myokardialer Ischämie/Reperfusionsschaden
Weiterer Titel:The role of erythrocytic and endothelial NOS3 in anemia and their cardioprotective effects after myocardial ischemia/reperfusion injury
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=67989
URN (NBN):urn:nbn:de:hbz:061-20250130-130044-8
Kollektion:Dissertationen
Sprache:Deutsch
Dokumententyp:Wissenschaftliche Abschlussarbeiten » Dissertation
Medientyp:Text
Autor: Nolde, Sophie [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]2,53 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 17.12.2024 / geändert 17.12.2024
Beitragende:Prof.Dr. Kelm, Malte [Gutachter]
Prof. Dr. Germing, Ulrich [Gutachter]
Stichwörter:eNOS, Anämie, chronische Anämie, akute Anämie
Dewey Dezimal-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit
Beschreibungen:Rationale: Anämie tritt häufig bei Patienten mit akutem Myokardinfarkt (AMI) auf und trägt zu einer ungünstigen Prognose bei. Der kausale Beitrag der Anämie und deren Einfluss auf den zirkulierenden Stickstoffmonoxid (NO) Pool im Zusammenhang mit der Mortalität nach akutem Myokardinfarkt (AMI) ist unklar.
Zielsetzung: Die Zielsetzung meiner Untersuchungen ist es, die Auswirkungen der akuten und chronischen Anämie auf den akuten Myokardinfarkt zu untersuchen. Insbesondere soll die Rolle, der durch Anämie verursachten, (Dys-) Funktion der roten Blutkörperchen, sowie deren Effekte auf die endotheliale Stickstoffmonoxid- Synthase (eNOS3) auf die linksventrikuläre Funktion nach Ischämie/Reperfusionsschaden überprüft werden.
Hypothese: Wir stellen die Hypothese auf, dass der zirkulierende NO-Pool bei Patienten mit AMI und Anämie bei der Aufnahme verändert ist und dass die kardioprotektive Kapazität der Erythrozyten beeinträchtigt ist.
Methoden und Resultate: Im Langendorff-Modell wurde der Einfluss von Vollblut oder roter Blutzellen (RBC)-Suspension von anämischen und nicht anämischen Mäusen auf den kardialen Ischämie/Reperfusionsschaden untersucht. Bei den zur Blutspende verwendeten Mäusen wurde eine subakute (3 Tage) und chronische (6 Wochen) Anämie durch repetitiven Blutverlust (<15% des zirkulierenden Blutvolumens) induziert (Ziel-Hämoglobin-Wert <9g/dl). Dabei wurde der Beitrag der eNOS3 nach genetischer Hemmung durch die Zugabe des Vollblutes, als auch reiner RBC-Suspension von Mäusen mit globaler eNOS-/- Eliminierung (eNOS-/- Knockout (KO)) analysiert. Die kardiale linksventrikuläre Kontraktilität wurde anhand des linksventrikulären Druckgradienten (LVDP) und die über den LVDP abgeleitete Geschwindigkeit der Kontraktion (+dp/dt), Geschwindigkeit der Relaxation (-dp/dt) sowie dem linksventrikulär enddiastolische Druck (LVEDP) gemessen. RBCs und Vollblut von Mäusen mit akuter Anämie verringerten die kontraktile Erholung nach myokardialer Ischämie und anschließender Reperfusion. Isolierte RBCs von chronisch anämischen Wildtyp (WT) -Mäusen zeigten keinen wesentlichen Abfall der gemessenen Parameter, wohin gegen das Vollblut von chronisch anämischen WT-Tieren zu einer Verschlechterung der linksventrikulären (LV) Leistung führte. Die Vollblut Proben von eNOS -/- KO Mäusen ohne Anämie waren ebenfalls durch eine Verschlechterung der LV-Kontraktilität nach Ischämie/Reperfusion charakterisiert. während die gleichzeitige Supplementierung der eNOS-/- KO -Mäuse mit dem NO-Donor (DEA NONOate) die negativen Effekte dieser RBC aufheben konnte.
Schlussfolgerungen: Zusammenfassend lässt sich sagen, dass eine moderate Blutverlustanämie mit einer Funktionsstörung der roten Blutkörperchen und einem verminderten Gehalt an zirkulierendem Stickstoffmonoxid einhergeht. Sowohl die vaskuläre als auch die kardiale endotheliale Stickstoffmonoxid-Synthase spielen eine entscheidende Rolle bei der Anpassung des Herz-Kreislauf-Systems an die Anämie. Die Funktionsstörungen der roten Blutkörperchen in Verbindung mit einer gestörten eNOS-Funktion könnten zu ungünstigen Ergebnissen bei einem akuten Myokardinfarkt beitragen.

Rationale: Anaemia is common in patients with acute myocardial infarction (AMI) and contributes to an unfavorable prognosis. The causal contribution of anaemia and its influence on the circulating nitric oxide (NO) pool in relation to mortality after AMI is unclear.
Objective: The aim of my research is to investigate the effects of acute and chronic anaemia on acute myocardial infarction. In particular, the role of anaemia-induced red blood cell (dys-) function and its effect on endothelial nitric oxide synthase (eNOS3) on left ventricular (LV) function after ischaemia/reperfusion injury.
Hypothesis: We hypothesise that the circulating NO pool is altered in patients with AMI and anaemia on admission and that the cardioprotective capacity of red cells is impaired.
Methods and results: The Langendorff model was used to study the effect of whole blood or red blood cell (RBC) suspension from anemic and non-anemic mice on cardiac ischemia/reperfusion injury. In mice used for blood donation, subacute (3 days) and chronic (6 weeks) anaemia was induced by repetitive blood loss (<15% of circulating blood volume) (target haemoglobin value <9 g/dl). The contribution of eNOS 3 was analysed after genetic inhibition by the addition of whole blood, as well as pure red blood cell (RBC) suspension from mice with global eNOS-/- elimination (eNOS-/- = Knockout). The cardiac left ventricular contractility was assessed using the left ventricular pressure gradient (LVDP), and the derived contraction velocity (+dp/dt), relaxation velocity (-dp/dt), as well as the left ventricular end-diastolic pressure (LVEDP). RBCs and whole blood from mice with acute anaemia reduced contractile recovery after myocardial ischaemia and subsequent reperfusion. Isolated RBCs from chronic anaemic wild-type (WT) mice showed no significant decrease in the measured parameters, whereas whole blood from chronic anaemic WT animals resulted in a deterioration of LV performance. Whole blood samples from eNOS -/- mice without anemia were also characterised by impaired LV contractility after ischaemia/reperfusion. While simultaneous supplementation of the eNOS -/- mice with the NO donor (DEA NONOate) was able to reverse the negative effects of this RBCs.
Conclusions: In summary, moderate blood loss anemia is associated with dysfunction of red blood cells and reduced circulating nitric oxide levels. Both vascular and cardiac endothelial nitric oxide synthase play a crucial role in cardiovascular adaptation to anemia. Dysfunction of red blood cells combined with impaired eNOS function may contribute to adverse outcomes in acute myocardial infarction.
Quelle:1. Speckmann, E., J. Hescheler, and R. Köhling, Physiologie: Das Lehrbuch. 7 ed. 2019, Germany: Elsevier. 918.
2. Kuhn, V., et al., Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia. Antioxid Redox Signal, 2017. 26(13): p. 718-742.
3. Braunstein, E. Bildung der roten Blutkörperchen. 2022 Juli 2022 [cited 2024; Available from: https://www.msdmanuals.com/de-de/profi/hämatologie-und-onkologie/untersuchung-des-anämischen-patienten/diagnose.
4. Herold, G., Innere Medizin. 2021, Germany: Herold, G. 1002.
5. Heinrich, P., M. Müller, and L. Graeve, Löffler/Petrides: Biohemie und Pathobiochemie. 9 ed. 2014, Germany. 1073.
6. Peña-Rosas, J.P., et al., Intermittent oral iron supplementation during pregnancy. Cochrane Database Syst Rev, 2012. 7(7): p. Cd009997.
7. al., W.B.e., AWMF Leitlinie Eisenmangelanämie. AWMF, 2021.
8. Horl, W.H., [Diagnosis and therapy of renal anemia. Iron levels should be watched carefully: MMW Seminar on Anemia. 2]. MMW Fortschr Med, 1999. 141(24): p. 47-8.
9. Zhang, Z., et al., Relationship between Red Blood Cell Indices (MCV, MCH, and MCHC) and Major Adverse Cardiovascular Events in Anemic and Nonanemic Patients with Acute Coronary Syndrome. Dis Markers, 2022. 2022: p. 2193343.
10. Anker, S.D., et al., Prevalence, incidence, and prognostic value of anaemia in patients after an acute myocardial infarction: data from the OPTIMAAL trial. Eur Heart J, 2009. 30(11): p. 1331-9.
11. Greten, H., F. Rinniger, and T. Greten, Innere Medizin. 13 ed. 2010, Germany: Georg Thieme Verlag. 1241.
12. Cappellini, M.D., K.M. Musallam, and A.T. Taher, Iron deficiency anaemia revisited. J Intern Med, 2020. 287(2): p. 153-170.
13. Wischmann, P., et al., Relevance of pre-existing anaemia for patients admitted for acute coronary syndrome to an intensive care unit: a retrospective cohort analysis of 7418 patients. Eur Heart J Open, 2022. 2(4): p. oeac040.
14. Jung, C., et al., The role of anemia on admission in acute coronary syndrome - An umbrella review of systematic reviews and meta-analyses. Int J Cardiol, 2022. 367: p. 1-10.
15. Colombo, M.G., et al., Association between admission anemia and long-term mortality in patients with acute myocardial infarction: results from the MONICA/KORA myocardial infarction registry. BMC Cardiovasc Disord, 2018. 18(1): p. 50.
16. Zhang, Y., et al., Restrictive vs. Liberal Red Blood Cell Transfusion Strategy in Patients With Acute Myocardial Infarction and Anemia: A Systematic Review and Meta-Analysis. Front Cardiovasc Med, 2021. 8: p. 736163.
17. Horl, W.H., New insights into intestinal iron absorption. Nephrol Dial Transplant, 2008. 23(10): p. 3063-4.
18. Larson, D.S. and D.W. Coyne, Understanding and exploiting hepcidin as an indicator of anemia due to chronic kidney disease. Kidney Res Clin Pract, 2013. 32(1): p. 11-5.
19. Cappellini, M.D. and I. Motta, Anemia in Clinical Practice-Definition and Classification: Does Hemoglobin Change With Aging? Semin Hematol, 2015. 52(4): p. 261-9.
20. Nemeth, E., et al., Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science, 2004. 306(5704): p. 2090-3.
21. Anand, I.S. and P. Gupta, Anemia and Iron Deficiency in Heart Failure: Current Concepts and Emerging Therapies. Circulation, 2018. 138(1): p. 80-98.
22. Wischmann, P., et al., Safety and efficacy of iron supplementation after myocardial infarction in mice with moderate blood loss anaemia. ESC Heart Fail, 2021. 8(6): p. 5445-5455.
23. Fraenkel, P.G., Understanding anemia of chronic disease. Hematology Am Soc Hematol Educ Program, 2015. 2015: p. 14-8.
24. Westenbrink, B.D., et al., Anemia predicts thromboembolic events, bleeding complications and mortality in patients with atrial fibrillation: insights from the RE-LY trial. J Thromb Haemost, 2015. 13(5): p. 699-707.
25. Erdmann, J., et al., Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature, 2013. 504(7480): p. 432-6.
26. Ding, Y.Y., et al., Hemoglobin Level and Hospital Mortality Among ICU Patients With Cardiac Disease Who Received Transfusions. J Am Coll Cardiol, 2015. 66(22): p. 2510-8.
27. Alexander, K.P., et al., Transfusion practice and outcomes in non-ST-segment elevation acute coronary syndromes. Am Heart J, 2008. 155(6): p. 1047-53.
28. Figueras, J., et al., Thrombin formation and fibrinolytic activity in patients with acute myocardial infarction or unstable angina: in-hospital course and relationship with recurrent angina at rest. J Am Coll Cardiol, 2000. 36(7): p. 2036-43.
29. García-Roa, M., et al., Red blood cell storage time and transfusion: current practice, concerns and future perspectives. Blood Transfus, 2017. 15(3): p. 222-231.
30. Cortese-Krott, M.M., et al., A multilevel analytical approach for detection and visualization of intracellular NO production and nitrosation events using diaminofluoresceins. Free Radic Biol Med, 2012. 53(11): p. 2146-58.
31. Yang, J., et al., Arginase regulates red blood cell nitric oxide synthase and export of cardioprotective nitric oxide bioactivity. Proc Natl Acad Sci U S A, 2013. 110(37): p. 15049-54.
32. Pernow, J. and C. Jung, Arginase as a potential target in the treatment of cardiovascular disease: reversal of arginine steal? Cardiovasc Res, 2013. 98(3): p. 334-43.
33. Shemyakin, A., et al., Arginase inhibition improves endothelial function in patients with coronary artery disease and type 2 diabetes mellitus. Circulation, 2012. 126(25): p. 2943-50.
34. Jung, C., et al., Arginase inhibition mediates cardioprotection during ischaemia-reperfusion. Cardiovasc Res, 2010. 85(1): p. 147-54.
35. Gonon, A.T., et al., Local arginase inhibition during early reperfusion mediates cardioprotection via increased nitric oxide production. PLoS One, 2012. 7(7): p. e42038.
36. Kleinbongard, P., et al., Red blood cells express a functional endothelial nitric oxide synthase. Blood, 2006. 107(7): p. 2943-51.
37. Wood, K.C., et al., Circulating blood endothelial nitric oxide synthase contributes to the regulation of systemic blood pressure and nitrite homeostasis. Arterioscler Thromb Vasc Biol, 2013. 33(8): p. 1861-71.
38. Leo, F., et al., Red Blood Cell and Endothelial eNOS Independently Regulate Circulating Nitric Oxide Metabolites and Blood Pressure. Circulation, 2021.
39. Cortese-Krott, M.M., et al., Red blood cell eNOS is cardioprotective in acute myocardial infarction. Redox Biol, 2022. 54: p. 102370.
40. Rassaf, T., et al., Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ Res, 2007. 100(12): p. 1749-54.
41. Daiber, A., et al., Targeting vascular (endothelial) dysfunction. Br J Pharmacol, 2017. 174(12): p. 1591-1619.
42. Liu, C., et al., Mechanisms of human erythrocytic bioactivation of nitrite. J Biol Chem, 2015. 290(2): p. 1281-94.
43. Reiter, C.D., et al., Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med, 2002. 8(12): p. 1383-9.
44. Wischmann, P., et al., Anaemia is associated with severe RBC dysfunction and a reduced circulating NO pool: vascular and cardiac eNOS are crucial for the adaptation to anaemia. Basic Res Cardiol, 2020. 115(4): p. 43.
45. Kelm, M. and J. Schrader, Control of coronary vascular tone by nitric oxide. Circ Res, 1990. 66(6): p. 1561-75.
46. Heusch, G., et al., Endogenous nitric oxide and myocardial adaptation to ischemia. Circ Res, 2000. 87(2): p. 146-52.
47. Forstermann, U. and W.C. Sessa, Nitric oxide synthases: regulation and function. Eur Heart J, 2012. 33(7): p. 829-37, 837a-837d.
48. Fye, W.B., H. Newell Martin and the isolated heart preparation: the link between the frog and open heart surgery. Circulation, 1986. 73(5): p. 857-64.
49. Kaya, S., Charakterisierung eines Langendorff basierten Zelltransfer Modells des kardialen Ischämie-Reperfusionsschadens, in medical research school. 2020.
50. Ringer, S., Concerning the Influence exerted by each of the Constituents of the Blood on the Contraction of the Ventricle. J Physiol, 1882. 3(5-6): p. 380-93.
51. Ringer, S., A third contribution regarding the Influence of the Inorganic Constituents of the Blood on the Ventricular Contraction. J Physiol, 1883. 4(2-3): p. 222-5.
52. Bell, R.M., M.M. Mocanu, and D.M. Yellon, Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol, 2011. 50(6): p. 940-50.
53. Teilmann, A.C., et al., Physiological and pathological impact of blood sampling by retro-bulbar sinus puncture and facial vein phlebotomy in laboratory mice. PLoS One, 2014. 9(11): p. e113225.
54. Fens, M.H., et al., The capacity of red blood cells to reduce nitrite determines nitric oxide generation under hypoxic conditions. PLoS One, 2014. 9(7): p. e101626.
55. Merx, M.W., et al., Depletion of circulating blood NOS3 increases severity of myocardial infarction and left ventricular dysfunction. Basic Res Cardiol, 2014. 109(1): p. 398.
56. Mamas, M.A., et al., Relationship Between Anemia and Mortality Outcomes in a National Acute Coronary Syndrome Cohort: Insights From the UK Myocardial Ischemia National Audit Project Registry. J Am Heart Assoc, 2016. 5(11).
57. Lui, F.E. and R. Kluger, Reviving artificial blood: meeting the challenge of dealing with NO scavenging by hemoglobin. Chembiochem, 2010. 11(13): p. 1816-24.
58. Kim, J.H., et al., Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats. J Appl Physiol (1985), 2009. 107(4): p. 1249-57.
59. LoBue, A., et al., Red blood cell endothelial nitric oxide synthase: A major player in regulating cardiovascular health. Br J Pharmacol, 2023.
60. Förstermann, U. and H. Li, Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br J Pharmacol, 2011. 164(2): p. 213-23.
61. Rochette, L., et al., Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets? Pharmacol Ther, 2013. 140(3): p. 239-57.
62. Radziwon-Balicka, A., et al., Differential eNOS-signalling by platelet subpopulations regulates adhesion and aggregation. Cardiovasc Res, 2017. 113(14): p. 1719-1731.
63. Ruschitzka, F.T., et al., Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic mice overexpressing erythropoietin. Proc Natl Acad Sci U S A, 2000. 97(21): p. 11609-13.
64. Gorressen, S., et al., Circulating NOS3 modulates left ventricular remodeling following reperfused myocardial infarction. PLoS One, 2015. 10(4): p. e0120961.
65. Zhou, Z., et al., Erythrocytes From Patients With Type 2 Diabetes Induce Endothelial Dysfunction Via Arginase I. J Am Coll Cardiol, 2018. 72(7): p. 769-780.
66. Jiao, T., et al., Erythrocytes from patients with ST-elevation myocardial infarction induce cardioprotection through the purinergic P2Y(13) receptor and nitric oxide signaling. Basic Res Cardiol, 2022. 117(1): p. 46.
67. Zhuge, Z., et al., Red blood cells from endothelial nitric oxide synthase-deficient mice induce vascular dysfunction involving oxidative stress and endothelial arginase I. Redox Biol, 2023. 60: p. 102612.
68. Yang, J., et al., Red Blood Cells in Type 2 Diabetes Impair Cardiac Post-Ischemic Recovery Through an Arginase-Dependent Modulation of Nitric Oxide Synthase and Reactive Oxygen Species. JACC Basic Transl Sci, 2018. 3(4): p. 450-463.
69. Mahdi, A., et al., Novel perspectives on redox signaling in red blood cells and platelets in cardiovascular disease. Free Radic Biol Med, 2021. 168: p. 95-109.
70. Wischmann, P., et al., Red Blood Cell-Mediated Cardioprotection Is Impaired in ST-Segment Elevation Myocardial Infarction Patients With Anemia. JACC Basic Transl Sci, 2023. 8(10): p. 1392-1394.
71. Hayward, C.S., et al., Effect of inhaled nitric oxide on normal human left ventricular function. J Am Coll Cardiol, 1997. 30(1): p. 49-56.
72. Minamino, T., et al., Low-Dose Erythropoietin in Patients With ST-Segment Elevation Myocardial Infarction (EPO-AMI-II) - A Randomized Controlled Clinical Trial. Circ J, 2018. 82(4): p. 1083-1091.
73. Prendergast, B.D., V.F. Sagach, and A.M. Shah, Basal release of nitric oxide augments the Frank-Starling response in the isolated heart. Circulation, 1997. 96(4): p. 1320-9.
74. Burger, D., et al., Erythropoietin protects cardiomyocytes from apoptosis via up-regulation of endothelial nitric oxide synthase. Cardiovasc Res, 2006. 72(1): p. 51-9.
75. Davidson, S.M., et al., Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovasc Res, 2019. 115(7): p. 1156-1166.
76. Heymes, C., et al., Endomyocardial nitric oxide synthase and left ventricular preload reserve in dilated cardiomyopathy. Circulation, 1999. 99(23): p. 3009-16.
77. Cosby, K., et al., Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med, 2003. 9(12): p. 1498-505.
78. Bryan, N.S., et al., Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proc Natl Acad Sci U S A, 2004. 101(12): p. 4308-13.
79. Bindra, K., et al., Abnormal haemoglobin levels in acute coronary syndromes. QJM, 2006. 99(12): p. 851-62.
80. Dauerman, H.L., et al., Bleeding complications in patients with anemia and acute myocardial infarction. Am J Cardiol, 2005. 96(10): p. 1379-83.
81. Salisbury, A.C., et al., Incidence, correlates, and outcomes of acute, hospital-acquired anemia in patients with acute myocardial infarction. Circ Cardiovasc Qual Outcomes, 2010. 3(4): p. 337-46.
82. Meyer, C., et al., Hemodialysis-induced release of hemoglobin limits nitric oxide bioavailability and impairs vascular function. J Am Coll Cardiol, 2010. 55(5): p. 454-9.
83. Aronson, D., et al., Impact of red blood cell transfusion on clinical outcomes in patients with acute myocardial infarction. Am J Cardiol, 2008. 102(2): p. 115-9.
84. Amorim, S., et al., Left ventricular reverse remodeling in dilated cardiomyopathy- maintained subclinical myocardial systolic and diastolic dysfunction. Int J Cardiovasc Imaging, 2017. 33(5): p. 605-613.
85. Sessa, W.C., et al., Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res, 1994. 74(2): p. 349-53.
86. Pasini, E.M., et al., Red blood cell (RBC) membrane proteomics--Part I: Proteomics and RBC physiology. J Proteomics, 2010. 73(3): p. 403-20.
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Bezug:2018-2024
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:30.01.2025
Dateien geändert am:30.01.2025
Promotionsantrag am:27.07.0024
Datum der Promotion:07.11.0024
english
Benutzer
Status: Gast
Aktionen