Dokument: Miniaturized protein profiling permits targeted signaling pathway analysis in individual circulating tumor cells to improve personalized treatment

Titel:Miniaturized protein profiling permits targeted signaling pathway analysis in individual circulating tumor cells to improve personalized treatment
URL für Lesezeichen:https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=67885
URN (NBN):urn:nbn:de:hbz:061-20241205-093014-5
Kollektion:Publikationen
Sprache:Englisch
Dokumententyp:Wissenschaftliche Texte » Artikel, Aufsatz
Medientyp:Text
Autoren: Rivandi, Mahdi [Autor]
Franken, André [Autor]
Yang, Liwen [Autor]
Abramova, Anna [Autor]
Stamm, Nadia [Autor]
Eberhardt, Jens [Autor]
Gierke, Berthold [Autor]
Beer, Meike [Autor]
Fehm, Tanja Natascha [Autor]
Niederacher, Dieter [Autor]
Dateien:
[Dateien anzeigen]Adobe PDF
[Details]3,08 MB in einer Datei
[ZIP-Datei erzeugen]
Dateien vom 05.12.2024 / geändert 05.12.2024
Stichwörter:Single cell proteomics, Personalized medicine, Breast cancer, Protein analysis, Circulating tumor cell
Beschreibung:Background

Traditional genomic profiling and mutation analysis of single cells like Circulating Tumor Cells (CTCs) fails to capture post-translational and functional alterations of proteins, often leading to limited treatment efficacy. To overcome this gap, we developed a miniaturized ‘protein analysis on the single cell level’ workflow—baptized ZeptoCTC. It integrates established technologies for single-cell isolation with sensitive Reverse Phase Protein Array (RPPA) analysis, thus enabling the comprehensive assessment of multiple protein expression and activation in individual CTCs.
Methods

The ZeptoCTC workflow involves several critical steps. Firstly, individual cells are labeled and isolated. This is followed by cell lysis and the printing of true single cell lysate preparations onto a ZeptoChip using a modified micromanipulator, CellCelector™. The printed lysates then undergo fluorescence immunoassay RPPA protein detection using a ZeptoReader. Finally, signal quantification is carried out with Image J software, ensuring precise measurement of multiple protein levels.
Results

The efficacy of ZeptoCTC was demonstrated through various applications. Initially, it was used for measuring EpCAM protein expression, a standard marker for CTC detection, revealing higher levels in single MCF-7 over MDA-MB-231 tumor cells. Furthermore, in Capivasertib (Akt-inhibitor)-treated MCF-7 single cells, ZeptoCTC detected a 2-fold increase in the pAkt/Akt ratio compared to control cells, and confirmed co-performed bulk-cell western blot analysis results. Notably, when applied to individual CTCs from metastasized breast cancer patients, ZeptoCTC revealed significant differences in protein activation levels, particularly in measured pAkt and pErk levels, compared to patient-matched WBCs. Moreover, it successfully differentiated between CTCs from patients with different Akt1 genotypes, highlighting its potential to determine the activation status of druggable cancer driving proteins for individual and targeted treatment decision making.
Conclusions

The ZeptoCTC workflow represents a valuable tool in single cell cancer research, crucial for personalized medicine. It permits detailed analysis of key proteins and their activation status of targeted, cancer-driven signaling pathways in single cell samples, aiding in understanding tumor response, progression, and treatment efficacy beyond bulk analysis. The method significantly advances clinical investigations in cancer, improving treatment precision and effectiveness. The workflow will be applicable to protein analysis on other types of single cells like relevant in stem cell, neuropathology and hemopoietic cell research.
Rechtliche Vermerke:Originalveröffentlichung:
Rivandi, M., Franken, A., Yang, L., Abramova, A., Stamm, N., Eberhardt, J., Gierke, B., Beer, M., Fehm, T., Niederacher, D., Pawlak, M., & Neubauer, H. (2024). Miniaturized protein profiling permits targeted signaling pathway analysis in individual circulating tumor cells to improve personalized treatment. Journal of Translational Medicine, 22(1), Article 848. https://doi.org/10.1186/s12967-024-05616-7
Lizenz:Creative Commons Lizenzvertrag
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz
Fachbereich / Einrichtung:Medizinische Fakultät
Dokument erstellt am:05.12.2024
Dateien geändert am:05.12.2024
english
Benutzer
Status: Gast
Aktionen